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This paper proposes a bi-level model from the perspective of game theory to describe the effect
of the rise of Arctic shipping routes on traditional routes and their response. The upper-level
model demonstrates the competition between shipping companies that maximise their own prof-
its via speed adjustment, which can be presented as a generalised Nash equilibrium problem and
is solved by the generalised reduced-gradient method. The lower-level model illustrates the
response of customers who reassign their demands with an elastic total demand, which is pre-
sented as a logit-type multi-path assignment problem and is solved by the iterative balancing
method. A case study is used to examine the rationality of the proposed model and algorithm.
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1. INTRODUCTION. The shipping industry has always been at the forefront of the
world trade market, which is the barometer of international economic trends. Recently, due
to a multitude of pressures such as the impact of natural disasters, geopolitical conflict,
pirate attacks, and so on, shipping companies have started to seek alternate routes, in an
attempt to reduce costs and increase profitability. In the late Twentieth Century, Arctic
sea ice began to melt more quickly as a result of global warming. The Intergovernmental
Panel on Climate Change (IPCC) Fifth Assessment Report showed that Arctic sea ice may
completely melt during summer in the middle of the Twenty-First Century and in extreme
cases during winter by the end of 2070 (Stocker, 2014), which makes Arctic navigation
no longer just a dream. The Arctic sea routes considered in this paper are the Northern
Sea Route (NSR), the Northwest Passage (NWP) and the Central Passage (see Figure 1).
Compared with the traditional sea routes, for many destinations, the Arctic routes have a
shorter shipping distance, wider routes and fewer pirates, which will lead to more common
usage.

The question posed by the Arctic Council in the Arctic Marine Shipping Assessment
2009 Report aims to find the optimal shipping routes considering both the Arctic and non-
Arctic routes. In terms of sailing time, the distance from Asia (China or Japan) to the east
coast of North America through the NWP for general types of ships can save 25% to 44%
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Figure 1. The Arctic marine area.

of total distance compared to routes using the Panama Canal, while navigation through the
NSR from Asia to Europe can save 25% to 55% of total distance compared to using the
Suez Canal (Andersen et al., 1995; Ragner, 2000; Zhang et al., 2009). In view of economic
benefits, Somanathan et al. (2009) simulated the NWP and the Panama Canal by computer
and the result showed the economic potential of the NWP would gradually rise with the
decline in the extent of sea ice. The NSR will become an important alternative route to
the Suez Canal (Verny and Grigentin, 2009; Chernova and Volkov, 2010; Srinath, 2010;
Liu and Kronbak, 2010). Way et al. (2015) presented a probability simulation method to
compare the optimal sailing speed of container ships on the NSR or on the Suez Canal
based on the model presented by Liu and Kronbak (2010). When considering both sailing
time and distance, a comparison of shipping costs was made between the NSR and the Suez
Canal and results showed that the rise of the NSR will promote the agility and adaptability
of the global shipping supply chain (Schøyen and Bråthen, 2011).

In order to further enhance the competitiveness of Arctic routes, route optimisation
issues have been studied by some researchers. The safe navigation speed was determined
by the Ice Number (IN) index (McCallum, 1996) which became the criteria to plan the
optimal route (Smith et al., 2013; Melia et al., 2016). Kotovirta et al. (2009) took sea ice
thickness, ice ridge thickness and sea ice concentration into consideration to analyse their
impact on ship speed. Choi et al. (2015) presented a route planning model with a heuristic
algorithm in which both extreme conditions and model uncertainty were considered. Other
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environmental factors (for example, wind, waves, current and topography) and economic
factors were also taken as variables in some integrated models (Motte et al., 1988; Mul-
herin et al., 1996; Choi et al., 2010; Hogben and Lumb, 1967; Ha et al., 2011; Nam et al.,
2013; Aksenov et al., 2016).

In the literature mentioned above, both Arctic and non-Arctic routes were assumed to
be independent of each other and no interaction between them is considered in route opti-
misation. However, an obvious competitive relationship actually exists between the routes
relative to any Origin-Destination (OD) pair including the competition among shipping
companies and the interaction between shipping companies and customers. Therefore,
when the potential competitiveness of the Arctic routes is considered, the impact of the
non-Arctic routes should also be considered.

For the purpose of finding a quantitative model to illustrate the interaction between
Arctic routes and the traditional routes, game theory is a powerful tool to characterise the
elements of dynamic competition. This paper proposes a bi-level model to demonstrate the
effect of the rise of Arctic routes on the traditional routes and the response of traditional
routes. The model illustrates the entire competition process among shipping companies
over different sea routes and the customers during two equilibrium stages, which can be
presented in a Stackelberg form (Lam and Zhou, 2000). The upper-level model illustrates
the competition among shipping companies who cut their own cost by speed optimisation
and maximise their own profits, which is presented as a Generalised Nash Equilibrium
Problem (GNEP) and can be transformed into a type of Quasi-Variational Inequality (QVI)
problem. Harker (1991) pointed out that solving this QVI problem is equivalent to finding
a Variational Inequality (VI) solution, which can be solved by the generalised reduced-
gradient method (Lasdon et al., 1978). The lower-level model illustrates the responses of
customers who reassign their demands on each shipping route with an elastic demand,
which is presented as a logit-type multi-path assignment problem and can be solved using
the balancing iteration method.

