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Shear-thickening suspensions down inclines:
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We investigate experimentally and theoretically the stability of a shear-thickening
suspension flowing down an inclined plane. In a previous paper (Darbois Texier et al.,
Commun. Phys., vol. 3, 2020), we have shown that for particle volume fractions φ above
the discontinuous shear-thickening fraction φDST , long surface waves grow spontaneously
at a flow Reynolds number much below 1. This motivated a simplified analysis based
on a purely inertialess mechanism, called the ‘Oobleck waves’ mechanism, which
couples the negatively sloped rheology of the suspension with the free-surface deflection
and captures well the experimental instability threshold and the wave speed, for φ >

φDST . However, neglecting inertia does not allow us to describe the inertial Kapitza
regime observed for φ < φDST , nor does it allow us to discriminate between Oobleck
waves and other inertial instabilities expected above φDST . This paper fills this gap by
extending our previous analysis, based on a depth-averaged approach and the Wyart–Cates
constitutive shear-thickening rheology, to account for inertia. The extended analysis
recovers quantitatively the experimental instability threshold in the Kapitza regime,
below φDST , and in the Oobleck waves regime, above φDST . By providing additional
measurements of the wave growth rate and investigating theoretically the effect of a strain
delay in the rheology, it also confirms that the instability observed above φDST stems
from the non-inertial Oobleck wave mechanism, which is specific to free-surface flows
and dominates modes of inertial origin. These results emphasize the variety of instability
mechanisms for shear-thickening suspensions and might be relevant to free-surface flows
of other complex fluids displaying velocity-weakening rheology.
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1. Introduction

The resistance to flow of a shear-thickening suspension, such as an aqueous suspension of
starch particles, increases steeply with increasing strain rate. Though it is no thicker than
milk when it is stirred gently, the suspension may suddenly become rock-solid under high
stresses or upon impact. This intriguing behaviour has been puzzling scientists for more
than 80 years since the first study by Freundlich & Röder (1938). It is also an important
question in industry (LaFarge 2013; Abdesselam et al. 2017; Blanco et al. 2019; Zarei &
Aalaie 2020), where sudden thickening or jamming of the suspension can damage mixers
or clog pipes, but it can also be harnessed to design new impact-resistant materials.

Shear-thickening arises when the suspension particles interact through a short-range
repulsive force, which can stem from surface physical chemistry effects or Brownian
motion. The repulsive force implies that the contacts between the particles transition from
frictionless, under a small shear stress, to frictional, when the stress is large enough.
This results in a large variation in the suspension viscosity at constant volume fraction,
because the jamming volume fraction of the suspension depends on the frictional state
between the particles (Guazzelli & Pouliquen 2018). This frictional transition scenario,
first reported by Seto et al. (2013), has been supported by discrete numerical simulations
(Mari et al. 2014; Dong & Trulsson 2017; Singh et al. 2018) and experiments performed
at both contact and flow scales (Guy, Hermes & Poon 2015; Lin et al. 2015; Clavaud
et al. 2017; Comtet et al. 2017; Hsu et al. 2018; Clavaud, Metzger & Forterre 2020).
It has been rationalized by Wyart & Cates (2014) through a simple constitutive law
assuming a stress-dependent jamming volume fraction, which reproduces successfully the
different continuous shear-thickening (CST), discontinuous shear-thickening (DST) and
shear-jamming (SJ) regimes observed experimentally (Guy et al. 2015, 2020; Mari et al.
2015a; Rathee, Blair & Urbach 2017; Morris 2018; Richards et al. 2019).

In particular, Wyart–Cates rheology and its later refinements (Singh et al. 2018; Richards
et al. 2019; Ramaswamy et al. 2021) have a remarkable feature. Above a critical volume
fraction, called φDST , the flow curve becomes S-shaped, with a negatively sloped region
where the shear rate decreases with increasing stress. Such a non-monotonicity is known
to promote unstable flow conditions (Yerushalmi, Katz & Shinnar 1970; Spenley, Yuan
& Cates 1996; Olmsted 1999; Goddard 2003; Olmsted 2008; Nakanishi & Mitarai 2011;
Divoux et al. 2016), and, indeed, shear-thickening suspension flows often destabilize and
grow highly unsteady and inhomogeneous structures (Boersma et al. 1991; Lootens, Van
Damme & Hébraud 2003; von Kann et al. 2011; Nagahiro, Nakanishi & Mitarai 2013; von
Kann, Snoeijer & van der Meer 2013; Mari et al. 2015b; Hermes et al. 2016; Rathee et al.
2017; Chacko et al. 2018; Saint-Michel, Gibaud & Manneville 2018; Richards et al. 2019;
Ovarlez et al. 2020; Sedes, Singh & Morris 2020; Gauthier et al. 2021). In most models,
these instabilities are understood as an immediate consequence of the coupling between
the S-shape rheology and inertia. Indeed, it can be shown that if the shear rate and shear
stress are related instantaneously through a decreasing flow curve, then a simple shear
flow is unstable along the flow direction only if inertia is taken into account (Spenley et al.
1996; Nakanishi & Mitarai 2011; Mari et al. 2015b).

Interestingly, we have reported recently an instability in the flow of a shear-thickening
suspension down an inclined plane that does not rely on inertia (Darbois Texier et al.
2020). For a volume fraction above φDST , long surface waves grow spontaneously, in
spite of a flow Reynolds number much smaller than 1. This instability was first observed
by Balmforth, Bush & Craster (2005) but could not be modelled at the time due to the
lack of appropriate flow rule for shear-thickening suspensions. We have proposed that
these waves originate from the coupling between the free-surface deformation and the
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negatively sloped rheology of the suspension, when the latter is forced into the DST
region. The mechanism, which we coined the ‘Oobleck waves’ instability, is specific
to surface flows and does not require inertia. It actually stems from the amplification
of kinematic surface waves, by a mismatch between hydrostatics and the basal stress
rheology. It has been supported by a depth-averaged analysis of the flow, neglecting inertia
and using Wyart–Cates rheology, which has provided predictions in fair agreement with
the instability threshold and wave speed measured above φDST (Darbois Texier et al. 2020).

However, this study leaves important open questions regarding the actual role of inertia
on the formation of the surface waves. First, the non-inertial instability mechanism applies
only for a volume fraction above φDST , when the flow curve is negatively sloped. Yet
growing surface waves were also observed below φDST , where the flow curve is monotonic,
though it was at a much larger Reynolds number than above φDST (Darbois Texier et al.
2020). These finite Reynolds number waves are certainly reminiscent of the Kapitza, or
roll-waves, instability, which is observed for Newtonian (Jeffreys 1925; Kapitza & Kapitza
1948) and complex fluids, such as power-law fluids (Hwang et al. 1994; Ng & Mei 1994;
Allouche et al. 2017), mud (Trowbridge 1987; Liu & Mei 1994; Balmforth & Liu 2004)
and granular materials (Forterre & Pouliquen 2003; Forterre 2006). In all these cases,
the Kapitza instability is inertia-driven and emerges above a critical Reynolds number (or
Froude number), whose value depends on the precise rheology of the fluid. Therefore,
inertia must be considered to obtain a complete description of the instability, including
below φDST , and to understand the transition between the inertial Kapitza regime and the
overdamped Oobleck wave regime. Addressing these questions represents a non-trivial
test for the constitutive law of shear-thickening suspensions, which to date have been
confronted primarily with steady rheological measurements.

A second issue about inertia, not addressed in our previous study, concerns its influence
on the Oobleck wave instability itself, i.e. above φDST . A stability analysis neglecting
inertia has proven sufficient to predict the correct behaviour for the instability threshold,
suggesting that inertia is not involved in the instability mechanism. However, as mentioned
above, even a small inertial component is known to give unstable modes for a negatively
sloped flow curve, regardless of whether or not the flow has a free surface (Mari et al.
2015b). This raises an important fundamental question: Is the instability observed above
φDST a purely non-inertial instability, resulting from the novel Oobleck wave mechanism
specific to free-surface flows, or does it belong to the same class of inertial instabilities
that have been reported so far for rheometric or confined shear-thickening flows (Richards
et al. 2019)?

This paper addresses these questions by considering in details the role of inertia in the
surface destabilization of a shear-thickening suspension flow down an incline. Section
2 details the experimental set-up, used already in Darbois Texier et al. (2020), and
provides additional measurements of the instability growth rate, in both the dilute and
concentrated regimes. Section 3 presents a linear stability analysis of the flow, using
depth-averaged equations, assuming homogeneous volume fraction and accounting for
hydrostatic contribution, Wyart–Cates rheology and the flow inertia. The predictions of
the analysis are compared to the experimental observations in § 4. Finally, in § 5, the
results and the competition between inertial and non-inertial modes are discussed in light
of a refinement of the Wyart–Cates law introducing a strain delay in the rheology (Mari
et al. 2015b; Chacko et al. 2018; Han et al. 2018; Richards et al. 2019). The conclusion
(§ 6) confirms the novelty of the instability reported in the DST regime. Although inertial
unstable modes also exist, the instability that actually emerges stems from the intrinsically
non-inertial Oobleck mechanism, which is specific to free-surface flows.
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2. Experiments

The same set-up as in Darbois Texier et al. (2020) was used to obtain complementary
measurements of the instability growth rate, both below and above φDST . Below, we
provide more details about the set-up and the different protocols used to characterize the
instability onset in the two regimes.

