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Nakamoto doublespend strategy, described in Bitcoin foundational article, leads to total
ruin with positive probability. The simplest strategy that avoids this risk incorporates a
stopping threshold when success is unlikely. We compute the exact profitability and the
minimal double spend that is profitable for this strategy. For a given amount of the trans-
action, we determine the minimal number of confirmations to be requested by the recipient
that makes the double-spend strategy non-profitable. This number of confirmations is only
1 or 2 for average transactions and for a small relative hashrate of the attacker. This is
substantially lower than the original Nakamoto number, which is about six confirmations
and is widely used. Nakamoto analysis is only based on the success probability of the
attack instead of on a profitability analysis that we carry out.
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1. INTRODUCTION AND BACKGROUND

1.1. Bitcoin Network

Satoshi Nakamoto’s foundational article [17] describes Bitcoin protocol. Bitcoin is an elec-
tronic currency and bitcoin transactions operate through a computer network. This network
is permissionless: anyone can freely enter or leave the network. Moreover, there is no central
authority to act as a referee. The creation of monetary mass is implemented in the protocol.
Transactions are packed in chronologically ordered blocks that create an unforgeable pub-
lic ledger: the blockchain. Certain nodes of the network, called miners, play a special role.
They secure the blockchain through intensive computation by a “proof of work”, a tech-
nique originally invented to fight e-mail spam and denial of service attacks. A miner creates
a new block of transactions to add to the blockchain by solving a cryptographic puzzle by
brute force iterating a simple algorithm (and no other resolution method is known). For this
computational work, he is rewarded by a coinbase reward of newly minted bitcoins. This is
the mechanism that creates Bitcoin monetary mass.
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1.2. Blocks Counting Process

Section 11 of Nakamoto’s article contains an analysis of Bitcoin security by estimating the
probability of success of a double-spend attack. This type of attack was the major obsta-
cle to the creation of a permissionless cryptocurrency network. Nakamoto uses a Poisson
distribution model for block creation to estimate this probability. For the mathematical
justification of this model, the reader can consult the survey [14]. In this model, the prob-
ability for a miner of discovering the next block is proportional to his computing power, or
his relative hashrate 0 < q ≤ 1. For a relative hashrate q ≥ 1/2, the network is not secure
and the miner can rewrite the blockchain at his will. Thus, a necessary condition for the
proper decentralized operations is the condition 0 < q < 1/2, that we assume in the rest of
the article. Assuming the hashing function (constructed from SHA256 for Bitcoin) to be
perfect, the time takes for a miner to find the next block follows an exponential law. From
this, it follows that the block counting process is Poisson. The mathematics behind Bitcoin
mining are Poisson mathematics.

1.3. Original Double-Spend Attack

The attacker attempts the double spend by broadcasting a legitimate transaction and simul-
taneously starts mining a secret fork with a conflicting transaction invalidating the first one.
The recipient requests beforehand at least z ≥ 0 confirmations of the transaction, that is,
z new blocks created counting from the first one containing the transaction, to consider it
definitive. The goal of the attacker is to catch-up the official blockchain after these z con-
firmations and rewrite this last part of the blockchain including the conflicting transaction.
His probability of success was computed in closed form by the authors in [13], correcting
the original approximate Nakamoto formula given in [17]. If the attacker fails, he will be
stuck forever catching-up the official blockchain and will go broke. This scenario of total
ruin has a positive probability. The attacker has a small chance of winning, but on average,
its revenue is finite while the mean duration time of the attack is infinite. We have the
following Lemma (see the Appendix for a proof) which shows that the original Nakamoto
double-spend strategy is unsound.

Lemma 1.1: Let R be the revenue of a miner following the original Nakamoto’s double-spend
attack and T the duration time of the attack. Then, we have E[R] < ∞ and E[T] = ∞.

1.4. A Sound Double-Spend Attack

For a sound strategy, it is unacceptable to have a positive probability of total ruin. Thus,
we are led to introduce some sort of “give-up” mechanism. It is then natural to modify
the strategy so that if the attacker lags behind the official blockchain by a predetermined
value A ≥ z, then he gives-up. This A-Nakamoto strategy (the precise definition is given in
Section 2) defines an integrable repetition game and fits in the general mining profitability
theory developed by the authors in [10].