In the case study, the proposed model used to simulate a practical problem illustrates the
interaction between these two types of routes. Two stages (before and after the rise of the
Arctic routes) of one Origin to Destination (OD) pair (no stop on the way) are compared
to demonstrate the effect of the rise of the Arctic routes on the traditional routes and the
response of the traditional routes. The harsh weather conditions in the Arctic region are
considered to modify the results of the bi-level model so as to make the simulation more
realistic. The structure of this paper is as follows: Section 2 introduces some basic concepts
and notations. In Section 3 this improved bi-level game model is introduced and its math-
ematical characteristics are analysed. The algorithm is introduced in Section 4. Section 5
presents a case study using the proposed model and practical climatic and hydrological data
to reveal the interaction between the Arctic and traditional routes. Finally, the conclusion
is presented in Section 6.

2. BASIC CONCEPTS.
2.1. Total travel cost. The total travel cost Qs in sailing route s generally includes

four components: cost of ships, voyage cost, operating cost, and fuel-consumption cost,
which can be expressed as:

Qs = Pccs + Pvcs + Pocs + Pfcs ∀s ∈ Sw (1)
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where Sw represents the set of all sailing routes, Pccs, Pvcs, Pocs, Pfcs represent the cost
of ships, the voyage cost (including the route toll, ice-breaking fee, and pilotage, etc), the
operating cost and the fuel consumption cost in sailing route s, respectively, whereas the
cost of ships in sailing route s can be expressed as:

Pccs = Pcs × Ts

Ta
, ∀s ∈ Sw (2)

where Pcs represents the price of one ship in sailing route s, Ts represents the travel time of
a voyage in sailing route s and Ta represents the total travel time in sailing route s.

The operating cost (including manning, hull and machinery insurance, protection and
indemnity insurance, repairs and maintenance, administration, and others) in sailing route
s can be expressed as:

Pocs = Pos × Ts, ∀s ∈ Sw (3)

where Pos represents the operating cost per day in sailing route s.
The fuel consumption is determined by the sailing speed. Dykstra (2001) defined the

relationship as:

Fs =
F
V2 V2

s , ∀s ∈ Sw (4)

where F and V represent the standard fuel consumption and standard sailing speed while
Fs and Vs represent the fuel consumption and sailing speed in sailing route s.

On the other hand, the fuel-consumption cost in sailing route s can be obtained as:

Pfcs =
F × V2

s

V2 × SDs × Pf, ∀s ∈ Sw (5)

where SDs represents the distance of sailing route s and Pf represents the fuel price.
Meanwhile, the total travel time of a voyage can be expressed as

Ts = Tws + Tvs, ∀s ∈ Sw (6)

Tvs =
SDs

Vs
, ∀s ∈ Sw (7)

where Tws and Tvs represent the waiting time of a voyage and the travel time of a voyage
in sailing route s.

2.2. Generalised Nash Equilibrium Problem GNEP. GNEP, which was originally
presented by Debreu (1952), is a generalisation of the traditional Nash Equilibrium Prob-
lem (NEP). Three factors, players, their strategies and their utility functions, are usually
considered in a standard game model. In the NEP, only the utility function of one player
can be affected by the other players’ strategies; the strategies of one player are independent
of the other players’ strategies. In the GNEP, the utility function and the set of strategies of
one player both depend on the other players’ strategies.

Definition : Let us consider a non-cooperative game with n players involved. Each player
s ∈ Sw is represented by a set of strategies Ys ∈ �s ⊆ R

n, a point to set mapping ∅s : � →
�s, and a utility function Us : Y → R, where ∅ = ∅s. The generalised Nash equilibrium
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Y∗ ∈ � of this game is defined as a point where no one can increase their utility by changing
their strategies.

Us(Y∗
s , Y∗

−s) ≥ Us(Ys, Y∗
−s), ∀Ys ∈ �s(Y∗) (8)

Thus, � is a constraint set for all players.

Proposition 1: Let us suppose that each player s ∈ Sw satisfies the conditions that:

�s ⊆ R
n is a non-empty, compact, and convex set,

∅s : � → �s is a non-empty and closed map, and
Us : Y → R is continuously differentiable and pseudo-concave.