2.1. Shear-thickening suspension: composition and rheology
We use an aqueous suspension of commercial organic cornstarch (Maisita�,
www.agrana.com) prepared at a volume fraction φ, which is determined from the dry mass
and density of the starch, ρp = 1550 kg m−3. The starch particles (shown in figure 1a) are
polydisperse angular grains, with average size approximately 15 µm. The rheology of the
suspension was characterized in Darbois Texier et al. (2020) using a cylindrical Couette
rheometer. The shear stress τ was imposed, and the shear rate γ̇ was measured to obtain,
for different volume fractions, the flow curves τ(γ̇ ), which are reproduced in figure 1(b).
The measurements are fitted with the Wyart–Cates constitutive laws (Wyart & Cates 2014).
The latter assume that the effective viscosity of the suspension diverges at a critical volume
fraction φJ , according to η(φ, f ) = ηs(φJ( f ) − φ)−2, with ηs a prefactor proportional to
the solvent viscosity. The jamming fraction itself depends on the fraction of frictional
contacts f according to φJ( f ) = (1 − f )φ0 + f φ1, where φ0 and φ1 are the jamming
fractions for a suspensions of frictionless and frictional particles, respectively. The fraction
of frictional contacts is assumed to follow f = e−τ∗/τ , with τ ∗ the critical stress scale
above which frictional contacts are activated. We follow the fitting procedure of Guy
et al. (2015) to fit our measurements with the model, and obtain ηs = 0.91 ± 0.01 mPa s,
φ0 = 0.52 ± 0.005, φ1 = 0.43 ± 0.005 and τ ∗ = 12 ± 2 Pa. With these parameters, the
Wyart–Cates model captures fairly well (i) the low-stress part (frictionless regime) of
the rheogram for all φ, (ii) the CST part observed for moderate φ, and (iii) the onset
of DST, i.e. the lowest stress at which the curve presents a negative slope (dτ/dγ̇ < 0), for
volume fractions above φDST ≡ φ0 − 2e−1/2(φ0 − φ1) � 0.41. Above the threshold stress
of discontinuity, the flow inside the rheometer is highly unsteady and inhomogeneous
(Guy et al. 2015; Saint-Michel et al. 2018; Richards et al. 2019; Ovarlez et al. 2020;
Gauthier et al. 2021), and the experimental rheogram can no longer be fitted with the
model rheology.

2.2. Determination of the instability threshold

2.2.1. Experiments at low φ (Kapitza waves)
Figure 1(c) shows a sketch of the experimental set-up used to characterize the stability
threshold at low volume fractions (φ < φDST ). The set-up consists of a 1 m long and 10 cm
wide plane, which can be tilted at angle θ , varied between 2◦ and 22◦. The inclined plane
is covered with a diamond lapping film of typical roughness 45 µm to prevent wall-slip.
The flow is controlled by the gravity-driven drainage of a reservoir of suspension through
a gate located at the top of the plane. Two low-incidence laser sheets and two cameras are
used to measure the mean film thickness h0 ∼ 2–10 mm, and the crest-to-crest amplitudes
of the waves, �h1 and �h2, at distances x1 = 10 cm and x2 = 70 cm from the gate. The
calibration of the laser incidence yields a precision in the local measurement of h0, �h1
and �h2 of ∼10 µm. The current flow rate q of the suspension is measured with a scale
placed at the bottom end of the incline. The current Reynolds number of the flow is
computed from the current flow rate q and mean film thickness h0, using the relation
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Figure 1. Rheograms and experiments at low φ to characterize the Kapitza instability. (a) Image of the
cornstarch grains. (b) Rheograms of the aqueous cornstarch suspension for various volume fractions. Solid
lines: Wyart–Cates rheology with ηs = 0.91 mPa s, φ0 = 0.52, φ1 = 0.43 and τ ∗ = 12 Pa. The region where
dτ/dγ̇ < 0 is highlighted in blue. (c) Sketch of the set-up used to characterize the instability below φDST , and
a typical picture of the Kapitza waves (φ = 0.33, θ = 2◦, Re � 37). (d) Spatio-temporal plots showing the
transverse displacement of the intersection between the laser sheet and the flow surface, at the top and at the
bottom of the incline (φ = 0.33, θ = 2◦, Re � 37). (e) Reynolds number of the flow, and amplitude of the
perturbation at the top, �h1, and at the bottom, �h2, of the incline (φ = 0.36, θ = 3◦, Re � 28). The black
dashed line indicates the instability threshold Rec. Plots (d,e) are reproduced from Darbois Texier et al. (2020).

Re = 3q2/(gh3
0 sin θ), with g the gravitational acceleration. This definition, which does not

depend explicitly on the suspension viscosity η, is convenient since it can be used whatever
the rheology of the fluid. The factor 3 is chosen so as to recover Re = ρ ū0h0/η0, with
ū0 = q/h0 the depth-averaged velocity, for a steady Newtonian flow (Landau & Lifshitz
2013).

To determine the instability threshold, a small perturbation is imposed on the flow,
while the flow rate decreases quasi-steadily because of the slow drainage of the reservoir
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(the variation is sufficiently slow to ensure a uniform flow rate along the incline). The
perturbation is forced by modulating sinusoidally the aperture of the gate (at 3 Hz, with
amplitude ±100 µm), with the help of a translating stage. The perturbation is convected,
and its amplification or damping is monitored by measuring the amplitude at x1 and x2
(see figure 1d).

Figure 1(e) shows a typical evolution of the Reynolds number Re, together with the wave
amplitude at the top (x1) and at the bottom (x2) of the incline, starting from an unstable
situation where �h2 > �h1. The instability threshold is determined from the current flow
rate at the time �h2 = �h1, which sets the critical Reynolds number Rec (dashed line in
figure 1e), the critical flow thickness hc, the critical mean flow velocity uc, and the critical
basal shear stress τc = ρghc sin θ .

2.2.2. Experiments at high φ (Oobleck waves)
For a volume fraction above φDST , the instability changes qualitatively. The perturbation
is either dampened or amplified and saturated over a very short distance (∼1 cm), which
compares with the flow thickness, instead of increasing or decreasing gently all along
the inclined plane, as for φ < φDST . Forcing the instability is no longer useful because
the most unstable modes of the perturbative noise background dominate wave formation.
Moreover, for φ > φDST , it is not possible to set the flow with the draining reservoir
because the jamming of the suspension at the gate creates large perturbations, which
prevent studying the stability over the incline. To circumvent these issues, a modified
injection system is used above φDST . The suspension is discharged from a large funnel
into an upper pool, which lets the discharge perturbations decay before feeding the incline
by a gentle overflow (see figure 2a). To increase the suspension flow rate quasi-steadily,
the funnel’s aperture is opened slowly with the help of a translating stage. In this case, the
wave amplitude grows over a short distance (see figure 2b), which allows characterizing
the wave growth rate with a single laser sheet and camera. Figure 2(c) presents the
simultaneous evolution of Re, �h1 and �h2, as obtained with this protocol, starting from a
stable situation where �h2 < �h1. As previously, the stability threshold is reached when
�h2 = �h1, providing Rec, hc, uc and τc.

For both protocols (above and below φDST ), we have verified that the same instability
criteria are obtained from successive steady-state measurements at various constant flow
rates. For each volume fraction investigated, experiments are repeated at least four times,
and for each repetition, a new, freshly prepared, suspension is used to avoid starch aging
or evaporation issues.

2.2.3. Wave speed and growth rate measurements
Besides the instability threshold, three important properties characterizing the surface
wave propagation are extracted from these experiments. From the measured steady-state
relation q(h0) between the average flow rate and the mean layer thickness, we obtain an
experimental determination of the kinematic wave speed ckin = dq/dh0, which will turn
out to be important to discriminate between the different instability mechanisms.

From the evolution of the amplitude and phase of the wave along the plane, we measure
the growth rate and wave speed. It was not possible to obtain experimentally the complete
dispersion relation as a function of the wave frequency, because for φ > φDST , the waves
are most often dominated, within a very short distance, by the nonlinear growth of the most
unstable mode of the background noise, regardless of the forcing frequency. Therefore, to
characterize the strength of the instability, we focused the growth rate measurements on
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Figure 2. Experiments at high φ to characterize the Oobleck waves. (a) Sketch of the set-up used for φ >

φDST , and a typical image of Oobleck waves (φ = 0.45, θ = 10◦, Re � 1.14 � 0.2 ReKap). (b) Image of the flow
surface intersected by the laser sheet (same conditions as in a). (c) Reynolds number of the flow and amplitude
of the perturbation �h1 and �h2 (same conditions as in a). The black dashed line indicates the instability
threshold Rec. (d) Normalized wave amplitude �h/h0 as a function of x (same φ and θ , Re/Rec = 1.05). The
growth rate is measured over the region highlighted in blue.

the most unstable mode just above the instability threshold, i.e. at an arbitrary distance
above the threshold (Re − Rec)/Rec = 0.05. For low volume fractions φ < φDST , the wave
grows exponentially all along the incline. The spatial growth rate σ is obtained from
the amplitude measurements at x1 and x2, according to σ = ln(�h2/�h1)/(x2 − x1). For
large volume fractions (φ > φDST ), the amplitude of �h(x)/h0 saturates within a shorter
distance, as shown in figures 2(b,d). In this case, the growth rate is measured by fitting the
short initial exponential regime, which is highlighted in blue. In both cases, the reported
wave speed is that of the most unstable mode.

