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Conditional statistics and flow structures in
turbulent boundary layers buffeted by

free-stream disturbances
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Direct numerical simulations are performed to study zero-pressure-gradient turbulent
boundary layers beneath quiescent and vortical free streams. The inflow boundary
layer is computed in a precursor simulation of laminar-to-turbulence transition, and
the free-stream vortical forcing is obtained from direct numerical simulations of
homogeneous isotropic turbulence. A level-set approach is employed in order to
objectively distinguish the boundary-layer and free-stream fluids, and to accurately
evaluate their respective contributions to flow statistics. When free-stream turbulence
is present, the skin friction coefficient is elevated relative to its value in the canonical
boundary-layer configuration. An explanation is provided in terms of an increase in
the power input into production of boundary-layer turbulence kinetic energy. This
increase takes place deeper than the extent of penetration of the external perturbations
towards the wall, and also despite the free-stream perturbations being void of
any Reynolds shear stress. Conditional statistics demonstrate that the free-stream
turbulence has two effects on the boundary layer: one direct and the other indirect.
The low-frequency components of the free-stream turbulence penetrate the logarithmic
layer. The associated wall-normal Reynolds stress acts against the mean shear to
enhance the shear stress, which in turn enhances turbulence production. This effect
directly enlarges the scale and enhances the energy of outer large-scale motions
in the boundary layer. The second, indirect effect is the influence of these newly
formed large-scale structures. They modulate the near-wall shear stress and, as a
result, increase the turbulence kinetic energy production in the buffer layer, which is
deeper than the extent of penetration of free-stream turbulence towards the wall.

Key words: intermittency, turbulence simulation

1. Introduction
In numerous applications, turbulent boundary layers (TBLs) are exposed to, and

interact with, free-stream vortical perturbations. For example, in industrial flows such
as those of turbomachinery and heat exchangers, the incoming stream can include
free-stream perturbations that buffet the TBL developing on the wall. The present work
examines this interaction using direct numerical simulations. A zero-pressure-gradient
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Turbulent boundary layers beneath free-stream turbulence 527

(ZPG) TBL is simulated beneath quiescent and vortical free streams, and the two
conditions are contrasted.

Earlier studies have experimentally investigated the effect of grid-generated free-
stream turbulence (FST) with intensities mostly less than 7 % (Simonich & Bradshaw
1978; Hancock & Bradshaw 1983, 1989; Castro 1984). These studies showed that FST
mainly influences the wake region of the mean-velocity profile. The FST depresses the
wake region, or reduces U∞/uτ , where U∞ and uτ are the free-stream and friction
velocities, respectively. Simonich & Bradshaw (1978) reported that the increases in
skin friction and heat transfer are nearly proportional to the turbulent intensity only.
In their study, skin friction and heat transfer increased by 2 % and 5 %, respectively,
for 1 % increase in the FST intensity. Hancock & Bradshaw (1983) tried to capture
the effects of FST with a single parameter β = (Tu/U∞)/((Lu/δ)+ 2), where Tu, Lu
and δ are the turbulence intensity and dissipation length scale and the boundary-layer
thickness; the mean skin friction was shown to increase with the parameter β. Blair
(1983) and Castro (1984) suggested a modification to the parameter in order to take
account of the low-Reynolds-number effect (Reθ < 2000) whereby the FST becomes
less effective at increasing drag.

Hancock & Bradshaw (1989) performed conditional sampling to investigate the
contribution of FST to flow statistics. In their study, the boundary-layer fluid was
thermally identified by heating the plate. They reported the conditional contributions
of the free-stream and boundary-layer fluids to the Reynolds-stress profiles and
triple products. In their study, the conditional perturbation statistics were evaluated
relative to the conventional time average (or unconditional) mean. They showed that
shear-stress correlation coefficient (−u′v′/u′rmsv

′

rms) is reduced because the isotropic
FST effectively destroys the coherence of the perturbations inside the boundary layer.

Further studies were performed with high turbulence intensities, greater than 10 %,
generated by gas turbine combustors (Ames & Moffat 1990) or high-velocity cross
jets (Thole & Bogard 1995, 1996). Ames & Moffat (1990) proposed a new parameter
which considers the momentum-thickness Reynolds number, Reθ , in addition to
Lu and Tu for predicting skin-friction enhancement. But Thole & Bogard (1995)
demonstrated that the increase in skin friction with the Hancock parameter, β, is
sufficiently accurate up to Tu = 28 %. Thole & Bogard (1996) found that even the
highest levels of FST considered mostly influence the outer region of the boundary
layer, and have negligible effects on the logarithmic region. However, they provided
evidence that the strong FST penetrates into the boundary layer very close to the
wall, by performing hot-wire measurements of the streamwise velocity fluctuations:
the energy spectrum of the near-wall region was similar to that of the FST. While
the above studies examined the influence of FST on TBLs experimentally, Péneau,
Boisson & Djilali (2000) performed large-eddy simulations to examine the effect of
strong FST up to Tu= 21 %. They used random Oseen vortices for generating inflow
FST, which was therefore neither homogeneous nor isotropic. They reported that the
increase in skin friction is almost unchanged irrespective of the FST intensity for
7 %< Tu< 21 %, but their domain size was too short (Reθ ≈ 1200–1500) to observe
the interactions between FST and TBL at higher Reynolds number.

The influence of the FST length scale on the changes within the boundary layer
can be gleaned by contrasting results from different studies. Sharp, Neuscamman
& Warhaft (2009) examined the effect of large-scale FST, and showed that the
Reynolds stresses normalized by the friction velocity increase relative to their values
in canonical boundary layers. They also reported the emergence of an outer peak in
the pre-multiplied energy spectra when the boundary layer is subjected to FST. Such a
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peak is known to occur in unforced boundary layers, although at appreciably higher
Reynolds numbers (Hutchins & Marusic 2007), and is associated with large-scale
motions that reach many boundary-layer thicknesses in streamwise extent and
modulate the near-wall structures (Mathis, Hutchins & Marusic 2009; Hwang et al.
2016). In contrast to the work by Sharp et al. (2009), Nagata, Sakai & Komori
(2011) considered small-scale FST (Lu/δ� 1) with relatively low turbulent intensity
(Tu< 2.4 %). They demonstrated that the skin friction still increases, even though the
rate of production of turbulence kinetic energy is reduced along with the Reynolds
normal and shear stresses, normalized by the friction velocity. In addition, the outer
peak in the pre-multiplied energy spectra was not observed in the experiments by
Nagata et al. (2011). These results are unique since most other efforts have focused
on larger FST length scales.

The outer peak in the energy spectra was also reported by Li, Schlatter &
Henningson (2010) who performed large-eddy simulations of boundary layers beneath
FST at Reynolds numbers in the range Reθ ≈100–1000. Their result is curious because
their boundary layer was initially transitional and had not reached an equilibrium state.
Recently, Dogan, Hanson & Ganapathisubramani (2016) experimentally evaluated the
effect of large-scale FST on the near-wall region. They reported an increase in
the near-wall streamwise velocity fluctuations with FST intensity. Using a scale
decomposition, they separated the small- and large-scale contributions, and attributed
the increase to the latter. Dogan, Hearst & Ganapathisubramani (2017) showed a close
correlation between the large-scale velocity signals in the buffer and logarithmic
layers by performing multipoint measurements. Subsequently, Hearst, Dogan &
Ganapathisubramani (2018) identified within the spectrogram zones that are affected
by the free-stream spectrum and a universal small-scale inner peak. Since the latter
was unchanged by the forcing, they concluded that only the large-scale components
of the FST penetrate down to the near-wall region.

Previous experiments and simulations have quantified the increase in drag when
boundary layers are exposed to free-stream forcing, and how this effect depends on the
intensity and length scale of FST. The exact mechanism that leads to the increase in
skin friction is, however, less clear. The objective of the current study is to investigate
how the free-stream fluid statistically and dynamically causes this increase. Therefore,
an important consideration is to objectively distinguish the free-stream fluid and its
contribution to flow statistics – a requirement that is difficult to achieve experimentally
and that has not been performed numerically to date. We adopted a method similar
to that of the work by Hancock & Bradshaw (1989). They heated the boundary-layer
fluid, although the finite Prandtl number, Pr, in the experiments reduces the accuracy
of separating the two streams. In our simulations, we have the advantage that we
employ a level-set approach which represents an infinite Pr and thus maintains a sharp
virtual interface between the boundary-layer and free-stream fluids. Using conditional
sampling, we examine how the FST modifies the boundary-layer statistics and flow
structures, and leads to drag increase.

A schematic diagram of the computational set-up is shown in figure 1. Two main
simulations are performed, the first of a canonical TBL and the second additionally
includes homogeneous isotropic turbulence (HIT) with 10 % intensity in the free
stream. Comparing the downstream evolutions of the two flows highlights the
impact of the newly introduced free-stream forcing on the boundary layer. The
configuration thus differs from experiments where both the boundary layer and
free-stream turbulence evolve together from the leading edge. Our domain length
ensures that the momentum-thickness Reynolds number of the forced boundary layer
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FIGURE 1. (Colour online) Schematic of the flow configuration showing the precursor
transitional boundary layer and HIT, and the fully turbulent flow downstream.

exceeds Reθ = 3200 before the exit plane, which is higher than the Reynolds numbers
in previous numerical studies.

The paper is organized into six sections. A description of the numerical method and
the inflow condition is provided in § 2. Section 3 includes the conditional sampling
approach, and a quantitative comparison of conditional statistics based on the level set
and the vorticity magnitude for a conventional boundary layer. Section 4 demonstrates
the influence of FST on the skin friction and reports the conditional statistics of the
forced flow. Section 5 discusses the effect of FST on the turbulent flow structures, and
conclusions are summarized in the last section.

