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In this paper, the use of regularization methods to solve the location problem in multilateration systems, using Mode-S signals, is
studied, evaluated, and developed. The Tikhonov method has been implemented as a first application to solve the classical system
of hyperbolic equations in multilateration systems. Some simulations are obtained and the results are compared with those
obtained by the well-established Taylor linearization and with the Cramér–Rao lower bound analysis. Significant improvements,
for the accuracy, convergence, and the probability of location, are found for the application of the Tikhonov method.
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I . I N T R O D U C T I O N

Nowadays, Mode-S multilateration (MLAT) systems are a
feasible option to be used in the air traffic control (ATC) tech-
nological infrastructures, so much that the European
Organization for the Safety or Air Navigation
(EUROCONTROL) published in its report “The ATM
Surveillance Strategy for ECAC” [1] that these systems will
be one of three pillars of the ground-based surveillance infra-
structure for 2020. These systems exploit the transmitted
signals from the on-board transponder of the secondary sur-
veillance radar in the selective and conventional mode, i.e.
SSR Mode-S (and Mode A/C), in order to calculate the pos-
ition of aircraft and vehicles in the coverage area. As a
matter of fact, each mobile (aircraft, vehicle) to be detected
and localized has an SSR Mode-S transponder on board, emit-
ting standard signals at regular, but unknown, time intervals.
A number of receiving and measurement stations in the sur-
veillance area generate a set of time of arrival measurements,
from which the localization is performed by solving a system
of hyperbolic equations based on the Time Difference of
Arrival (TDOA) technique; the pertaining algorithms run at
real time in a CPS (Central Processor System) [2]. This is
sketched in Fig. 1, which, for the sake of simplicity, refers to
the two-dimensional case.

In some scenarios, it is common to find a numerical
problem when solving the system of hyperbolic equations,

i.e., the coefficient matrix has a very large condition number
[3]. This problem is defined in the literature as an ill-
conditioned problem and the consequence of this is that,
when the system of equations is solved, the solution is not
correct or it has a big error. The mathematical interpretation
of this problem goes back to the three conditions of Jacques
Hadamard [4], namely, the solution exists, the solution is
unique, and the solution depends continuously on the data.
If at least one of these conditions is not satisfied the
problem becomes ill-conditioned. On the other hand, the
effects of this problem in the multilateration systems accuracy
have been highlighted in [5, 6].

Some ill-conditioned problems can also be found in other
fields as image processing [7], electromagnetic scattering [8],
or geophysics [9]. In these fields, this problem has been
solved by applying a group of methods called regularization
methods. These methods basically convert the ill-conditioned
problem in a well-conditioned problem where the three
Hadamard’s conditions are satisfied. In this paper, we study
and apply one of these methods to solve the ill-conditioned
problem in multilateration systems.

This paper is organized as follows: in Section II, the general
aspects and the classical solution for the location problem, in
MLAT, are shown. Then, in Section III the location strategy as
proposed in this work, is fully described whereas, in Section IV
some simulations and results are shown for two different scen-
arios. Finally, Section V gives the main conclusions.

I I . L O C A T I O N P R O B L E M I N M L A T

In MLAT systems, a number of ground stations (at least three
for 2D or four for 3D localization) are placed in some strategic
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locations around the airport or the area to be covered. The
system uses the Mode-S transmission and asynchronous
transponder (Mode-S) replies as well as the responses to inter-
rogations elicited by the MLAT system. Then, the received
signal is sent to a CPS (Central Processor System) where the
transponder position is calculated. This calculation is based
on the TDOA method, where the intersections of multiple
hyperboloids, which have been created with the relative time
differences, are computed. Each of these hyperboloids
follows the expression:

TDOAi,1 = 1
c

��������������������������������
x − xi( )2+ y − yi

( )2+ z − zi( )2
√

− 1
c

����������������������������������
x − x1( )2+ y − y1

( )2+ z − z1( )2
√ (1)

where c is the speed of light, (x,y,z) the unknown target position
(aircraft position), and (xi,yi,zi) is the known position of the ith
station (i ¼ 1 denotes the reference station). Linearizing (1) by
Taylor series expansion [10, 11] is the most accepted strategy to
solve these hyperbolic equations, for estimating the target pos-
ition. In the current literature, the solution of this inverse
problem has been presented as an iterative procedure in the
sense of the least-squares [10, 11]. Denoting the unknown
target position as u ¼ [x, y, z]T and comprising the system
measurements (for a number of Ns ground stations) in a
Ns21 vector m̂ = TDOAi, 1, . . . , TDOANs , 1

[ ]T
, the final

formulation can be summarized as follows:

û k = G û k−1
( )T

G û k−1
( )( )−1

G û k−1
( )T

× m̂D û k−1( )
+ û k−1

(2)

where k ¼ 1, . . . ,K; G is the (Ns 2 1) × 3 Jacobian matrix
of the Ns 2 1 hyperbolic equations (1), û 0 is the starting
point required for this method, m̂D W m̂ − m û k−1( )

, and
m û k−1
( )

is a (Ns 2 1 )× 1 vector comprising the TDOA
(see (1)) quantities evaluated at the partial solution û k−1.
Finally, because this method is based on an iterative procedure,
K is the number of refinement iterations, in practice set by the
maximum acceptable residual error.

