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Abstract
This article considers a dynamic version of risk measures for stochastic asset processes and gives
a mathematical benchmark for required capital in a solvency regulation framework. Some dynamic
risk measures, based on the expected discounted penalty function launched by Gerber and Shiu, are
proposed to measure solvency risk from the company’s going-concern point of view. This study
proposes a novel mathematical justification of a risk measure for stochastic processes as a map on a
functional path space of future loss processes.
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1. Introduction

On a stochastic basis ðΩ; F ; ðF tÞt≥ 0; PÞ with the usual conditions, for each u 2 R, let
Xu := Xu

t

� �
t≥0 be an ðF tÞ-adapted process with P Xu

0 =u
� �

= 1. Throughout the paper, we assume
that F 0 is generated by null sets. Thus, any ðF tÞ-adapted process starts with a constant. We assume
that Xu represents a surplus process of an insurance company, for example, a company’s net asset;
see section 5.2. Note that Xu

t �Xv
t � u� v for all t≥ 0 in this notation. To measure the insolvency

risk of an insurance company, it would be natural to consider ruin-related risk over a fixed term. For
example, a negative Xu

t means the company is insolvent at time t, the situation called ruin in risk
theory; the time of ruin is defined as

τ = τu := infft >0jXu
t < 0g

which is an F t-stopping time. To evaluate how insolvent the company is, we need to consider a
quantitative measure of insolvency.

Let M :=MðRÞ be a set of random variables Ω ! R. According to Denuit et al. (2005), an actuarial
definition of a “risk measure” is a functional ρ :M ! ½0; 1�, representing extra cash that must be
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added to X to make it acceptable (Definition 2.2.1 in Denuit et al., 2005). More practically, it would
be useful to extend ρ to an R-valued mapping. That is, if ρ>0, then the company should add the
capital ρ to its position; if ρ≤ 0, then the company can still use the cash −ρ. Because insolvency is
closely related to ruin, it would be natural to evaluate insolvency risks as a functional of τ.

In recent decades, insurance ruin theory has advanced, and it is possible to analyse many ruin-related
quantities. For example, the following functional of τ was introduced by Gerber & Shiu (1998). For
some w : R + ´R + ! R

ϕX
0 ðuÞ= E e� δτwðXu

τ� ; �Xu
τ Þ1fτ<1g

� �
(1.1)

which is risk at ruin via the asset prior to ruin Xτ− and the deficit at ruin −Xτ by discounting with
interest rate δ. This quantity, called the Gerber–Shiu function, would be a good, natural candidate
for a “risk measure” for solvency evaluations because it can choose a “risk” in the vicinity
of the bankruptcy of the company. Indeed, there have been several previous attempts to use ϕX

0 as a
risk measure, for example, Trufin et al. (2011), Eisenberg & Schmidli (2011), Schmidli (2002),
Schmidli (2014). However, there remains the mathematical problem of dealing with this as a “risk
measure”.

There is a certain consensus regarding mathematical conditions that a risk measure should meet.
Suppose that an order “�” is equipped in M, and let fMð� MÞ be a convex cone that includes all
constant processes. Then, a risk measure ρ is defined as follows:

Definition 1.1. A map ρ : fM ! R is called a risk measure if the following two properties
hold true:

∙ Monotonicity (MO): ρ(X)≤ ρ(Y) for any X; Y 2 fM such that X�Y.

∙ Translativity (TR): ρ(X + c)= ρ(X) + c for any X 2 fM and c 2 R.

In addition, a risk measure ρ is called coherent if ρ further satisfies the following conditions:

∙ Positive homogeneity (PH): ρ(λX)= λρ(X) for any X 2 fM and λ>0.

∙ Subadditivity (SA): ρ(X +Y)≤ ρ(X) + ρ(Y) for any X; Y 2 fM.

Since the paper by Artzner et al. (1999), this concept of risk measures has been widely used in finance
and insurance, and many other properties for ρ have been proposed by several authors. Although the
Gerber–Shiu function ϕX

0 can be an intuitive “risk measure” in an actuarial sense as in Denuit et al.
(2005) for insolvency risks, the domain fM is unclear mathematically. For example, Trufin et al.
(2011) discussed a risk measure for a “loss variable Z” as

ρϵðZÞ= inffu≥0 jPðτu <1Þ≤ ϵg (1.2)

under the classical Cramér–Lundberg risk model; see also Mitric & Trufin (2015). This is intuitively
a kind of risk measure based on the Gerber–Shiu function with w(x, y)≡1 and δ=0; ρε(Z) is
interpreted as the minimum capital such that the ultimate ruin probability is at most the specified
level ε. To justify this ρε as a risk measure in the sense of Definition 1.1, Z is considered as an
individual claim size. However, this perspective has some drawbacks: (i) the risk for Xu depends not
only on the claim size Z, but also on the claim number process and the value of the premium; (ii) the
risk model must be restricted to, for example, a classical model. For example, if Xu is a Lévy process
with infinite activity jumps, then the meaning of Z is now unclear.
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We claim that insolvency risk should reflect a “process risk” of Xu; that is, the loss Z should depend
on the entire path of Xu. To define a universal solvency risk measure, independent of a model
structure, the measure should be a map on a functional space with the underlying process Xu values.
On this criticism, we can find an attempt by Loisel & Trufin (2014). They consider a risk measure
derived from the expected area in red for a compound Poisson surplus process and investigate these
properties as a mathematical risk measure. They define a “stochastic order” for aggregate claim
processes based on a stochastic order of all marginal variables of the process. Since we deal with
more varied ruin-related risks under a more general class of surplus processes, we will later introduce
an ordering rule for surplus processes that more flexibly depends on the risk form.

In this paper, we formulate a risk measure in the sense of Definition 1.1, using a Gerber–Shiu
function without specifying the underlying process, by which ρε in (1.2) is also justified, in our
context, not only for the classical Lundberg model, but also for a more generalised asset model. In
section 2, we define a Gerber–Shiu risk to evaluate insolvency risk in a finite-time interval, based on
which we propose a Gerber–Shiu risk measure in section 3. This static risk measure (in a single
period) is used to define a dynamic risk measure (DRM) for multiple periods in section 4. In section
5, we demonstrate the use of the DRM for asset/liability management and define the solvency capital
requirement (SCR) based on a Gerber–Shiu risk measure for insurance companies. A simple example
gives us a theoretical “benchmark” for defining the SCR in practice.