2. Simulation details
The continuity and Navier–Stokes equations for incompressible flow are

∂uj

∂xj
= 0, (2.1)

∂ui

∂t
+
∂uiuj

∂xj
=−

∂p
∂xi
+

1
Reθin

∂2ui

∂x2
j
. (2.2)

Terms in the above equations are non-dimensionalized using the free-stream velocity
U∞ and the momentum thickness at the inlet θin of the main simulation domain. The
momentum-thickness Reynolds number in (2.2) is defined as Reθin ≡ρU∞θin/µ= 1200.
The velocity components in the streamwise (x), wall-normal (y) and spanwise (z)
directions are u, v and w, respectively, and the pressure is p. Hereafter, a bar denotes
a spanwise and time average, and a prime indicates fluctuating quantities according
to the Reynolds decomposition, for example u= u+ u′.

The flow equations were solved using a fractional step algorithm on a staggered
grid with a local volume-flux formulation (Rosenfeld, Kwak & Vinokur 1991). The
viscous terms were integrated in time implicitly using the Crank–Nicolson method,
and the convective terms were treated explicitly using the Adams–Bashforth scheme.
The pressure equation is solved by performing Fourier transform in the span, cosine
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FIGURE 2. Validation of inflow TBL. (a) Mean streamwise velocity and (b) root-mean-
square fluctuations in inner scaling; (——) inflow TBL in main simulation and (E) data
by Schlatter & Örlü (2010) at Reθ = 1410.

transform in the streamwise direction and a tridiagonal direct solve in the wall-normal
coordinate. The algorithm has been used extensively in previous studies of transitional
(Nolan & Zaki 2013) and fully turbulent wall-bounded flows (Jelly, Jung & Zaki 2014;
Lee, Sung & Zaki 2017).

2.1. Computational set-up

A schematic of the flow configuration is shown in figure 1. In order to generate a
realistic inflow TBL for the main computations, a precursor simulation of a transitional
boundary layer was performed. A spatially and temporally resolved cross-flow plane
was stored in the fully turbulent regime and used as inflow in the main simulation. A
similar approach was adopted by Lee et al. (2013) and Lee et al. (2017). The inflow
condition in the auxiliary transitional computation is a Blasius boundary layer and a
superposition of vortical perturbations which were prescribed inside the mean shear
only, such that the transitional boundary layer develops below a quiescent free stream
(in contrast to bypass transition). The domain length spanned 1086Reθ 6 1379 which
overlaps with the main simulation domain. Instantaneous TBL data were extracted in
the precursor simulation at Reθ = 1200. The time series was subsequently applied at
the inlet in the main simulation. Even though the inflow Reynolds number is lower
than the recommendation by Schlatter & Örlü (2012), the streamwise extent of the
domain ensures that their criterion is satisfied where results are examined. In addition,
the accuracy of this inflow condition was extensively validated. Figure 2 compares
the mean streamwise velocity profile u and the root-mean-square fluctuations u′i,rms in
inner scaling with the data from Schlatter & Örlü (2010). The profiles are scaled by
the friction velocity uτ ≡

√
ν(∂u/∂y)|y=0, where ν is the kinematic viscosity and y+≡

(yuτ )/ν.
In addition to the inflow boundary layer, free-stream vortical perturbations are

needed at the inlet. Decaying, HIT was simulated in a rectangular box with
dimensions {Lx, Ly, Lz}HIT = {80, 80, 160} θin using a pseudo-spectral algorithm, with
periodic boundary conditions in all three coordinate directions. Both x and y were
discretized using 640 Fourier modes, and 1280 modes were used in the spanwise
direction. Figure 3 shows the time history of the turbulent intensity, skewness of the
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FIGURE 3. Evolution of HIT in time. The dashed-dotted line marks the time instant when
data are extracted to apply as inflow condition in the main simulation. (a) (——) Tu, (E)
Tu∝ t−5/7 and (– – –) −S′; (b) (——) Lk, (@) Lk ∝ t2/7, (– – –) λ and (E) λ∝ t0.5.

velocity derivative, integral length scale and Taylor microscale:

Tu≡

√
u′2 + v′2 +w′2

3
, S′(u′)≡

(∂u′/∂t)3

((∂u′/∂t)2)3/2
, Lk ≡

k3/2

ε
, λ≡

√
15νu′2

ε
.

(2.3a−d)
In the above expressions, k is the turbulence kinetic energy and ε is the dissipation
rate. The time instant when the data are extracted is identified by a dashed-dotted line
in the figure (Tu = 0.1 and Lk ≈ 10.8θin). Note that S′ is approaching its asymptotic
value (Batchelor 1953). At the time when the data are extracted, the Reynolds
number based on the Taylor microscale is Reλ ≡ u′rmsλ/ν = 105. The turbulence
intensity follows the decay law Tu ∝ t−5/7, and the length scale shows a consistent
power-law dependence Lk ∝ t2/7.

The three-dimensional energy spectrum for the inflow FST is provided in figure 4(a).
The height of the plateau in E(κη), or the Kolmogorov constant Ck, is approximately
1.96. The spatial resolution of a spectral simulation is adequate since κmaxη> 1, where
κmax is the maximum wavenumber and η is the Kolmogorov scale.

The free-stream disturbances at the inflow of the main simulations are extracted
from the HIT data using Taylor’s hypothesis, where space is converted to time using
the free-stream velocity of the boundary layer, (U∞, V∞) at Reθ,in = 1200. Note that
periodicity of the free-stream forcing is not a concern because the underlying TBL is
time dependent and not periodic. We have also exploited isotropy of the free stream
and rotated the HIT volume about its z-axis by ξ = 7.829◦. In this manner, every
Lx,HIT/(U∞ cos ξ) time units, the HIT plane prescribed as inflow to the direct numerical
simulation is shifted vertically by Lx,HIT tan(ξ)= 11θin, which is of the same order as
the integral length scale.

The dimensions of the computational domains, the number of grid points and
resolutions are provided in table 1. Two simulations are contrasted: one of a
conventional TBL beneath a quiescent free stream and a second case with free-stream
vortical forcing. They are designated the reference (REF) and forced (FRC) cases
(an additional forced case with smaller-scale HIT is reported in appendix B). In the
forced configuration, the FST decays with downstream distance, and figure 4(b,c)
shows the evolution of its normal stresses and length scale. The Reynolds normal
stresses are isotropic, and their decay in space in the main simulation matches the
temporal evolution of Tu shown in figure 3(a), and reproduced in figure 4(b) (circle
symbols). The length scale of FST is now redefined as Lk ≡ −k3/2/U∞(dk/dx), and
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FIGURE 4. (a) Three-dimensional energy spectrum of the FST at the inlet. (b) Comparison
of downstream evolution of FST in the main simulation: (——) u′rms, (– – –) v′rms, (— · —)
w′rms and (E) Tu of the decaying turbulence (reproduced from figure 3a). (c) Downstream
evolution of the integral length scale, Lk/δ99. Thin dashed-dotted lines mark streamwise
positions where Reθ = {1900, 3000} in FRC computation.

Designation Simulation Domain size (θin) No. of grid points Resolution
Lx × Ly × Lz Nx ×Ny ×Nz 1x+, 1y+, 1z+, 1t+

REF TBL 1200× 80× 80 6912× 768× 768 9.3, 0.28–7.7, 5.6, 0.048
FRC TBL + HIT 1000× 80× 160 5760× 768× 1536 9.3, 0.28–7.7, 5.6, 0.043

TABLE 1. Summary of simulation parameters, and the spatial and temporal resolutions.

remains of the order of the 99 % boundary-layer thickness, δ99 (figure 4c). This
choice is motivated by our understanding of the interaction of vortical perturbations
with mean shear: disturbances with spanwise and wall-normal length scales of the
order of the boundary-layer thickness, and elongated in the streamwise direction, are
most effective at permeating the mean shear and inducing an energetic response (Zaki
& Durbin 2005; Zaki & Saha 2009). For the present FST, the first two criteria are
satisfied and the low-frequency components of the streamwise wavenumbers satisfy
the third one.

Both the REF and FRC boundary-layer simulations start at the same streamwise
position, Reθ,in = 1200. The differences in lengths and widths of the domains were
guided by results from preliminary simulations. The domain of the FRC case is
slightly shorter in the streamwise direction, which is partially compensated by a
faster increase in the momentum-thickness Reynolds number (see figure 5). Its larger
spanwise extent is required to accommodate the formation of wider structures. In
both cases, the grid is uniformly spaced in the streamwise and spanwise directions,
whereas a non-uniform grid distribution is used in the wall-normal direction. The
grid spacings reported in table 1 in wall units are normalized by the friction velocity
at the inlet to the simulation domain.
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FIGURE 5. Downstream dependence of (a) momentum-thickness Reynolds number Reθ ≡
U∞θ/ν and (b) mean pressure coefficient at the wall Cpw. Grey: reference simulation;
black: forced case.

The convective outflow condition ∂ui/∂t + c∂ui/∂x = 0 is applied at the outlet of
the simulation domain, where c is the local bulk velocity. The no-slip condition is
imposed at the bottom wall. Periodic boundary conditions are applied in the spanwise
direction. At the top boundary, appropriate treatment is required to maintain a ZPG
boundary layer, even in the presence of high levels of FST.

2.2. Top boundary condition
A distribution of suction velocity is applied at the top boundary in order to maintain
ZPG in the streamwise direction. The suction velocity is evaluated using an active
controller. First, a measure of the streamwise free-stream velocity is evaluated and
used as a sensor:

us(x; t)=
1
τ

∫ t

t−τ

∫ Ly

0

∫ Lz

0
(1− Γ (x, t))u(x, t) dz dy∫ Ly

0

∫ Lz

0
(1− Γ (x, t)) dz dy

dt, (2.4)

where τ is an averaging time scale for the controller and Γ is an indicator function
which is zero in the free stream and unity in the boundary layer. The method for
defining Γ is covered in the next section. The averaged streamwise velocity uτ during
τ is

uτ (x, y; t)=
1
τ

1
Lz

∫ t

t−τ

∫ Lz

0
u(x, t) dz dt. (2.5)

The suction velocity at the top boundary is computed as a superposition of continuity
constraint over time τ and the action of the controller:

vtop(x; t)=−
d
dx

∫ Ly

0
uτ (x, y; t) dy+ σ

V∞
U∞

(us(x; t)− uT(x)), (2.6)

where uT is the target streamwise free-stream velocity which is unity in ZPG.
The control factor is σ , and V∞/U∞ is a reference rate of free-stream vertical
to streamwise velocities for the canonical mean boundary-layer profile. The boundary
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conditions on the other directions are utop= 1 and (∂w/∂y)top= 0. In the present study,
the time scale τ is comparable to the integral time scale of FST, tk = Lk/U∞.