The solution provided by (2) is the minimum residual
norm solution and the matrices product (GT G)21 GT is
known as the pseudoinverse matrix G† [3]. For some scen-
arios, due to the system geometry, to the measurements
noise and to the starting point quality, this inverse problem
is ill-conditioned and therefore the solution obtained by (2)
is not correct or it diverges with very large errors.

Nowadays, the problem of ill-conditioning is solved by
applying different hardware and software solutions. Regarding
the hardware-based solutions, one of these is by adding more
stations, i.e. usually the problem of ill-conditioning is found
for situations with a number of stations smaller than seven or
eight. Another one is by adding new measurement capabilities
to the system, such as the angle of arrival [6] or the
round-trip-delay [6, 12], i.e., in a numerical sense, adding new
measurements means to change the ill-conditioned Jacobian
matrix into a well-conditioned Jacobian matrix. However all
these solutions, although are efficient options, require in much
cases significant economic investments.

On the other hand, regarding the software-based sol-
utions, two possible options can be implemented. One is
by using a horizontal (2D) projected version of the
Taylor-series expansion method and solving the resulting
system of equations with the pseudoinverse matrix. This
option, although the corresponding coefficient matrix is
initially well-conditioned, has the disadvantage that it adds
a spatial bias due to the projection from 3D to 2D in the coef-
ficient matrix but of course not in the measurements. The
second option is by implementing a family of location
algorithms called closed-form algorithms [5, 13, 14]. These
algorithms have the advantage of not needing a starting
point but on the contrary, they introduce quadratic and
cubic relations between the solution (target position) and
the measurement noise as well as the necessity to choose
one of the two possible solutions. Horizontal projection for
this kind of algorithms is also possible but the problem of
bias is equally present. Finally, as it will be shown in the
results section, these algorithms, in some cases, are also
affected by the ill-conditioning problem.

In this paper we propose an efficient software-based strat-
egy, based on the use of the Tikhonov [15] regularization
method, to solve the iterative procedure of Taylor-series
expansion and to avoid those errors due to the ill-conditioned
problem but also bridging those disadvantages of hardware
and software-based solutions as mentioned above.

I I I . S O L U T I O N O F L O C A T I O N
P R O B L E M I N M L A T B Y T I K H O N O V
R E G U L A R I Z A T I O N

This method was originally and independently derived by
Tikhonov [15] and Phillips [16]; it has been used to solve
the ill-conditioned problems in an important number of
applications to engineering and science. The main idea of
this method is to incorporate a priori information about the
size and smoothness of the final solution. This a priori infor-
mation is in the form of a semi-norm. Generally, the
Tikhonov regularization leads to minimize a function that
takes the following form:

arg min ||Au− m̂||22 + l2 |Lu| ||22
{ }

(3)

Fig. 1. A pictorial view (2D) of TDOA localization.

210 ivan a. mantilla-gaviria et al.

https://doi.org/10.1017/S1759078712000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078712000104


where u is the unknown vector, A is the coefficient matrix for
the inverse problem, m̂ is the estimated measurement vector,
l is called regularization parameter, and L is called regulariz-
ation matrix. The regularization parameter l controls the
importance given to the regularization term ||Lu||2. We
have denoted the Euclidean norm by ||.||2.

Using the Tikhonov regularization concept, the likelihood
function [11] for the Mode-S location problem can be
expressed as follows:

L(u) = 1

(2p)
Ns−1

2 det(N(u))
1
2

× e−
1
2{(m̂−m(u))T N(u)−1(m̂−m(u))+l2(Lu)T (Lu)}

(4)

where N(u) is the covariance matrix of the TDOA measure-
ments noise and det denotes the determinant operator. The
maximum likelihood solution of (4) is that û which minimizes
the following function:

Q u( ) = m̂ − m u( )( )T N u( )−1 m̂ − m u( )( ) + l2 Lu( )T Lu( )
{ }

(5)

Solving (5) by Taylor-series expansion, the estimation for
the unknown target position in the Tikhonov sense takes
the following form:

û k
l = A−1

l û k−1
l

( )
m̂D û k−1

l

( )
+ û k−1

l , k = 1, ..., K. (6)

where A21
l is known in the literature as the regularized inverse

matrix of Tikhonov [15] and it is defined as follows:

A−1
l = GT N u( )−1G + l2LT L

( )−1
GT N u( )−1 (7)

It is worth to say that, due to the fact that the covariance
matrix N(u), for real applications, is often not known
because it depends on the true target position, in practice it
is common to remove it from (7), assuming an identity matrix.