According to [10], the profitability is compared using the Revenue Ratio

Γ =
E[R]
E[T]

where R and T are random variables, R is the revenue, and T is the duration of the attack.
For example, for the honest strategy consisting of mining one block according to the protocol
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rules, we have E[RH ] = qb, where b is the coinbase reward, and E[TH ] = τ0, where τ0 is the
interblock time,1 thus the honest Revenue Ratio is

ΓH =
qb

τ0
.

We compare the profitability of two full time mining strategies by comparing their
Revenue Ratios (Proposition 3.6 from Section 3 in [10]). Therefore, the A-Nakamoto strategy
is profitable if and only if its Revenue Ratio ΓA is higher than the Revenue Ratio of the
honest strategy, ΓA > ΓH .

The first result is an exact closed-form formula for the probability of success of the
A-Nakamoto strategy.

Theorem 1.2: Let 0 < q < 1/2, resp. p = 1 − q, be the relative hashrate of the attacker,
resp. of honest miners. We denote λ = q/p < 1. Let z ≥ 1 be the number of confirmations
requested by the recipient of a transaction. For A ≥ z, the probability PA(z) of success for
the A-Nakamoto double-spend attack is

PA(z) =
I4pq(z, 1/2) − λA+1

1 − λA+1

where Ia(x, y) is the Regularized Incomplete Beta function

Ia(x, y) =
Γ(x + y)
Γ(x)Γ(y)

∫ a

0

tx−1(1 − t)y−1 dt,

and Γ is Euler Gamma function.

In the formula for PA(z), we have that A + 1 appears instead of A because we assume
that the attacker premines one block (as it is implicit in Satoshi’s paper, see Section 2). A
Corollary of this first Theorem is the main result from [13] that we can get by taking the
limit A → +∞.

Corollary 1.3 [13]: The probability of success of the ∞-Nakamoto attack is

P∞(z) = I4pq(z, 1/2).

Note 1.4: This probability is computed at the start of the attack, and at the time, the honest
miners have mined z blocks, the number mined by the attacker can exceed z.

A Corollary of this result is obtained taking the asymptotics.

Corollary 1.5 [13]: When z → +∞, we have

P∞(z) ∼ sz√
π(1 − s)z

where s = 4pq < 1.

This Corollary is important because it proves the profusely cited and “well-known”
result that this probability decays exponentially to 0 with the number of confirmations z;

1 In the current Bitcoin network, b = 12.5 and τ0 = 10 min.
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hence, the probability of a reorganization of Bitcoin blockchain decays exponential with the
depth. This exponential decay is the fundamental result for Bitcoin security. This was not
proved rigorously in the literature before [13].

We observe that PA(z) decreases with A, and PA(z) < limA→+∞ PA(z) = P∞(z) as
expected. We also have that, when z → +∞,

PA(z) ∼ sz√
π(1 − s)z

with an asymptotic that is independent of A. In the next Theorem, we make use of the Beta
function

B(x, y) =
∫ 1

0

tx−1(1 − t)y−1 dt =
Γ(x)Γ(y)
Γ(x + y)

.

The main result in this article is the computation of the Revenue Ratio ΓA. We also
compute exact formulas for E[RA] and E[TA].

Theorem 1.6: With the previous notations, the expected revenue and the expected duration
of the A-Nakamoto double-spend strategy is, with the notation [n] = (1 − λn)/(1 − λ),

E[RA]
b

=
qz

2p
I4pq(z, 1/2) − (A + 1)λA+1

p(1 − λ)3[A + 1]2
I(p−q)2(1/2, z)

+
2 − λ + λA+2

(1 − λ)2[A + 1]
pz−1qz

B(z, z)
+ PA(z)

(v

b
+ 1

)
,

E[TA]
τ0

=
z

2p
I4pq(z, 1/2) +

A + 1
p(1 − λ)2[A + 1]

I(p−q)2(1/2, z) − pz−1qz

p(1 − λ)B(z, z)
+

1
q
.