Then, Y∗ ∈ �(Y∗) is an optimal solution to the GNEP if and only if Y∗ ∈ �(Y∗) is an
optimal solution to the following QVI problem:

∑
s∈Sw

Fs(Y∗)T(Ys − Y∗
s ) ≥ 0, ∀Ys ∈ �s(Y∗) (9)

Thus, Fs (Y) can be expressed as:

Fs (Y) = −∇Ys Us(Y) (10)

3. BI-LEVEL MODEL WITH SPEED OPTIMISATION. To better clarify the proposed
model, it is illustrated from two aspects. At the upper-level, shipping companies would
obviously aim at maximising their own profits, which are mainly determined by the freight
volume and unit cargo profits linked to unit freight revenue and travel costs. In recent years,
the shipping industry has continued to slump; it is currently facing the pressure of weak
trade growth and excess capacity. Therefore, an increasing number of scholars have started
to study shipping-cost optimisation, which includes route selection, fleet management, and
network design, to reduce freight costs and enhance economic competitiveness (Bijlsma,
2008; Tran and Haasis, 2015; Zhou et al., 2016). Among these factors, the network design,
which is concerned with the choice of ports and related infrastructure, is not considered in
this study. This study focuses on the optimisation of route selection and fleet management.
In general, the fuel consumption cost of shipping companies accounts for more than 50%
of the total travel cost (Golias et al., 2009; Notteboom, 2006), whereas fuel consumption
and sailing speed have a significant relationship (Ronen, 1982; Wang and Meng, 2012;
Psaraftis and Kontovas, 2013). Therefore, to cut the total cost, the fuel consumption needs
to be reduced by adjusting the sailing speed or choosing a shorter route (Corbett et al., 2009;
Lang and Veenstra, 2010; Norstad et al., 2011). At the lower-level, the volume of freight
in each route depends on the choice of the customers, which is a response to the results of
the competition between the shipping companies. In addition, if the external environment
(such as world economy, politics, law and technology) is assumed to remain unchanged,
the total customer demand is related not only to the revenue but also to the travel time
(Wang et al., 2013).

To clarify this issue, this paper proposes a bi-level model with speed optimisation in the
Stackelberg form in which the shipping companies are presented as leaders while the cus-
tomers are presented as followers. The upper-level model studies the competition among
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the shipping companies, whereas the lower-level model studies the change in the total cus-
tomer demand with the change in their shipping cost and the reassignment of customer
demand in each route.

3.1. Lower-level model. For the customers, the actual shipping cost in sailing route s
is composed of the charges imposed by shipping companies and the time cost of navigation,
which can be obtained as:

Cs = λP + Ts, ∀s ∈ Sw (11)

where λ is the weight coefficient that reflects the relationship between the time and
economic costs in the actual shipping cost in sailing route s.

It is assumed that the customer demand monotonically decreases with the increase in
the actual shipping cost, which depends on the distance of the routes and sailing speed of
the ships when other factors are fixed. For the shipping companies, they can reduce their
time cost by speed optimisation in any route. Therefore, the total customer demand can be
obtained as follows:

D = G
(
Ē
)

= D0 exp (−βĒ) (12)

D0 is the baseline customer demand before the rise of the Arctic routes, β is a dispersion
coefficient, and Ē is the expected minimum shipping cost for the customers, which can be
expressed as (see Ben-Akiva and Lerman, 1985):

Ē = E (min {Cs}) = −1
θ

ln

⎛
⎝∑

s∈Sw

exp (−θ̄Cs)

⎞
⎠ , ∀s ∈ Sw. (13)

θ̄ represents the sensitivity of the different types of customers relative to their actual
shipping cost.

In fact, the lower-level model describes the change in the total customer demand with
the change in the shipping cost in response to the speed adjustment made by the companies.

3.2. Upper-level model. It is assumed that the shipping companies that use the tra-
ditional routes have reached equilibrium during competition before the rise of the Arctic
routes, which we designate as Stage 1. Due to the rise of the Arctic routes, some companies
change their shipping routes from the traditional ones to the Arctic routes. A new equilib-
rium among shipping companies will be finally reached, which is designated as Stage 2. For
convenience, the shipping companies on the same route are classified as a type of player.
Then, the problem of studying the competition among n players is simplified, which is equal
to the number of elements in Sw. Therefore, the utility function of the shipping companies
in sailing route s can be obtained by:

Us = (P − Qs) × Ds

CCs
, ∀s ∈ Sw (14)

From Equations (1)–(7), the total cost function in sailing route s can be obtained as follows:

Qs =
(

Tws +
SDs

Vs

) (
Pcs

Ta
+ Pos

)
+ Pvcs +

F × V2
s

V2 × SDs × Pf , ∀s ∈ Sw (15)

For any s ∈ Sw, Pvcs > 0 and 0 ≤ Vs ≤ Vsmax is obtained.
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The number of shipping events in each route is determined by the total customer
demand, which is related to the actual shipping cost of the customers in each route. Gen-
erally, the number of shipping events in a route is small if the actual shipping cost to the
customers in this route is high, which can be expressed according to the following logit-type
multi-path assignment model:

Ds =
e−θ̄(λP+Ts)∑

k∈Sw
e−θ̄(λP+Ts)

