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THE QUASISPECIES REGIME FOR
THE SIMPLE GENETIC ALGORITHM
WITH ROULETTE WHEEL SELECTION

RAPHAËL CERF,∗ École Normale Supérieure

Abstract

We introduce a new parameter to discuss the behavior of a genetic algorithm. This
parameter is the mean number of exact copies of the best-fit chromosomes from one
generation to the next. We believe that the genetic algorithm operates best when this
parameter is slightly larger than 1 and we prove two results supporting this belief.
We consider the case of the simple genetic algorithm with the roulette wheel selection
mechanism. We denote by � the length of the chromosomes, m the population size,
pC the crossover probability, and pM the mutation probability. Our results suggest that
the mutation and crossover probabilities should be tuned so that, at each generation, the
maximal fitness multiplied by (1 − pC)(1 − pM)

� is greater than the mean fitness.
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1. Introduction

We study the classical simple genetic algorithm with the roulette wheel selection mechanism,
as described in [5] and [7]. For the reader unfamiliar with this algorithm, let us provide a brief
description of this simple genetic algorithm. The reader familiar with it can jump directly to
the next paragraph. The goal of the simple genetic algorithm is to find the global maxima of a
fitness function f defined on {0, 1}� with values in (0,+∞). We consider the most classical
and simple version of the genetic algorithm, as described in [5]. The genetic algorithm works
with a population of m points of {0, 1}�, called the chromosomes, and it repeats the following
fundamental cycle in order to build generation n+ 1 from generation n:

Repeat:

• select two chromosomes from generation n;

• perform the crossover;

• perform the mutation;

• put the two resulting chromosomes in generation n+ 1;

Until there are m chromosomes in generation n+ 1.

When building generation n + 1 from generation n, all the random choices are performed
independently. We use the classical genetic operators, as in [5], which we recall briefly.
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Selection. We use roulette wheel selection with replacement. Let us suppose that the current
population is x = (x(1), . . . , x(m)). The probability of selecting the ith chromosome x(i) in
population x is given by the selection distribution defined by

P(select ith chromosome in x) = f (x(i))

f (x(1))+ · · · + f (x(m))
.

Crossover. We use the standard single point crossover and the crossover probability is
denoted by pC. More precisely, we draw a coin of parameter pC to decide whether or not a
crossover occurs. If a crossover occurs then we select randomly and uniformly a cutting site
along the chromosome and we swap the final segments of the chromosomes, as in the following
example:

P

(
000 011 011 001 000 011 001 111→
100 110 001 111 100 110 011 001

)
= pC

�− 1
.

Mutation. We use independent parallel mutation at each bit and the mutation probability
is denoted by pM. More precisely, each bit of the chromosome is transformed into the
complementary bit with probability pM and kept unchanged with probability 1 − pM, and
these decisions are independent. For instance, we have

P(0000000 → 0101000) = p2
M(1 − pM)

5.

Genetic algorithms have been used in practice for a myriad of problems, with varying
successes. Moreover, many variants have been considered, which include different genetic
mechanisms, as well as different coding methods. Yet a central problem to efficiently implement
a genetic algorithm is the adjustment of the many parameters controlling the algorithm. If we
focus on the classical simple genetic algorithm, these parameters are: the population size, the
probabilities of crossover, and mutation. There exists a vast literature discussing this question.
The main message given by the numerous works conducted over the years is that, contrary to
the initial hopes, there exists no universal choice of parameters and the optimal choices depend
heavily on the fitness landscape. We refer the reader to [9] for a recent review. Throughout this
work, we focus on the simplest genetic algorithm but we anticipate that similar results might be
proved for variants of the algorithm. For instance, our results are not restricted to binary strings
and they hold for any finite alphabet. Similarly, we deal only with the one-point crossover, but
our results depend essentially on the probability 1 − pM of not having a crossover, thus, they
can be readily extended to other crossover mechanisms.