2. Gerber–Shiu Risk Processes

Considering an insurance business in practice, solvency risk is usually considered up to a certain
maturity T> 0. For instance, suppose that an asset risk X at time t> 0 is measured by the value of ϖ
(Xt) for a penalty function ϖ. Then, considering a discount factor e−δt, an insurance loss at time T
(say, LT) can be defined as follows:

LT :=
ϖðXu

TÞ ðτ>TÞ

eδðT� τÞϖðXu
τ Þ ðτ≤TÞ

(
(2.1)

Note that when ruin occurs before maturity (τ≤T), the loss at time τ is inflated up to time T to
measure the risk at T. Hence, the expected preset (t= 0) value of the risk is given by

E e� δTLT
� �

=E e� δðτ^TÞϖ Xu
τ^T

� �h i
This idea motivates us to consider a more general finite-time Gerber–Shiu function up to time T for
measuring ruin risk at t=0.

ϕX
0 ðu;TÞ= E e� δðτ^TÞw Xu

ðτ^TÞ� ; X
u
τ^T

� �h i
(2.2)

for a function w on R2. This finite-time version was investigated by Garrido (2013) and Cojocaru
et al. (2014) as a possible risk measure. Although there is another finite-time version by Kuznetsov &
Morales (2014), version (2.2) seems natural to measure risks in a fixed time interval. Later, we
consider such a risk at each time t by defining

ϕX
t ðu; TÞ=

E e� δðτ^TÞw Xu
ðτ^TÞ� ; Xu

τ^T

� �
jF t

h i
on fτ > tg

1 on fτ ≤ tg

8<: ; a:s: (2.3)
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That is, we measure a risk by a finite-time Gerber–Shiu function when ruin still has not occurred
at t: τ> t, and we regard the risk as infinite if ruin has already occurred by t: τ≤ t.

Note that ϕX(u, T)= (ϕt(u, T))t≥ 0 is called a Gerber–Shiu process, which was introduced by Garrido
(2010) at the International Gerber–Shiu Workshop in 2010. However, its properties and applica-
tions have been insufficiently investigated. We shall focus again on this concept and give its meaning
as a mathematical risk measure with applications.

When we consider a risk by an insurance company, the risk should decrease if the initial reserve
increases. Since we use functions (2.2) or (2.3) to measure a company’s risk, the penalty function w
should be determined so that ϕX

0 decreases if the initial asset u increases. In this paper, we require
such a condition for the penalty function w in (2.2).

Definition 2.1. Function (2.2) is called a Gerber–Shiu risk if the following condition holds true:

ϕX
0 ðu + v; TÞ ≤ ϕX

0 ðu; TÞ (2.4)

for any u, v, T>0. Moreover, we say that ϕX = ϕX
t

� �
t2½0;T� is a Gerber–Shiu risk process if ϕX

0 is a
Gerber–Shiu risk.

This definition means that the larger a Gerber–Shiu risk is, the riskier the corresponding company is.
In practice, the company should ensure that Gerber–Shiu risk is kept low.

Example 2.1. When w(x, y)=1{y< 0} and δ= 0, function (2.2) is given by

ϕX
0 ðu; TÞ=P Xu

τ^T < 0
� �

=Pðτ≤TÞ

which represents the finite-time ruin probability. This clearly satisfies

ϕX
0 ðu; TÞ=Pðτu ≤TÞ>Pðτu + v ≤TÞ=ϕX

0 ðu + v; TÞ

for any v, T>0 and u 2 R. Therefore, this ϕX
0 is a Gerber–Shiu risk.

Example 2.2. Let δ= 0, w(x, y)=1{−y< β} for any constant β 2 R:

ϕX
0 ðu; TÞ=P �Xu

τ^T < β
� �

which is the distribution function of �Xu
τ^T . Suppose that Xu is a spectrally negative Lévy

process starting at u. Then, Xu
t ≤Xu+ v

t a:s: for any v, t> 0. Therefore, Xu
τ^T ≤Xu + v

τ^T . Hence, ϕX
0 ðu; TÞ

satisfies (2.4).

Example 2.3. Consider the Cramér–Lundberg model, that is

Xt = u + ct�
XNt

i=1

Ui

where N is a Poisson process, and the Uis are i.i.d. positive random variables with mean μ> 0. When
w(x, y)= x− y, function (2.2) is

ϕX
0 ðu; TÞ= E e� δ τu^Tð Þ X τu^Tð Þ� �Xτu^T

� �h i
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which is a Gerber–Shiu risk. Indeed, if the initial level u increases to u + v for v> 0, then it follows
that τu< τu+ v a.s., and that

X τu^Tð Þ� �Xτu^T =Uσ1 τu ≤Tf g

because ΔXT= 0 a.s., where Uσ is the claim size causing ruin. Therefore

ϕX
0 ðu; TÞ= E E e�δτuUσ1fτu ≤Tg

��τu� �� �
= μE e�δτu1 τu ≤Tf g

� �
> μE e�δτu + v1 τu + v ≤Tf g

� �
=ϕX

0 ðu + v; TÞ
which is (2.4). This Gerber–Shiu risk measures a risk by the expected present value of the claim size
that causes ruin if ruin occurs, and indicates “no risk” otherwise.

3. Gerber–Shiu Risk Measures

Hereafter, we use the following notation:

∙ R :=R∪ f±1g.
∙ D :=D½0; 1Þ: a space of càdlàg functions with a suitable metric �k k. Space D becomes a
measurable space with the σ-field generated by open balls.

∙ Given a measurable space (E, E), we denote, using MtðEÞ, a family of F t=E-measurable maps
from Ω to E for each t≥ 0. Note that MsðEÞ � MtðEÞ for any s≤ t.