× D, ∀s ∈ Sw (16)

Let:

Xs = e−θ̄(λP+Ts), ∀s ∈ Sw (17)

X−s =
∑

k∈Sw, k �= s

e−θ̄(λP+Ts), ∀s ∈ Sw (18)

Then, Equation (15) can be rewritten as:

Vs =
θ̄SDs

ln (D − Ds) − ln (Ds) − ln (X−s) − θ̄λP
, ∀s ∈ Sw. (19)

From Equation (14):

Qs = as
(
ln (D − Ds) − ln (Ds) − ln (X−s) − θ̄λP

)
+

bs(
ln (D − Ds) − ln (Ds) − ln (X−s) − θ̄λP

)2 + es (20)

Thus, as = 1
θ̄

(
Pcs
Ta

+ Pos

)
, bs = θ̄2 F

V2 SD3
s Pf , and es =

(
Pcs
Ta

+ Pos

)
Tws + Pvcs.

Then, the utility function of the shipping companies in sailing route s can be rewritten
as:

Us =
(
P − Qs

) × Ds

CCs

=
(

P − as(
(
ln (D − Ds) − ln (Ds) − ln (X−s) − θ̄λP)

)

− bs(
ln (D − Ds) − ln (Ds) − ln (X−s) − θ̄λP

)2 − es

)
× Ds

CCs
(21)

It is assumed that each type of company can optimise its total travel by speed adjustment to
maximise its profit. Then, the utility maximisation model in sailing route s can be expressed
as:

maxVs, Ds (Us) = Us(Vs, Ds, D−s) (22a)
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subject to:

Ds + D−s = D, ∀s ∈ Sw (22b)

0 ≤ Ds ≤ D, ∀s ∈ Sw (22c)

Let �s be a set that satisfies Equations (22b) and (22c). Then Us can be expressed as:

maxYs∈�s (Us(Ys, Y−s)) (23)

where U = (Us, U−s), Ys = (Ds, Vs), and Y−s = (D−s, V−s).
3.3. Concavity of the utility function. The upper-level model can be presented as

a multi-player non-cooperative game model. The existence of the generalised Nash
equilibrium solution is analysed using the mathematical properties of its utility function.

Proposition 2: Utility function Us in Equation (22a) is strictly concave with respect to Ys.

Proof. From s ∈ Sw:

∂Us

∂Ds
=

(
as

CCs
− 2bs

CCs

1
(ln (D − Ds) − lnDs − ln (X−s) − θ̄λP)3

)(
D

D − Ds

)

+
(

P − as
((

ln (D − Ds) − ln (Ds) − ln (X−s) − θ̄λP
))

− bs(
ln (D − Ds) − ln (Ds) − ln (X−s) − θ̄λP

)2 − es

)
1

CCs
(24)

∂2Us

∂D2
s

=
(

as

CCs
− 2bs

CCs

1
(ln (D − Ds) − lnDs − ln (X−s) − θ̄λP)3

− 6bs

CCs

1
(ln (D − Ds) − lnDs − ln (X−s) − θ̄λP)6

)
×

(
D2

(D − Ds)
2 Ds

)
(25)

As mentioned, fuel consumption accounts for 50% of the total travel cost; thus:
(

Pcs

Ta
+ Pos

)
Ts <

FV2
s

V2 SDsPf S (26)

and: (
as

CCs
− 2bs

CCs

1
(ln (D − Ds) − ln Ds − ln (X−s) − θ̄λP)3

)
< 0 (27)

From Equation (19):

∂2Us

∂D2
s

< 0 (28)

The utility function is proven to be strictly concave.
As utility function Us is strictly concave with respect to Ys, ∅s is composed of the linear

equality in Equation (22b) and the inequality in Equation (22c). Then, according to the
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conclusion proven by Harker (1991), the QVI formulation of Equation (9) can be equivalent
to the following VI problem: finding Y∗ ∈ � such that:

F
(
Y∗)T (Y − Y∗) ≥ 0, ∀Y ∈ Ξs(Y∗) (29)

where Y = (Y1, . . . , Yn) is the optimal solution of the GNEP in Equation (23).

4. SOLUTION ALGORITHM. To summarise, the whole bi-level model proposed in
this paper is aimed at studying the game process between the customers and shipping com-
panies whose profits are based on both total travel cost and total demand of customers,
which is equivalent to solving the following optimisation problem:

maxVs, Ds (Us) = Us(Vs, D) (30)

As mentioned earlier, solving Equation (27) is equivalent to finding V∗ = (V∗
s , V∗

−s) such
that:

F
(
D∗, V∗)T(V∗ − V) ≥ 0, ∀Y ∈ Ξs(Y∗) (31a)

With equilibrium point V∗ = (V∗
s , V∗

s ), the total customer demand can be expressed as:

D∗ = D(V∗) (31b)