Our goal is to attract the attention on a single parameter, which somehow sums up the effects
of the various mechanisms at work in a genetic algorithm, and which is quite natural from the
probabilistic viewpoint. The parameter we have in mind is the mean number of exact copies
of the best-fit chromosomes from one generation to the next. Let us call it π . We suggest that,
at any generation, the various operators of the genetic algorithm should be controlled in order
to ensure that π is slightly larger than 1. Indeed, if π < 1 then the best-fit chromosomes are
doomed to disappear quickly from the population. If π > 1 then, with positive probability,
the best-fit chromosomes will perpetuate and one of them will quickly become the most recent
common ancestor of the whole population. It is not desirable that π is much larger than 1,
in order to avoid the premature convergence of the algorithm. The optimal situation is when
the population retains the best-fit chromosomes and actively explores their neighborhoods.
Ideally we would like to have a few copies of the best-fit chromosomes and a cloud of mutants
descending from them. This is why we aim at tuning the parameters so that π is only slightly
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larger than 1. An interesting attempt to induce this behavior is what has been called ‘elitism’
in the genetic algorithm literature. Under elitism, the best-fit chromosomes are automatically
retained from one generation to the next. However, we believe that the resulting dynamics
is intrinsically different from the one we are aiming at when tuning the parameters so that
π > 1. Indeed, we wish to build a probabilistic dynamics which automatically focuses the
search around the best-fit chromosomes, and it might be that, even using elitism, the best-fit
chromosomes are quickly forgotten during the search and none of them have a chance to become
the most recent common ancestor.

An advantage with the parameter π is that we can easily compute simple bounds in terms of
the parameters of the algorithm. This becomes particularly true if we perform, in addition, an
asymptotic expansion in one or several parameters. If we do so, we can even prove rigorous
results which strongly support the previous ideas. More precisely, we will consider the case of
large populations. This kind of analysis has been previously conducted for the simple genetic
algorithm with ranking selection [2]. Here we attempt to extend this analysis to the simple
genetic algorithm with roulette wheel selection. This task turns out to be very difficult, because
the dynamics is very sensitive to the variations of the fitness values. Most of the results obtained
for ranking selection do not hold with roulette wheel selection. We present only two results,
which demonstrate that, depending on the parameters and the fitness distribution of the current
population, the genetic algorithm can operate either in a disordered regime, where the best-fit
chromosomes are typically lost, or in a quasispecies regime, where the best-fit chromosomes
survive and invade a positive fraction of the population. Our results have their roots in the
quasispecies theory developed by Eigen et al. [4]. We refer the reader to the introduction of [2]
for a quick summary of the development of these ideas, as well as for pointers to the numerous
relevant references in the genetic algorithm literature.

We start the genetic algorithm with an initial population whose maximal fitness is equal
to f ∗

0 and whose mean fitness is equal to f̄0. We show that, in the limit of large populations,
the dynamics of the genetic algorithm depends in a critical way on the parameter

π =
(
f ∗

0

f̄0

)
(1 − pC)(1 − pM)

�.

• If π < 1 then the genetic algorithm might operate in a disordered regime: there exist
positive constantsβ andκ which do not depend onm such that, for some fitness landscapes
and some initial populations, with probability larger than 1 − 1/mβ , before generation
κ lnm, the best-fit chromosome will disappear and until generation κ lnm, the mean
fitness will stagnate.

• If π > 1 then the genetic algorithm operates in a quasispecies regime: there exist positive
constants κ and p∗ which do not depend onm such that, for any fitness landscape and any
initial population, with probability larger than p∗, until generation κ lnm, the maximal
fitness will not decrease and before generation κ lnm, the mean fitness will increase by
a factor

√
π .

These results suggest that at each generation, the mutation and crossover probabilities should
be tuned so that

maximal fitness × (1 − pC)(1 − pM)
� > mean fitness.

It seems, therefore, judicious to choose ‘large’ values of pM and pC compatible with the
condition π > 1. In the generic situation where f ∗

0 is significantly larger than f̄0, this means

https://doi.org/10.1017/apr.2017.26 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2017.26


906 R. CERF

that the mutation probability should be of the order 1/�; more precisely, the condition π > 1
implies that

�pM + pC < ln

(
f ∗

0

f̄0

)
.

2. The results

We denote by x0 the initial population and by x0(1), . . . , x0(m) the m chromosomes in
population x0. We denote by f ∗

0 the maximal fitness of the chromosomes in x0 and by f̄0 their
mean fitness, i.e.

f ∗
0 = max

1≤i≤mf (x0(i)), f̄0 = 1

m

∑
1≤i≤m

f (x0(i)).

We present two results to illustrate the contrasting behavior of the genetic algorithm whenπ < 1
and π > 1. For k ≥ 1, we denote by f ∗

k (respectively, f̄k) the maximal fitness (respectively,
the mean fitness) of the chromosomes in the kth population generated by the genetic algorithm.

The disordered regime. We consider the fitness function f defined by, for all u ∈ {0, 1}�,

f (u) =
{

2 if u = 1 · · · 1,

1 otherwise.