∙ For stochastic processes X= (Xt)t≥ 0 and Y= (Yt)t≥ 0, we denote X +Y= (Xt +Yt)t≥ 0 and
X ⋅Y= (XtYt)t≥ 0, an additive operation and a multiplicative operation, respectively, in MtðDÞ
for each t∈ [0, T].

∙ For a constant c 2 R, we use the same notation for the constant process c= (c)t≥ 0.

∙ For an asset process X, we define a (dual) loss process byeXu := �Xu
t

� �
t2½0;T�

Note that eXu
0 = �Xu

0 = �u a:s:

∙ For random variables U and V, we define the stochastic order U≤ stV as

FVðxÞ≤ FUðxÞ

for all x 2 R, where FU is the distribution function of U.

Definition 3.1. For a given ε>0 and Gerber–Shiu risk ϕX
0 , map GSϵT : MTðDÞ ! R, is defined by

GSϵT eXu
� �

:= inf z 2 R ϕX
0 ðu + z; TÞ< ϵ

��	 

GSϵT is the minimum extra capital to be added to the initial asset to maintain a Gerber–Shiu risk less
than ε> 0, which is given because of a strategy of the insurance company. This is a risk measure in
the actuarial sense; ε is a level that makes the company’s position acceptable. This is motivated from
Value-at-Risk (VaR); the concept is not quite new but is a natural extension of the VaR risk measure
of ruin theory in Trufin et al. (2011) or Loisel & Trufin (2014).
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Lemma 3.1. The map GSϵT is translation invariant:

GSϵT eXu + c
� �

=GSϵT eXu
� �

+ c

for any c; u 2 R.

Proof: Since eXu + c= eXu� c by the definition of a loss process, we see that

GSϵT eXu + c
� �

= inf z 2 R ϕX
0 u + ðz� cÞ; Tð Þ< ϵ

��	 

= inf v + c 2 R ϕX

0 ðu + v; TÞ< ϵ
��	 


= c + inf v 2 R ϕX
0 ðu + v; TÞ< ϵ

��	 

=GSϵTðeXuÞ + c

□
Theorem 3.1. Suppose that an order� in MTðDÞ is defined such that, for any u 2 R and T>0eXu� eYu ) ϕX

0 ðu; TÞ ≤ ϕY
0 ðu; TÞ (3.1)

Then, map GSϵT satisfies the monotonicity property: for any u 2 R

eXu� eYu ) GSϵT eXu
� �

≤ GSϵT eYu
� �

That is, GSϵT is a risk measure under condition (3.1). Hence, under conditions (2.4) and (3.1), GSϵT is
a risk measure in the sense of Definition 1.1.

Proof: Suppose that eXu� eYu and xϵ :=GSϵT eXu
� �

. From the definition of GSϵT and property (3.1), it
follows for any δ>0 that

ϵ ≤ ϕX
0 ðx + xϵ + δ; TÞ ≤ ϕY

0 ðx + xϵ + δ; TÞ

Since the Gerber–Shiu risk ϕY
0 ð�; TÞ satisfies condition (2.4), we have that

xϵ + δ ≤ inf z 2 R ϕY
0 ðu + z;TÞ< ϵ

��	 

=GSϵT eYu

� �
Then, letting δ→ 0, we have confirmed the monotonicity of GSϵT . With Lemma 3.1, GSϵT is a risk
measure in the sense of Definition 1.1.

□

Remark 3.1. The order eXu� eYu means that process Y is riskier than process X. Since we consider
that a process X is riskier if ϕX

0 is larger (see (2.4)), ordering as in (3.1) is natural. However, how to
define ordering (3.1) is not unique, because there could be many senses in which “process X is risky”,
which should depend on what we consider risk to be. For example, if we consider that “risky”means
“earlier ruin”, we use ruin probability as a measure of risk. In that case, the risk ordering should be
based on a time-of-ruin order; see Example 3.1. In this way, ordering (3.1) should be linked to
penalty function w in ϕ0.

Theorem 3.2. Suppose a Gerber–Shiu risk ϕX
0 satisfies the following condition:

ϕλX
0 ðλu; TÞ=ϕX

0 ðu; TÞ (3.2)

for any λ, T> 0 and u∈ℝ
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Then, map GSϵT satisfies the positive homogeneity

GSϵT λ � eXu
� �

= λ �GSϵT eX� �u

for any λ>0 and u∈ℝ

Proof: By condition (3.2), it follows that

GSϵT λ � eXu
� �

= inf z 2 R ϕλX
0 ðλu + z; TÞ< ϵ

��	 

= inf z 2 R ϕX

0 ðu + z=λ; TÞ< ϵ
��	 


= inf λv 2 R ϕX
0 ðu + v; TÞ< ϵ

��	 

= λGSϵT eXu

� �
□

Example 3.1. (Finite-time ruin probability). This is a continuation of Example 2.1: w(x, y)=1{y< 0}

and δ=0. Let τXu be the time of ruin of asset Xu. We define order eXu� eYu if and only if

τYu ≤ st τ
X
u

which means that a portfolio with an earlier time of ruin is riskier than one with a later time of ruin.
Then, τYu ≤ st τXu indicates that

ϕX
0 ðu; TÞ=P τXu ≤ T

� �
≤ P τYu ≤ T

� �
=ϕY

0 ðu; TÞ

which is condition (3.1). Moreover, it follows for any λ>0 that

ϕλX
0 ðλu; TÞ=P inf

t2½0;T�
λXu

t <0
� �

=P inf
t2½0;T�

Xu
t < 0

� �
=ϕX

0 ðu; TÞ

which is condition (3.2). As a result, GSϵT with w(x, y)= 1{y< 0} and δ= 0 satisfies the monotonicity,
cash invariant, and positive homogeneity properties.