In this paper the generalised reduced-gradient method has been used to solve the upper-
level model, which is presented as a GNEP of Equation (31a). The iterative balancing
method (Bell, 1995) is used to solve the lower-level problem, which can be described as a
logit-type multi-path assignment problem. The formulation of the algorithm to solve this
bi-level model with speed optimisation is proposed as follows:

Step 1 Initialise the sailing speed on each route vj , j = 1
Step 2 Find vj [solve Equation (31a) using the generalised reduced-gradient method,

see Figure 2] such that:∑
k

F(vj
s , vj

−s, D(vj
s , vj

−s)) ≥ 0, ∀v = (vj
svj

−s) ∈ V (32)

Thus, the gradient of the utility function can be expressed as:

F =
dUs

dVs
=

∂Us

∂Vs
+

∂Us

∂D
∂D
∂Vs

(33)

Moving steps αj can be solved by:

min f (vj + αj (vj − z)) (34a)

subject to:
0 < αj < 1, ∀j ∈ J . (34b)

The total customer demand in Equation (31b) can be solved using the iterative
balancing method.

Step 3 Output optimal speed vbes = (vbes1, . . . , vbesn) and optimal utility function Umax =
(Umax 1, . . . , Umax n).
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Figure 2. Algorithm flow of the generalised reduced-gradient method.

5. CASE STUDY.
5.1. Study area and work flow. In this paper, a case study is used to investigate the

effectiveness of the bi-level model. The OD pair is from Dalian to Rotterdam, two routes
are chosen to connect these two ports, one is the Northern Sea Route (NSR), while the
other is the traditional route via Suez Canal (SUE) (Figure 3). For shipping companies, two
kinds of companies can be selected for transport.

Company 1: Using the traditional route all the year round.
Company 2: Using the NSR when it is navigable and choosing the traditional route in

the rest of the year

Work flow of the case can be seen in Figure 4. Firstly, the bi-level model has been pro-
posed to find the optimal speed and demand change of each company when the equilibrium
between two companies is reached. After considering the harsh climatic and hydrological
conditions in the Arctic, the vessel speed should be adjusted which leads to the adjustment
of elastic demand. Finally, the economic potential of each company in one year can be
analysed with the adjusted speed and demand.

5.2. Bi-level model for optimal speed and elastic demand. The case presented is
based on a scenario originally used by Liu and Kronbak (2010) (with partial data from
Way et al. (2015)) so as to demonstrate the application of the proposed model and to test
the convergence of the solution algorithm. The simulated scenario is presented as follows:
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Figure 3. Study area.

Figure 4. Flow of case study.
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• The sailing distance on the NSR from Dalian to Rotterdam is 7,931 nautical miles,
whereas that on the traditional route via the Suez Canal (SUE) is 10,907 nautical
miles.

• A 4,300 Twenty-foot Equivalent Unit (TEU) container ship has been chosen on the
traditional route while a CSC3 ice class vessel on the NSR is assumed to have the
same main dimensions except the lightship weight. The maximum speed of a ship
on each route is no more than 25 knots.

• Three fuel prices are assumed for comparison purposes: USD 350, USD 700, and
USD 900 per ton.

• The average pilotage and ice-breaking fee on the NSR is USD 446,000 per transit.
• The voyage fee on the SUE is USD 240,800 per transit.
• The price of a 4,300 TEU ship on the NSR is USD 5.28 M per year, whereas that of

a vessel on the SUE route is USD 4.4 M per year.
• The operating cost (including manning, hull and machinery insurance, protection

and indemnity insurance, repairs and maintenance, administration, etc) on the NSR
is USD 8,925 per day, whereas that on the SUE route is USD 6,100 per day.

• The expected revenues of all shipping companies are assumed to be the same, that
is USD 3 M per transit.

• The total customer demand in the first equilibrium state is 4.3 M TEU per year.

The above scenario is introduced into the proposed bi-level model and the first equlibrium
is considered, which is the competition result among shipping companies before the Arctic
sea route rise, as Stage 1. Similarly, Stage 2 represents another equilibrium, which is the
result of the competition among shipping companies with the rise of the Arctic sea route.
The game begins at Stage 1. Each company type maximises its profits through speed adjust-
ment, which can reduce its total travel cost in the upper-level and attract more customer
demand in the lower-level. Finally, the new equilibrium in Stage 2 is reached. Throughout
this game, three factors are used to compare Stage 1 with Stage 2: speed, maximum profits
and total customer demand.