As in the original article [10], and applications to other block withholding strategies
[11], the main tool in the proof are martingale techniques and the application of Doob’s
Stopping Time Theorem. These new techniques proved superior to previous approaches
using Markov chains. For example, only with martingale techniques, we can prove [10]
that without difficulty adjustment the honest mining strategy is optimal. The profitability
analysis is based on attack cycles, modeled by games with repetition. It applies to integrable
games, that is those that have a finite expectation duration of cycles E[T] < +∞, which is
a necessary condition for the application of Doob’s Stopping Theorem.

All other parameters being fixed, we observe the asymptotics when A → +∞,

E[TA]
τ0

∼ I(p−q)2(1/2, z)
p − q

A

and

lim
A→+∞

E[RA]
b

=
E[R∞]

b
=

qz

2p
I4pq(z, 1/2) +

2 − λ

1 − λ

pz−1qz

B(z, z)
+ P∞(z)

(v

b
+ 1

)
.

In particular, we have
lim

A→∞
E[TA] = E[T∞] = +∞

and
lim

A→∞
E[RA] = E[R∞] < +∞.

Hence, in the non-stopping Nakamoto double-spend strategy where A = +∞, we have
Γ∞ = 0 and any integrable strategy beats Nakamoto non-stopping strategy. Moreover,
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since E[R∞] < +∞ and E[T∞] = +∞ Nakamoto’s strategy leads to almost sure ruin when
considering mining costs.

Another interesting asymptotic is, when q → 0, z ≥ 1,

I4pq(z, 1/2) ∼ 2
(

2z − 1
z

)
qz.

If we assume A ≥ 2, A ≥ z ≥ 1,

E[RA]
b

∼
[
2

(
2z − 1

z

) (v

b
+ 1

)
+

2
B(z, z)

]
qz

and
E[TA]

τ0
∼ 1

q
.

Therefore, we have, when q → 0,

ΓA ∼ b

τ0

[
2

(
2z − 1

z

) (v

b
+ 1

)
+

2
B(z, z)

]
qz+1.

It is noteworthy that this asymptotic is uniform on A. Using it we can prove the
following practical Corollary. The A-Nakamoto double spend is profitable when ΓA ≥ ΓH

and plugging the asymptotics in this profitability inequality we get,

Corollary 1.7: When q → 0, the minimal amount to make profitable a Nakamoto double
spend with z ≥ 1 confirmations is asymptotically

v ≥ q−z

2
(

2z − 1
z

)b = v0.

For example, with q = 0.01 and only z = 1, we need to double spend more than v0/b =
50 coinbases. For the optimal strategy, the minimal spend for these parameters is v0/b =
49.2513 coinbases as we have computed elsewhere. With the actual reward of b = 6.25
and the actual prize of $11.750, this represents more than $3.600.000. With z = 2, we need
more than 1.666 coinbases for a profitable attack, or more than 122 million dollars. These
figures are far from the general belief.2 We observe that there are other sharper strategies
and, if ran continuously, we can merge double-spend attacks with other block withholding
strategies and this will increase the profitability.

We observe that, since ΓA → 0 when A → +∞, there is a value A0 = A0(q, v, z) ≥ z
that maximizes the revenue ratio:

ΓA0 = max
A≥z

ΓA.

Also, we have limz→+∞ ΓA0 < ΓH . So given the amount of the purchase (in coinbase b
units), we can compute the number z of confirmations that make the A-Nakamoto double-
spend attack non-profitable. This is an important data for the vendor or the recipient of
the transaction that can set the optimal number of confirmations z by using our formulas.

2 For instance, many cryptocurrency exchanges require six confirmations for any Bitcoin deposit. Although
it is advisable to request two confirmations, to avoid a possible disruption by an orphan block.
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We keep the analysis for the A-Nakamoto strategy as simple as possible. We assume
no difficulty adjustments and instant block propagation in the network during the attack.
Other more sophisticated strategies, as when A ≤ z, with important premining, or the
optimal strategy, or other hybrid strategies combining selfish mining and double spends,
will be analyzed elsewhere.

The core of the results presented in this article are a combination the techniques
developed in [10,13].