This corresponds to the sharp peak landscape. The chromosome 1 · · · 1 is called the master
sequence. We start the genetic algorithm from population x0 containing one master sequence
1 · · · 1 and m− 1 copies of the chromosome 0 · · · 0. Thus, the optimal chromosome is already
present in the population. Our goal is to study its influence on the evolution of the population.
This is a crude model for the following scenario: the genetic algorithm has been stuck for a
long time, and suddenly, by chance, a chromosome with a superior fitness is found; is this new
chromosome likely to influence the whole population or will it disappear? The next theorem
describes a situation where the mean fitness of the population is unlikely to increase despite the
presence of a very well fit chromosome.

Theorem 2.1. Let π < 1 be fixed. We suppose that the parameters are set so that � = m and
(f ∗

0 /f̄0)(1 − pC)(1 − pM)
� = π . There exist strictly positive constants κ , β, and m0, which

depend on π only, such that, for the genetic algorithm starting from x0, for any m ≥ m0,

P

(
there exist k ≤ κ lnm, f ∗

k = 1, for all k ≤ κ lnm, f̄k < f̄0

(
1 + 1√

m

))
≥ 1 − 1

mβ
.

The quasispecies regime. We consider an arbitrary nonnegative fitness function f and we
start the genetic algorithm from a population x0 such that f ∗

0 > f̄0. The next theorem describes
a situation where the mean fitness of the population is likely to increase thanks to the influence
of the best-fit chromosome.

Theorem 2.2. Let π > 1 be fixed. We suppose that the parameters are set so that (f ∗
0 /f̄0)(1−

pC)(1 − pM)
� = π . There exist strictly positive constants κ and p∗, which depend on π and

the ratio f ∗
0 /f̄0 only, such that, for the genetic algorithm starting from x0, for any �,m ≥ 1,

P(for all k ≤ κ lnm, f ∗
k ≥ f ∗

0 , there exist κ ≤ κ lnm, f̄k ≥ √
π f̄0) ≥ p∗.
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3. The disordered regime

In this section we will prove Theorem 2.1. The proof has two main steps. First, we define a
process (Tn)n∈N which counts the number of descendants of the master sequence in generationn.
We show that, as long as Tn ≤ m1/4, the process (Tn)n∈N is stochastically dominated by a
supercritical Galton–Watson process. Next we define a process (N∗

n )n∈N which counts the
number of master sequences present in generation n. Note that N∗

n is, in general, smaller
than Tn, because of the mutations and the crossovers. Indeed a chromosome might have an
ancestor which is a master sequence and be very different from it. We show then that, as long
as Tn ≤ m1/4, the process (N∗

n )n∈N is stochastically dominated by a subcritical Galton–Watson
process. The bound on (N∗

n )n∈N relies on the previous bound on (Tn)n∈N. We finally invoke a
classical argument from the theory of branching processes to prove that this subcritical Galton–
Watson process becomes extinct before generation κ lnmwith probability larger than 1−1/mβ .
The computations are tedious, because we need to control the probabilities of obtaining a master
sequence when applying the various genetic operators, and the crossover creates correlations
between pairs of adjacent chromosomes.

Let us start with the precise proof. We start the genetic algorithm from population x0
containing one master sequence 1 · · · 1 andm−1 copies of the chromosome 0 · · · 0. Let π < 1
be fixed. Throughout the proof, we suppose that �, pC, and pM satisfy � = m and

2(1 − pC)(1 − pM)
� = π.

We denote by Xn the population at generation n and by Tn the number of descendants of the
initial master sequence present inXn. To build generation n+1, we select (with replacement)m
chromosomes from population Xn. Let us denote by An the number of chromosomes selected
inXn which are a descendant of the initial master sequence. Each of these chromosomes is the
parent of two chromosomes in generation n+ 1 (because of the crossover operator). Thus, we
can bound Tn+1 from above by 2An. Conditionally on Tn, the distribution ofAn is stochastically
dominated by a binomial with parameters m and

2Tn
2Tn +m− Tn

≤ 2Tn
m
.

Thus, conditionally on Tn, the distribution of Tn+1 is stochastically dominated by the binomial
distribution 2B(m, 2Tn/m), which we write as

Tn+1 	 2B

(
m,

2

m
Tn

)
.