The choice of the regularization parameter l and of the
regularization matrix L is the most critical aspect to make a
correct use of the procedure described above. Firstly, the
choice of the regularization matrix is directly connected
with the statistics of the target position vector u. If the com-
ponents of u are assumed to be non-random and uncorre-
lated, a standard choice of the regularization matrix is L ¼
I3, where I3 is a 3 × 3 identity matrix.

On the other hand, the choice of the regularization par-
ameter value is not as straightforward as the choice of regular-
ization matrix. In the literature there exist a considerable
number of methods and procedures to calculate/estimate
an approximated regularization parameter value. These
methods provide regularization parameter values which
allow finding accurate numerical solutions for a variety of
applications (e.g. image processing, biologic computation,
remote sensing, electromagnetic scattering, etc.) and they
are basically based on the solution of an optimization
problem, i.e. to find a parameter that satisfies some equalities
[17] or find a parameter that minimizes some special func-
tions [18–20]. However, it is worth to say that, due to their
nature, these methods introduce a significant computational
load and therefore the computation time required might be
not suitable for real-time location in MLAT.

In this work, we evaluate the problem for several regular-
ization parameter values (no more than three) and then we
choose as true solution the one that corresponds to the
minimum residual error. This option is feasible for the con-
sidered application because the typical size of the coeffi-
cients matrices (Jacobian matrix) is normally smaller than
10 × 3.

In general, the residual error for an inverse problem is
given by:

errorj =
G ûlj

( )
ûlj − m̂

∣∣∣ ∣∣∣∣∣∣ ∣∣∣
2

m̂| || |2
, j = 1, ..., total of l. (8)

Remembering that for Taylor-series expansion method, the
matrix G is an approximation of an exact coefficient matrix,
then (8) could not be a correct value for the residual error
regarding to the true target position u. Therefore, in this
work, we propose to calculate the residual error by replacing
the regularized solution ûlj in the non-linear TDOA function
(1), instead in the matrix G, as follows:

errorj =
||hlj − m̂||2

||m̂||2
, j = 1, ..., total of l. (9)

where the vector hlj is given by

hlj =
TDOAi,1 ûlj

( )
..
.

TDOANs ,1 ûlj

( )
⎡
⎢⎢⎣

⎤
⎥⎥⎦

Ns−1( )×1

, i = 2, ..., Ns. (10)

I V . R E S U L T S

Preliminary results are shown to validate the improvement of
the system accuracy and its convergence by applying the
Tikhonov method in the iterative procedure of Taylor-series
expansion. Two scenarios have been simulated; the first one
is the operating system of Linate Airport (Milan, Italy) and
the second one is a multilateration system which is well
described and studied by Cramér–Rao Lower Bound –
CRLB – analysis in [6].

For each scenario, the horizontal (2D) r.m.s. error
(obtained via Monte-Carlo simulation with 100 trials), the
theoretical accuracy provided by the CRLB [6], the bias of
the estimator, and the spatial convergence are calculated.
Moreover, a probability of location is defined and calculated
for both scenarios.

Let Di
j be the spatial error between the exact target position

ui ¼[ xi, yi, zi]
T, for the ith simulated point, and the estimated

solution û
j
i = x̂j

i , ŷj
i, ẑj

i

[ ]T
, for the jth Monte-Carlo trial at the

same ith point, which can be calculated as follows:

D
j
i =

��������������������������������������
x̂ j

i − xi

( )2
+ ŷ j

i − yi

( )2
+ ẑ j

i − zi

( )2
√

(11)

Then, the probability of location PoL is defined as the prob-
ability of calculate a target position with an error Di

j smaller
than a threshold d and it can be expressed, for any location
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method, as follows:

PoL = 1
LSLM

∑LS

i=1

∑LM

j=1

D
j
i ≤ d

( )
× 100 %( ) (12)

where LS is the total number of simulated points and LM is the
total number of Monte-Carlo trials.

A) Linate airport system
The Linate airport system is composed of eight ground
stations. For this scenario we have simulated a path of
surface movement around the airport. The system layout
and simulated path are shown in Fig. 2.