The downstream dependence of pressure coefficient at the wall,

Cpw ≡
p(x,y=0) − p(x0,y=0)

1
2ρU2

∞

, (2.7)

is shown in figure 5. It remains well within the range −0.005< Cpw < 0.002, which
satisfies the condition for ZPG.

2.3. Conditional sampling
The starting point for conditional sampling is to define an indicator function, Γ (x, t),
which is unity in the boundary layer and zero in the free stream. Its spanwise and
time average is the intermittency,

γ =
1

Lz1T

∫ T0+1T

T0

∫ Lz

0
Γ (x, t) dz dt, (2.8)

which is the probability that the fluid is part of the boundary-layer flow. A general
quantity φ can then be separated into its boundary-layer φB and free-stream φF

constituents:

φB
= Γ (x, t)φ(x, t), (2.9)

φF
= (1− Γ (x, t))φ(x, t). (2.10)

Using this decomposition, the conventional and conditional means are

φ =
1

Lz1T

∫ T0+1T

T0

∫ Lz

0
φ(x, t) dz dt, (2.11)

φ
B
=

∫ T0+1T

T0

∫ Lz

0
φ(x, t)Γ (x, t) dz dt∫ T0+1T

T0

∫ Lz

0
Γ (x, t) dz dt

, (2.12)

φ
F
=

∫ T0+1T

T0

∫ Lz

0
φ(x, t)(1− Γ (x, t)) dz dt∫ T0+1T

T0

∫ Lz

0
(1− Γ (x, t)) dz dt

, (2.13)

where superscripts B and F identify boundary-layer and free-stream quantities. The
conventional mean can be related to boundary-layer and free-stream components,
weighted by the local intermittency factor,

φ = γφ
B
+ (1− γ )φ

F
. (2.14)

Reynolds decomposition can be performed relative to each of the three averages:

φ = φ + φ′, (2.15)
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φB
= φ

B
+ φ∗ for boundary-layer flow, (2.16)

φF
= φ

F
+ φ′′ for free-stream flow. (2.17)

Analysis of the perturbations relative to the conditional means is intended to examine
the turbulence dynamics within each region of the flow, separately. In contrast,
Hancock & Bradshaw (1989) evaluated conditional statistics of perturbation quantities
relative to the conventional mean, in order to measure the contribution from each
fluid to overall statistics.

Unlike the intermittency weighted average (2.14), higher-order statistics evaluated
relative to conditional and conventional means are related by more elaborate
expressions. For example, the Reynolds stress is given by

u′iu′j = γ u∗i u∗j
B
+ (1− γ )u′′i u′′j

F
+ γ (1− γ )(ui

F
− ui

B)(uj
F
− uj

B). (2.18)

Also, commutation of conditional averaging and the derivative operator is not always
possible, for example,

∂φ
B

∂xi

B

=
∂φ

B

∂xi
;

∂φ

∂xi

B

=
∂φ

B

∂xi
+
∂φ∗

∂xi

B

6=
∂φ

B

∂xi
, (2.19a,b)

and similarly for F. This affects various terms in the turbulence kinetic energy budget
(see appendix A), for example the pseudo-dissipation:

1
Re
∂u′i
∂xk

∂u′i
∂xk
=

1
Re

{
γ
∂u∗i
∂xk

∂u∗i
∂xk

B

+ (1− γ )
∂u′′i
∂xk

∂u′′i
∂xk

F

+ γ

(
2
∂ui

B

∂xk

∂ui

∂xk

B

−
∂ui

B

∂xk

∂ui
B

∂xk

)
+ (1− γ )

(
2
∂ui

F

∂xk

∂ui

∂xk

F

−
∂ui

F

∂xk

∂ui
F

∂xk

)

−
∂γ ui

B

∂xk

∂γ ui
B

∂xk
−
∂(1− γ )ui

F

∂xk

∂(1− γ )ui
F

∂xk
− 2

(
∂γ ui

B

∂xk

∂(1− γ )ui
F

∂xk

)}
.

(2.20)

The averaging durations in the present simulations are 1T = 1200θin/U∞ and
810θin/U∞ for the reference and forced cases, respectively. Since the forced
configuration is twice as wide in the homogeneous spanwise direction, the shorter
averaging time is sufficient for statistical convergence.

3. The interface between the boundary layer and the free stream
Numerous recent studies have examined the turbulent/non-turbulent interface in

free and wall-bounded shear flows (e.g. Bisset, Hunt & Rogers 2002; Jiménez et al.
2010; da Silva et al. 2014; Borrell & Jiménez 2016; Lee et al. 2017). An effective
approach is to define the interface as an iso-surface of vorticity magnitude which,
if appropriately normalized, becomes independent of Reynolds number in spatially
developing flows. Borrell & Jiménez (2016) proposed the following normalization:

|ω|∗ =
|ω|

u2
τ/ν

√
δ+99. (3.1)
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FIGURE 6. (Colour online) Probability density function of log10 |ω|
∗ at inlet (Reθ ≈ 1200).

Dashed lines identify the wake regime of the boundary layer and the geometric centre of
outer intermittent flow regime.

The threshold level, |ω|∗thres, is then determined from the probability density function
of the logarithm of |ω|∗, which is plotted in figure 6 for the inlet boundary layer. The
two dashed lines in the figure were proposed by Lee et al. (2017), and mark the wake
regime and the geometric centre of the outer intermittent regime. Their intersection is
the normalized vorticity threshold, here |ω|∗thres = 0.2, and the associated wall-normal
height is y/δ99 ∼ 1.0. In conventional boundary layers below a quiescent free stream,
the turbulent/non-turbulent interface separates vortical flow (|ω|∗ > |ω|∗thres) and
irrotational flow (|ω|∗ < |ω|∗thres). The method can be adopted in reference simulation
where the TBL is beneath a quiescent free stream, but is not applicable when the
free stream is itself turbulent.

Another approach to differentiate the boundary layer and free stream is inspired
by experiments in high-Prandtl-number fluids, where one stream is heated (Hancock
& Bradshaw 1989). In the simulations, a scalar marker can be set to unity in the
boundary layer and zero in the free stream at the inflow plane. In the case of a
conventional boundary layer, diffusion of the scalar is effective within the boundary
layer only, and a value of zero guarantees that the scalar is associated with the free
stream. But when the free stream is turbulent, diffusion becomes appreciable on both
sides of the interface, and it once again becomes difficult to separate the boundary-
layer and free-stream fluids. In order to remedy this effect, in numerical simulations,
we eliminate diffusion altogether and adopt a level-set approach for capturing the
interface (Jung & Zaki 2015).

In the original work by Osher & Sethian (1988), the interface is an iso-level of the
function ϕ that is tracked by solving

∂ϕ

∂t
+
∂ujϕ

∂xj
= 0. (3.2)

The value of ϕ is the unit distance from the interface, which is marked by ϕ = 0.
Since mass conservation is difficult to maintain in the original formulation, Desjardins,
Moureau & Pitsch (2008) proposed a conservative level-set method. Instead of solving
for the evolution of ϕ, their approach utilizes a hyperbolic tangent function

ψ =
1
2

(
tanh

( ϕ
2ε

)
+ 1
)
, (3.3)
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where ψ = 0.5 marks the interface location and ε ≡ 0.5 min(1x, 1y, 1z) determines
its thickness. The evolution of ψ is given by

∂ψ

∂t
+
∂ujψ

∂xj
= 0. (3.4)

In order to maintain a smooth ψ field, without spurious oscillations, a reinitialization
equation is required:

∂ψ

∂τ
+∇ · (ψ(1−ψ)n)=∇ · (ε(∇ψ · n)n), (3.5)

where τ is a pseudo-time step and n ≡ ∇ψ/|∇ψ | is the interface normal vector.
Note that n is computed from ϕ. When the reinitialization equation is invoked, it is
solved to a steady state in pseudo-time, which requires three to four iterations in our
simulations.

Time integration of (3.4) and (3.5) was performed using the third-order total
variation diminishing Runge–Kutta scheme. The advection term in (3.4) was
discretized in space using a fifth-order upstream central scheme, while second-order
central differencing was adopted for the compression and diffusion terms in (3.5). In
order to accelerate the computation, the level-set equations are solved in a narrow
band around the interface only (Peng et al. 1999). Extensive validation of the interface
tracking algorithm was reported by Jung & Zaki (2015), who computed the evolution
of the Zalesak disc (Zalesak 1979) and the evolution of linear and nonlinear instability
waves in two-fluid flows (Cheung & Zaki 2010, 2011).

At the inflow plane, the value of ψ is set to unity in the boundary layer and zero
in the free stream, and is a hyperbolic tangent profile within five computational cells
that straddle the interface. The instantaneous location of the interface, within the inlet
boundary-layer data, is identified using the vorticity threshold |ω|∗thres = 0.2, and is
assigned the value ψ = 0.5. Downstream, a sharp interface is maintained by virtue of
the reinitialization equation. The indicator function, used in the conditional sampling,
is thus defined as Γ = 1 when ψ > 0.5 in the boundary-layer fluid and as Γ = 0 when
ψ < 0.5 in the free stream. A sample result is shown in figure 7, where the interface
ψ = 0.5 is plotted along with contours of the streamwise velocity. Using ψ = 0.5, we
can unambiguously differentiate the boundary-layer turbulence and FST and perform
conditional sampling.

3.1. Comparison of conditional sampling using |ω|∗thres and ψ
The vorticity threshold and the level-set approaches identify two different interfaces.
The former marks the outer diffusive edge of the boundary layer, while the latter
marks the material fluid that belongs to the boundary layer at the inlet. Previous
studies of conventional boundary layers, with quiescent free streams, have used the
vorticity threshold. Since it is not applicable in the presence of FST, we will adopt
the level-set method throughout this work. A comparison of both techniques is,
nonetheless, possible in the reference case without FST.