First, the selection of model parameters is analysed. The relationships between the sail-
ing speed and dispersion parameter θ̄ are shown in Figure 5. It can be seen that under
different fuel-price scenarios, the sailing speed increases, and the difference in the sailing
speed between Stages 1 and 2 becomes more obvious as the value of θ̄ increases. This result
can be interpreted to mean that a larger θ̄ implies a better understanding of the shipping
companies that can more markedly change their sailing speed according to the variation in
the customer demand. Table 1 lists the relationship between sensitivity parameter β and the
total customer demand. It can be seen that the value of the total customer demand decreases
as the value of β increases under different fuel-price scenarios both in Stages 1 and 2. Mean-
while, the difference in the total customer demand among different fuel-price scenarios
becomes more definite with the increase in parameter β, which implies that the total cus-
tomer demand is more sensitive to a larger value of β. In addition, if the value of β exceeds
0.05, the results in both Stages 1 and 2 greatly deviate from the original data (4.3 M TEU).

In this numerical experiment, the dispersion parameter is given as 0.1, whereas the sen-
sitivity parameter is given as 0.01. The convergence of the proposed solution algorithm is
shown in Figures 6 and 7. It can be seen that stable solutions are obtained by the solution
algorithm. Finally, the optimal speed and customer demand in each stage under different
fuel-price scenarios are listed in Table 2.
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Figure 5. Dispersion parameter θ̄ and sailing speed.

Table 1. Sensitivity parameter and total customer
demand. (The values in the brackets are the fuel-price
scenarios: USD 350, USD 700, and USD 900 per ton).

Total Customer Demand (108TEU)

Parameter β Stage 1 Stage 2

0.001 (4.08,4.08,4.03) (4.11,4.08,4.07)
0.005 (3.33,3.17,3.09) (3.44,3.32,3.26)
0.01 (2.57,2.33,2.23) (2.75,2.56,2.47)
0.05 (0.33,0.20,0.16) (0.46,0.32,0.27)
0.1 / /

By comparing the data (see Table 2) in Stages 1 and 2, some interesting phenomena are
observed. First, shipping companies on different sea routes would take different measures
to join the competition in the event the equilibrium in Stage 1 is broken with the rise
of the NSR. The shipping companies on the traditional route would decide to minimise
their delivery time cost by increasing speed, aiming at attracting more customer demand,
which is their optimal strategy given the competition with other shipping companies on
the NSR, although the profits themselves actually decrease in Stage 2. Meanwhile, for the
NSR, shipping companies take the opposite measure, that is, lowering the shipping speed
because the shorter shipping distance on the NSR guarantees that shipping companies can
cut their travel cost by appropriately lowering their shipping speed as well as maintaining
competitiveness, although the shipbuilding cost, daily operating cost, and even the voyage
fee on the NSR are all higher than those for the SUE route. Therefore, the profits of the
shipping companies in using the NSR increase in Stage 2. However, the equilibrium in
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Figure 6. Convergence of proposed model in Stage 1. (Red lines: optimal speed and demand of Company 1.
Green lines: optimal speed and demand of Company 2. Black lines: total customer demand).

Stage 2 is fragile. In fact, only in the case where no communication exists between these
two types of shipping companies can this equilibrium be maintained. Otherwise, the SUE
shipping companies will transform into NSR shipping companies when they realise that the
profits in using the NSR are much higher than those in the SUE route, irrespective of the
strategies they choose to maximise the profits on their current sea route. As a conclusion, a
relative decline in the SUE may be a result of a rise of the use of the NSR.

Secondly, the total customer demand increases according to the competition among the
companies that use the SUE and NSR routes. If these two company types are considered as
a whole, it can be seen that the total profits rise in Stage 2 compared with those in Stage 1.
Therefore, this Stackelberg game becomes a win–win game in which both customers and
shipping companies optimise their operating patterns.

The conclusion that traditional routes may decline in face of the rise of the Arctic routes
and the total volume of freight can be increased as the Arctic routes rise have been proved
in previous works (Bekkers et al., 2016; Countryman et al., 2016). Therefore, according
to this numerical case, this model can well reflect the interaction mechanism between the
Arctic and more traditional routes.

5.3. Economic potential based on climatic and hydrological conditions. The bi-level
model is an ideal mathematic model, and it does not consider the impact of climatic
and hydrological conditions. For the foreseeable future, vessel speeds will be affected by
harsh Arctic weather (Nam et al., 2013). Data related to water depth comes from a prod-
uct called ETOPO1 provided by the National Geophysical Data Center (NGDC), with a
resolution of 1 arc-minute. Wave height data comes from the 1979–2017 daily global atmo-
spheric reanalysis product ERA-Interim daily data provided by the European Centre for
Medium-Range Weather Forecasts (ECMWF), with an accuracy of 0.125◦ × 0.125◦. Sea
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Figure 7. Convergence of the proposed model in Stage 2. (Red lines: optimal speed and demand of Company
1. Green lines: optimal speed and demand of Company 2. Black lines: total customer demand).

Table 2. Optimal speed and profits of each shipping company and total customer demand. (The values in the
brackets are the fuel-price scenarios: USD 350, USD 700, and USD 900 per ton. Company 1 is defined as the
shipping company on the SUE. Company 2 is defined as the shipping company on the NSR.)