3. Linear stability analysis

To rationalize the instability observed experimentally, we perform a linear stability
analysis of the flow. The depth-averaged approach and the approximation of homogeneous
volume fraction used in Darbois Texier et al. (2020) is extended to include inertial terms.
This approach has the advantage of embedding the complex rheology of the suspension
in a single term, the basal stress, while not limiting significantly the scope of the analysis,
since the most unstable modes will turn out to be slender-sloped. The rheology of the
shear-thickening suspension is modelled by the Wyart–Cates flow rule introduced in § 2.1.
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3.1. Base flow
We compute, first, the base flow, i.e. the steady uniform flow of a shear-thickening
suspension, with volume fraction φ, density ρ, and thickness h0, down a plane with slope
θ . The base state will be denoted by the subscript 0. For a layer with a stress-free surface,
the momentum balance imposes that the shear stress τ0 increases linearly with the depth
h0 − z, according to

τ0(z) = ρg(h0 − z) sin θ. (3.1)

On the other hand, the shear stress is related to the shear rate by

τ0(z) = η(φ, z)
du0(z)

dz
, (3.2)

with u0(z) the suspension velocity parallel to the plane, and η(φ, z) the suspension
viscosity, which is generally not uniform. Combining (3.1) with (3.2) yields the velocity
profile in terms of the reduced variable τ0:

u0(τ0) = 1
ρg sin θ

∫ τb,0

τ0

τ ′

η(φ, τ ′)
dτ ′, (3.3)

where τb,0 ≡ τ0(z = 0) = ρgh0 sin θ is the basal shear stress. Finally, the viscosity is given
by the Wyart–Cates expression

η(φ, τ ) = ηs

[
φ0 (1 − e−τ∗/τ ) + φ1 e−τ∗/τ − φ

]−2
, (3.4)

where ηs, τ ∗, φ0 and φ1 are the rheological parameters introduced in § 2.1.
Figure 3 shows the base flow velocity profile obtained by integrating (3.3) numerically

using (3.4), for volume fractions between 0.30 and 0.48. For low φ, the velocity profile is
semi-parabolic, as expected for a Newtonian fluid. For increasing φ, the concavity of the
profile reverses, which reflects the increase in the suspension viscosity at the bottom of
the layer where the stress is the largest. The flowing region even localizes close to the free
surface when the suspension jams beneath, i.e. when the basal stress reaches

τb,SJ = τ ∗

ln
(

φ0 − φ1

φ0 − φ

) . (3.5)

Note that the vertical gradient of shear is expected to drive particle migration from the
bottom to the top of the layer, which in turn should slightly modify the velocity profile
(Carpen & Brady 2002; Dhas & Roy 2022). For simplicity, we do not consider this
coupling between flow and volume fraction variation, which is not essential to account
for the instabilities studied here.

In the following analysis, we will use depth-averaged quantities and restrict the
calculations to τb,0 < τb,SJ , which does not affect the flow stability prediction (see
figures 7b and 9c). From (3.3), the depth-averaged velocity of the base flow, ū0 =
959 A27-8
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Figure 3. (a) Sketch of the notations. (b) Velocity profiles of the base flow for the Wyart–Cates rheology with
the parameters obtained from figure 1(b) and for various volume fractions (τb,0/τ

∗ = 2).

(1/h0)
∫ h0

0 u0(z) dz = (1/τb,0)
∫ τb,0

0 u0(τ ) dτ , is given by

ū0 = h0

τ 2
b,0

∫ τb,0

0

∫ τb,0

τ

τ ′

η(φ, τ ′)
dτ ′ dτ. (3.6)

This expression can be recast into a formal effective rheological law relating the basal
stress τb,0 to the effective shear rate ū0/h0, as

ū0

h0
= τb,0

3η(φ, τb,0)
G(φ, τb,0), (3.7)

where the function G is defined as

G(φ, τb) = 3η(φ, τb)

τ 3
b

∫ τb

0

∫ τb

τ

τ ′

η(φ, τ ′)
dτ ′ dτ. (3.8)

For a Newtonian fluid with a uniform viscosity, G = 1. One recovers the basal stress
relation for a steady uniform Newtonian flow, τb,0 = 3ηū0/h0, where the factor 3 is a
signature of the semi-parabolic velocity profile. For the Wyart–Cates shear-thickening law
(3.4), G is no longer constant and depends on both the volume fraction φ and the relative
basal stress τb,0/τ

∗.
Finally, the Reynolds number of the base flow is given by

Re = 3ū2
0

gh0 sin θ
= τ 3

b,0 G(φ, τb,0)
2

3 η(φ, τb,0)2ρg2 sin2 θ
. (3.9)

The latter depends on three of the four main dimensionless parameters of the
problem, namely, the Reynolds number based on the suspending liquid viscosity,
Res = τ 3

b,0/(3η2
s ρg2 sin2 θ), the volume fraction φ, and the magnitude of the basal shear

stress relative to the repulsive stress, τb,0/τ
∗, two of which are controlled by the flow

thickness h0. The fourth parameter is the inclination angle θ .
The base state flow rule (3.7)–(3.8) summarizes the rheological behaviour of the

suspension flow. It will be used in the following to study stability.
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3.2. Depth-averaged equations
To study flow stability, we take advantage of the long nature of the observed waves, whose
wavelength (∼10 cm) is much larger than the layer thickness (h0 � 1 cm). In this long wave
limit, the vertical momentum balance implies that the pressure distribution is hydrostatic to
the lowest order, and that horizontal viscous stress gradients can be neglected. Integrating
the mass and horizontal momentum equations across the flow, for an incompressible
medium, yields the depth-averaged, or Saint-Venant, equations

∂h
∂t

+ ∂hū
∂x

= 0, (3.10)

ρ

(
∂hū
∂t

+ ∂hu2

∂x

)
= ρgh sin θ − τb − ρgh cos θ

∂h
∂x

, (3.11)

where h(x, t) is the flow thickness, ū(x, t) = (1/h)
∫ h

0 u(x, z, t) dz is the depth-averaged
velocity, u2 = (1/h)

∫ h
0 u2(x, z, t) dz is the averaged square velocity, and u(x, z, t) is the

parallel velocity component. The right-hand-side terms in (3.11) correspond to the gravity
term, the basal shear stress, and the resultant of the horizontal gradient of hydrostatic
pressure, respectively. To derive the last term, the normal stress tensor of the fluid is
assumed isotropic at the lowest order.

To solve the system, closure relations are required for the basal stress τb and momentum
flux term u2. Following a common approach in roll-wave studies (Kapitza & Kapitza 1948;
Trowbridge 1987; Ng & Mei 1994; Forterre & Pouliquen 2003), we assume that the base
state flow rule (3.7)–(3.8), derived for a steady uniform flow, remains valid for an unsteady,
non-uniform flow in the long-wavelength limit, which implies

ū
h

= τb

3η(φ, τb)
G(φ, τb) ≡ γ̇ (τb). (3.12)

Similarly, we rewrite the momentum flux term as u2 = αū2, and assume that the factor
α, which is set by the shape of the velocity profile, is constant and equal to the base state
value. From (3.3), we obtain

α =
τb,0

∫ τb,0

0

(∫ τb,0

τ

τ ′

η(φ, τ ′)
dτ ′
)2

dτ

(∫ τb,0

0

∫ τb,0

τ

τ ′

η(φ, τ ′)
dτ ′ dτ

)2 . (3.13)

For a Newtonian fluid (uniform viscosity), α = 6/5. This value increases as the flow
localizes closer and closer beneath the surface. We will see that the instability threshold
can be shifted significantly by the value of α at large volume fractions.

3.3. Linearization
To analyse the linear stability of the base state flow we non-dimensionalize equations
using h̃ = h/h0, x̃ = x/h0, ũ = ū/ū0, t̃ = t ū0/h0, τ̃b = τb/τb,0 and ˜̇γ = γ̇ h0/ū0.
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The conservation equations and flow rule (3.10)–(3.12) become

∂ h̃
∂ t̃

+ ∂ h̃ũ
∂ x̃

= 0, (3.14)

Re
3

(
∂ h̃ũ
∂ t̃

+ α
∂ h̃ũ2

∂ x̃

)
= h̃ − τ̃b − h̃

tan θ

∂ h̃
∂ x̃

, (3.15)

ũ

h̃
= ˜̇γ (τ̃b), (3.16)

where Re is given by (3.9).
Considering a small perturbation of the base flow, h̃ = 1 + h1, ũ = 1 + u1, τ̃b = 1 + τ1,

with |h1|, |u1|, |τ1| � 1, (3.14)–(3.16) become, at the lowest order,
∂h1

∂ t̃
+ ∂h1

∂ x̃
+ ∂u1

∂ x̃
= 0, (3.17)

Re
3

(
∂u1

∂ t̃
+ (α − 1)

∂h1

∂ x̃
+ (2α − 1)

∂u1

∂ x̃

)
= h1 − τ1 − 1

tan θ

∂h1

∂ x̃
, (3.18)

u1 − h1 = Aτ1, (3.19)
where A is defined as

A ≡
(

d ˜̇γ
dτ̃b

)
τ̃b=1

= τb,0h0

ū0

(
dγ̇

dτb

)
τb=τb,0

= 3
G(φ, τb,0)

− 2, (3.20)

and use has been made of the identity

d
dτ

(∫ τ

0

∫ τ

τ ′

τ ′′

η(φ, τ ′′)
dτ ′′ dτ ′

)
= τ 2

η(φ, τ )
. (3.21)

The parameter A represents the dimensionless inverse slope of the flow rule between the
effective shear rate ũ/h and the basal stress τ̃b. For a shear-thickening suspension following
the Wyart–Cates flow rule, A depends on φ and τb,0/τ

∗. It is equal to 1 for a Newtonian
flow, and is negative for DST.