2. NAKAMOTO DOUBLE-SPEND STRATEGY

Let z be the number of confirmations required by the merchant and v is the value of a
double spend. We fix a maximal lag A ≥ z behind the public blockchain for which the
attacker gives-up. The relative hashrate of the attacker (resp. honest miners) is q (resp.
p). Nakamoto in [17] tries to prevent premining by the attacker. He proposes the instant
generation new keys for each payment, but it is easy to see that this does not prevent double
spends. The formulas he gives are only correct premining one block (e.g., when he states
that the probability is 1 for z = 0 confirmations). The strategy of premining one block is
often named as a “Finney attack” because of the clarification that H. Finney provided in
2011 (see [6] bitcointalk post). We can generalize this Finney strategy by premining k of
blocks before launching the attack. The precise algorithm employed by the attacker in this
(A, k)-Nakamoto double-spend strategy is the following:

(A, k)-Nakamoto double-spend strategy

0. Start of the attack cycle (goto 1).
1. The attacker mines honestly on top of the official blockchain k blocks with a transaction

that returns the payment funds to an address he controls (goto 2).
2. If the honest miners get ahead before the attacker premines k blocks, then he restarts

mining on top of the new last block of the official blockchain (goto 1).
3. If the attacker succeeds in premining k blocks leading the honest miners, he keeps his

fork secret, sends the purchasing transaction to the vendor, and keeps up mining on his
secret fork (goto 4).

4. If the attacker’s lag behind the official blockchain becomes larger than A, then the attacker
gives-up and the double spend fails (goto 6).

5. If the secret fork of the attacker gets longer than the official blockchain that has added
z confirmations to the vendor transaction, then the attacker releases his fork and the
double spend is successful (goto 6).

6. End of the attack cycle (goto 0).

We assume that when we reach z confirmations, the attacker receives the goods from
the vendor. Hence, for a successful attack, the revenue is v plus all block rewards. When
the attack fails, the revenue is 0 (assuming that he can recover the original payment from
the purchase). A fundamental observation for the application of the profitability model is
that the total costs per unit of time is the same as the total cost of honest mining. Each
time the attacker goes to step 0, he can start a new attack cycle that ends when he reaches
step 6.

We observe that the strategy has three distinct phases:

• The first phase is the premine (steps 1–2).
• The attacker sends his transaction to the merchant and mines a conflicting

transaction on his secret fork until the honest miners have validated z blocks.
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• The attacker keeps on mining on his secret fork until his lag is A or his fork catch-up
the official blockchain.

During the second phase, the attacker lags behind the official blockchain less than A
since we are assuming A ≥ z. So, the attack cycle cannot terminate before the end of the
second phase. Notice also that there are more general Nakamoto strategies by changing the
algorithm in the premining phase and the last phase. The (A, 1)-Nakamoto strategy is the
simplest and closest profitable strategy to Nakamoto’s strategy described in his article. This
strategy is the one studied in this article.

The study of general (A, k)-Nakamoto strategies is postponed to a future article, as well
as the general optimal strategy attack.

3. PROBABILITY OF SUCCESS

We use the same notations and the classical mining model from [13]. The number of blocks
mined by the attacker is a Poisson process (N ′(t))t≥0. The random variable Sz is the time
employed by the honest miners to mine z blocks. The random variable N ′(Sz) is a (z, p)
negative binomial random variable [13], for j ≥ 0,

P[N ′(Sz) = j] = pzqj

(
z + j − 1

j

)
.

We recall the basic Euler identity for the Beta function which justifies the Beta
distribution,

B(x, y) =
∫ 1

0

tx−1(1 − t)y−1 dt =
Γ(x)Γ(y)
Γ(x + y)

.

We need some basic combinatorial identities from the next Lemma.

Lemma 3.1: For integers m ≥ 1 and z ≥ 0, and for p, q > 0 with q = 1 − p, we have

m−1∑
j=0

pzqj

(
z + j − 1

j

)
= Ip(z,m), (1)

m−1∑
j=0

pzqj

(
z + j − 1

j

)
· j =

qz

p
Ip(z,m) − pz−1qm

B(z,m)
. (2)

Proof: The first identity is classical (see [1] (6.6.3) and (26.5.26), or [4] (8.17.24), or [13]
Sect. 6). The second follows from the first one differentiating with respect to p,