The symbol ‘	’ means stochastic domination (see Appendix A). We define

τ1 = inf{n ≥ 1 : Tn > m1/4},

and we will compute estimates which hold until time τ1. So we fix n ≥ 1 and we condition on
the event that τ1 > n. There exists t0 > 0 such that, for 0 < t < t0, we have ln(1 − t) ≥ −2t .
Therefore, for large enough m so that 2m−3/4 < t0, we have(

1 − 2

m
Tn 1{τ1>n}

)m
≥ exp(−4Tn 1{τ1>n}).
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We denote by P (λ) the Poisson law of parameter λ. By Lemma A.2, we conclude from this
inequality that

2B

(
m,

2

m
Tn 1{τ1>n}

)
	 2P (4Tn 1{τ1>n}).

Therefore,

Tn+1 1{τ1≥n+1} 	
Tn 1{τ1>n}∑
k=1

Vk,

where the random variables (Vk)k≥1 are independent and identically distributed (i.i.d.) with
distribution twice the Poisson law of parameter 4. Let (Zn)n∈N be a Galton–Watson process
starting from Z0 = 1 with reproduction law 2P (4). We conclude from the previous inequality
that, for all n ≥ 0,

Tn 1{τ1≥n} 	 Zn.

We denote by Xn(1), . . . , Xn(m) the m chromosomes of population Xn. Let N∗
n be the

number of master sequences present in the population at time n, i.e. for all n ≥ 0,

N∗
n = card{i ∈ {1, . . . , m} : Xn(i) = 1 · · · 1}.

We want to control N∗
n+1 conditionally on the knowledge of N∗

n and Tn. A difficulty is that
the crossover operator creates correlations between the chromosomes of Xn+1. However,
conditionally on Xn, the pairs of consecutive chromosomes

(Xn+1(1),Xn+1(2)), . . . , (Xn+1(m− 1),Xn+1(m))

are i.i.d. Therefore, we can write N∗
n+1 as the sum

N∗
n+1 =

m/2∑
i=1

Yi,

where Yi is the number of master sequences in the ith pair (Xn+1(2i − 1),Xn+1(2i)). Our
strategy consists of estimating the conditional distribution of the Yi , knowing population Xn.
Conditionally on Xn, the random variables Yi, 1 ≤ i ≤ m/2, are i.i.d. with values in {0, 1, 2},
yet the computations are a bit lengthy and tedious because we have to consider all the possible
cases, depending on whether the parents of Xn+1(2i − 1),Xn+1(2i) do or do not belong to
the progeny of the initial master sequence. So let us focus on one pair of chromosomes, for
instance, the first one (Xn+1(1),Xn+1(2)).

We have to estimate all the conditional probabilities

P(there are zero, one, or two master sequences in (Xn+1(1),Xn+1(2)) | Xn).
To control these probabilities, we introduce the time τ2, when a mutant, not belonging to the
progeny of the initial master sequence, has at least

√
� number of 1s. We set

τ2 = inf{n ≥ 1 : a chromosome of Xn not in the progeny of the initial master sequence

has
√
� number of 1s}.

Let λ > 0 be such that π/2 ≥ exp(−λ). We have

(1 − pM)
� ≥ π

2(1 − pC)
≥ π

2
≥ exp(−λ).
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Note that λ depends only on π and not on � or pM. By Lemma A.2, the binomial law B(�, pM)

is then stochastically dominated by the Poisson law P (λ). We will use repeatedly the bound
on the tail of the Poisson law given in Lemma A.3, i.e. for all t ≥ λ,

P(a given chromosome undergoes at least t mutations from

one generation to the next) ≤
(
λe

t

)t
.

When using this bound, the value of t will be a function of �. We will always take � large
enough, so that the value of t will be larger than λ. We prove next a bound on τ2.

Lemma 3.1. For m ≥ 2 and for large enough �, we have

P
(
τ2 ≤ 1

5 ln �
) ≤ 1 − exp(−m exp(−�1/4)).

Proof. If τ2 < n then, before timen, a chromosome has been created with at least
√
� number

of 1s, and whose genealogy does not contain the initial master sequence. We shall compute
an upper bound on the number of 1s appearing in the genealogy of such a chromosome at
generation n. Let us defineDn as the maximum number of 1s in a chromosome of generation n,
which does not belong to the progeny of the initial master sequence. These 1s must have been
created by mutation. Let us consider a chromosome of generation n+1, which does not belong
to the progeny of the initial master sequence. The number of 1s in each of its two parents was
at most Dn. After crossover between these two parents, the number of 1s was at most 2Dn.
After mutation, the number of 1s was at most

Dn+1 ≤ 2Dn + max{number of mutations occurring on a chromosome

between generation n and n+ 1}.
We first control the last term. Let n ≥ 1 and let us define the event E(n) by

E(n) = {until generation n, during the mutation process, the number

of mutations occurring on a given chromosome is at most �1/4}.
We have

P(E(n)) = (1 − P(a given chromosome undergoes more than �1/4 mutations))mn.