For this scenario, the starting point for the Taylor-series
expansion method has been assumed to be a fixed point
over the airport and it is shown as the star in Fig. 2. For this
scenario it has been found that using only one regularization
parameter value (l = 0.1) is sufficient to obtain satisfactory
results.

Figure 3 shows the horizontal r.m.s. error for the horizontal
projection of Taylor-series expansion method and for the
non-projected (3D) version solved by the pseudoinverse
matrix. It also shows the non-projected (full version)
Taylor-series expansion method solved by Tikhonov regular-
ization and the corresponding CRLB analysis.

Initially, the CRLB analysis predicts a good accuracy over
the entire path, presenting only a few peaks around the
points 40 and 50, where the horizontal accuracy is slightly
larger than 7 m. However, for the non-projected Taylor
(circles), it can be seen how the ill-conditioned problem
avoids the convergence of the method solved by the pseudoin-
verse matrix, i.e., the r.m.s. error tends to infinity in the most
of points. On the other hand, the horizontal projected version
obtains acceptable accuracy levels but the effect of the spatial
bias is present, for this scenario, in the most of points (more
for those points within the N8. 30 and the N8. 120). Finally,
it is clear how the solution obtained by applying Tikhonov
regularization improves both the ill-conditioned problem,
which is directly related with the system accuracy and conver-
gence, and the spatial bias added by the projected version.

Figure 4 shows the bias of the estimator for the projected
version of Taylor as solved by the pseudoinverse and that
one corresponding to the full version of Taylor as solved by
the Tikhonov regularization. In this figure, it can be noted
the improvement, regarding to the spatial bias of the horizon-
tal projection of Taylor-series method, added by using the
Tikhonov regularization. This aspect is very important when
using tracking algorithms (which are present in all the ATC
systems) because they can improve the r.m.s. error of the
location algorithm but not the bias. In this way, it is clear to
see how Tikhonov method also helps to the tracking algor-
ithms to reach more accurate tracks.

Figure 5 shows the spatial convergence for a specific
Monte-Carlo trial. In this figure it can be observed how the
solution by Tikhonov regularization allows the Taylor-series
expansion to ensure the convergence to the true point.

Finally, the probability of location, for this simulation, is
shown in the first row of Table 1. Because the Linate system
is intended only for surface surveillance, we have set the
threshold in (12) to d ¼ 7.5 m [2]. From this table, we can

Fig. 2. Linate airport system layout.

Fig. 3. Horizontal accuracy for Linate airport. Each abscissa point corresponds
to a point in the simulated path.

Fig. 4. Horizontal bias of the estimator for Linate airport. Each abscissa point
corresponds to a point in the simulated path.
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observe the location strategy proposed herein provides the
highest probability of location with a value of 99.3%. The clas-
sical solution (Taylor3D + Pseudoinverse) practically does not
allow any location (PoL ¼ 14.28%) whereas the projection
version of this provides a high probably of location but, due
to the bias problem, it is not better than that of the strategy
proposed herein.

B) MLAT system for a takeoff line
This system is composed of four stations and it is well ana-
lyzed in [6]. The layout of the simulated scenario is shown
in Fig. 6.

For this scenario, the starting point for the Taylor-series
expansion method has been obtained by means of the closed-
form algorithm described in [13]. This algorithm is based on
spherical intersections and it does not need for a starting point
but, as it is shown in the results, it is also affected by the ill-
conditioning of the problem due to the system geometry.
The horizontal coordinates of the starting point (x,y) are
taken from the closed-form algorithm and the vertical coordi-
nate (z) is simulated as the barometric altitude, i.e., with a bias
of 40 m regarding the real target height. Also for this scenario
it has been found that only using one regularization parameter
value (l = 0.1) is sufficient to obtain satisfactory results.

The amount of ill-conditioning of this scenario is signifi-
cantly greater than that of the first scenario. It is because the
number of stations here (four) is much smaller than the first
one (eight). This effect can be noted in the CRLB analysis
shown in Fig. 7 since the theoretical accuracy diverges for
points within 0 and 5 km and for those around 20 km. On
the other hand, due to the fact that for this scenario, the
target height is increasing with the distance, the vertical

separation of this with the plane of the ground stations con-
siderably affects the accuracy provided by the horizontal pro-
jection of Taylor-series method (crosses), and the spatial bias
added by this is considerably larger for points beyond 15 km.