∂Ip(z,m)
∂p

=
z

p
Ip(z,m) − 1

q

m−1∑
j=0

pzqj

(
z + j − 1

j

)
· j

and observing that (∂Ip(z,m))/∂p = pz−1qm−1/B(z,m). �
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Proposition 3.2: If X is a negative binomial random variable with parameters (p, z), then
we compute

z−1∑
j=0

P[X = j] = Ip(z, z), (3)

z−1∑
j=0

P[X = j](q/p)z−j = Iq(z, z), (4)

z−1∑
j=0

P[X = j] · j =
qz

p
Ip(z, z) − pz−1qz

B(z, z)
, (5)

z−1∑
j=0

P[X = j]j(q/p)z−j =
pz

q
Iq(z, z) − qz−1pz

B(z, z)
. (6)

Proof: Identities (3) and (5) follow from Lemma 3.1. The two other ones follow from these
two using, for j ≥ 0,

pzqj

(
z + j − 1

j

)
(q/p)z−j = qzpj

(
z + j − 1

j

)

which means that P[X = j](q/p)z−j = P[Y = j] for Y a (q, z)-negative binomial random
variable. �

Note also that (1) and (2) can be restated as

P[X < m] = Ip(z,m)

E[X|X < m] =
qz

p
− pz−1qm

Bp(z,m)

where Bx(a, b) is the incomplete Beta function. We are ready to prove Theorem 1.2.

Proof of Theorem 1.2: Recall that the attacker has premined one block. So, if he has added
z more blocks to his secret fork during the second phase of the attack, then at the end of
this phase his secret fork is longer than the official blockchain. In this case, he publishes
his fork and the attack cycle ends successfully. Otherwise, the attacker has mined j blocks
during the second phase with j < z and he starts a third phase with a lag of z − j − 1. The
evolution of this lag is a biased random walk (Zn) with a probability p (resp. q) to move
to the right (resp. left). The cycle ends when there is n ∈ N such that Zn = A (the attack
cycle fails) or Zn = −1 (the attack cycle is successful). Hence, according to the Gambler’s
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Figure 1. Graph of q �→ PA(2), A = 3, 5, 10 and asymptotics A → +∞.

ruin problem formula (see [5]), and using formulas (3) and (4) from Corollary 3.2, we have

PA(z) = P[N ′(Sz) � z] +
z−1∑
j=0

P[N ′(Sz) = j]
λz−j − λA+1

1 − λA+1

= 1 −
z−1∑
j=0

P[N ′(Sz) = j] +
z−1∑
j=0

P[N ′(Sz) = j]
λz−j − λA+1

1 − λA+1

= 1 −
(

1 +
λA+1

1 − λA+1

) z−1∑
j=0

P[N ′(Sz) = j] +
1

1 − λA+1

z−1∑
j=0

P[N ′(Sz) = j]λz−j

= 1 − Ip(z, z)
1 − λA+1

+
Iq(z, z)

1 − λA+1
.

Finally, we use the two classical relations for the incomplete regularized beta function:

Ix(a, b) + I1−x(b, a) = 1 (7)

for x ∈]0, 1[, a, b ∈ R
∗
+ and

Iq(z, z) =
1
2
I4pq(z, 1/2). (8)

See for instance [4] (8.17.4) and (8.17.6) (Figure 1).
�
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4. PROFITABILITY OF THE ATTACK

4.1. Expected Cycle Duration Time

According to the definition of the strategy in Section 2, the attack cycle cannot terminate
before the attacker has mined one block (the premined block). So, the duration time of an
attack cycle T satisfies T = S′

1 + T′, where S′
1 is the time before the attacker discovers a

new block and T′ is the remaining time of the attack.

Proposition 4.1: We assume that the attacker has already premined one block. Then, the
mean duration time for the end of an attack cycle is

E[T′]
τ0

=
A + 1
p − q

· 1
1 − λA+1

− pz−1qz

(p − q)B(z, z)
+

(
z

p
− 2(A + 1)

(p − q)(1 − λA+1)

)
Iq(z, z).