Using the bound given in Lemma A.3, we obtain, for �1/4 > λ,

P(E(n)) ≥
(

1 −
(
λe

�1/4

)�1/4)mn
,

whence, for large enough �,

P(E(n)) ≥ exp(−mn exp(−�1/4)).

Suppose that the event E(n) occurs. We have, for all k ∈ {0, . . . , n−},
Dk+1 ≤ 2Dk + �1/4.
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Dividing by 2k+1 and summing from k = 0 to n− 1, we obtain

Dn ≤ 2n
n−1∑
k=0

�1/4

2k+1 ≤ 2n�1/4.

Therefore, if 2n < �1/4 and if the event E(n) occurs then τ2 > n. Taking n = (ln �)/5, we
obtain the estimate stated in the lemma. �

We recall that
τ1 = inf{n ≥ 1 : Tn > m1/4}.

We set also
τ0 = inf{n ≥ 1 : N∗

n = 0}.
We shall compute a bound on N∗

n until time τ = min(τ0, τ1, τ2). Our goal is to show that, for
large enoughm, the process (N∗

n 1{τ≥n})n∈N is stochastically dominated by a subcritical Galton–
Watson process. So let n ≥ 0 and let us suppose that τ > n and that we know population Xn.
We estimate the probability that exactly one master sequence is present in (Xn+1(1),Xn+1(2)).
We envisage different scenarios, depending on the number of descendants of the initial master
sequence among the two parents of these chromosomes.

First scenario. The two parents are descendants of the master sequence. The probability of
selecting two such parents is bounded from above by(

2Tn
2Tn +m− Tn

)2

≤
(

2Tn
m

)2

≤ 4

m
√
m
.

Second scenario. Exactly one of the parents is a descendant of the master sequence and
a crossover has occurred. The total number of 1s present in the parents is at most �+ √

�.
After crossover, the probability that one of the two resulting chromosomes has at least �− √

�

number of 1s is less than 4/
√
�. Indeed, this can happen only if, either on the left of the cutting

site, or on its right, there are at most
√
� number of 0s. The most favorable situation is when

all the 1s are at the end or at the beginning of the chromosome that is not a descendant of the
master sequence, in which case we have 2

√
� cutting sites which leads to the desired result.

Otherwise, both chromosomes after crossover have at least
√
� number of 0s, and the probability

to transform these 0s into 1s through mutations is less than (λe/
√
�)

√
�. We conclude that the

probability of this scenario is bounded from above by(
4√
�

+ 2

(
λe√
�

)√
�) 2N∗

n

2N∗
n +m−N∗

n

.

Third scenario. Exactly one of the parents is a descendant of the master sequence and
no crossover has occurred. A master sequence can be created from the chromosome not in
the progeny of the initial master sequence, this would require �− √

� mutations, and the
corresponding probability is bounded from above by(

λe

�− √
�

)�−√
�

.

The other possibility is that a master sequence is obtained from the chromosome belonging to
the progeny of the initial master sequence. This chromosome was either a master sequence,
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in which case the replication has to be exact, or it was differing from the master sequence, in
which case some mutations are required. The corresponding probability is bounded from above
by

2(1 − pC)((1 − pM)
� + pM)

2N∗
n

2N∗
n +m−N∗

n

.

Fourth scenario. None of the parents is a descendant of the master sequence. Until time τ2,
the chromosomes which are not descendants of the master sequence have at most

√
� number

of 1s. To create a master sequence starting from two such parents requires at least �− 2
√
�

mutations. The corresponding probability is bounded from above by

2

(
λe

�− 2
√
�

)�−2
√
�

.

Combining the previous inequalities, we conclude that

P(there is exactly one master sequence present in (Xn+1(1),Xn+1(2)) | Tn, N∗
n )

≤ 4

m
√
m

+ 4√
�

+
(

4√
�

+ 2

(
λe√
�

)√
�) 2N∗

n

2N∗
n +m−N∗

n

+ 2(1 − pC)((1 − pM)
� + pM)

2N∗
n

2N∗
n +m−N∗

n

+ 2

(
λe

�− 2
√
�

)�−2
√
�

.