Overall, the linearized system (3.17)–(3.19) involves four dimensionless parameters, θ ,
Re, α and A (which are alternatives to those listed above, namely θ , Res, τb,0/τ

∗ and φ).

3.4. Modes and stability diagram

The system (3.17)–(3.19) is solved for a normal mode h1 = H exp(i(k̃x̃ − ω̃t̃)), u1 =
U exp(i(k̃x̃ − ω̃t̃)), with dimensionless wavenumber k̃ and dimensionless pulsation ω̃.
A non-trivial solution exists only if

det

⎛
⎝ i(k̃ − ω̃) ik̃

i
tan θ

k̃ + Re
3

(α − 1)ik̃ −
(

1 + 1
A

)
Re
3

(ik̃(2α − 1) − iω̃) + 1
A

⎞
⎠ = 0, (3.22)

which provides the dispersion relation

− Re
3

ω̃2 +
(

2 Re
3

αk̃ − i
A

)
ω̃ +

(
1

tan θ
− Re α

3

)
k̃2 +

(
1 + 2

A

)
ik̃ = 0. (3.23)

We conduct the temporal stability analysis with k̃ real and ω̃ complex. Equation (3.23)
is of order 2 in ω and has two branches. Each of these may actually embed different
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instabilities depending on the point of the phase space considered. To get insight into the
physical meaning and stability of the branches, it is instructive to study their behaviour at
low k̃, before giving the exact solutions. The structure of the dispersion relation ensures
that the growth rate σ̃ = Im[ω̃(k̃)] is monotonic and does not change sign with k̃, which
means that the stability criterion at low k̃ is valid for all wavenumbers. Expanding the
pulsation as ω̃ = ia0 + ck̃ + ia2k̃2 in the dispersion relation (3.23) gives the following two
solutions at the lowest order in k̃:

ω̃1 � (2 + A)k̃ + iA
[

Re
3

[(2 + A)(2 + A − 2α) + α] − 1
tan θ

]
k̃2, (3.24)

ω̃2 � (2α − 2 − A)k̃ − i
3

A Re
. (3.25)

The first branch, ω̃1(k̃), is the ‘kinematic’ branch, since its wave speed in the long
wave limit (k̃ → 0), c̃1 = Re(ω̃1)/k̃ = 2 + A, is that of kinematic waves, i.e. the slender
small-amplitude waves that propagate at the speed ckin = (dq/dh)0 = ū0 + h0(dū/dh)0,
obtained by combining the steady flow rule ū(h) with the mass equation (3.10) (Whitham
2011). Indeed, ckin can be expressed in terms of A by noting that ū(h) satisfies the force
balance τb[ū(h)/h] = ρgh sin θ , in the base state. Differentiating with respect to h and
making use of the definition of A in (3.20), one recovers c̃kin = 1 + (h0/ū0)(dū/dh)0 =
2 + A.

The kinematic branch ω̃1(k̃) is unstable when the growth rate σ̃1 ≡ Im(ω̃1) is positive.
Depending on the sign of A, two cases must be considered, which will be shown to concern
two different instabilities. For A > 0, i.e. when the effective rheology (3.12) is monotonic,
the kinematic branch is unstable for large Reynolds numbers

Re > ReKap = 3
[(2 + A)(2 + A − 2α) + α] tan θ

, (3.26)

which extends the classical inertial Kapitza instability criteria to the shear-thickening
rheology. In the Kapitza regime (A > 0), inertia introduces a lag, which tends to amplify
kinematic waves, while gravity tends to spread and stabilize them. The instability
arises when the speed of kinematic waves is larger than the speed of gravity waves
(Whitham 2011). For a Newtonian fluid (A = 1 and α = 6/5), the threshold of the
Kapitza instability predicted by (3.26) is 1/ tan θ , which slightly overestimates the exact
prediction ReKap,Newt = (5/6) tan θ obtained from a rigorous long wave expansion of the
Navier–Stokes equations (Benjamin 1957; Yih 1963). This well-documented discrepancy
stems from assuming a fixed shape of the velocity profile. For a CST suspension (0 < A <

1), (3.26) predicts an increase in the critical Reynolds number relative to the Newtonian
case. This is consistent with previous studies on power-law rheology fluids, which have
shown that shear-thickening has a stabilizing effect on the flow (Hwang et al. 1994; Ng &
Mei 1994).

For A < 0, i.e. when the effective flow rule (3.12) becomes negatively sloped, the
stability condition is reversed. The kinematic branch is unstable for

Re < ReKap = 3
[(2 + A)(2 + A − 2α) + α] tan θ

, (3.27)

which means, surprisingly, that the kinematic branch is unstable at low Reynolds number,
while inertia now has a stabilizing effect. This low Reynolds number instability, appearing
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for a negatively sloped flow rule (A < 0), corresponds to the mechanism of formation
of the Oobleck waves proposed by Darbois Texier et al. (2020). Indeed, in the limit of
vanishing inertia (Re = 0), the dispersion relation (3.23) reduces to

ω̃ = (2 + A)k̃ − A
tan θ

ik̃2, (3.28)

or equivalently, in the spatio-temporal domain,

∂h1

∂t
+ (2 + A)

∂h1

∂x
= A

tan θ

∂2h1

∂x2 . (3.29)

One recognizes an advection–diffusion equation for the perturbative wave h1, which
predicts that waves propagate at the speed of kinematic waves c̃kin = 2 + A, while
diffusing with an effective diffusion coefficient A/ tan θ . For A < 0, waves anti-diffuse,
i.e. grow during propagation. As discussed in Darbois Texier et al. (2020), this instability
can be understood, physically, as follows. In the absence of inertia, the balance of forces
(3.11) between the gravity term, the basal stress and the pressure term implies that a locally
positive (resp. negative) slope of the free surface causes a decrease (resp. increase) in
the basal stress. Because of the negative slope of the flow rule (A < 0), the basal stress
variation induces anti-correlated velocity variations (positive upstream of a bump, and
negative downstream), which amplify the initial perturbation.

The analysis above confirms that although they are both kinematic modes, the extended
Kapitza instability (A > 0) and Oobleck waves (A < 0) are fundamentally different. For
the latter, the destabilizing mechanism is non-inertial and inertia has only a stabilizing
effect, which stabilizes high Reynolds number flow.

The second branch, ω̃2(k̃), with growth rate σ̃2 = Im(ω̃2) = −3i/(A Re), is unstable
only if A < 0, regardless of Reynolds number. The condition on A is the same as
for Oobleck waves. However, the instability mechanism is, once again, fundamentally
different. For the second branch, any perturbation is amplified when A < 0, independently
of whether or not a free surface is present, because inertia introduces a mismatch between
the basal stress and the driving gravity force. The branch is not specific to free-surface
flows and disappears in the strict absence of inertia (Re = 0). For this reason, we call it the
‘inertial branch’.

The two critical curves, A = 0 and Re = ReKap, lead to the stability diagram shown
in figure 4, for an arbitrary plane inclination θ = 10◦. For the sake of simplicity, the
predictions are plotted for a fixed value of α (= 1, corresponding to a plug velocity profile).
This simplification permits a two-dimensional representation, without altering the stability
diagram, qualitatively. Note that the assumption α = 1 is made only in figure 4, while the
rest of the analysis considers the exact value of α obtained from (3.13). In this case, the
critical Reynolds number of the kinematic branch reduces to ReKap = 3/[(1 + A)2 tan θ ]
(black solid line in figure 4a). As discussed above, the extended Kapitza instability
develops for A > 0 and Re > ReKap, and Oobleck waves for A < 0 and Re < ReKap,
whereas the inertial branch, shown in figure 4(b), is unstable for A < 0 and Re > 0.