Example 3.2. (Ultimate ruin probability). Consider the case in which T=∞ in the above example;
that is, ϕX

0 is an ultimate ruin probability. Then

GSϵT eXu
� �

= inf z 2 R Pðτu+ z <1Þ ≤ ϵjf g

= inf z 2 R P inf
t≥ 0

Xu
t + z

� �
< 0

� �
≤ ϵ

����
 �

= inf z 2 R P sup
t≥0

eXu
t ≤ z

� �
≥1� ϵ

����
 �
=VaR1� ϵ

eXu
�

� �
ð3:3Þ

where eXu
� := supt≥0

eXu
t . This is a VaR risk measure for the supremum risk eXu

� . As described in section
1, this measure was investigated by Trufin et al. (2011), who regarded it as a risk measure for
individual claim sizes. However, we can justify it mathematically as a risk measure for loss processes
belonging to MTðDÞ.
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Example 3.3. (Deficit distribution at ruin). This is a continuation of Example 2.2: δ=0,
w(x, y)= 1{y< β} for any constant β 2 R. Taking ϵ=1 − α>0, we have that

GSϵT eXu
� �

= inf z 2 R P �Xu+ z
τ^T ≤ β

� �
≥ α

��	 

which is the extra initial capital to keep the probability that the deficit at ruin (�Xτu ) or loss at
maturity (−XT) is less than a given β is larger than a certain level α. In this case, we define ordereXu� eYu if and only if

�Xu
τX^T ≤ st �Yu

τY^T (3.4)

where τX is the ruin time for asset X. That is, we regard the portfolio with stochastically larger loss as
riskier than the one with smaller loss. Then, condition (3.1) holds true by the definition of GSϵT .
Hence, GSϵT is a risk measure in the sense of Definition 1.1. However, positive homogeneity does not
necessarily hold.

Remark 3.2. As described in (3.3), measure GSϵT is a VaR-type risk measure. Since risk measure
VaR1� ϵ : M1ðRÞ ! R is not necessarily subadditive, we cannot expect the subadditivity of GSϵT
either, even if we regard it as a map on MTðDÞ.

4. DRMs

4.1. Gerber–Shiu DRMs

In the previous section, we introduce a “static” Gerber–Shiu risk measure. However, in insurance
businesses with a maturity T, risks should be measured not only at the beginning of the period,
but also dynamically up to maturity. Indeed, market-consistent evaluation of technical provisions
(TPs) (as the best estimate plus a risk margin) and the SCR are required in Solvency II, or the
Swiss solvency test. There has been research using this approach for an actuarial context by
Hardy & Wirch (2004), in which the static conditional tail expectation (CTE) measure is
modified to a dynamic version as an iterated CTE. Since the purpose of the SCR is to prevent the ruin
of the insurance company, it would be natural to use ruin theory (see also Gerber & Loisel, 2012).
This motivates us to create a DRM for solvency based on the finite-time Gerber–Shiu risk.

In this section, we construct a risk measure for a loss process eXu in a certain period, dynamically in
time, based on the Gerber–Shiu risk measure GSϵT , and define an SCR at an arbitrary given time.
Initially, we give a definition of DRM after the manner of Kriele & Wolf (2014).

Subsequently, let fMtðDÞ be a subset of MtðDÞ for each t≥0, such thatfMsðDÞ � fMtðDÞ; s ≤ t

Definition 4.1. A DRM on fMðDÞ is a family of ρ= (ρt)t∈ [0, T], each of which is a map

ρt : eMTðDÞ ! Mt R
� �

such that the following two properties hold true:

MO: ρt(X)≤ ρt(Y) a.s. for any X; Y 2 fMTðDÞ such that X�Y;

TR: ρt(X +C)= ρt(X) +Ct a.s. for any C 2 fMtðDÞ.
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In the above, MO is monotonicity with respect to the pre-defined order in MTðDÞ, and TR is a
dynamic translativity property (in which Ct is simply an F t-measurable random variable).

The coherency of ρ is also defined as follows. A DRM ρ= (ρt)t∈ [0, T] is coherent if the following two
properties hold true:

PH: ρt(K ⋅X)=Ktρt(X) a.s. for any K 2 fMtðDÞ with K> 0 a.s.;

SA: ρt(X1 +X2)≤ ρt(X1) + ρt(X2) a.s. for any X1; X2 2 fMTðDÞ.

PH is positive homogeneity, in which Kt is an F t-measurable random variable. SA is subadditivity
for process risks.

Now, we define a concrete risk measure due to the Gerber–Shiu function.

Definition 4.2. For each t∈ [0, T], we define a map GSϵt;T : MTðDÞ ! MtðRÞ as

GSϵt;T eXu
� �

= inf z 2 R ϕX
t ðu + z; TÞ< ϵ

��	 

a:s:

As a convention, we set inf{∅}=∞.

Remark 4.1 As τ≤T, GSϵt;T eXu
� �

=1, since z 2 R ϕX
t ðu + z; TÞ< ϵ

��	 

=∅. As τ<T, GSϵt;T eXu

� �
is

F t-measurable since so is ϕX
t ðu + z; TÞ. Hence, GSϵt;T : MTðDÞ ! MtðRÞ is well defined.

That is, GSϵt;T is the minimum extra capital to be added to surplus u (at time t=0) in order to keep
the Gerber–Shiu risk in [t, T] less than a level ϵ>0. The familyGSϵ�;T = ðGSϵt;TÞt2½0;T� can be a DRM in
the sense of Definition 4.1. Indeed, the following results are immediate from Lemma 3.1 and The-
orems 3.1 and 3.2.

Subsequently, let M� be a family of Markov processes and let M�
TðDÞ=MTðDÞ\M�.

Theorem 4.1. Suppose that an order� is equipped in M�
TðDÞ, and that ϕX is a Gerber–Shiu risk

process for any X 2 M�
TðDÞ. Then, a restricted map

GSϵt;T : M�
TðDÞ ! MtðRÞ

satisfies TR. In addition, if ϕX
0 satisfies (3.1) then MO also holds true. That is, GSϵ�;T is a DRM on

M�
TðDÞ in the sense of Definition 4.1.