We rewrite the previous inequalities in the � = m case and for largem. Since 2(1−pM)
m ≥

π , then pM ≤ −(1/m) ln(π/2). Let ε > 0 be such that π(1 + 5ε) < 1. For large enough m
and n < τ , we have

P(there is exactly one master sequence present in (Xn+1(1),Xn+1(2)) | Tn,N∗
n )

≤ 2

m
π(1 + ε)N∗

n .

Similar computations yield that there exists a positive constant c such that, for large enough m
and n < τ ,

P(both Xn+1(1),Xn+1(2) are master sequences | Tn,N∗
n ) ≤ c

m3/2 .

Returning to the initial equality for N∗
n+1, we conclude that, for large enough m, the law of

N∗
n+1 1{τ≥n+1} is stochastically dominated by the sum of two independent binomial random

variables as follows:

N∗
n+1 1{τ≥n+1} 	 B

(
m

2
,

2

m
π(1 + 2ε)N∗

n 1{τ≥n}
)

+ 2B

(
m

2
,
c

m3/2

)
.

For large m, these two binomial laws are, in turn, stochastically dominated by two Poisson
laws. More precisely, for large enough m,(

1 − 2

m
π(1 + 2ε)N∗

n 1{τ≥n}
)m/2

≥ exp(−π(1 + 3ε)N∗
n 1{τ≥n}),

(1 − cm−3/2)m/2 ≥ exp(−ε).
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Lemma A.2 yields that

N∗
n+1 1{τ≥n+1} 	 P (π(1 + 3ε)N∗

n 1{τ≥n})+ 2P (ε).

The point is that we have removed the variablem in the upper bound, so we are now in position to
compare N∗

n 1{τ≥n} with a Galton–Watson process. Let (Y ′
n)n≥1 be a sequence of i.i.d. random

variables with law P (π(1 + 3ε)), let (Y ′′
n )n≥1 be a sequence of i.i.d. random variables with law

P (ε), both sequences being independent. The previous stochastic inequality can be written as

N∗
n+1 1{τ≥n+1} 	

(N∗
n 1{τ≥n}∑
k≥1

Y ′
k

)
+ 2Y ′′

1 .

This implies further that

N∗
n+1 1{τ≥n+1} 	

N∗
n 1{τ≥n}∑
k≥1

(Y ′
k + 2Y ′′

k ). (3.1)

Let ν∗ be the law of Y ′
1 + 2Y ′′

1 and let (Z∗
n)n≥0 be a Galton–Watson process starting from

Z0 = 1 with reproduction law ν∗. We prove finally that, for large enough m, for all n ≥ 0,

N∗
n 1{τ≥n} 	 Z∗

n.

We suppose thatm is large enough so that the stochastic inequality (3.1) holds and we proceed
by induction on n. For n = 0, we have

N∗
0 1{τ≥0} = 1 ≤ Z∗

0 = 1.

Let n ≥ 0 and suppose that the inequality holds at rank n. Inequality (3.1) yields

N∗
n+1 1{τ≥n+1} 	

N∗
n 1{τ≥n}∑
k≥1

(Y ′
k + 2Y ′′

k ) 	
Z∗
n∑

k≥1

(Y ′
k + 2Y ′′

k ) = Z∗
n+1.

Thus, the inequality holds at rank n+ 1 and the induction is completed. Moreover, we have

E(ν∗) = E(Y ′
1 + 2Y ′′

1 ) = π(1 + 5ε) < 1.

Thus, the Galton–Watson process (Z∗
n)n≥0 is subcritical.

We now complete the proof of Theorem 2.1. Let κ, c1 > 0 be constants associated to the
Galton–Watson process (Zn)n≥0 as in Proposition A.1. We suppose that κ < 1

5 , so that we
can use the estimate of Lemma 3.1. Let c > 0 be a constant associated to the subcritical
Galton–Watson process (Z∗

n)n≥0 as in Lemma A.5. We have

P(τ0 > κ lnm) ≤ P(τ0 > κ lnm, τ < κ lnm)+ P(N∗�κ lnm� > 0, τ ≥ κ lnm)

≤ P(τ1 < κ lnm)+ P(τ2 < κ lnm)+ P(Z∗�κ lnm� > 0)

≤ 1

mc1
+ 1 − exp(−m exp(−m1/4))+ exp(−c∗�κ lnm�).