To determine which criterion is reached first, and what instability is expected to be
observed in practice, it is crucial to understand how Re and A vary in experiments given
their coupled dependence on τb,0/τ

∗, θ and φ. To this end, we display in figure 4 the
trajectories followed by A and Re for an increasing flow rate (i.e. increasing τb,0/τ

∗ or
flow thickness) and a fixed angle (θ = 10◦), which mimics the experimental protocol.
The different trajectories correspond to different volume fractions, and the rheological
parameters are those measured for the cornstarch suspensions (see § 2.1). Below φDST , the
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Figure 4. Stability diagram (Re, A) for (a) the kinematic branch, and (b) the inertial branch (θ = 10◦ and a
plug flow profile, α = 1, is assumed for simplicity; see text). (a) Black line: Kapitza instability threshold (Re =
ReKap). Red line: Oobleck waves instability threshold (A = 0). (b) Dashed blue line: inertial branch instability
threshold (A = 0). (a,b) The green line indicates the Newtonian case (A = 1). The coloured trajectories indicate
the evolution of Re and A for various volume fractions and increasing flow rates (or basal stress τb,0) (θ = 10◦,
and the rheological parameters are those obtained from figure 1b). For most volume fractions above φDST ,
the DST condition Re = ReA=0 (i.e. A = 0) is expected to be reached before (lower flow rate) the Kapitza
instability onset (Re = ReKap).

trajectories only cross the Re = ReKap critical line, since A remains strictly positive for
all flow rates. This means that the Kapitza instability is expected, provided that the flow
rate is increased sufficiently. By contrast, above φDST , one can, a priori, expect either the
Kapitza instability or one of the two other instabilities (Oobleck wave and inertial branch),
depending on which criterion (A = 0 or Re = ReKap) is reached first when the flow rate
is increased. This condition is given by the respective value of the two Reynolds numbers
defined by

ReA=0 ≡ 3
4

τ 3
b,A=0

ρ[g η(φ, τb,A=0) sin θ ]2 , with G(φ, τb,A=0) = 3
2
, (3.30)

corresponding to the intersection of the iso-φ trajectory with the vertical axis A = 0
(purple circle in figure 4), and

ReKap,A=0 ≡ 3/[(4 − 3α) tan θ ], (3.31)

corresponding to the intersection between the Kapitza threshold and the vertical axis
A = 0 (black circle in figure 4). If ReA=0 < ReKap,A=0, as in figure 4, then the trajectory
intersects the A = 0 criterion first, meaning that Oobleck waves and inertial branches are
expected to be observed first, for an increasing flow rate. In the opposite case (ReA=0 >

ReKap,A=0), the trajectory first encounters the Kapitza threshold (with A still positive), and
the Kapitza instability is expected to develop first. The above condition between ReA=0 and
ReKap,A=0 involves φ non-trivially, the rheological parameters and the inclination angle θ .
However, as figure 4 shows, for cornstarch and provided that the plane remains far from
the vertical (θ � 90◦), the onset of DST (A = 0) is reached before the Kapitza threshold
(ReKap) for almost all volume fractions above φDST .

In the following, the value of the Reynolds number when the first instability criterion
is met for increasing flow rate and a fixed angle (i.e. following the iso-φ trajectories in
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figure 4) will be denoted by Rec, in order to match the experimental definition. In practice,
for our range of parameters (cornstarch rheology, plane far from vertical), Rec = ReKap for
φ < φDST , and Rec = ReA=0 for φ > φDST .

3.5. Dispersion relation
The previous analysis has focused on the limit of vanishing k. We now solve the dispersion
relation exactly for an arbitrary wavenumber. The two solutions of (3.23) are

ω̃1,2 =

2 Re
3

αk̃ ±
(

D + √
D2 + C2

2

)1/2

2 Re
3

+ i
− 1

A
± C

2

(
2

D + √
D2 + C2

)1/2

2 Re
3

, (3.32)

where ± stands for + for the kinematic branch ω̃1, and − for the inertial branch ω̃2, with

C = 4 Re
3

(
1 + 2 − α

A

)
k̃ and D = − 1

A2 + 4 Re
3

(
Re
3

α(α − 1) + 1
tan θ

)
k̃2.

(3.33a,b)

Figures 5(a,b) present the growth rates for the two instabilities of the kinematic branch,
namely, the Kapitza instability (φ = 0.33 < φDST , figure 5a) and the Oobleck wave
instability (φ = 0.45 > φDST , figure 5b). The different colours stand for increasing values
of Re close to Rec (i.e. either ReKap or ReA=0). For both instabilities, the growth rate
is null for k̃ = 0 and increases monotonically up to a plateau value at large k̃, which is
the signature of a zero wavenumber instability. Interestingly, for a given wavenumber and
distance to the threshold, the growth rate is several orders of magnitude larger for Oobleck
waves than for the Kapitza instability (the vertical scale between the two panels differs
by a factor 103). Figures 5(c,d) present the wave speeds of the two instabilities for the
same parameters. Close to the instability threshold, the wave speed depends only weakly
on k̃. It drops from approximately 3 for the Kapitza instability, to 2 for Oobleck waves, in
agreement with the long wave limit 2 + A, since A � 1 at the Kapitza threshold and A = 0
at the Oobleck waves threshold.

The growth rate of the inertial branch is shown in figures 6(a,b) for the same set of
φ and Re/Rec as previously. We recover that the branch is unconditionally stable below
φDST , and unstable above φDST for Reynolds numbers larger than ReA=0. By contrast with
the kinematic branch, the growth rate is non-null at k̃ = 0 and actually diverges at the
instability threshold (A = 0), where it changes sign, before decreasing with increasing Re
above the threshold. The corresponding wave speeds are presented in figures 6(c,d). For
φ > φDST , the wave speed at threshold is lower than for the kinematic branch. Although
the kinematic and inertial branches share the same criterion of stability for concentrated
suspensions (A = 0), the comparison between figures 5 and 6 suggests that they differ
strongly in terms of growth and propagation speed. We address this point in the next
section, where we compare predictions with experiments.

4. Comparison with experiments

4.1. Stability threshold
We compare, first, the stability criteria derived above with the wave onset conditions
observed in experiments and detailled in Appendix A. Figure 7(a) presents Rec/ReKap,Newt,
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Figure 5. Dispersion relations of the two instabilities of the kinematic branch (θ = 10◦). (a,c) Kapitza
instability (φ = 0.33). (b,d) Oobleck waves instability (φ = 0.45). (a,b) Temporal growth rate Im(ω̃1). Note
the highly different scales of the y-axis. (c,d) Wave speed c̃1. (a–d) The yellow circles indicate the theoretical
growth rates, for Re = 1.05 Rec and at the wavelength observed experimentally, which are compared with
measurements in figure 8(b).

i.e. the critical Reynolds number normalized by that for a Newtonian liquid (ReKap,Newt =
(5/6)/ tan θ ; see § 3.4), as a function of φ, whereas figure 7(b) reports the critical basal
shear stress τc, also versus φ. The symbols represent the experimental measurements
for various volume fractions. Each one is obtained by varying the flow rate at a fixed
inclination of the plane (encoded by the shape of the symbol), as detailed in § 2. The
solid lines represent the theoretical predictions for the same protocol, i.e. the critical
Reynolds number Rec at which each iso-φ trajectory (see figure 4) reaches the Re = ReKap
or Re = ReA=0 condition. The relative threshold Rec/ReKap,Newt is close to 1 at low volume
fraction, where shear-thickening is mild, and increases with increasing φ to reach � 6 at
φ = 0.41 � φDST . This illustrates the significant stabilization effect of CST in the Kapitza
regime, in fair agreement with the evolution of ReKap predicted by (3.26) (solid black
line in figure 7a). Similarly, the steep increase in the critical stress τc, which is observed
experimentally close to φ = 0.41 (figure 7b), agrees with the expected divergence of the
effective viscosity coefficient of the flow, dτb,0/dγ̇ ∝ A−1, in φDST � 0.41. This confirms
the Kapitza-like nature of the instability (destabilizing inertia versus stabilizing gravity)
below φDST .

Above φDST , both the critical Reynolds number and the critical shear stress observed
experimentally drop drastically, by up to two orders of magnitude, for Rec, at φ = 0.47
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Figure 6. Dispersion relation of the inertial branch (θ = 10◦): (a,c) φ = 0.33, (b,d) φ = 0.45. (a,b) Temporal
growth rate Im(ω̃2). (c,d) Wave speed c̃2. The yellow circle indicates the theoretical growth rates, for
Re = 1.05 Rec and at the wavelength observed experimentally, which are compared with measurements in
figure 8(b).