Proof: Note that it follows for any eX 2 M�
TðDÞ that

GSϵt;T eXu
� �

=
inf z 2 R ϕX

0 ðXt + z; T� tÞ< ϵ
��	 


on fτ> tg

1 on fτ ≤ tg

(

by the Markov property and that it is a member of MtðRÞ. Then, the proof of MO is the same as in
the proof of Theorem 3.1.
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As for the proof of TR, note that for any C 2 M�
t ðRÞ

GSϵt;T eXu +C
� �

= inf z 2 R j ϕX
0 ðXt �Ct + z; T� tÞ< ϵ

	 

a:s:

Since C 2 M�
t ðDÞ, Ct in the above can be treated as a constant with probability one, and TR holds

as follows:

GSϵt;T eXu +C
� �

= inf z 2 R φX
0 ðXt + ðz�CtÞ; T� tÞ< ϵ

��	 

= inf v +Ct 2 R ϕX

0 ðXt + v; T� tÞ< ϵ
��	 


=GSϵt;T eXu
� �

+Ct

□
Theorem 4.2 Suppose ϕX

0 ðu; TÞ satisfies (2.4) and (3.2) for any X 2 M�
TðDÞ. Then, GSϵ�;T

satisfies PH.

Proof: Under (3.2), it follows for any K 2 M�
t ðDÞ that

GSϵt;TðK � eXÞ= inf z 2 R ϕK�X
0 ðKtXt + z; T� tÞ< ϵ

��	 

= inf z 2 R ϕX

0 ðXt + z =Kt; T� tÞ< ϵ
��	 


= inf Ktv 2 R ϕX
0 ðXt + v; T� tÞ< ϵ

��	 

=KtGSϵt;TðeXÞ

which is PH. □

From Example 2.1, GSϵt;T with w(x, y)=1{y< 0} and δ=0 is a DRM with positive homogeneity.
Moreover, GSϵt;T with δ=0 and w(x, y)=1{y< β} for some β 2 R is also a DRM on M�

TðDÞ.

4.2. A possible Gerber–Shiu coherent risk measure

As in Remark 3.2, we cannot expect subadditivity for ρ. In this section, we introduce a simple DRM
that can be coherent in some sense.

By the same argument as in (2.2), the discounted present value of insurance loss at time t is given by

qt := E½e� δðT� tÞLT jF t�; t 2 ½0; T�

where

LT :=
wðXT� ; XTÞ ðτ>TÞ

eδðT� τÞwðXτ� ; XτÞ ðτ ≤ TÞ

(

That is,

qt = eδt � E e� δðτ^TÞwðXðτ^TÞ� ; Xτ^TÞ
��F t

h i
We call the random variable

ZX
δ;w;T := e� δðτ^TÞwðXðτ^TÞ� ; Xτ^TÞ 2 MTðRÞ
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a finite-time Gerber–Shiu loss for X. Let Zδ, w, T be a family of finite-time Gerber–Shiu losses given by

Zδ;w;T := ZX
δ;w;T jX 2 MTðDÞ

n o
� MTðRÞ

Then, the risk of asset X at time t can be measured by a map ρt : Zδ;w;T ! MtðRÞ defined as

ϱtðZÞ= eδtE½ZjF t�; Z 2 Zδ;w;T

Remark 4.2. Since ϱ= (ϱt)t≥ 0 is a simple conditional expectation of the Gerber–Shiu loss, it is a
DRM in the sense of Definition 4.1, and clearly coherent. Moreover, it also holds that

ϱs ϱtðZÞð Þ= ϱsðZÞ for any s< t 2 ½0; T�

which is known as “time consistency” for a DRM; see Cheridito & Kupper (2011) for details.

Remark 4.3. When X is a Markov process, the strong Markov property yields that

ϱt ZX
δ;w;T

� �
= eδt � ϕX

0 ðXt; TÞ

Hence, the computation of ρt is reduced to that of the finite-time Gerber–Shiu function, which is
possible in principle (see Cojocaru et al., 2014).

Example 4.1. Consider a risk management in [0, T]-term with the following risk measure ϱ:

ϱ �Xu
τ^T

� �
:= E w �Xu

τ^T
� �� �

; �u
τ^T 2 Z0; ð�xÞ;T

with w(x)=10x1{x> 0} + 0.5x1{x≤ 0}.

The spirit of this penalty function is the following: the company prepares the expected value of
decuple of deficit at ruin by T in preparation for ruin; in the non-ruin case, the company can use half
of the surplus. The company finally prepares those weighted expectations. This is also a risk measure
in an actuarial sense. The conditional expectation

ϱt = E w �Xτu^Tð ÞjF t½ �

is a recalculated version of ρ under F t.

5. Application To Asset-and-Liability Management (ALM)

In a regulation framework, for example, Solvency II, insurance companies should meet not only TPs
consisting of best estimates of obligations plus a risk margin, but also an SCR, or at least a minimum
capital requirement (MCR), which is required to absorb “unexpected risk” under the company’s
going concern.

From a going-concern view in a solvency regulation, ruin-related risk should be considered, so that
companies can continue their business to maturity. For that purpose, Gerber–Shiu risk measures are
suited to solvency evaluation. In this section, we propose a method for using Gerber–Shiu DRMs in
an ALM context.
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5.1. Solvency and acceptability

Let ðΩ; F ; F; PÞ be a filtered probability space with a filtration F := ðF tÞt≥0, and let Xx = Xx
t

� �
t≥0 be

a net asset process, which is described as

Xt =At �Lt; X0 = x

where A= (At)t≥ 0 and L= (Lt)t≥ 0 are an asset and a liability process, respectively. Here, liability L
means a TP process. Although the evaluation of the best estimate of obligations is also an important
topic, it is outside the scope of this paper; thus, we assume that TP has been estimated appropriately.
A simple example is given later.

In the Solvency II framework, insurance companies are required to keep a minimum capital level to
prevent a bankruptcy, the MCR. For simplicity, we assume the following:

[MCR]: the MCR is given as a constant d≥ 0.

This means that a supervisor requires the insurance company to keep its risk margin greater than d
any time. See Remark 5.1 for evaluation of the MCR.