Figure 8 shows the mean velocity profiles at two different streamwise locations in
the reference simulation. In addition to the conventional mean, the figure also shows
the conditional averages in the boundary layer, γ u+B, and in the free stream, (1 −
γ )u+F. The conditional curves are plotted twice, using the vorticity threshold (black)
and the level-set approach (grey). Considering the free-stream contribution, it decays
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FIGURE 7. (Colour online) Contours of streamwise velocity u, the line identifying the
level set ψ = 0.5, in TBL (a) without and (b) with FST.
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FIGURE 8. Mean streamwise velocity profiles in inner scaling at (a) Reθ = 1900 and (b)
Reθ = 3000 in REF case. (——) Conventional mean; (– – –) boundary-layer contribution;
(— · —) free-stream contribution. Conditional statistics are evaluated using (black)
vorticity threshold |ω| and (grey) level set function ψ . The thin dashed line is given by
u+ = 2.44 ln(y+)+ 5.2.

faster into the boundary layer when evaluated using the vorticity threshold relative to
the level-set approach. In the former case, free-stream fluid that becomes part of the
boundary layer as it diffuses only contributes to the boundary-layer statistics. In the
level-set case, however, fluid that is assigned to the free stream at the inlet continues
to contribute to the free-stream statistics even if it became part of the TBL. It is
important to note that, at both downstream locations considered, the log-law region is
fully captured by the boundary-layer conditional average, independent of the sampling
technique.

The boundary-layer and free-stream contributions to the Reynolds stresses, evaluated
using both the vorticity threshold and the level-set approach, are plotted in figure 9.
The boundary-layer term γ u∗i u∗j traces the conventional average from the wall through
the inner peak and the log-law region. When |ω|∗thres is used for conditional averaging,
the free-stream contribution (1 − γ )u′′i u′′j is essentially negligible even in the wake
region. When ψ is used, the free-stream contribution is small, and increases slightly
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FIGURE 9. Reynolds stress profiles at (a) Reθ = 1900 and (b) Reθ = 3000 in REF case;
(i) u′u′ and (ii) −u′v′, both normalized by U2

∞
. Other details as in figure 8.

downstream as more outer fluid becomes turbulent. Throughout the rest of this study,
the level-set method will be adopted to evaluate conditional statistics, since it is
equally applicable when the boundary layer is beneath a quiescent or turbulent free
stream.

3.2. Statistics of the interface
The interface between the boundary layer and the free stream is defined as
yI ≡ y(ψ = 0.5). Iso-surfaces of this quantity are plotted in figure 10, coloured
by distance from the wall over a limited streamwise range. The figure qualitatively
shows that the presence of the FST significantly enhances the undulation of the
interface, relative to a canonical boundary layer.

Figure 11(a) contrasts the downstream development of the mean height of the
interface, yI , and the 99 % thickness of the boundary layer, δ99. By construction, both
quantities start at the same height at the inlet plane since ψ = 0.5 was instantaneously
assigned based on the vorticity threshold |ω|∗thres= 0.2 (see figure 6). For the reference
boundary layer (grey lines), both yI and δ99 grow at similar rates, although the latter
is slightly higher because the growing boundary layer entrains free-stream fluid. The
results for the forced case show a steeper increase in δ99, which was noted in previous
studies (Hancock & Bradshaw 1989). Note, however, that δ99 bears no physical
significance, and is sensitive to the details of the mean velocity profile. On the
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FIGURE 10. (Colour online) Iso-surfaces of yI coloured by wall-normal height y/θin.
(a) REF case and (b) FRC case.
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FIGURE 11. (a) Downstream evolution of (——) yI , (–×–)yI
+ and (– – –) δ99.

(b) Evolution of (——) y′I,rms and (– – –) y′I,rms/yI . Grey: REF case; black: FRC case.

other hand, yI is the mean height of the material line separating the boundary layer
from the free stream at the inlet. This quantity has a much smoother evolution with
downstream distance, and shows only a moderate increase relative to the reference
case.

The excursions of the interface relative to the mean location are measured by the
root-mean-square of the fluctuations in its height, y′I,rms, in figure 11(b). Lee et al.
(2017) showed that y′I,rms increases with downstream distance, and is nearly linearly

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.104


Turbulent boundary layers beneath free-stream turbulence 541

-20 -10 0

y�
I y�

I/y-I

10 20 -2 -1 0 1 2

-20 -10 0 10 20 -2.0 -1.5 -0.5 0-1.0 1 1.50.5 2

0

1

0

1

0

0.1

0.1

0.2 2

(a) (i) (ii)

(b)

FIGURE 12. Probability density function of (i) y′I and (ii) y′I/yI for (a) REF case and
(b) FRC case. Thin to thick lines correspond to the streamwise position, (x − x0)/θin =

{100, 200, 400, 800}.

proportional to yI in TBLs. The same trend is observed in the reference flow, where
y′I,rms/yI is nearly flat in figure 11(b). When the boundary layer is forced by FST, the
root-mean-square of the interface excursions increases significantly. When normalized
by yI , it still shows an initial increase before it plateaus. The larger excursions in the
interface height correspond to enhanced transport at the interface.

The probability density function of the interface excursions is plotted in figure 12.
The distributions for each flow nearly collapse when normalized by the mean value,
y′I/yI . In the reference boundary-layer simulation, the probability density function
is practically symmetric, and its skewness at the shown locations is in the range
[0.12, 0.15]. In the presence of free-stream forcing, the normalized probability density
function curves are wider, and are more positively skewed in the direction of the free
stream. Quantitatively, the skewness increases by as much as three-fold, and is in the
range [0.35, 0.5]. Since yI is larger in the forced case, the spread in the probability
density function of y′ is even more pronounced than in the reference case.

Due to the larger undulation of the interface height in the forced case, the
intermittency γ spreads more rapidly as shown in the left-hand panel of figure 13.
In the middle panels, wall-normal profiles for two streamwise positions are plotted
versus y/yI , and show good collapse in this outer scaling. When the boundary layer
is buffeted by external disturbances, the profiles of γ clearly show its spread both
towards the free stream and the wall. The FST is thus expected to influence the flow
deep inside the mean shear. The extent of its penetration should, however, be viewed
in inner scaling as shown in the rightmost panels. In the reference simulation, the
contribution of the outer flow, or (1 − γ ), vanishes in the logarithmic layer. In the
forced case, while the contribution of the free stream remains finite in the logarithmic
layer, it is vanishingly small in the buffer layer.
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4. Modification of boundary-layer statistics due to FST
4.1. The skin friction

When TBLs are exposed to free-stream vortical forcing, the wall shear stress is
enhanced. This effect is shown in figure 14(a) where the downstream evolution of the
skin-friction coefficient, Cf ≡ τw/(0.5ρU2

∞
), is plotted versus the momentum-thickness

Reynolds number. The coefficient increases by approximately 15 % at Reθ = 1900.
Many of the subsequent discussions will be supported by results at this location
and also Reθ = 3000 farther downstream. Note that these Reynolds numbers do not
correspond to the same streamwise positions in the reference and forced boundary
layers (cf. figure 5). Matching Reθ is, however, the appropriate choice for comparing
the two flows. Hereafter, grey and black lines always indicate the profile of the
reference and forced TBLs, respectively.

In figure 14(a), the Cf curve is shifted upwards in presence of free-stream forcing,
and retains its dependence on Reθ . Similar to Esteban et al. (2017), the correlation
Cf = 2[log(Reθ)/0.384 + C]−2 is used to match the data by adjusting C. For the
reference flow, C = 4.127 is anticipated (Nagib, Chauhan & Monkewitz 2007) and
yields good agreement for the present data. The constant must be adjusted to C= 2.77
in order to accurately capture the dependence of Cf on Reθ in the presence of FST.

An interpretation of the skin friction in terms of three physical phenomena was
recently proposed by Renard & Deck (2016). In a frame moving with the free-stream
speed U∞, the flat plate is pulled to the left at −U∞. In that setting, the skin-friction
coefficient can be interpreted as of the average normalized power imparted by the wall
motion onto the fluid, and is the sum of three contributions:

Cf ,RD =
2

U3
∞

∫
∞

0
ν

(
∂u
∂y

)2

dy︸ ︷︷ ︸
Cf ,a

+
2

U3
∞

∫
∞

0
−u′v′

∂u
∂y

dy︸ ︷︷ ︸
Cf ,b

+
2

U3
∞

∫
∞

0
(u−U∞)

∂

∂y

(
τ

ρ

)
dy︸ ︷︷ ︸

Cf ,c

, (4.1)

where τ/ρ is the total shear stress. The term Cf ,a is the rate of dissipation of mean
streamwise kinetic energy into heat, Cf ,b is the rate of production of turbulence kinetic
energy and Cf ,c is the rate of change in the streamwise kinetic energy in the mean
flow. The symbols in figure 14(a) show the reconstruction of the right-hand side of
(4.1), which agrees with the direct evaluation of the skin friction from the gradient at
the wall.

All the terms in the decomposition (4.1) are plotted in figure 14(b), normalized by
the total friction coefficient from the reference boundary-layer simulation, Cf ,REF(Reθ).
The term Cf ,c, which accounts for the streamwise energy in the mean flow, is the
smallest contributor to the friction and is initially reduced in response to the FST but
subsequently recovers. The overall increase in the friction coefficient is therefore due
to the augmentations of Cf ,a and Cf ,b, namely the dissipation in the mean profile and
the production of turbulence kinetic energy. Both involve −u′v′, although indirectly in
the first term through the mean-flow distortion by the stress.