(figure 7a). The drop in Rec is captured correctly by the theoretical prediction Rec =
ReA=0 of (3.30), which, once again, applies to both Oobleck waves and the inertial
waves instability, and does not permit us to distinguish between them. The agreement
is also reasonable when the instability threshold is expressed in terms of τc, although
the prediction underestimates the measured value by approximately a factor 2 (figure 7b).
To clarify this discrepancy, we note that the theoretical prediction relies on the value of
the rheological parameters (ηs, φ0, φ1 and τ ∗) as obtained from the cylindrical Couette
rheometry (see § 2.1). In the inset of figure 7(b), we test these parameters more directly
versus the inclined flow configuration by comparing the depth-averaged flow rule, τb,0
versus u0/h0, that they predict, (3.7), with the one measured directly in the experiments
on the incline. A significant difference is observed between the two flow rules, showing
that the steady uniform flow down the incline is not well predicted from the rheological
parameters obtained with the Couette rheometer. Such a difference has been reported
previously in the case of non-shear-thickening suspensions (Bonnoit et al. 2010) and could
arise from the modification of the velocity profile due to particle migration effects, which
are not considered here (see § 3.1). Remarkably, however, when the expression for the
critical shear stress τc is computed from the flow rule measured with the inclined plane (i.e.
from the points dγ̇ /dτb,0 = 0 highlighted by the black crosses in the inset of figure 7b),
the agreement between the theoretical predictions and measurements becomes quantitative
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Figure 7. Destabilization threshold: comparison with experiments. (a) Critical Reynolds number Rec
normalized by the Newtonian Kapitza threshold ReKap,Newt = (5/6)/ tan θ versus volume fraction φ.
(b) Critical basal shear stress τc versus φ. The symbols indicate measurements. Their shapes encode the
inclination θ : � 2◦, � 3◦, 
 6◦, � 9◦, ◦ 10◦, � 22◦. The error bars indicate the standard deviation of the
measurements at a given φ. The lines represent the predictions for the different modes (as labelled above the
graph), i.e. the critical Reynolds number at which each iso-φ trajectory (see figure 4) reaches the Re = ReKap or
Re = ReA=0 condition. (The black line is interrupted above φ � 0.42 since no steady flow verifies Re = ReKap.)
The shear-jamming limit corresponds to the value of the basal shear stress when the flow first jams at z = 0 (see
(3.5)). Inset: basal shear stress τb,0 = ρgh0 sin θ versus mean shear rate u0/h0 for different volume fractions
obtained from Wyart–Cates rheological laws (dashed lines) and from direct measurements on the inclined plane
(solid lines). The red line and black crosses highlight the condition dτb/dγ̇ = 0 for both sets of curves.

(crosses versus orange symbols in figure 7b). This suggests that the mild quantitative
discrepancy between theory and experiments for τc stems not from a limitation of the
linear stability analysis but rather from the calibration of the base flow itself.

The comparison above confirms that the onset of a negatively sloped flow rule (A = 0)
is, experimentally, the condition for flow stability above φDST . However, it does not allow
us to determine which of the kinematic branch or inertial branch is observed. To do so,
the predictions for the growth rate and celerity of the waves, which differ between the two
instability mechanisms, have to be compared with experiments.

4.2. Wave speed and growth rate
Figure 8(a) reports the wave speed, at the instability threshold, measured for various
volume fractions. The ratio cc/uc is almost constant around 3 at low volume fractions,
decreases to approximately 2 between φ � 0.37 and φ = 0.41 � φDST , and decreases
further, a little below 2, for higher φ. This behaviour agrees well with the prediction of
the shear-thickening Kapitza regime expected below φDST (black solid line). Above φDST ,
the measurements are found to match the prediction c̃c = 2 for the kinematic branch better
than the prediction c̃c = 2(α − 1) � 0.6 for the inertial branch, which suggests that the
mechanism of the instability observed in experiments is that of Oobleck waves, rather
than that of the inertial branch instability. This result is confirmed by a direct comparison
between the measured wave speed and the speed of the kinematic waves ckin ≡ dq/dh0,

959 A27-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

16
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.162


From Kapitza to Oobleck waves

0.30 0.35 0.40 0.45 0.50

10–4

10–2

100

102

104

0.30 0.35 0.40 0.45 0.50

1

2

3

4

 

1 2 3 40

1

2

3

4

φ φ

σ̃

c c/
u c

cc/uc

(a) (b)

φDST φDST

ckin/uc

Oobleck waves (S-shaped rheology, stabilizing inertia)

Kapitza instability (Newtonian rheology)

Kapitza instability (shear-thickening rheology)

Inertial waves (S-shaped rheology, destabilizing inertia) 

Figure 8. Wave speed and growth rate: comparison with experiments. (a) Wave speed cc normalized by the
mean fluid velocity uc at the instability onset versus φ. Inset: normalized wave velocity cc/uc versus normalized
speed of kinematic waves ckin/uc at the onset. (b) Normalized spatial growth rate σ̃ versus φ for Re/Rec = 1.05.

as deduced from the experimental base flow measurements. As shown in the inset of
figure 8(a), cc is fairly close to ckin over the whole range of volume fraction studied.

The growth rates of the instability are compared in figure 8(b). The measurements are
performed when the Reynolds number of the flow is 5 % above the observed critical value
(Re/Rec = 1.05). The theory is computed for the wavelength observed experimentally at
each φ (see figures 5 and 6). Here again, below φDST , the growth rate is predicted correctly
by the Kapitza instability accounting for continuous thickening (black solid line). Above
φDST , the prediction for the kinematic branch (red solid line) matches the measurements
fairly well, whereas that for the inertial branch (blue dashed line) overestimates the
observed growth rate by approximately two orders of magnitude.

The previous results indicate that including inertia in the depth-averaged analysis
provides a fair description for both the shear-thickening Kapitza regime observed below
φDST and the low Reynolds number Oobleck wave regime observed above φDST .
Nonetheless, one important question remains. Above φDST , the inertial branch has the
same instability condition as Oobleck waves, but since the former is expected to amplify
two orders of magnitude faster (see figure 8b), why do we not observe, experimentally, the
inertial mode rather than Oobleck waves?

5. Role of a delay in the rheology

To explain the apparent paradox of the sub-dominance of the inertial branch above φDST ,
it is important to realize that the inertial mode in the previous analysis has a singular
behaviour. It disappears in the strict absence of inertia, but its growth rate diverges as the
Reynolds number tends to zero (see (3.25)). This singularity at Re = 0 results from the
assumption of a steady flow rule, which implies that viscosity adapts to change in stress,
instantaneously. In reality, when a shear-thickening suspension flow is perturbed, a finite
strain γ0 is required to relax the fraction of frictional contacts f (hence the viscosity) to the
new steady-state value (Mari et al. 2015b; Chacko et al. 2018; Han et al. 2018; Richards
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et al. 2019). As shown in previous studies, this delay in the rheology may strongly modify
the stability of the flow in the negatively sloped region (Nakanishi & Mitarai 2011; Chacko
et al. 2018; Richards et al. 2019). For instance, in the case of a simple shear flow driven by a
heavy rheometric tool, the addition of a delay stabilizes the flow, by shifting the instability
condition on dγ̇ /dτ towards negative values (Richards et al. 2019).

To study the influence of a strain delay on our predictions, we extend the linear stability
analysis of § 3 by adding an evolution equation for the fraction f of frictional contacts.
Following Mari et al. (2015b), Han et al. (2018), Chacko et al. (2018) and Richards et al.
(2019), we assume

df
dt

= − γ̇

γ0
( f − feq), (5.1)

where feq = e−τ∗/τ is the equilibrium value of f , obtained for a steady flow, and γ0 is a
relaxation strain, whose typical value for frictional spheres is ∼10−2–10−1 (Mari et al.
2015b; Chacko et al. 2018; Richards et al. 2019). The details of the stability analysis are
given in Appendix B. We discuss here only the main predictions. The first consequence
of the introduction of a delay is to lead to three modes instead of two. One of them is a
modified kinematic mode, and the other two are derived from the former inertial branch.

The stability diagram of the modified kinematic mode is shown in figure 9(a). In
the long-wavelength limit (k̃ → 0) and for a small delay (γ0 tan θ � 1), the instability
thresholds are set by the following Reynolds number and critical value of A:

Reγ0
Kap �

(
1 + γ0 tan θ

2A
(2 − A − A2)

)
ReKap and A− � −γ0 tan θ. (5.2a,b)

For A > 0, we recover a Kapitza regime above the modified critical Reynolds number
Reγ0

Kap, which is shifted relative to the zero-delay threshold ReKap. The delay also shifts
slightly the criterion for Oobleck waves, which is now given by Re < Reγ0

Kap and A < A−
(instead of A < 0 without delay). As a result, there exists a narrow range of negative value
of A (A− < A < 0), between the Kapitza and the Oobleck waves instabilities, where the
flow is always stable. Therefore, the addition of a small strain delay in the rheology slightly
stabilizes Oobleck waves but it does not change the properties of the kinematic mode
relative to the case without delay, significantly. This is confirmed by verifying that the wave
speed in the long wave limit still has the expression for kinematic waves, c̃kin = 2 + A (see
Appendix B), as was the case without delay.

The conclusion is different for the inertial mode, which is now twofold in the presence
of a delay. In the long wave (k̃ → 0) and small delay (γ0 tan θ � 1) limit, these two modes
are unstable for

A < Ac = − 3γ0

2 Re
. (5.3)

This instability threshold is similar to that obtained by Mari et al. (2015b) and Richards
et al. (2019) (and previously by Nakanishi & Mitarai (2011) using a different S-shape
rheology) when considering the influence of a delay on the stability of a simple shear flow
in the DST regime. However, it differs strongly from the simple A < 0 condition without
delay, as illustrated in the stability diagram of the inertial mode presented in figure 9(b).
In the negatively sloped region (A < 0), there is now a large domain of stability, which is
all the more extended for a low inertia and long delay. Importantly, the addition of a delay
also removes the singularity of the inertial mode at Re = 0 discussed above. The growth
rate now vanishes at the stability threshold instead of diverging (see (B18) in Appendix B).
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Figure 9. Role of a strain delay on stability. Stability diagrams (Re, A) for (a) the kinematic branch and
(b) the inertial branch (θ = 10◦, α = 1). (a) The grey and red domains indicate the unstable regions for
γ0 = 0.1. (b) The blue dashed line is the instability threshold (5.3) for γ0 = 0.1. The coloured lines indicate the
system trajectories for increasing flow rate at fixed angle (as in figure 4). The vertical dark lines indicates the
Newtonian case (A = 1). (c) Critical shear stress τc, and (d) normalized wave velocity cc/uc at the threshold,
versus φ. The symbols report the measurements presented in figures 7(b) and 8(c). The black and red lines
indicate the predictions for the kinematic branch below and above φDST , respectively. The blue lines show
the predictions for the inertial branch. The colour intensities of the lines correspond to delay strains of
γ0 = 0.05, 0.1, 0.2 and 0.5.