Optimal Speed (knot/h) Profits (1010USD)
Total Customer

Company 1 Company 2 Demand (108TEU) Company 1 Company 2

STAGE1 (17,12.75,11.25) (2.61,2.39,2.27) (2.61,2.39,2.27) (3.51,2.46,2.01) (3.51,2.46,2.01)
STAGE2 (17.75,13.25,12) (2.73,2.54,2.45) (2.73,2.54,2.40) (2.48,1.49,1.14) (5.61,4.58,4.19)

ice concentration and thickness data comes from the 2006-2100 daily data of the Commu-
nity Climate System Model version 4 (CCSM4) model under the medium Representative
Concentration Pathway (RCP45) provided by the National Oceanic and Atmospheric
Administration/ National Centre for Atmospheric Research (NOAA/NCAR), with a lattice
precision of 1◦ × 0.5◦. Wind field data comes from the 2006–2010 monthly data from the
GFDL-ESM2G model provided by NOAA under the RCP45, with an accuracy 1◦ × 0.43◦.
Current field data is derived from the 1993–2014 AVISO+ multi-satellite fusion daily data
provided by the French National Space Research Center (CNRS), with an accuracy of
0.75◦ × 0.37◦. Due to different spatial accuracy and time scales of the climatic and hydro-
logical data, all the data should be interpolated into the same time and space scales. In this
paper, time scale is assumed to be annual average, and the spatial scale is 1◦ × 0.5◦.

5.3.1. Optimal speed adjustment.
5.3.1.1. Navigable time on the NSR. The Arctic Ice Regime Shipping System

(AIRSS) is used to evaluate the navigable days for a CSC3 ice class vessel on the NSR. In
this system, the Ice Number (IN) index reflecting the navigable situation under specific ice
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Table 3. Ice type (Transport Canada, 1998).

Ice type Characteristics

New Newly formed ice, which is consist of ice edges, grease ice, crushed ice clusters, etc. These
types of ice are just loosely frozen together, only to be seen in the floating process;

Grey The young ice has a thickness of 10–15 cm, which is lower than that of nilas and is easy to
expand and break;

Grey white The young ice has a thickness of 15–30 cm;
Thin first year One year ice does not exceed one winter formation and the thickness is between 30–70cm;
Medium first year One year ice has a thickness of 70–120 cm;
Thick first year One year ice has a thickness of 120–200 cm;
Second year Adult ice has gone through at least one summer melt and the thickness is between

200–300 cm;
Multi year Multi-year ice has gone through at least two summer melts and the thickness is larger than

300 cm.

Table 4. Ice multiplier (knots) (Transport Canada, 1998).

Thin first Thin first Medium Thick
Open Grey year 1st year 2nd Medium Thick Second Multi
water Grey white stage stage year year year year

CAC 3 2 2 2 2 2 2 2 1 −1

conditions can be calculated as:

IN = (CaIMa) + (CbIMb) + . . . + (CnIMn) (35)

where Ca represents the ice concentration of ice type a, IM a is the multiplier which is
used to calculate the impact weight of ice type a on vessel navigation. When the IN is
larger than zero, it means the CSC3 ice class vessel can safely sail in this area, otherwise,
it cannot navigate there. The details of all kinds of ice and ice multiplier are presented in
Tables 3 and 4. If the IN of all girds on the NSR are larger than zero, that day can be
calculated as a navigable day.

5.3.1.2. Ice condition to speed adjustment. Sea ice concentration and thickness are
the key factors to Arctic vessel speed. Generally, the thicker and more concentrated the
sea ice becomes, the greater the reduction of the ship’s sailing speed. In some harsh ice
condition areas, an icebreaker has to be hired to help navigate, which will undoubtedly
increase the shipping cost for the whole route. The relationship between sea ice thickness
and concentration can be seen in Table 5. DS is the designed vessel speed. In an area
where sea ice concentration is less than 30%, without considering other meteorological
and hydrological factors, the CSC3 vessel can sail at the DS speed. Additionally, the italic
part refers to the vessel speed with the help of an icebreaker.

5.3.1.3. Wind, wave and current to speed adjustment. In open water areas, vessel
speed is also affected by the wind, wave and current conditions. The impact of these factors
on vessels depends on their value and direction and is presented in Table 6. For example, if
the sailing direction is consistent with the direction of wind and flow, vessel speed will be
increased, otherwise, it will hinder the navigation of vessels. In addition, when the sea ice
concentration is larger than 30%, these factors can be neglected.
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Table 5. Relationship between sea ice and vessel speed (Nam et al., 2013).

Sea ice thickness (cm) <30 30–120 120–180 180–240 >240
Sea ice concentration (%)

Open water DS
<30 DS 10 8 8 6
30–60 DS*0.8 8 8 7 6
60–80 DS*0.6 6 10 10 8
80–100 DS*0.5 8 6 6 4

Table 6. Relationship between vessel speed and current, wave, wind (knots) (Nam et al., 2013).