Proof: We follow the proof of Theorem 1.2. By definition of the strategy, the attack cycle
cannot end before the honest miners have mined z blocks since A ≥ z. So, we have T′ ≥ Sz

(the initial date t = 0 is the start of the second phase). Moreover, T′ = Sz if the attacker
has mined z blocks or more during the second phase of the attack. Otherwise, the attacker
tries to build a fork whose length is greater than the official blockchain, starting with an
initial lag of z − N′(Sz) − 1 and gives up if this lag becomes greater or equal than A (third
phase of the attack). So, we have

T′ = Sz + 1N′(Sz)<z · T̃A+1−(z−N′(Sz)),z−N′(Sz)

with T̃X,Y = Inf {t ∈ R+; (Ñ(t) = Ñ′(t) + X) ∨ (Ñ′(t) = Ñ(t) + Y )} for X,Y ∈ R, Ñ(t) =
N(t + Sz) − N(Sz) and Ñ′(t) = N′(t + Sz) − N′(Sz). By the Markov property, Ñ and Ñ′

are two Poisson processes with parameters p/τ0 and q/τ0 independent of Sz and T̃X,Y is
also independent of Sz. Moreover, we have

E[T̃X,Y ]
τ0

=
X + Y

p − q

(
1 − λY

1 − λX+Y
− Y

X + Y

)
.

This computation is classical and can be found in Appendix A of [12] for example (see
Theorem A.1). So, we have using Proposition 3.2 together with (7) and (8),

E[T′]
τ0

= E[Sz] +
z−1∑
j=0

P[N′(Sz) = j] · E[T̃A+1−(z−j),z−j ]

=
z

p
+

A + 1
p − q

(
1

1 − λA+1
− z

A + 1

) z−1∑
j=0

P[N′(Sz) = j]

− A + 1
p − q

(
1

1 − λA+1

) z−1∑
j=0

P[N′(Sz) = j]λz−j

+
1

p − q

z−1∑
j=0

P[N′(Sz) = j]j
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=
z

p
+

A + 1
p − q

(
1

1 − λA+1
− z

A + 1

)
Ip(z, z) − A + 1

p − q
· 1
1 − λA+1

Iq(z, z)

+
1

p − q

(
qz

p
Ip(z, z) − pz−1qz

B(z, z)

)

=
A + 1
p − q

1
1 − λA+1

− pz−1qz

(p − q)B(z, z)
+

(
z

p
− 2(A + 1)

(p − q)(1 − λA+1)

)
Iq(z, z). �

4.2. Expected Revenue by Cycle

Proposition 4.2: The expected revenue per cycle is

E[RA]
b

=
qz

2p
I4pq(z, 1/2) − (A + 1)λA+1

p(1 − λ)3[A + 1]2
I(p−q)2(1/2, z)

+
2 − λ + λA+2

(1 − λ)2[A + 1]
pz−1qz

B(z, z)
+ PA(z)(v + 1)

with [A + 1] = (1 − λA+1)/(1 − λ).

Proof: We will use the following notations. If Z is a biased simple random walk starting
at Z0 = k with a probability p (resp. q) to go right (resp. left), we denote by νk

i with i ∈ Z

the hitting time of i and νk
i,j = νk

i ∧ νk
j with j ∈ Z. We also denote by L(n) the number of

steps to the left between 0 and n, that is,

L(n) =
n∑

i=1

1Zi=Zi−1−1.

After the premining phase, the attacker waits for the honest miners to mine z blocks.
Suppose that he has mined j blocks during this second phase. If j ≥ z, then the attack
cycle ends and the attacker wins the double-spend amount v and all the j + 1 blocks he
has mined. Otherwise, there is a third phase. The attack cycle still goes on and does not
end before the attacker builts a fork whose length is larger than the official blockchain or
his lag becomes larger or equal than A. We denote by Zn the lag of the attacker plus one
when n blocks have been discovered by the attacker or the honest miners since the start of
the third phase. Then, Z0 = z − j and (Zn)n∈N is a biased simple random walk as before.
The attack cycle ends when there is n such that Zn = 0 or Zn = A + 1. Therefore, we have

E[RA]
b

=
∞∑

j=z

P[N′(Sz) = j](j + 1 + v) +
z−1∑
j=0

P[N′(Sz) = j] · P[νz−j
0,A+1 = νz−j

0 ]

· (j + 1 + v + E[L(νz−j
0,A+1)|νz−j

0,A+1 = νz−j
0 ])