This means that slightly above the threshold, the inertial mode grows slowly and not several
orders of magnitude faster than the kinematic mode, as predicted in the case without delay.
Finally, the addition of a delay also changes qualitatively the frequency of the inertial mode
in the long wave limit. Instead of vanishing as Re(ω̃) ∝ k̃, the frequency at threshold with
delay remains finite at k̃ = 0 and is given by Re(ω̃) � √

6/(γ0 Re) � (2/γ0)
√−Ac. Thus

the long wave limit of the inertial modes with delay is an oscillatory instability, with a
wave speed diverging in k̃ → 0. Overall, these results for the inertial modes at k̃ → 0
recover the purely temporal analysis performed by Richards et al. (2019) in the case of a
confined Couette flow.
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As previously, the onset of instability in the experiments (where the flow rate, hence τb,
is slowly varied) is expected at the intersection between the critical stability curves and the
system trajectories in the A–Re plane for fixed φ and θ . For φ < φDST , the Kapitza regime
is expected, with an onset at Re = Reγ0

Kap(A) (see (5.2a,b)). For φ > φDST , the onset of
instability is expected at A = A−(Re) for the kinematic branch, and A = −3γ0/(2 Re) for
the inertial branches. These predictions are plotted in terms of the critical shear stress in
figure 9(c) for four values of the strain delay γ0 = 0.05, 0.1, 0.2 and 0.5, that bound the
experimental value determined by Richards et al. (2019). The colour intensity of the lines
corresponds to increasing values of the delay, and the darkest colour recalls the stability
threshold without delay (γ0 = 0). We recover the weak influence of the delay on the onset
of the kinematic branch mentioned in the previous discussion, as well as the strong shift in
the predicted critical shear stress τc for the inertial branches, which is observed to increase
with γ0.

Remarkably, for volume fractions sufficiently above φDST , the inertial mode is stable
whatever the basal stress (see the shift of the right-hand boundary of the blue domains
in figure 9c), although the slope of the flow rule reaches strongly negative values. This
is because the Reynolds number decreases at large basal stress for these high values of
φ, such that the trajectory never reaches the stability threshold Ac = −3γ0/(2 Re) (for the
inclination θ = 10◦ considered, which is representative of the experimental range 2◦–22◦).
Clearly, this predicted stabilization of the inertial mode at high volume fraction does not
match experiments, where waves are all the more unstable as the volume fraction is high.
By contrast, no band of unconditionally stable volume fractions is expected for Oobleck
waves (see the red curves in figure 9c), which match the observations. Another important
difference concerns the wave velocity (figure 9d), which is predicted to diverge for the
inertial branches with delay (blue dashed line), in stark contrast with the prediction for the
kinematic mode, which is not far from experimental observation.

These considerations shed some light on the paradox of the sub-dominance of the
inertial modes above φDST . While a strain delay γ0 in the rheology modifies the kinematic
mode only marginally, it may turn the inertial modes stable even for largely negatively
sloped flow rules, provided that the Reynolds number is low enough (which is all the
more true as φ exceeds φDST largely). More precisely, comparing (5.2a,b) with (5.3)
indicates that inertial waves are expected before Oobleck waves (3γ0/(2 Re) < γ0 tan θ )
only for Re/ReKap,Newt above 9/5, and regardless of the value assumed for γ0. Given the
smallness of the critical Reynolds numbers actually observed (see figure 7), this suggests
that Oobleck waves dominate the inertial modes for most of the volume fractions above
φDST , which would explain the experimental observations. Another possibility is that the
two modes actually coexist but the inertial modes are not detected in our measurements.
Indeed, since Oobleck waves are a zero wavenumber instability with finite wave velocity,
while the inertial modes are an oscillatory instability, the two instabilities are presumably
decoupled both spatially and temporally. Therefore, it is possible that the inertial mode
is related to the high-frequency ‘jittering’ reported by Balmforth et al. (2005), which
is not characterized in our experiments. However, such a statement would require more
investigations that could be the topic of future studies.

6. Conclusion

This study has addressed the stability of a free-surface layer flow of a shear-thickening
suspension down an incline. It has shown that the onset of instability and the main
characteristics of the waves observed experimentally close to the onset can be rationalized,
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on the basis of a depth-averaged analysis considering Wyart–Cates effective rheology
and inertia, in the different regimes where the flow is continuously shear-thickening,
discontinuously shear thickening, or shear jamming.

Below the onset particle volume fraction for DST, φDST , the analysis predicts a modified
Kapitza (roll-wave) instability of inertial origin, which develops above a critical Reynolds
number ReKap, increasing with increasing φ, as a result of the CST of the suspension, and
which propagates at the velocity of kinematic waves, in good agreement with experimental
observations.

Above φDST , two other unstable branches are identified, which both stem from the
negative slope of the suspension flow rule (A ≡ dγ̇ /dτ < 0) when the bottom of the
flow shear-thickens discontinuously. They have, consequently, the same critical Reynolds
number ReA=0, or critical shear-stress τb,A=0, set by A = 0 (which are lower than the
Kapitza threshold values for most of the volume fractions above φDST for cornstarch and
provided that the plane is far from vertical, θ � 90◦). Nonetheless, the mechanisms behind
these two branches are fundamentally different. The ‘kinematic branch’ is an amplification
of kinematic surface waves due to a mismatch between the free-surface deformation and
the basal stress rheology. For a negatively sloped rheology, this branch is unstable when
Re < ReKap, does not require inertia, and corresponds to the Oobleck waves instability
identified in Darbois Texier et al. (2020) from the analysis conducted at Re = 0. By
contrast, the ‘inertial branch’ results from the acceleration of the flowing layer when the
basal stress is velocity-weakening. It requires a negatively sloped rheology and inertia,
but no coupling with the free-surface deformation. These different instability mechanisms
yield very different predictions for the growth and propagation of the waves. Those for the
Oobleck wave mechanism match the measured wave speed and growth rate much better
than those for the inertial branch instability, which supports the mechanism of Oobleck
wave formation proposed in Darbois Texier et al. (2020). This conclusion is confirmed
by extending the stability analysis to a modified shear-thickening law including a strain
delay, which has been shown to have important consequences for the stability of other
shear-thickening flows (Nakanishi & Mitarai 2011; Mari et al. 2015b; Chacko et al. 2018;
Han et al. 2018; Richards et al. 2019). The addition of a delay is found to modify only
slightly the predictions for Oobleck waves, which still agree with measurements, whereas
it predicts a strong stabilization of the inertial branch at large volume fraction, where the
instability is still observed experimentally.

Overall, this study confirms that the non-inertial Oobleck wave mechanism proposed
in Darbois Texier et al. (2020) is at the origin of the wave formation above φDST ,
and not inertial modes studied in previous works (Mari et al. 2015b; Richards et al.
2019). To our knowledge, the only other inertialess mechanism reported so far in
shear-thickening suspensions is a dynamic vorticity banding instability observed in
overdamped discrete numerical simulations (Chacko et al. 2018). However, unlike the
Oobleck wave mechanism, this instability (i) develops in the direction transverse to
the flow, (ii) requires a velocity-driven configuration (as opposed to the stress-driven
configuration of the inclined plane), and (iii) requires that an extra order parameter be
added to the flow rule, such that γ̇ and τ are not instantaneously related.

Developments remain needed to obtain a complete description of shear-thickening
waves. Extending the (one-dimensional) depth-averaged linear analysis to two dimensions
would be needed to capture the correct dissipation at short wavelength. A further extension
would be to relax the assumption of a constant volume fraction and account for particle
migration induced by the inhomogeneous stress profile in the stability analysis, in order to
seek possible new stabilizing or destabilizing mechanisms (Carpen & Brady 2002; Chacko
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et al. 2018; Dhas & Roy 2022). Also, waves quickly become highly nonlinear, especially
in the DST regime (see figure 2a), and investigating experimentally and theoretically the
properties of large amplitude waves, or solitons, would be relevant. The theoretical part
of this extension would require considering the effect of higher-order terms in the wave
dynamics equations. More generally, this study shows the relevance of S-shape constitutive
rheological laws for predicting novel hydrodynamic instabilities in shear-thickening
suspensions. It also emphasizes the variety of the instability mechanisms resulting from
such a rheology, which could be increased by addressing the case of capillary flows, where
subtle stabilizing effects can be expected. Finally, beyond shear-thickening suspensions,
the theoretical framework adopted in this study could be applied to other complex fluids
showing a non-monotonic effective flow curve down slopes, which may be found in
geophysical and industrial contexts.
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Appendix A. Experimental data

This appendix compiles the experimental data obtained for the destabilization of the
cornstarch suspension flow down the inclined plane. Table 1 lists, for each experiment,
the following quantities: the suspension volume fraction φ, the slope angle θ , the Kapitza
criterion ReKap, the critical flow thickness hc, the critical mean flow velocity uc, the critical
Reynolds number Rec, the ratio Rec/ReKap, the critical basal shear stress τc, the critical
wave speed cc, the ratio cc/uc, the normalized critical kinematic speed ckin/uc, and the
normalized growth rate σ̃ for Re = 1.05 Rec.