Owing to the ill-conditioning, it can be observed that, for
this scenario, the accuracy levels provided by the full version
of Taylor, using the pseudoinverse matrix, diverge far from
the theoretical accuracy values (CRLB) for points within 0–5
and 15–20 km. On the contrary, the closed-form algorithm
presents a more stable accuracy, but it is also affected by
system geometry (dilution of precision). Finally, it is evident
that the significant improvement, of the system accuracy, is
obtained by applying Tikhonov regularization. The accuracy
for this option is stable for the whole of takeoff line and it is
not larger than 25 m. It is worth to say that this solution is
below the CRLB values because the CRLB is also affected by
the ill-conditioning of the problem, specifically that part due
to the system geometry.

Figure 8 shows the bias for the solutions obtained by the
closed-form algorithm and by the full version of Taylor
series using both pseudoinverse matrix and Tikhonov regular-
ization. Firstly, it can be noted that for a few points close to 10
and 15 km, the bias of the solution obtained by pseudoinverse
is smaller (no more than 1 m) than that of the Tikhonov
method. It can be explained because in the case of well-
conditioned problems the pseudoinverse matrix is the

Fig. 5. Spatial convergence for one trial.

Table 1. Probability of Location resulting from the simulations.

Scenario Starting
point
(%)

Taylor3D 1

Pseudoinverse
(%)

Taylor2D 1

Pseudoinverse
(%)

Taylor3D 1

Tikhonov
(%)

Linate system
(d ¼ 7.5 m)

– 14.28 96.93 99.3

Takeoff line
(d ¼ 25 m)

85.54 81.2 66.02 95.8

Fig. 6. Layout of the MLAT system for a takeoff line.

Fig. 7. Horizontal accuracy over the takeoff line.
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solution with minimum norm [3] and in contrast Tikhonov
always adds certain amount of bias [15]. The important
aspect is that, if the correct regularization parameter value is
chosen, this amount of bias can be neglected regarding the
rest of the options to improve the problem (i.e. the horizontal
projection of Taylor-series method). Moreover, due to the ill-
conditioned problem, for the rest of the points, the bias added
by pseudoinverse matrix solution is infinity and for most of
points the bias added by the closed-form algorithm has been
found greater than that of Tikhonov regularization.

Figure 9 shows the spatial convergence for a specific
Monte-Carlo trial; in this figure, it can be noted how the regu-
larization of the location problem ensures the convergence
also for this scenario.

Finally, the probability of location, for this simulation, is
shown in the second row of Table 1. Because this system is
intended for surface surveillance in a takeoff line (more than
5 Nm from the runway), we have set the threshold in (12)
as d ¼ 25 m [2]. From this table, we can observe the location
strategy proposed herein provides the highest probability of
location with a value of 95.8%, which is significantly much
greater than those of the remaining strategies. This parameter
also evidence the bias problem of the projected version of
Taylor, i.e., only PoL ¼ 66.02%. On the other hand, the start-
ing point, obtained by the closed-form algorithm [13],

provides a PoL ¼ 85.54%, value that is not significantly
improved by the application of the classical strategy (PoL ¼
81.2%).

V . C O N C L U S I O N

The implementation of Tikhonov regularization to solve the
inverse problem of Taylor-series expansion method, for
location in multilateration systems, has been described and
evaluated. The theoretical aspects of the method with a prac-
tical strategy to calculate the regularization parameter have
been described.

For the scenarios simulated herein, significant improve-
ments, for the system accuracy and convergence, have been
found with the implementation of Tikhonov regularization.
For both scenarios, it was found that the regularization of the
location problem significantly mitigates the ill-conditioning
due to the system geometry, i.e., those points where the
CRLB analysis predicts poor accuracy levels; to the measure-
ments noise, i.e., those points where the CRLB predicts good
accuracy levels but the solution obtained by the pseudoinverse
matrix diverges; and also due to the quality of the starting point
for Taylor-series expansion method. Moreover, these improve-
ments are also evidenced by the increment of the probability of
location for all the cases evaluated in this work, which, in other
words, means to meet the accuracy values from the regulatory
bodies (e.g. those in [2]).

Another important advantage of the strategy proposed
herein is that, it does not require significant economic invest-
ments such as the hardware-based solutions and, at the same
time, it does not introduce the bias problem due to the
implementation of projected versions of the location
algorithms.

For both scenarios it was found that a regularization par-
ameter value of l = 0.1 was sufficient to obtain satisfactory
results but, it is worth to say that in the situations where the
problem is better conditioned, it is necessary to use, at least,
one or two more values smaller than l = 0.1, i.e., the smaller
the amount of ill-conditioning the smaller should be l.

The regularization of the location problem is most useful
for those situations where the vertical separation between
the ground stations and the target is quite small or for those
situations with a small number of stations.
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