This inequality yields the estimate stated in Theorem 2.1.
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4. The quasispecies regime

In this section we will prove Theorem 2.2. We start the genetic algorithm with an initial
population whose maximal fitness is equal to f ∗

0 and whose mean fitness is equal to f̄0. For
a population x = (x(1), . . . , x(m)), we define N(x, f ∗

0 ) as the number of chromosomes in x
whose fitness is larger than or equal to f ∗

0 , i.e.

N(x, f ∗
0 ) = card{i ∈ {1, . . . , m} : f (x(i)) ≥ f ∗

0 }.
We denote byXn the population at generation n and byXn(1), . . . , Xn(m) them chromosomes
of Xn. We define a stopping time τ̄ by

τ̄ = inf

{
n ≥ 1 : 1

m
(f (Xn(1))+ · · · + f (Xn(m))) ≥ √

πf̄0

}
.

Our goal is to control the time τ̄ , more precisely we would like to prove that τ̄ is less than
κ lnm with high probability. Unfortunately, the process (N(Xn, f ∗

0 ))n≥0 is very complicated,
it is not even a Markov process. Our strategy is to construct an auxiliary Markov chain which
is considerably simpler and which bounds (N(Xn, f ∗

0 ))n≥0 from below until time τ̄ . The
production of chromosomes with fitness larger than or equal to f ∗

0 from one generation to the
next can be decomposed into two distinct mechanisms:

• chromosomes which are an exact copy of one of their parents;

• chromosomes which have undergone mutation or crossover events.

We will bound from below the process (N(Xn, f ∗
0 ))n≥0 by neglecting the second mechanism.

The key point is that the law of the number of chromosomes created in generation n+1 through
the first mechanism depends only on the value N(Xn, f ∗

0 ) and not on the detailed composition
of the population at time n. Therefore, we are able to obtain a lower process which is a Markov
chain. We denote this process by (Nn)n≥0. We proceed next to its precise definition. Suppose
that in generation n, we have i chromosomes of fitness larger than or equal to f ∗

0 , and that the
mean fitness is still below

√
πf̄0, that is, we condition on the event N(Xn, f ∗

0 ) = i and τ̄ > n.
Let us look at the first pair of chromosomes of generation n+ 1. The probability to select from
generation n a chromosome of fitness larger than or equal to f ∗

0 is at least if ∗
0 /(m

√
π f̄0). The

probability that no crossover has occurred is 1 − pC. The probability that no mutation has
occurred on a given chromosome is (1 −pM)

�. Thus, the probability that the first chromosome
of generation n+1 is an exact copy of a chromosome of generation n having fitness larger than
or equal to f ∗

0 is at least
if ∗

0

m
√
πf̄0

(1 − pC)(1 − pM)
�.

However, the crossover creates correlations between adjacent chromosomes, so the distribution
ofNn+1 cannot be taken simply as a binomial law. Conditionally on the event thatN(Xn, f ∗

0 ) =
i and τ̄ > n, a correct lower bound on N(Xn+1, f

∗
0 ) is given by the sum

m/2∑
k=0

Zk(Y2k−1 + Y2k),

where Z1, . . . , Zm/2 are Bernoulli with parameter 1 − pC, and Y1, . . . , Ym are Bernoulli with
parameter

εm(i) = if ∗
0

m
√
πf̄0

(1 − pM)
�
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and they are all independent. The variable Zk is 1 if there was no crossover between the
chromosomes of the kth pair and 0 otherwise. The variable Yk is 1 if the kth chromosome
selected has fitness larger than or equal to f ∗

0 and it is not affected by any mutation. We obtain
that, for j ∈ {0, . . . , m},

P(N(Xn+1, f
∗
0 ) ≥ j | N(Xn, f ∗

0 ) = i, τ̄ > n) ≥ P

(m/2∑
k=0

Zk(Y2k−1 + Y2k) ≥ j

)
.

We compute the right-hand side and we are led to define the transition matrix of the Markov
chain (Nn)n≥0 by setting, for i, j ∈ {0, . . . , m},

P(Nn+1 = j | Nn = i) =
m/2∑
b=0

(
m/2
b

)
(1 − pC)

bp
m/2−b
C

(
2b
j

)
εm(i)

j (1 − εm(i))
2b−j .

The above inequality can then be written as, for i, j ∈ {0, . . . , m},
P(N(Xn+1, f

∗
0 ) ≥ j | N(Xn, f ∗

0 ) = i, τ̄ > n) ≥ P(Nn+1 ≥ j | Nn = i).