The integral in Cf ,a converges to 95 % of its total below y+ = 20 and to 99 % by
y+ = 100. Within the region y+ < 100, the change in ∂u/∂y from its wall value is
nearly equal to the Reynolds shear stress, and therefore the increase in Cf ,a when
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FIGURE 13. (Colour online) (i) Contours of intermittency γ near the inlet of the
simulation domain. Profiles of γ (ii) in outer scaling and (iii) in inner scaling at (– – –)
Reθ = 1900 and (——) Reθ = 3000. (a) REF case and (b) FRC case.
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FIGURE 14. (a) Skin-friction coefficients computed from (——) the wall shear stress
Cf = τw/(ρU2

∞
)/2 and (E) the decomposition (4.1). Dashed lines are the correlation

Cf = 2[log(Reθ )/0.384 + C]−2, where C = 4.127 for REF and C = 2.77 for FRC.
(b) Contributions to the skin-friction coefficient normalized by Cf ,REF; (——) Cf , (— · —)
Cf ,a, (– – –) Cf ,b and (— · · —) Cf ,c. Grey: REF; black: FRC.

the boundary layer is forced is related to the increase in −u′v′. This relation is
demonstrated by integrating the mean-momentum equation for a ZPG boundary layer
from the wall to a height y:

1
Re

{
∂u
∂y
−

[
∂u
∂y

]
y=0

}
=

∫
y

∂(u u)
∂x

dy+ u v + u′v′. (4.2)

The above expression was evaluated for both the reference and forced flows, and
the difference (•)FRC − (•)REF is plotted in figure 15, at Reθ = 1900 and 3000. The
results demonstrate how changes in −u′v′ indirectly impact the dissipation in the
mean-velocity profile, Cf ,a.
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FIGURE 16. Wall-normal distributions of turbulence kinetic energy budget terms
normalized by U3

∞
/θin at (a) Reθ = 1900 and (b) Reθ = 3000; (——) production P , (– – –)

pseudo-dissipation −ε, (— · —) viscous diffusion D, (· · · · · ·) turbulent advection T ,
(— · · —) pressure diffusion R and (— —) mean advection A. Grey: REF; black: FRC.

The shear stress appears directly in Cf ,b whose increase signals a potential change
in the energetics of the wall turbulence. Consider the kinetic energy budget

uj
∂k
∂xj︸ ︷︷ ︸
A

=−
∂u′ip′

∂xi︸ ︷︷ ︸
R

−
1
2
∂u′ju′iu′i
∂xj︸ ︷︷ ︸

T

−u′iu′j
∂ui

∂xj︸ ︷︷ ︸
P

−
1

Re
∂u′i
∂xj

∂u′i
∂xj︸ ︷︷ ︸

ε

+
1

Re
∂2k
∂xj∂xj︸ ︷︷ ︸
D

, (4.3)

where k ≡ (u′iu′i)/2 is the turbulence kinetic energy per unit mass. In the above
expression, A is mean advection, R is pressure-diffusion, T is turbulent advection,
P is rate of production, ε is the pseudo-dissipation and D is viscous diffusion.
These terms are plotted in the near-wall region in figure 16, and compared in the
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FIGURE 17. Evolutions of (——) Cf and (@) a peak value of −u′v′(∂u/∂y). Grey: REF;
black: FRC.

reference and forced boundary layers. The magnitude of every term is increased
in the forced flow, especially the rate of dissipation and viscous diffusion at the
wall. The production term is also appreciably increased in the buffer layer, which is
consistent with the results of Péneau et al. (2000). Based on the analysis by Renard
& Deck (2016), in a frame moving with the free-stream speed U∞, an increase of
u′v′∂u/∂y, and hence P , requires additional power input from the moving wall. This
leads to an increase in wall shear stress, or drag. Further evidence of the connection
between u′v′∂u/∂y and drag is provided in figure 17. The wall-normal peak of the
former term is plotted versus downstream Reynolds number, and its trend matches
the change in the skin friction very well.

A number of interesting lines of query arise from the above results. Firstly, the
enhanced production in the buffer layer can be ascribed to either a change in the
mean-flow profile or the Reynolds shear stresses. The two are not independent of one
another, and which has a more pronounced effect is of interest. Secondly, the most
pronounced change in the production term takes place in the buffer layer. Whether
the FST penetrates this deep into the boundary layer or the near-wall turbulence
dynamics are modified should be assessed. If the former, an increase in the shear
stress is curious because the FST is isotropic; and the latter case would also warrant
an explanation. These factors are examined by evaluating the contributions of the
boundary-layer and free-stream fluids to the flow statistics.

4.2. Conditional statistics
The mean streamwise velocity profiles are plotted in outer and inner scalings in
figure 18, at Reθ = 1900 and 3000. Note that the adopted outer length scale is yI
(left-hand panels), and not δ99 which does not bear a clear physical significance. The
mean-velocity profiles are fuller in the FRC case, which is indicative of the enhanced
mixing that was remarked upon by Hancock & Bradshaw (1989). It is also consistent
with the increase in Cf ,a (4.1), which is the integral of (∂u/∂y)2 in the wall-normal
direction, or dissipation of mean streamwise kinetic energy. The left-hand panels
also show the conditional velocity profiles in the boundary layer, uB, and in the
free stream, uF. These profiles, when weighted by their probabilities, make up the
unconditional mean (2.14). Therefore they lie on either side of the mean, and agree
with it near the wall and in the free stream, respectively. The free-stream conditional
profile, uF, is larger in the forced flow than in the reference case, but seems to only
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FIGURE 18. Profiles of mean streamwise velocity at (a) Reθ = 1900 and (b) Reθ = 3000,
normalized by (i) U∞ and (ii, iii) uτ . (i, ii) (– – –) Boundary-layer velocity uB; (— · —)
free-stream velocity uF. (iii) (– – –) Boundary-layer contribution γ uB; (— · —) free-stream
contribution (1 − γ )uF. The thin dashed line: u+ = 2.44 ln(y+) + 5.2. Grey: REF; black:
FRC.

impact the mean profile near the outer edge of the boundary layer. It appears, at
least based on outer scaling, that changes in the overall mean track the changes in
the boundary-layer curve.

The middle panels of figure 18 show the same profiles in viscous scaling. Both the
unforced and forced boundary layers have a logarithmic region, u+= 2.44 ln(y+)+ 5.2,
at both Reynolds numbers. In the presence of FST, a significant depression of the
boundary-layer profile occurs in the wake region, which is consistent with the
increase in drag; the logarithmic, buffer and viscous regions are hardly affected. The
unconditional mean profiles are thus consistent with earlier experiments (Hancock &
Bradshaw 1983; Sharp et al. 2009) and simulations (Li et al. 2010). The conditional
profiles, u+B and u+F, are interesting. In both the reference and forced computations,
u+B faithfully follows the conventional mean up to the edge of the logarithmic layer,
and is lower in the intermittent wake region. Conversely, the free-stream curves
reproduce the outer uniform flow, retain a higher velocity than the conventional
mean inside the boundary layer and collapse in viscous scaling. A deeper reach of
u+F towards the wall in the forced flow is evident in the figure. When weighted by
their probabilities (right-hand panels), the conditional averages yield the contributions
to the mean by the boundary layer, γ u+B, and the free stream, (1 − γ )u+F. In
the unforced flow, the boundary-layer contributions still show a logarithmic-layer
behaviour and decay sharply in the wake region due to the intermittency weighting.
In contrast, when FST forcing is present, the boundary-layer contribution no longer
traces the logarithmic law, although the logarithmic behaviour is re-established once
the free-stream contribution is added to recover the conventional mean. In order to
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explain the ‘universality’, or robustness, of the logarithmic law in forced boundary
layers, Hancock & Bradshaw (1989) verified that the departure from equilibrium is
inappreciable, and that the rates of production and dissipation of turbulence kinetic
energy are dominant and nearly balance in that region. The same dominant balance
was verified in the present FRC case.

Wall-normal profiles of Reynolds stresses are presented in figure 19. In general, all
the stresses are enhanced when the boundary layer is subjected to FST and, outside
the mean shear, all the normal stresses match the outer turbulence levels and the shear
stress is nearly zero. Two key observation are important to note, related to the stresses
in the logarithmic and buffer layers, respectively. Firstly, the increase in u′u′ in the
logarithmic layer exceeds the free-stream value, and is therefore not a mere upward
shift of the curve. Partial evidence of enhanced local production of u′u′ is available
from the Reynolds shear stress, u′v′, which is increased in the logarithmic layer. This
trend is curious, and cannot be directly ascribed to the FST since it is itself void of
u′v′. Instead, the increase in normal stresses v′v′ due to the ingested FST acts against
the mean shear to produce Reynolds shear stress that, in turn, enhances the production
of u′u′. Profiles of the relevant production terms, Pu′iu

′
j
≡ −u′ju′k∂ui/∂xk − u′iu′k∂uj/∂xk,

are provided in figure 20, pre-multiplied by y+. In this form, the area under the curve
corresponds to the integral of production, which is clearly enhanced in the logarithmic
layer. The symbols identify the dominant contributions, and confirm that v′v′ leads to
an increase in production of the shear stress and, in turn, production of u′u′ in the
outer layer.

The second observation from figure 19 concerns the depth towards the wall over
which the Reynolds stress profiles are altered in the presence of FST. The increase in
v′v′ diminishes as we approach the wall and nearly vanishes within the buffer layer,
which is consistent with the extent of penetration of FST into the boundary layer and
the decay of the intermittency curves (see figure 13). In contrast, the increases in the
other stresses preserve their magnitudes deeper into the boundary layer, beyond the
decay of the intermittency curves. For example, the increases in the streamwise and
spanwise normal stresses are evident below the locations of their respective peaks,
and even deeper than the buffer layer. Therefore, these changes cannot be caused
by the FST directly, and the explanation for enhanced production in the logarithmic
layer does not carry over to the buffer region. This point is further supported
by the conditional free-stream contributions, (1− γ )u′′i u′′j

F
, which vanish farther away

from the wall than the increase in the stresses. In summary, while the FST has a
direct contribution to the normal stresses in the outer intermittent region and enhances
production of u′v′ and u′u′ in the logarithmic layer, it also indirectly modifies the
turbulence deeper towards the wall in a manner that warrants further examination –
a matter that we address in § 5.