If the net asset decreases below d, then the supervisor enforces that the company add extra cash to
the position. This case is given by

τu := inf t >0 Xx
t < d

��	 

= inf t >0 Xu

t < 0
��	 


; u := x� d

which is the time of ruin for net asset Xx− d. For solvency at time t, the company should have at least
Xx

t ≥ d. Of course, it is necessary that

u> 0

To evaluate a risk of a company’s position, we use a dynamic Gerber–Shiu risk measure
GSϵ�;T = GSϵt;T

� �
t≥0

, where T>0 is the maturity of the business:

GSϵt;T : MTðDÞ ! MtðRÞ

Since the Gerber–Shiu risk measure is constructed to prevent the ruin of the company up to the
corresponding maturity, we remark that this is a kind of risk measure from a going-concern perspective.
If GSϵt;TðeXÞ< 0, the company can absorb a “ruin risk” in [t, T], even if they use cash �GSϵt;TðeXÞ at
time t. The degree of going concern is determined by the value of ε. Thus, we define solvency as follows,
in a manner similar to Wüthrich & Merz (2013) (see also Artzner & Eisele, 2010).

Definition 5.1. Under the MCR condition, an insurance company with a net asset process Xx is said
to be solvent from a going-concern perspective at time t≥ 0 if the following two conditions are
satisfied:

(i) (run-off view) Xx
t ≥d;

(ii) (going-concern view) GSϵt;T eXx
� �

≤ 0.

Moreover, we say the company is sufficiently solvent from a going-concern view at time t≥ 0 if it
further satisfies that

(iii) GSϵt;T eXu
� �

≤ 0 with u:=x − d.
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Condition (i) means the company can survive at time t if it cashes out all liabilities at time t.
Unless (i) is satisfied, the supervisor intervenes and the finite-time ruin probability is given by
Pðτu ≤ TÞ. Although this condition is similar to the accounting condition in Wüthrich & Merz
(2013) (Definition 9.15), the difference is that we consider an MCR.

Condition (ii) corresponds to the acceptability condition in Wüthrich & Merz (2013) and Artzner &
Eisele (2010), which were also introduced from a run-off view. However, since we use a Gerber–Shiu
risk measure up to maturity, condition (ii) is interpreted as a criterion from the going-concern
perspective. Note that condition (iii) is more severe than (ii), since

GSϵt;T eXu
� �

≥GSϵt;T eXx
� �

a:s:

for any x, d≥ 0.

Definition 5.2. Suppose that an insurance company with the net asset Xx is solvent from a going-
concern view at time t. Then, the SCR at time t, SCRt, should be defined by

SCRt :=Xx
t +GSϵt;T eXu

� �
a:s:; u := x� d

Example 5.1. Consider a simple measure based on the finite-time ruin probability

ρt :=GSϵt;T eXu
� �

= inf z≥0 P τXu
t + z ≤ T� t

� �
< ϵ

��	 

(5.1)

which is the case in which the penalty function w(x, y)= 1{y< 0} is chosen. It follows from the
definition that

P τXu
t + ρt ≤ T� t

� �
≤ ϵ

which implies that Xu
t + ρt ≥ 0 a:s: Then, it follows that

SCRt =Xx
t + ρt =Xu

t + ρt + d≥d a:s:

That is, the SCR is always greater than the MCR.

Remark 5.1. Note that the SCR is evaluated to be larger than the MCR because Xx
t ≥d. In Solvency

II, this is required so that the MCR does not fall below 25% nor exceed 45% of the SCR. If we
should determine the MCR initially, it should be that

0:25 � SCR0 ≤ d ≤ 0:45 � SCR0 (5.2)

See Example 5.2 for more practical computation.

Furthermore, another MCR criterion calculates the requirement as the minimum capital to ensure
85% 1-year survival probability at the initial time. In this case, we can apply measure (5.1). For
example

d=x +GS0:150;1
eXx

� �
= inf z≥0 Pðτx + z ≤ 1Þ< 0:15jf g> 0 a:s:

which gives a constant MCR.
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Example 5.2. Suppose that an insurance net asset process Xx is modelled as

Xx
t =x + ct� St + σWt

where c>0 is a premium rate; St is the aggregate insurance liabilities of the form St =
PNt

i=1 Ui, in
which the Uis are i.i.d. positive random sequences with E½Ui�= μ andN a Poisson process with intensity λ;
and σW a standard Brownian motion representing an asset/liability process of a financial investment
with σ2>0.

Let T=∞ for simplicity. Per Tsai & Willmot (2002), we have the following Cramér-type approx-
imation under suitable integrability conditions:

ϕX
0 ðu;1Þ 	 λCðρ; γÞ +wð0; 0Þðρ + γÞσ2=2

λ
Ð1
0 xeγx FUðdxÞ� c + σ2γ

e�γu; u ! 1

where FU is the distribution of Ui; ρ≥0 and −γ<0 are solutions to the generalised Lundberg equation

cγ� σ2

2
γ2 � λðmUðγÞ� 1Þ= δ

and where

Cðρ; γÞ=
ð1
0

eγx � e� ρxð Þ
ð1
x
wðx; y� xÞFUðdyÞdx

Considering a DRM given in the previous example with T=∞:

GSϵt;1 eXu
� �

= inf z≥0 ϕX
0 ðXu

t + z;1Þ< ϵ
��	 


on fτ> tg

we have that, on {τ> t}

GSϵt;1 eXu
� �

	 inf z≥0
λCðρ; γÞ +wð0; 0Þðρ + γÞσ2=2
λ
Ð1
0 xeγx FUðdxÞ� c + σ2γ

e� γ z +Xu
tð Þ < ϵ

�����
( )

; u ! 1

That is,

SCRt 	 sϵðρ; γÞ + d; x ! 1 (5.3)

where

sϵðρ; γÞ :=
1
γ
log

λCðρ; γÞ +wð0; 0Þðρ + γÞσ2=2
ϵ λ

Ð1
0 xeγx FUðdxÞ� c + σ2γ

� �
If the MCR (at time t) is determined after criterion (5.2), it should satisfy that

0:25ðsϵðρ; γÞ + dÞ ≤ d ≤ 0:45ðsϵðρ; γÞ + dÞ

Equivalently 1
3
sϵðρ; γÞ ≤ d ≤

9
11

sϵðρ; γÞ

Example 5.3. The same approximation is possible for a more general case, in which Xu is a Lévy
process starting at u and GSϵt;1 eXu

� �
is the more general Gerber–Shiu function, since we have the

Cramér approximation of the Gerber–Shiu function (see e.g. Feng & Shimizu, 2013).