Appendix B. Linear stability analysis with a strain delay

This appendix details the linear stability analysis for the Wyart–Cates rheology with a
strain delay γ0.

First, the effective basal rheology (3.12) is written in terms of the fraction of frictional
contact fb at the wall (z = 0):

ū
h

= τb

3 η( fb)
G2( fb) ≡ Γ̇ (τb, fb), (B1)

where η( fb) = ηs(φJ( fb) − φ)−2 is the viscosity, φJ( fb) = φ0(1 − fb) + φ1fb is the
critical volume fraction, and G2( fb) is a dimensionless corrective factor accounting for
the shape of the velocity profile, such that for a steady flow, fb = feq(τb) = e−τ∗/τb and
G2( fb) = G(τb). Then we express the evolution equation (5.1) for the fraction of frictional
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contact at the bottom of the flowing layer as

∂fb
∂t

+ ub
∂fb
∂x

= − γ̇b

γ0

[
fb − feq(τb)

]
, (B2)

where ub = 0 is the velocity at the wall (no-slip condition), and γ̇b is the shear rate at the
wall. Writing the flow rule at the bottom as τb = η( fb) γ̇b, and identifying with (B1), gives
γ̇b = (3/G2( fb))ū/h.

Normalizing and linearizing (B1) and (B2) together with the mass and momentum
equations (3.10)–(3.12) around the base state, using x̃ = x/h0, t̃ = t ū0/h0, ˜̇Γ = Γ̇ h0/ū0,
h̃ = h/h0 = 1 + h1, ũ = ū/ū0 = 1 + u1, τ̃b = τb/τb,0 = 1 + τ1 and fb = feq(τb,0) + f1,
with |h1|, |u1|, |τ1|, |f1| � 1, gives

∂h1

∂ t̃
+ ∂h1

∂ x̃
+ ∂u1

∂ x̃
= 0, (B3)

Re
3

[
∂u1

∂ t̃
+ (α − 1)

∂h1

∂ x̃
+ (2α − 1)

∂u1

∂ x̃

]
= h1 − τ1 − 1

tan θ

∂h1

∂ x̃
, (B4)

u1 − h1 = τ1 +
(

∂ ˜̇Γ
∂fb

)
0

f1, (B5)

∂f1
∂ t̃

= − 1
γ �

0

[
f1 −

(
dfeq

dτ̃b

)
0
τ1

]
, (B6)

where γ �
0 = γ0 G(τb,0)/3. Making use of Γ̇ = u/h, the equations can be recast into the

following linear system of h1, Γ̇1 = u1 − h1 and f1:

∂h1

∂t
+ 2

∂h1

∂x
+ ∂Γ̇1

∂x
= 0, (B7)

Re
3

(
∂Γ̇1

∂ t̃
+ 2(α − 1)

∂Γ̇1

∂ x̃
+ (3α − 4)

∂h1

∂ x̃

)
= h1 − Γ̇1 − 1 − A

B
f1 − 1

tan θ

∂h1

∂ x̃
, (B8)

∂f1
∂ t̃

= − 1
γ �

0

(
Af1 − BΓ̇1

)
, (B9)

with

A ≡
(

d ˜̇γ
dτ̃b

)
0

= 1 +
(

∂ ˜̇Γ
∂fb

)
0

B and B ≡
(

dfeq

dτ̃

)
0
. (B10a,b)

The system has non-trivial solutions of the form h1 = H ei(k̃x̃−ω̃t̃), Γ1 = Γ ei(k̃x̃−ω̃t̃) and
f1 = F ei(k̃x̃−ω̃t̃), with k̃ real and ω̃ complex, only if

det

⎛
⎜⎜⎜⎜⎝

2ik̃ − iω̃ ik̃ 0
Re
3

(3α − 4)ik̃ − 1 + ik̃
tan θ

Re
3

(
−iω̃ + 2(α − 1)ik̃

)
+ 1

1 − A
B

0 − B
γ �

0
−iω̃ + A

γ �
0

⎞
⎟⎟⎟⎟⎠ = 0,

(B11)
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i.e.

−i
Re
3

ω̃3 +
(

1 + Re
3

A
γ �

0
+ 2 Re

3
αik̃
)

ω̃2

+
(

i
γ �

0
− 3k̃ − 2 Re

3
A
γ �

0
αk̃ −

(
Re
3

α − 1
tan θ

)
ik̃2
)

ω̃

− i
γ �

0
(2 + A)k̃ + A

γ �
0

(
Re
3

α − 1
tan θ

)
k̃2 = 0. (B12)

The relation dispersion (B12) has three solutions, which are solved numerically to obtain
the behaviour of the branches for arbitrary values of k̃. The long wave asymptotics can also
be obtained analytically. At order O(k̃2), the first mode is

ω̃1 = (2 + A)k̃ + i
[

A
tan θ

(
Re

ReKap
− 1

)
+ γ �

0

(
A2 + A − 2

)]
k̃2, (B13)

where ReKap is the Kapitza threshold without delay depending on A, α and θ (see (3.26)).
This is the kinematic mode, with wave speed c̃ = Re(ω̃1)/k̃ = 2 + A that is unchanged by
the addition of the delay. However, the stability threshold given by Im(ω̃1) = 0 is modified
by the delay.

We consider, first, the case without inertia (Re = 0). Equation (B13) shows that the
kinematic mode is unstable for A < A− and for A > A+, where

A∓ =
1 − γ �

0 tan θ ∓
√

(1 − γ �
0 tan θ)2 + 8γ �

0
2 tan2 θ

2γ �
0 tan θ

(B14)

are the roots of the polynomial −A + γ �
0 tan θ(A2 + A − 2). In practice, γ �

0 tan θ � 1,
such that A− � −2γ �

0 tan θ and A+ � 1/2γ �
0 tan θ . Therefore, the delay tends to slightly

stabilize the kinematic mode in the case A < 0 (S-shape flow rule), whereas it destabilizes
the flow for A � 1 (highly shear-thinning fluid). Since γ �

0 = γ0 G(τb,0)/3 and G(τb,0) �
3/2 for A � 0 (see (3.20)), we have γ �

0 � γ0/2 close to the A− threshold. Therefore, for
a rheology with a small strain delay and in the absence of inertia, the kinematic mode is
unstable for

A < A−� − γ0 tan θ, (B15)

where the wave velocity c̃kin = 2 + A− � 2 − γ0 tan θ is slightly below the value 2
obtained when there is no delay (see figure 9d).

For a finite inertia (Re > 0), the stability threshold of the kinematic mode is set by the
modified Kapitza Reynolds number

Reγ0
Kap = ReKap

(
1 + γ �

0 tan θ

A
(2 − A − A2)

)
, (B16)

and the growth rate can be rewritten as

Im(ω̃1) = 1
tan θ

(
Re

Reγ0
Kap

− 1

)
(A + γ �

0 tan θ (2 − A − A2))k̃2. (B17)

The stability of the kinematic branch depends on the sign of (Re/Reγ0
Kap) − 1 and the

sign of the polynomial in A. For A > A+, the branch is always unstable. This situation
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corresponds to a strongly shear-thinning fluid, not considered here. For 0 < A < A+,
the mode is unstable for Re > Reγ0

Kap, which corresponds to the inertial Kapitza waves
modified by the presence of a delay. For A < A− (negatively sloped flow rule), the mode
is unstable for low Reynolds numbers Re < Reγ0

Kap, which corresponds to Oobleck waves.
Finally, a small gap exists, A− < A < 0, where the kinematic mode ω̃1 is always stable.

The second and third solutions of (B12) at the lowest order in k̃ are

ω̃2,3 =
−i
(

1 + Re A
3γ �

0

)
∓ i

√
Δ

2 Re/3
, (B18)

with Δ = (1 + Re A/3γ �
0 )2 − 4 Re/3γ �

0 . They correspond to the inertial branch, which has
split in two.

For Δ < 0, the two inertial branches are unstable (Im(ω̃2,3) > 0) when 1 + Re A/

3γ �
0 < 0. For A > 0, this condition is never fulfilled, and the two inertial branches are

always stable. However, for A < 0, the onset of instability is given by

A < Ac = −3γ �
0

Re
� − 3γ0

2 Re
, (B19)

using as previously γ �
0 � γ0/2 for small A. In this case, the frequency of the wave at the

onset in the long wave limit is Re(ω̃2,3) = ±√3/(Re γ �
0 ) � ±√

6/(Re γ0) � ±(2/γ0)
√−Ac.

The wave velocity c̃ = Re(ω̃2,3)/k̃ thus diverges in k̃ → 0.
When Δ > 0, the frequencies ω̃2,3 are purely imaginary. The imaginary parts are

positive (the flow is unstable) if 1 + Re A/3γ �
0 < 0, which is the same condition as (B19).

However, in practice, the condition Δ > 0 is reached after that given by (5.3), and the
onset of instability is ruled by (5.3) (for A < 0).
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