The increase in production is connected to the changes in Reynolds shear stress
within the boundary layer. The cross-correlation coefficient, u′v′/(u′rmsv

′

rms), is reduced
in the presence of external forcing because the isotropy of the FST destroys the
coherence of the boundary-layer turbulence (Hancock & Bradshaw 1989). Nonetheless,
the magnitude of Reynolds shear stress u′v′ increases in the boundary layer as shown
in figure 19, and as reported by others (Péneau et al. 2000). This increase is curious
because the free-stream forcing is free of any mean shear stress, and because the
extent of its penetration into the mean shear, towards the wall, is shallower than the
region of increase in kinetic energy and production which persist deeper towards the
wall.
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FIGURE 19. Reynolds stresses profiles at (a) Reθ = 1900 and (b) Reθ = 3000: (i) u′u′; (ii)
v′v′; (iii) w′w′; (iv) −u′v′, all normalized by U2

∞
. (——) Conventional statistics; (– – –)

boundary-layer contribution; (— · —) free-stream contribution. Grey: REF; black: FRC.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.104


Turbulent boundary layers beneath free-stream turbulence 549

(a) (b)

 0

0.01

0.02
y+

P -
u� √�

y+
P u

� u�

100 101 102

y+ y+

103 100 101 102 1030

0.01

0.02

0.03

0.04

FIGURE 20. Profiles of production of Reynolds shear and streamwise-normal stresses
at Reθ = 1900: (a) y+P−u′v′ ; (b) y+Pu′u′ . Symbols mark the leading contributions: (a)
y+v′v′∂u/∂y; (b) −2y+u′v′∂u/∂y. Production terms are normalized by U3
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A more detailed account of the increase in the Reynolds shear stress can be
obtained from quadrant analysis (Wallace 2016). The analysis was performed for both
the reference and forced flows, and is shown in figure 21 at the two downstream
locations, Reθ = 1900 and 3000. In the reference flow, ejection (Q2: u′< 0 and v′> 0)
and sweep (Q4: u′> 0 and v′< 0) events are dominant (figure 21). In the forced case,
the isotropy of FST leads to finite, nearly equal contribution to all four quadrants at
and beyond the free-stream edge of the boundary layer, thus enhancing mixing in
that region. Inside the boundary layer, the increases in Q2 and Q4 events far exceed
those in the other two components. In addition, while the free-stream contribution
decays within the boundary layer, a significant increase in the unconditional Q2 and
Q4 events is observed near their respective peaks close to the wall. The peak of the
boundary-layer contribution, which resides close to the wall, increases in magnitude
but its location does not shift. The more pronounced ejections and sweeps are
consistent with the higher rate of production, P−u′v′ , in the forced case (figure 20a).

Figure 22 highlights the change in the near-wall turbulence kinetic energy
production and dissipation rates and their conditional contributions, all plotted in
logarithmic scale. The relationship between the conventional and conditional terms is
provided in appendix A. In the reference simulation, the dissipation is zero in the
free stream, and its high level near the wall is entirely due to the boundary-layer
contribution. In the forced case, the dissipation is enhanced throughout the extent of
the boundary layer and is finite, albeit small, in the free stream where it is entirely
due to the contribution of the outer fluid. The free-stream conditional average decays
inside the boundary layer and is more than two orders of magnitude smaller than
the boundary-layer counterpart. Similar observations are applicable to the production
terms. In this case, however, the free-stream contribution vanishes outside the mean
shear in both the reference and forced configurations. While it is enhanced inside
the boundary layer when the flow is forced, that contribution remains more than
two orders of magnitude smaller than the peak value of the total production. The
increase in production near the wall (y+' 10) in the forced flow is essentially entirely
due to the boundary-layer contribution. These results are consistent with the notion
that the increase in the peak Reynolds stresses (figure 19), especially u′u′, is not an
additive effect of injection of FST into the near-wall region. Instead, the turbulence
kinetic energy and its production rate are enhanced near the wall, below the extent
of penetration of free-stream perturbations. The associated changes in the structures
and spectra of the wall turbulence are examined in § 5.
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FIGURE 21. Contributions to Reynolds shear stress, −u′v′ normalized by U2
∞

, from each
quadrant at (a) Reθ = 1900 and (b) Reθ = 3000. (——) Conventional statistics; (– – –)
boundary-layer contribution; (— · —) free-stream contribution. Grey: REF; black: FRC.

4.3. Discussion
The arguments set forth so far in order to explain the increase in the boundary-layer
turbulence kinetic energy in the forced flow have focused on changes in the near-wall
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dynamics. Another potential factor is an influx of turbulence from the free stream.
This effect was considered by Hancock & Bradshaw (1989), who evaluated the
conditionally sampled turbulent fluxes. They concluded that the net flux is into the
boundary layer, but their conditional sampling method relied on a diffusive scalar
and they computed the perturbations relative to the unconditional mean. The present
configuration is different, as we illustrate by considering the instantaneous total
kinetic energy, K ≡ (uiui)/2. The instantaneous flux of K relative to the interface
is given by

∫
SI

K(uj − vj)nj dSI , where SI is the surface of the interface and vj and
nj are its velocity and outward unit-normal vectors. The instantaneous flux term
is identically zero because the interface is a material line, vj = uj. In other words,
free-stream energy is not advected across the interface – a condition that is unique
to our configuration because the interface is a material line – and energy flux does
not contribute to the reported changes in boundary-layer turbulence.

Another point to note is the contribution of intermittency to the change in the
total turbulence kinetic energy within the boundary layer. Figure 23 compares
K′B =

∫
∞

0 (Γ /2)u′iu′i dy and K∗B =
∫
∞

0 (Γ /2)u∗i u∗i dy. Both quantities are evaluated
within the boundary-layer fluid only, before averaging. The first term features the
kinetic energy of perturbations relative to the conventional mean and the second
is relative to the conditional mean. Their near perfect agreement for the reference
simulation (figure 23) demonstrates that the conventional and conditional means are
similar within the boundary-layer fluid, over the wall-normal extent where turbulence
is energetic and makes up the majority of the integral. The two quantities deviate
in the forced flow, because the intermittency profiles spread deeper towards the wall,
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FIGURE 23. Average of the integrated perturbation kinetic energy inside the boundary
layer: (——) K′B=

∫
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0 (Γ /2)u′iu′i dy; (– – –) K∗B=
∫
∞

0 (Γ /2)u∗i u∗i dy. Grey: REF; black: FRC.

but nonetheless their relative difference remains small, 4.9 % at Reθ = 1900 and
7.5 % at Reθ = 3000. Therefore, the direct contribution of intermittency is small in
regions within the boundary layer where the Reynolds normal stresses are increased
appreciably.

Based on the present discussion, the choice of the interface as a material line
precludes flux of energy from the free stream into the boundary layer. In addition,
the overall increase in the turbulence kinetic energy within the boundary layer takes
place largely below the region influenced by intermittency. Both points provide support
to the notion that the increase in the turbulence kinetic energy inside the boundary
layer is due to a change in the dynamics of the wall flow. The corresponding changes
in turbulence spectra and structures are the focus of § 5.

5. Turbulence structures
The increases in the Reynolds streamwise stress in the logarithmic layer and

the near-wall region are the outcome of changes in the turbulence structures when
the boundary layer is forced by FST. A realization of the large-scale motions in
the logarithmic layer is shown in figure 24, visualized using iso-surfaces of the
Gaussian-filtered streamwise velocity perturbations (see Lee et al. 2017, for details
of the structure identification procedures). The figure empirically suggests that the
large-scale motions are wider in the span and more elongated in the streamwise
direction when the flow is forced. The enhanced coherence of the energetic structures
is interesting, in particular since the FST is isotropic. In this section, we will quantify
the change in the size of these large-scale structures, their spectral signature and their
impact on the near-wall turbulence.

In order to quantify the change in the size of the energetic large-scale structures, the
two-point correlation coefficient for streamwise velocity fluctuations is computed:

Ru′u′ (1x,y,1z) =
u′(x,yref ,z,t)u

′

(x+1x,y,z+1z,t)

u′rms(x,yref )
u′rms(x,y)

, (5.1)

where yref is the reference wall-normal location. Contours of Ru′u′ are plotted in
figure 25; line contours correspond to the reference flow and the flood contours
correspond to the forced case. The figure also shows the correlation in the 45◦ and
135◦ inclined planes. In all three views, the correlation coefficient is appreciably
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FIGURE 24. (Colour online) Iso-surfaces of the Gaussian-filtered flow field û′. (a) REF
case and (b) FRC case. Blue: û′ =−0.06; red: û′ = 0.06.

wider in the forced flow, which demonstrates that the u-perturbation structures in the
logarithmic layer are larger in streamwise, spanwise and wall-normal extent. Two
characteristic length scales, l45◦ and l135◦ , are evaluated from the inclined planes,
and are defined as the distance to Ru′u′ = 0.5. Their ratio in the reference case is
l45◦/l135◦ = 1.2, which agrees with the value reported by Ganapathisubramani et al.
(2005). Those authors attributed the fact that l45◦ is greater than l135◦ to the existence
of hairpin packets. In the forced flow, the ratio increases to l45◦/l135◦ = 1.27, which
is consistent with enhanced hairpin activity. Geometrically, the increase in l45◦/l135◦

can arise due to a steeper inclination angle, α, or larger aspect ratio of the structures,
AR = llong/lshort, where llong and lshort are the longest and shortest lengths in the x–y
plane. Both quantities are plotted in figure 26 as a function of the threshold level of
the correlation coefficient, Rthres, that is adopted to define the size of the structure.
The inclination angle is similar in both cases, and hence does not explain the change
in l45◦/l135◦ . Instead, the increase in l45◦/l135◦ is due to the elongation, and hence
increase in the aspect ratio, of the structures, e.g. AR≈ 2.8 and 3.4 for the reference
and forced flow at Rthres = 0.5.