5.2. Financial and insurance liabilities

LetDd½0; T� be a space of d-dimensional càdlàg functions x= (xt)t∈ [0, T] with a suitable metric (e.g. a
uniform norm). Let Bd

t := σðx : xs; s ≤ tÞ and Bd := Bd
t

� �
t2½0;T�

. We split the filtration F into two
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filtrations: F t =Gt _ T t, where G := ðGtÞt2½0;T� is financial information and T := ðTtÞt2½0;T� is insur-
ance information. We suppose that Gt and Tt are independent under P and that F =G _ T , where
G= _t≥ 0 Gt and T = _t≥0 Tt.

Let us consider an insurance company asset, R= (Rt)t≥ 0, of the form

Rt = x +Pt +YtðFÞ� St � S′tðFÞ; t 2 ½0; T�

where x is an initial asset of the insurance company, and the other parameters are defined as follows:

∙ P : Ω ! D½0; T� is T-adapted and represents the premium income process.

∙ F : Ω ! Dd½0; T� is G-adapted and represents the value of a financial portfolio.

∙ Y : Ω ´Dd½0; T� ! D½0; T� is G 
 Bd-adapted with Y0(F)=0 and represents an aggregate
financial gain-and-loss due to F; that is, the company has a latent profit at t if Yt(F)<0 and has a
latent loss if Yt(F)< 0.

∙ S : Ω ! D½0; T� is T-adapted and represents insurance aggregate claims and other technical
variables.

∙ S′ : Ω ´Dd½0; T� ! D½0; T� is F 
 Bd-adapted. Given x 2 Dd½0; T�, S′ðxÞ : Ω ! D½0; T� is
T-adapted. S′(F) represents insurance obligations due to financial variable F, for example,
payments for equity-linked insurance or variable annuities.

Note that the aggregate loss up to time t is given by

lt := �YtðFÞ + St + S′tðFÞ

By the best estimate of the future loss lT at time t, say Rt(lT), the net asset process is given by

Xx
t = x +Pt �RtðlTÞ (5.4)

Example 5.4. We give some examples of the aggregate loss process l= (lT)t∈ [0, T]:

∙ St =
PNt

i= 1 Ui +Z, where N is a claim number process and Uis are claims. Moreover, we regard Z
as an operational risk, which is T T-measurable.

∙ Consider a variable annuity with a guaranteed minimum maturity benefit (GMMB) with
minimum guaranteeG and maturity T. Suppose the company sells a GMMB with premium F0 to a
person who is x years old, which is invested to a stock F= (Ft)t≥ 0.

S′tðFÞ= e�rðT� tÞðG� FtÞ + 1fξx <Tg �
ðT
0
e�rs �m � Fs ds;

YðFÞt = Ft � F0

where ξx is the death time of the insured person andm is the rider fee rate. We further suppose that
F satisfies the following stochastic differential equation:

dFt = atdt + btdWt

where a,b are some stochastic processes, and W is a Wiener process.

∙ Gt = σðWu : u ≤ tÞ; T t = σðSu : u ≤ tÞ _ σðZu : u ≤ tÞ _ σðξxÞ
To obtain liability Rt(lT), we consider the following:

∙ There is a risk-free asset process B= (Bt)t≥ 0 (e.g. a bank accounting), which is G-adapted and
referred to as a numérarie.
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∙ There exists a probability measure P� that is equivalent to P on G with density process ζ:

dP�

dP Gt

= ζt; ζ0 =1; t 2 ½0; T�
���� (5.5)

Note that ζ is G-martingale under P. We assume that P� is a risk-neutral measure, under which the
discounted financial asset B� 1

t Ft is ðP�; GÞ-martingale.

∙ There exists a probability measure P† that is equivalent to P on T such that

E†½ST jTt� � E½ST jTt�> 0; t 2 ½0; T� (5.6)

We assume that the insurance premium is calculated under P†; that is, expectation E†½ST � is an
(actuarial) premium calculation principle. Condition (5.6) implies the net profit condition. We call
this P† a (risk-adjusted) distortion probability or an insurance technical probability.

For a stochastic process Z, let

bZt;T :=Bt

ðT
t
B�1
s dZs

If Z is a loss process, bZt;T is a discounted aggregate loss in [t, T] evaluated at time t. Then, a market-
consistent present value of liability Rt(lT) should be evaluated as

RtðlTÞ := � YtðFÞ + E� bYt;TðFÞjGt

h in o
+ St + E† bSt;T jTt

h in o
+ S′tðFÞ + E† bS′t;TðFÞ j F t

h in o
ð5:7Þ

which is the TP plus a risk margin.

5.3. A simple example of ALM in insurance

Consider a probability space ðΩ; F ; PÞ, on which a Wiener process W and a compound Poisson
process S are equipped, and suppose that W and S are independent. We denote by Gt= σ(Wu : u≤ t),
T t= σ(Su : u≤ t). For notation in the previous section, we assume the following:

∙ St =
PNt

i=1 Ui, where Nt 	 PoðλtÞ is a number process of insurance claims, and Uis are claim sizes,
which are i.i.d. with mean μ.

∙ S′(F)≡ 0 for simplicity.

∙ Yt(F)=Ft − F0 for a stock price F. Suppose that

Ft = F0 +
ðt
0
bu du +

ðt
0
σu dWu

where b,σ are G-adapted processes with σt>0 a.s. for any t∈ [0, T].

∙ Premium income is given by Pt= (1 + θ)λμt, where θ>0 is a safety loading.

∙ Bt= ert, r>0, is a risk-free asset.