= E[[N′((Sz)] −
z−1∑
j=0

P[N′(Sz) = j]j + PA(z)(v + 1)

+
z−1∑
j=0

P[N′(Sz) = j]j · P[νz−j
0,A+1 = νz−j

0 ]

+
z−1∑
j=0

P[N′(Sz) = j] · P[νz−j
0,A+1 = νz−j

0 ] · E[L(νz−j
0,A+1)|νz−j

0,A+1 = νz−j
0 ].
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Now, we use again the classical relation for the Gambler’s ruin formula P[νm
0,M = νm

0 ] =
(λm − λM )/(1 − λM ) (see e.g. [5]) and

E[L(νm
0,M )|νm

0,M = νm
0 ]) =

m

2
+

mλm − (2M − m)λM + (2M − m)λM+m − mλ2M

2p(1 − λ)(λm − λM )(1 − λM )

from [12] (See Corollary 2.5) which is a consequence of Stern’s formula [20]. So, using
Proposition 3.2, we compute

E[RA]
b

=
qz

p
+ PA(z)(v + 1)

−
(

(2(A + 1) − z)λA+1 + zλ2(A+1)

2p(1 − λ)(1 − λA+1)2
+

λA+1

1 − λA+1
· z

2

) z−1∑
j=0

P[N′(Sz) = j]

+
(

z + (2(A + 1) − z)λA+1

2p(1 − λ)(1 − λA+1)2
+

1
1 − λA+1

· z

2

) z−1∑
j=0

P[N′(Sz) = j]λz−j

−
(

1
1 − λA+1

+
λA+1 − λ2(A+1)

2p(1 − λ)(1 − λA+1)2
− λA+1

1 − λA+1
· 1
2

) z−1∑
j=0

P[N′(Sz) = j]j

+
(

1
1 − λA+1

− 1 − λA+1

2p(1 − λ)(1 − λA+1)2
− 1

1 − λA+1
· 1
2

) z−1∑
j=0

P[N′(Sz) = j]jλz−j

and

E[RA]
b

=
qz

p
+ PA(z)(v + 1) − λA+1(A + 1 − q(1 − λA+1)z)

p(1 − λ)(1 − λA+1)2
Ip(z, z)

+
(A + 1)λA+1 + p(1 − λA+1)z

p(1 − λ)(1 − λA+1)2
Iq(z, z)

− p − q + qλA+1

p(1 − λ)(1 − λA+1)

(
qz

p
Ip(z, z) − pz−1qz

B(z, z)

)

− λ

(1 − λ)(1 − λA+1)

(
pz

q
Iq(z, z) − qz−1pz

B(z, z)

)
.

We note that

λA+1(A + 1 − q(1 − λA+1)z)
p(1 − λ)(1 − λA+1)2

+
p − q + qλA+1

p(1 − λ)(1 − λA+1)
· λz = λz +

(A + 1)λA+1

p(1 − λ)(1 − λA+1)2
.

So, using again (7) and (8), we get

E[RA]
b

=
(

1
2
λz +

(A + 1)λA+1

p(1 − λ)(1 − λA+1)2

)
I4pq(z,

1
2
) + PA(z)(v + 1)

− (A + 1)λA+1

p(1 − λ)(1 − λA+1)2
+

2 − λ + λA+2

(1 − λ)(1 − λA+1)
pz−1qz

B(z, z)
.

�
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Figure 2. Graph of q �→ E[RA] with z = 2 and v = b for A = 3, 5, 10.

In Figures 2 and 3, we plot the graphs of q �→ E[RA] and q �→ ΓA. In Figure 3, ΓH is
the dashed line. We have limq→0.5 Γ10(q) = 139

286 < 1
2 and Γ10(q) < q for any q. The (10, 1)-

Nakamoto double-spend strategy with z = 2 and v = b is always less profitable than honest
mining.