The streamwise and spanwise sizes of the structures are compared in figure 27,
where contours of Ru′u′ (1x,1z) are plotted at two wall-normal positions: y+ ≈ 100,
which is in the logarithmic layer, and y/yI ≈ 0.55, which will be later identified as an
important location in the spanwise energy spectra (cf. figure 30). At both heights, the
length of the large-scale motions is longer in the forced flow than in the reference
case, e.g. it is nearly double at y+≈ 100. At y/yI ≈ 0.55, the streamwise extent of the
structures is further elongated by the forcing, and the width of the structures is also
significantly increased. At that location, the ratio of lx in the forced and reference
flows is 5.8, and that of lz is 2.3. The larger increase in the streamwise size of
boundary-layer outer motions indicates that free-stream isotropic turbulence enhances
the anisotropy of wall turbulence. The interpretation based on flow structures is
consistent with the statistical trends presented here (figure 19) and by Brzek et al.
(2009) over rough walls.
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FIGURE 25. (Colour online) Two-point correlation Ru′u′ at y+ref = 100 and Reθ = 3000:
(a) Ru′u′ in the x–y plane for the (lines) REF and (flood) FRC cases. Correlations in the
inclined planes at (b) 45◦ and (c) 135◦. The contour levels span the range 0.56Ru′u′ 60.95
in increments of 0.05. In (b) and (c), the left- and right-hand sides correspond to REF
and FRC, respectively.
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FIGURE 26. (a) Inclination angle α(◦) and (b) aspect ratio AR≡ llong/lshort as a function
of threshold level of the correlation coefficient, Rthres. The quantities llong and lshort are the
longest and shortest length scales in the x–y plane. Grey: REF; black: FRC.

The correlation coefficients of the FST (y/yI ≈ 3) and of the outer structures
(y/yI ≈ 0.55) are compared in figure 28(a). As anticipated for homogeneous isotropic
FST, the streamwise extent of the correlation is larger than its width (Pope 2000). At
y/yI ≈ 0.55, the width of the correlation remains of similar order. That the spanwise
scale of the outer turbulence is commensurate with the preferred size of the large-scale
structures indicates that the forcing is effective at generating a boundary-layer
response. On the other hand, the streamwise extent of the boundary-layer structures
is appreciably longer. These observations are consistent with the notion of shear
sheltering and amplification: only low-frequency free-stream vortical perturbations
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FIGURE 27. Two-point correlation Ru′u′ (1x,1z) at (a) y+≈ 100 and (b) y/yI ≈ 0.55. Contour
levels correspond to 0.56Ru′u′ 6 0.95 in increments of 0.05. In (a) and (b), the upper part
corresponds to REF and the lower to FRC.
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FIGURE 28. Contours of (a) Ru′u′ (1x,1z) and (b) Ru′′u′′ (1x,1z) in FRC case. In (a) and (b),
the upper part corresponds to y/yI ≈ 3 and the lower to y/yI ≈ 0.55.

can permeate the boundary layer (Hunt & Durbin 1999; Zaki & Saha 2009). Further
evidence of the filtering effect is provided by plotting the conditional correlation
coefficient, Ru′′u′′ , at the same two locations (figure 28b). The weaker streamwise
decay at y/yI ≈ 0.55 demonstrates that only lower-frequency components of the
free-stream vortical spectrum have a signature inside the boundary layer.

The contributions of the boundary-layer and free-stream fluids to the correlation
coefficient can be separated. The starting point is the decomposition of the velocity
perturbation:

u′ = Γ u∗ + Γ (uB
− u)+ (1− Γ )u′′ + (1− Γ )(uF

− u). (5.2)

The overall correlation coefficient can then be expressed as

Ru′u′(1x, 1z) = Cu∗u∗ + C(uB
−u)(uB

−u) + 2Cu∗(uB
−u)︸ ︷︷ ︸

boundary-layer contribution

+ Cu′′u′′ + C(uF
−u)(uF

−u) + 2Cu′′(uF
−u)︸ ︷︷ ︸

free-stream contribution

+ 2Cu∗u′′ + 2C(uB
−u)(uF

−u) + 2Cu∗(uF
−u) + 2Cu′′(uB

−u), (5.3)

where CAB is the conditional covariance between A(x, y, z, t) and B(x+1x, y, z+1z, t)
normalized by u′u′. Note that the terms involving the mean velocities, C(uB

−u)(uB
−u),
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FIGURE 29. Two-point correlation at y/yI ≈ 0.55 for (a) Ru′u′ (1x,1z=0) and (b) Ru′u′ (1x=0,1z):
(——) Ru′u′ , (– – –) Cu∗u∗ and (— · —) Cu′′u′′ . Grey: REF; black: FRC.

CF
(uF
−u)(uF

−u) and C(uB
−u)(uF

−u), do not contribute to the spanwise correlation since the
mean flow is two-dimensional. The correlation in the streamwise direction is plotted
in figure 29(a), which compares the reference and forced cases at y/yI ≈ 0.55. It also
shows part of the contributions by the boundary-layer and free-stream fluctuations,
Cu∗u∗ and Cu′′u′′ , respectively. In addition to the general elongation of Ru′u′ in the
presence of forcing, the following observations are noteworthy. In the reference flow,
Cu∗u∗ makes up the majority of the correlation coefficient, and the free-stream term
is relatively negligible. In the presence of FST, Cu∗u∗ and Cu′′u′′ make commensurate
contributions, and have similar streamwise lengths. Similar trends are observed along
the spanwise direction in figure 29(b).

The large-scale coherent motions in the outer part of the boundary layer have a
clear signature in the pre-multiplied energy spectra,

κzΦu′u′(λz)= κz

∫
∞

−∞

u′(z)u′(z+ ζ )e−iκzζ dζ , (5.4)

where κz and λz are the spanwise wavenumber and wavelength, respectively. Figure 30
compares κzΦu′u′(λz) in the reference and forced flows. In the former, a near-wall
peak in the spectra is clearly visible. Only a faint trace of an outer peak is discernible
in the logarithmic region, which is consistent with earlier simulations of canonical
boundary layers (e.g. Schlatter et al. 2010) and with the expectation that the outer
peak only emerges at higher Reynolds numbers, Reτ > 2000 (Hutchins & Marusic
2007; Mathis et al. 2009). When the boundary layer is subjected to free-stream
vortical forcing, contours of the pre-multiplied spectra in the near-wall region and at
small spanwise scales are largely unchanged; the minor shift towards smaller spanwise
wavelengths is consonant with enhanced dissipation (cf. figure 16). The contours,
however, expand towards much larger spanwise wavelengths, which motivated use of
the wider simulation domain for this case. In addition, an outer peak in the spectra
becomes clearly visible in figure 30. The associated contours span the logarithmic
layer, starting from y+ = 100 and extending to larger wall-normal positions in the
boundary layer. The peak value is recorded at y/yI ≈ 0.55, or y/δ99 ≈ 0.4, which is
consistent with Hearst et al. (2018). The corresponding disturbances have a spanwise
wavelength λz/yI ≈ 3.0.

Note that previous experiments reported the outer peak in the pre-multiplied
streamwise spectra, at wavelengths in the range from λx/δ99 = 6 to 19
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FIGURE 30. (Colour online) One-dimensional pre-multiplied energy spectra, κzΦu′u′(λz), at
Reθ = 3000 in (line contour) REF case and (flood contour) FRC case. The lower dashed
line marks y+ = {90, 100} in the REF and FRC cases, and the upper dashed line marks
y/yI = 0.55.

(Sharp et al. 2009; Hearst et al. 2018). In order to verify our findings, we evaluated
the pre-multiplied frequency spectra (not shown) which requires a long time series for
convergence. Taylor’s hypothesis was subsequently invoked using the local advection
velocity to convert the frequency into streamwise wavelength, and an outer peak was
observed at λx/δ99 ≈ 10.

The present findings complement the work by Hearst et al. (2018), who analysed
the pre-multiplied spectral map in boundary layers beneath free-stream forcing. They
too observed that the inner smaller-scale spectral peak is not altered by the forcing,
while the large scales are dependent on the free stream. They argued that only
the low-frequency portion of the FST can permeate the boundary layer towards
the wall. Spectra, however, involve contributions from both the direct penetration
of free-stream fluid inside the mean shear and the boundary layer response. Our
conditional sampling results provide the necessary direct evidence of the extent of
penetration of FST towards the wall: the average intermittency profiles (figure 13)
give the probability of observing free-stream fluid at different heights in the boundary
layer; and the conditional two-point correlation (figure 28b), which only samples
free-stream fluid inside the boundary layer, directly demonstrates shear filtering of
the high-frequency components.

While free-stream perturbations can breach the outer part of the boundary layer
and directly impact the turbulence in the logarithmic region, they do not reach the
buffer layer (cf. figure 13). As such, their role in enhancing the Reynolds shear and
normal stresses, in and below the buffer layer, must be indirect. One possibility is
that the spawned energetic large-scale motions in the logarithmic layer modulate the
near-wall flow – an effect that can be assessed by evaluating the amplitude modulation
coefficient. Mathis et al. (2009) defined a local amplitude modulation coefficient as
the one-point correlation between a large-scale velocity, u′L, and a filtered envelope of
a small-scale part, u′EL. The definition was extended by Bernardini & Pirozzoli (2011)
who computed the two-point amplitude modulation coefficient as the covariance
between u′L at position y1 and u′EL at position y2:

C2p
u,u(y1, y2)= u′L(y1)u′EL(y2). (5.5)
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FIGURE 31. Amplitude modulation coefficient, C2p
u,u, normalized by u2

τ at Reθ = 3000.
(a) REF case and (b) FRC case. Negative contours are plotted with dashed lines;
dashed-dotted lines indicate y/yI = 1. Increments of contour levels are 0.05.

Iso-contours of C2p
u,u/u

2
τ are plotted in figure 31. In the canonical boundary layer,

an emergent positive peak in the bottom-right side of the contour plot of figure 31(a)
indicates that large-scale motions at y+1 ≈ 80 modulate the small scales at y+2 ≈ 8.
In the forced case, that peak becomes more distinct, occupies a wider area and is
stronger (figure 31b). Its wall-normal height is also farther away from the wall, and
is consistent with the outer peak in the pre-multiplied energy spectra (figure 30). The
larger amplitude modulation coefficient indicates that, when the boundary layer is
forced, the resulting coherent motions in the logarithmic layer modulate, and thus
enhance, the near-wall structures. As a result, u′u′ increases in the buffer region,
where the direct free-stream contribution to the stresses is negligible (cf. figure 19b).