The risk-neutral measure P� on (Ω, G) exists as the following: Let

dP�

dP Gt

= exp �
ðt
0
ϑs dWs �

1
2

ðt
0
ϑ2s ds

� �
with ϑt =

bt � rFt
σt

����
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Under some regularity conditions, for example, E exp 1
2

Ð T
0 ϑ

2
s ds

� �h i
<1, it follows by the Girsanov

theorem that

W�
t =

ðt
0
ϑsds +Wt

is a ðP�; GÞ-Brownian motion. From Ito’s formula,

B� 1
t Ft = F0 +

ðt
0
e� ruσudW�

u

which is ðP�; GÞ-martingale; that is, P� is the equivalent martingale measure. We assume this
regularity throughout this section. Then, the liability for Y(F) is evaluated as follows.

Lemma 5.1. For Yt(F)=Ft − F0, it holds that

E� bYt;TðFÞjGt

h i
= 1� e� rðT� tÞ
� �

Ft

Proof: Note that

bYt;TðFÞ= ert
ðT
t
e� rudFu

= rert
ðT
t
e� ruFu du + ert

ðT
t
e� ruσudW�

u

Since the last term is ðP�; GÞ-martingale, we see that

E�½bYt;TðFÞjGt�= rert
ðT
t
e� ruE�½FujGt�du (5.8)

Set Gu := E�½Fu jGt� ðu≥ tÞ for fixed t. Then, it follows from a martingale property that

Gu = F0 +
ðt
0
rFsds + r

ðu
t
Gsds +

ðt
0
σudW�

u

= Ft + r
ðu
t
Gsds a:s:

Hence, we have that Gu= er(u− t)Ft (u≥ t), which yields the consequence from (5.8). □

Although there are many possibilities in choosing P† to evaluate insurance liabilities, we assume
that

E†½St�= E½ð1 + βÞSt�

for some β> 0 to simplify the argument here.

Setting S�t = St � λμt, it is easy to see that S* is ðP†; TÞ-martingale. Then

E† bSt;T jT t

h i
= E† ert

ðT
t
e� rudS�u + λμe

rt
ðT
t
e� ru du

����T t

� �

=
λμ

r
ð1 + βÞ 1� e� rðT� tÞ

� �
Consequently, we have liability estimates from (5.7) as follows:

RtðlTÞ= � 1 + 1� e� rðT� tÞ
� �h i

Ft � F0
n o

+ St +
λμ

r
ð1 + βÞ 1� e� rðT� tÞ

� �
 �
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and net asset process X is given by

Xt = x + λμð1 + θÞt� St �
λμ

r
ð1 + βÞ 1� e� rðT� tÞ

� �
+ 2� e� rðT� tÞ
h i

Ft � F0

When r is sufficiently small, using

1� e� rðT� tÞ = rðT� tÞ + oðrÞ; r ! 0

we have

Xx
t = x� λμð1 + βÞT + λμð2 + θ + βÞt� St +YtðFÞ + oð1Þ; r ! 0 (5.9)

Example 5.5. Consider a simple investment model, such as

YtðFÞ= Ft � F0 =αt + σWt; σ > 0

Then, net asset Xx in (5.9) is approximately a diffusion perturbation model in classical ruin theory.
In this case, we can approximate SCRt for T=∞ as in Example 5.2, replacing x with
xT := x− λμ(1 + β)T and

c= λμð2 + θ + β + αÞ

That is

SCRt =Xx
t +GSϵt;1 eXu

� �
	 1

γ
log

λCðρ; γÞ +wð0; 0Þðρ + γÞσ2=2
ϵ λ

Ð1
0 xeγxFUðdxÞ� c + σ2γ

� � + d; xT ! 1

where positive constants ρ and −γ are solutions to

λμð2 + θ + β + αÞγ� σ2

2
γ2 � λðmUðγÞ� 1Þ= δ

In practice, the unknown quantities λ, μ, mU and γ (the adjustment coefficient) are estimable from
insurance claim data, and the volatility, σ2, is also estimable from stock price data. Then, we can
statistically estimate the DRM SCRt given in (5.3). This simple model could be a benchmark for
practical risk management.

6. Concluding Remarks

We propose aGerber–Shiu risk measure to capture the insolvency risk of an insurance company with
asset process X. The risk measure would be natural in the sense that it evaluates risks in the vicinity
of the time of ruin, τ, such as Xτ− and Xτ, which would reflect the company’s risks more accurately
than the ruin probability alone. We also give a mathematical justification of the risk measure in
accordance with a widely used modern mathematical definition of risk measure. Although similar
attempts have been made by several authors, for example, Cojocaru et al. (2014) and Mitric &
Trufin (2015), our contribution is that we reformulate it as a map on a functional space in which the
“risk process” are ordered byGerber–Shiu risk. Thus, we can intuitively understand the Gerber–Shiu
risk measure as the usual mathematical risk measure for a company’s asset process.

Moreover, we extend the concept to a dynamic version to realise the market-consistent (time-to-time)
evaluation of a company’s solvency risk. This dynamic version can evaluate the ruin risk for any
moment in the future, and we can apply this risk measure to define the solvency of the company from

Yasutaka Shimizu and Shuji Tanaka

266

https://doi.org/10.1017/S1748499518000064 Published online by Cambridge University Press

https://doi.org/10.1017/S1748499518000064


a going-concern viewpoint (see section 5.1), which is an important aspect in certain recent solvency
regulation frameworks.

In section 5.2, we presented just an idea of an ALM model. Although the examples are simple and ad
hoc, it is important to note that we can explicitly compute a “solvency margin” in a classical setting
of insurance surplus. For example, the solvency capital requirement (SCRt) given in Example 5.5 has
the clear meaning that it is the minimum extra capital to be added at time t in order to keep the
Gerber–Shiu risk below ϵ>0. The meaning of “Gerber–Shiu risk” can be changed by selecting the
penalty function w appropriately. This measure can be used as a benchmark to determine the capital
required for claims reserves in practice.

Indeed, there are several problems to overcome for the practical use of this measure, for example, the
numerical computation or statistical estimation of the finite-time Gerber–Shiu function, among
others. These problems are important issues for the future.
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