5. RELATED WORK

In [18], the author proposes as a better approximation a correct formula for the computation
of the probability of success of the Nakamoto double-spend attack, correcting the formula
from [17]. A mathematical derivation later appears in [8]. This probability is computed
in closed-form using special functions in [13]. As Corollary of this closed-form formula,
it is proved in [13] that the probability decays exponentially to 0 with the number of
confirmations z → +∞. This result was believed by the community on the basis of numerical
evidence, but no mathematical proof was available. In [7], asymptotics at higher orders are
computed by combinatorical methods (higher-order asymptotics are classical also from the
integral expression in [13]). The authors also discuss the initial assumptions of the Nakamoto
double-spend strategy. In fact, Section 11 of [17] contains several incoherences. All authors
agree with Nakamoto that z is the number of confirmations, which assumes a 1 block
premining (see [15,18] or [13]). In [19], the authors look for the best security protocol that
a merchant should adopt to counter a double-spend attack. They consider attacks that
are long enough to impact the difficulty adjustment parameter. They propose to merge
double-spend attacks with selfish mining or other blocks witholding strategies (it is proven
in [10] that these attacks are only profitable on the long run only after an adjustment of
the difficulty parameter). These articles only study double-spend attacks from the point of
view of the probability of success rather than from profitability. A first attempt, without
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Figure 3. Graph of q �→ ΓA, z = 2, v = b for A = 3, 5, 10.

a proper time modeling, to study the profitability of the attack can be found in the last
section of [18] (where the A-Nakamoto strategy is numerically studied with A = 20). The
duration time of the attack is studied in [9]. The author computes the conditional probability
density function of the time before an attacker catches up the honest miner, knowing that
the honest miners have already mined z blocks. A simplified expression can be found in
[3]. In [15], the authors introduce a profitability setup and look for the optimal number
of blocks that an attacker should premine before launching a double-spend attack (we will
answer this question in a future article). In [2], the authors study the profitability of a
double-spend attack with a cutoff time strategy, Sz+1 ∧ S′

z+1 (in our notation). In [16], the
authors consider a fixed cutoff time (in case of failure, the attack ends at a fixed time).

What was lacking before was a rigorous model of profitability to make exact comparisons
of profitabilities of different mining strategies, in particular with the honest strategy. This
ingredient is provided by Grunspan and Pérez-Marco [10] and it is what we use in the
present article.
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APPENDIX A. THE ORIGINAL NAKAMOTO DOUBLE-SPEND ATTACK IS
UNSOUND

Lemma A.1: Let R be the revenue of a miner following the original Nakamoto’s double-spend attack
and T is the duration time of the attack. Then, we have E[R] < ∞ and E[T] = ∞.

Proof: Clearly, we have E[T] = ∞ since the event T < ∞ means that the attack is succesful and
the probability of success P (z) of a double-spend attack is < 1 [13]. To prove E[R] < ∞, we model
the progression of the blockchain by a simple biased random walk X on Z with X0 = 0. Each block
validated by the honest miners (resp. attacker) corresponds to a step to the right (resp. left). So,
P[Xi+1 = Xi + 1] = p with p = 1 − q > 1

2 . We denote by L(n) =
∑n

i=1 1Xi=Xi−1−1, the number
of blocks mined by the attacker after n blocks discovery. Similarly, R(n) =

∑n
i=1 1Xi=Xi−1+1 is

the number of blocks mined by the honest miners. The exact delay in block of the attacker with
the official blockchain (possibly negative) is X − 1 since we assume a premined block.

If the attack is succesful, the attacker’s revenue is made of the value v of the double spend and
all the blocks he has mined including the premined block. In case of failure, we have R = 0.

At the time, the honest miners have mined z blocks, the attacker has mined Z blocks where
Z is a negative binomial law with parameter (p, z) [13]. For a biased random walk X̃ such that
at each step there is a probability p to move to the right and for k ∈ Z, we consider the time
to go below zero starting from k: νk = Inf{n ∈ N ; X̃n ≤ 0 | X̃0 = k}. By conditioning at the time
when the honest miners have mined z blocks and using the Markov property, we have (v is the
double-spend amount):

E[R] = (v + 1)P (z) +
∞∑

k=z

P[Z = k]k +

z−1∑
k=0

P[Z = k](k + E[L(νz−k)|νz−k < ∞])P[νz−k < ∞]

≤ v + 1 + E[Z] +
z∑

j=1

E[νj | νj < ∞].

To conclude, we now use the facts that E[Z] < ∞ and E[νj |νj < ∞] < ∞. The last result is
due to Stern [20]. �
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