In order to evaluate the influence of the large energetic structures in the logarithmic
layer u′L on the near-wall Reynolds shear stress (u′v′)EL, we define

C2p
u,uv(y1, y2)= u′L(y1)(−u′v′)EL(y2). (5.6)

Iso-contours of C2p
u,uv/u

3
τ are plotted in figure 32, and support an interpretation similar

to C2p
u,u: the peak in the amplitude modulation coefficient shifts to a higher wall-normal

location when the boundary layer is forced by free-stream vortical perturbation. More
importantly, its value increases from C2p

u,uv≈0.37 to 0.54, which is indicative of a more
pronounced modulation of near-wall Reynolds shear stress by the outer u′ large-scale
structures. Also note that the modulated site in the contours of C2p

u,uv is higher than
the corresponding point in C2p

u,u, namely y+2 ≈ 20 versus y+2 ≈ 8. This shift is consistent
with the mean Reynolds stresses, where the peak position of −u′v′ is higher than that
of u′u′ as shown in figure 19.

Viewed all together, the present results indicate that the low-frequency free-stream
vortical perturbations directly force the boundary layer in logarithmic layer and lead to
the amplification of energetic large-scale motions. These structures modulate the near-
wall Reynolds stresses, far below the extent of penetration of FST. The Reynold shear
stresses in the buffer layer thus enhance the production of u′u′ which is also modulated
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FIGURE 32. Amplitude modulation coefficient, C2p
u,uv , normalized by u3

τ at Reθ = 3000.
(a) REF case and (b) FRC case. Negative contours are plotted with dashed lines; dashed-
dotted lines indicate y/yI = 1. Increments of contour levels are 0.05.

by the outer structures. The increase in production is balanced by an increase in
dissipation at the wall. In addition, in a frame moving with the free stream, the higher
production of wall turbulence necessitates an increased power input into the wall to
move it at a constant speed, −U∞, and hence drag is increased.

6. Conclusion
Direct numerical simulations of TBLs beneath quiescent and vortical free streams

were performed. In the forced case, the FST is homogeneous and isotropic, and its
intensity is Tu= 10 % at the inflow plane and decays downstream. In order to perform
conditional sampling, a technique is sought to distinguish the boundary-layer and free-
stream fluids. Conventional methods which are based on a vorticity threshold are not
applicable when the free stream is vortical. Instead, a level-set interface capturing
approach was adopted in order to differentiate the fluids which, at the inlet, belong
to the boundary layer and to the free stream, and to perform conditional sampling.

When the free stream is turbulent, the skin-friction coefficient increased by up
to 15 % relative to the reference flow within the simulated Reynolds-number range
(figure 14). This effect is interpreted from the perspective of the power required
to move the wall with speed −U∞ in a stationary fluid, which leads to three
contributions: the dissipation due to the established mean-flow profile, the acceleration
of the base flow and the production of turbulent kinetic energy. The final contribution
is most sensitive to external forcing, and increases appreciably even closer to the wall
than the depths to which external vortical perturbations effectively enter the boundary
layer.

In the forced flow, the mean streamwise velocity profile shows a depression in
the wake region which is consistent with the increased drag. In contrast, the log-law
behaviour remains robust, and persists not only in the conventional mean but also in
the conditional profiles. With the intermittency weighting, the free-stream contribution
to the mean velocity decays slower in the boundary layer than in the reference case,
but nonetheless becomes negligible within the logarithmic region. The vortical forcing
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also enhances all components of the Reynolds stress (figure 19), including the shear
stress even though the forcing turbulence is itself free of u′v′. In addition, even though
the conditional free-stream contribution vanishes in the near-wall region, the stresses
especially u′u′ increase throughout the buffer layer. This increase, chiefly due to the
boundary-layer contribution, cannot be ascribed to any transport of turbulence kinetic
energy from the free stream since the conditional statistics are based on the level-set
function which is a material line.

The increase in the Reynolds stresses is the statistical outcome of changes in the
structures within the boundary layer, when exposed to free-stream forcing. In the outer
logarithmic region, large-scale energetic structures become evident in the instantaneous
perturbation fields (figure 24). Their extents in the spanwise and streamwise directions
are larger than those observed in the reference flow below a quiescent free stream. The
spanwise size is, nonetheless, commensurate with the length scale of the FST, which
was selected to be of the order of the boundary layer thickness. On the other hand, the
streamwise extent of these large-scale structures is much longer, which was explained
by demonstrating the ability of the boundary layer to low-pass-filter the free-stream
perturbations. A clear signal of these structures is recorded as an outer peak in the
pre-multiplied energy spectra.

Once the outer large-scale motions are established within the boundary layer,
they evolve on a long time scale during which the flow advects many streamwise
characteristic lengths. As such, we anticipate they will long outlive the decay of the
FST. Much longer domains, perhaps using large-eddy simulations or experiments,
would be required to quantify this effect.

Unlike the amplification of the outer coherent structures in the logarithmic
layer which is a direct response to free-stream forcing, the appreciable increase
in the near-wall stresses takes place in a region where the free-stream conditional
contributions are vanishingly small. An explanation is put forward where the outer
large-scale motions modulate the near-wall shear and streamwise normal stresses
(figures 31 and 32), and is demonstrated by evaluating the two-point amplitude
modulation coefficients. The enhanced shear stresses also lead to higher production
of turbulence kinetic energy in the buffer layer and, as a result, to drag.
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Appendix A. Conditional statistics for turbulence kinetic energy budget terms
In this appendix, we present relations between the conditional and conventional

averages of the pseudo-dissipation and of production of turbulence kinetic energy. The
starting point to derive the expression for the pseudo-dissipation is

∂ui

∂xk

∂ui

∂xk
= γ

∂ui

∂xk

∂ui

∂xk

B

+ (1− γ )
∂ui

∂xk

∂ui

∂xk

F

= γ
∂uB

i

∂xk

∂uB
i

∂xk

B

+ (1− γ )
∂uF

i

∂xk

∂uF
i

∂xk

F

. (A 1)
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Using the Reynolds decomposition of each term

∂(ui + u′i)
∂xk

∂(ui + u′i)
∂xk

= γ
∂(ui

B
+ u∗i )
∂xk

∂(ui
B
+ u∗i )
∂xk

B

+ (1− γ )
∂(ui

F
+ u′′i )
∂xk

∂(ui
F
+ u′′i )
∂xk

F

. (A 2)

Recall that conditional averaging does not always commute with the derivative
operator (cf. (2.19)), and therefore

∂ui
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The first term on the left-hand side of (A 3) can be expressed as
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Substitution into (A 3) yields

Reε≡
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where the first and second terms on the right-hand side are regarded as the boundary-
layer and free-stream contributions.
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The starting point for deriving the production term is the expression

(uk + u′k)(ui + u′i)
∂ui
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= γ (uk
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)
. (A 6)

Using a procedure similar to that for the pseudo-dissipation, the following relation for
−P is derived:
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(A 7)

Appendix B. Free-stream turbulence with smaller length scale
In this appendix, we summarize an additional simulation, which is designated

FRC-S and where the boundary layer is subjected to free-stream forcing with the
same intensity but smaller length scale relative to FRC. Properties of the FST,
and the computational domain size and grid resolution are listed in table 2. The
length scale at the inlet is approximately 30 % smaller in FRC-S, or precisely
Lk = 7.4θin. Comparisons of its downstream evolution in FRC-S and FRC, as well
as the evolutions of Tu and β, are provided in figure 33. Due to the smaller length
scale, the turbulence intensity decays more rapidly in FRC-S and, while the Hancock
parameter β is initially higher for the new computation, it is smaller throughout the
majority of the domain due to the faster decay in Tu. The same data are visualized
in figure 33(c), which shows the trajectory of the FST in the space of Lu/δ99 and Tu.
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FIGURE 33. Downstream evolutions of (a) Tu and Lk and (b) β. (c) Plot of Lu/δ99
versus Tu; dotted lines mark constant β (Hancock & Bradshaw 1989). (——) FRC;

(– – –) FRC-S.
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FIGURE 34. (a) Skin-friction coefficients, Cf . (b) Reynolds shear stress, −u′v′, at
Reθ = 1900. Grey: REF; black solid line: FRC; black dashed line: FRC-S.

Designation HIT Domain size (θin) No. of grid points
Tu, Lk, Reλ Lx × Ly × Lz Nx ×Ny ×Nz

FRC-S 10 %, 7.4θin, 85 1000× 80× 80 5760× 768× 768

TABLE 2. Summary of domain information and FST properties at inlet.

The skin-friction coefficient is reported in figure 34(a). While it is larger in FRC-S
relative to the reference boundary layer, its increase is not as pronounced as in FRC
as anticipated since β is generally reduced. In § 4, the change in Cf was ascribed
primarily to enhanced dissipation in the distorted mean-velocity profile and to a higher
rate of turbulence production, and both effects were related to −u′v′. The Reynolds
shear stress is plotted in figure 34(b) and, congruent with Cf , monotonically increases
from REF to FRC-S and finally to FRC.

Whether outer large-scale motions are amplified depends on the low-frequency
content of the free-stream forcing. By reducing Lk in the case of FRC-S, that content
is reduced and the energy that is available to perturb the boundary layer is weaker.
It was also shown by Nagata et al. (2011) that for very small Lk/δ, while skin
friction is enhanced, large-scale motions are not formed in the boundary layer. Their
free-stream length scale was, however, smaller than the smallest one considered here,
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FIGURE 35. (Colour online) (a) Instantaneous iso-surfaces of the Gaussian-filtered velocity
û′ = ±0.06 in FRC-S. (b) Side view of contours of Ru′u′ at y+ref = 100 and Reθ = 3000.
(lines) FRC-S; (flood) FRC.

and their turbulence intensity was also weaker. The energetic structures in the outer
part of the boundary layer are visualized in figure 35(a) using the Gaussian-filtered
flow field. Similar to figure 24, we note the formation of coherent streamwise
velocity structures in the logarithmic layer, which were shown to play an important
role in modulating the near-wall streamwise and shear stress (§ 5). The size of
these structures is examined in figure 35(b) using the two-point correlation, and
is commensurate in FRC-S and FRC despite the 30 % reduction in Lk at the inlet
plane. It can therefore be concluded that, even at the smaller free-stream length scale
considered here, sufficient energy is available in the low-frequency component of the
forcing turbulence to trigger the amplification of outer large-scale energetic structures
in the boundary layer.
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