The direction of wind and current

Sea ice concentration (%) Wave height (m) Head sea Beam sea Following sea

Open water <3 DS-1-VC DS DS+VC
3–5 DS-2-VC DS DS+1+VC
>5 DS-6-VC DS-3 DS-3+VC

<30 <1 10
1–2 8
2–3 6
3–5 5
5–7 4
>7 3

>30 0 DS

Figure 8. Adjustment of vessel speed on the NSR.

Firstly, the navigable time has been calculated, and then the optimal speed derived from
the bi-level model is incorporated into the above models and the results can be seen in
Figure 8. The navigable days in the year 2050 can reach to 250 and the average adjusted
speed V̄A

s on the NSR is 10.54 (Oil price = 350), 8.97 (Oil price = 700), 8.41 (Oil price =
900) while the speed on the traditional route is unchanged.

5.3.2. Elastic demand adjustment. According to Equations (11)–(13), the total
demand can be changed according to the variation of time cost manipulated by the change
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Table 7. Demand and speed adjustment and annual profits. (The values in the brackets are the fuel-price scenar-
ios: USD 350, USD 700, and USD 900 per ton. Company 1 is defined as the shipping company on SUE. Company
2 is defined as the shipping company on NSR).

Adjusted speed Adjusted demand Adjusted total Annual profits
(knot/h) (108TEU) demand (108TEU) (1010USD)

Company 1 (17, 12.75, 11.25) (1.32, 1.03, 0.94) (2.53, 2.35, 2.28) (3.16, 1.77, 1.32)
Company 2 (10.54, 8.97, 8.41) (1.21, 1.32, 1.34) (2.88, 2.36, 2.1)

of vessel speed, the equation can be rewritten as:

DA = D0 exp

⎧⎨
⎩min

⎡
⎣β

θ
ln

⎛
⎝∑

s∈Sw

exp(−θ̄(λP + TA
s ))

⎞
⎠

⎤
⎦

⎫⎬
⎭ , ∀sεSw (36)

where TA is the navigation time according to the adjusted vessel speed and can be presented
as:

TA
s = Tw +

∑
1:n

SDsn

VA
sn

, ∀sεSw (37)

When the total demand is decided, the elastic demand can be derived for each company
according to Equation (16):

DA
s =

e−θ̄(λP+TA
s )∑

k∈Sw
e−θ̄(λP+TA

s )
× D, ∀s ∈ Sw. (38)

Based on Equations (1)–(7) and Equation (14), the annual profits of these two companies
can be derived with adjusted speed and demand. Results are shown in Table 7. Ships on
the NSR cannot navigate all year round even in the middle of this century and cannot reach
the optimal speed due to the harsh weather. Using the bi-level model, the actual demand of
Company 2 will be less, as will the annual profits, while the demand and annual profits of
Company 1 will increase. Additionally, the actual total demand will have a tiny decrease.
Overall, in this practical case, the NSR has potential economic competitiveness with the
SUE route and will be a viable alternative route for container shipping.

6. CONCLUSION. Due to climate change, Arctic sea ice has been decreasing, which
has started to open Arctic sea routes. Compared with traditional routes, Arctic routes are
shorter, have fewer pirates, less congested waters and the potential for more sea room.
However, the worse weather conditions, more fragile ecosystem, and lack of infrastructure,
ports and emergency rescue make this comparison complex and multi-dimensional. The
most direct method to compare the economic potential of these two routes is to calculate the
average annual profits on each route by taking all the main factors into consideration and by
assuming that all routes are independent of each other. In fact, an obvious interaction exists
among the routes between any OD pair. Therefore, when the potential competitiveness of
Arctic routes is considered, the impact of non-Arctic routes needs to be taken into account.
Thus, a bi-level model from the perspective of game theory is proposed to solve this issue.

In this bi-level game model, two levels are presented to depict the dynamic varia-
tion of the world liner shipping market linking shipping companies (their strategies and
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profits) and customers (their cost and demand). The upper-level model demonstrates the
competition among shipping companies who maximise their own profits through speed
optimisation. The lower-level model illustrates the response of customers who reassign
their demand with elastic total demand. A case study is presented to demonstrate the appli-
cation of the proposed model and to test the convergence of the solution algorithm. The
bi-level model that has been described in this paper is an ideal model that assumes the
Arctic ice is completely melted and vessels can navigate on that route all the year round.
To make the study more practical, the impact of harsh weather conditions have been exam-
ined in Arctic regions on vessel speed and elastic demand of each company in the case
study section. With the adjusted vessel speed and demand, annual profits of each company
are analysed. The results reveal that in 2050, the NSR has potential economic competi-
tiveness compared to the traditional route and will be an alternative route for container
shipping. Furthermore, this model can be applied to simulate the variation of the world
shipping market demand and provide decision support for shipping companies to develop
future development strategies (including route selection, new shipbuilding amount and
type, sailing speed setting, etc).
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