From Lemma A.1, this implies furthermore that, for any nondecreasing function φ : N → R,
for i ∈ {0, . . . , m},

E(φ(N(Xn+1, f
∗
0 )) | N(Xn, f ∗

0 ) = i, τ̄ > n) ≥ E(φ(Nn+1) | Nn = i). (4.1)

Let us focus a bit on the Markov chain (Nn)n≥0. Its state space is {0, . . . , m}. The null state is
an absorbing state because we neglect the mutations for producing chromosomes of fitness at
least f ∗

0 . A key point to exploit inequality (4.1) is the following result.

Proposition 4.1. The Markov chain (Nn)n≥0 is monotone.

Proof. The definition of monotone Markov chain is recalled in Appendix A (see Defini-
tion A.1). The easiest way to prove the monotonicity is to build an adequate coupling. For
n ∈ N and k ≤ m/2, let Znk be a Bernoulli random variable with parameter 1 − pC and
Un2k−1, U

n
2k be two random variables whose distribution is uniform over [0, 1]. We suppose that

all the above random variables are independent. For i ∈ {0, . . . , m}, we defineNi
0 = i and, for

all n ≥ 0,

Ni
n+1 =

m/2∑
k=0

Znk (1{Un2k−1<εm(Nn)} + 1{Un2k<εm(Nn)}).

This way all the chains (Nn)n≥0, i ∈ {0, . . . , m}, are coupled and a straightforward induction
yields that, for all i ≤ j , n ∈ N,

Ni
n ≤ N

j
n .

This yields the desired conclusion. �
We are interested in the process (N(Xn, f ∗

0 ))n≥0 until time τ̄ . In order to prove a convenient
stochastic inequality, we will work with the process (N∗

n )n≥0 defined by, for all n ≥ 0,

N∗
n =

{
N(Xn, f

∗
0 ) if τ̄ > n,

m if τ̄ ≤ n.
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Proposition 4.2. We suppose that the Markov chain (Nn)n∈N starts from N0 = 1. For any
n ≥ 0, we have the stochastic inequality

(N∗
0 , . . . , N

∗
n ) 
 (N0, . . . , Nn).

For the above statement, we work with the product order on N
n+1, i.e.

(i0, . . . , in) ≥ (j0, . . . , jn) ⇐⇒ i0 ≥ j0, . . . , in ≥ jn.

The stochastic domination inequality stated in Proposition 4.2 means that, for any nondecreasing
function φ : N

n+1 → R
+, we have

E(φ(N∗
0 , . . . , N

∗
n )) ≥ E(φ(N0, . . . , Nn)).

Proof of Proposition 2. We proceed by induction on n. For n = 0, we have

N∗
0 = N(X0, f

∗
0 ) ≥ 1 = N0.

Suppose that the result has been proved until rank n for some n ≥ 0. Let φ : N
n+2 → R

+ be a
nondecreasing function. We write

E(φ(N∗
0 , . . . , N

∗
n+1)) =

∑
0≤i0,...,in≤m

P(N∗
0 = i0, . . . , N

∗
n = in)

× E(φ(N∗
0 , . . . , N

∗
n+1) | N∗

0 = i0, . . . , N
∗
n = in).

Let i0, . . . , in be fixed. Suppose first that in < m. The event {N∗
n = in} implies that τ̄ > n and

N∗
n = N(Xn, f

∗
0 ). The map

i ∈ {0, . . . , m} �→ φ(i0, . . . , in, i)

is nondecreasing. Using the stochastic inequality (4.1), we obtain

E(φ(N∗
0 , . . . , N

∗
n+1) | N∗

0 = i0, . . . , N
∗
n = in)

= E(φ(i0, . . . , in, N(Xn+1, f
∗
0 )) | N(X0, f

∗
0 ) = i0, . . . , N(Xn, f

∗
0 ) = in)

≥ E(φ(i0, . . . , in, Nn+1) | Nn = in).

Let us define a function ψ : N
n+1 → R

+ by setting

ψ(i0, . . . , in) = E(φ(i0, . . . , in, Nn+1) | Nn = in).

If in = m then we also have

E(φ(N∗
0 , . . . , N

∗
n+1) | N∗

0 = i0, . . . , N
∗
n = in) = φ(i0, . . . , in−1,m,m) ≥ ψ(i0, . . . , in).

From the previous inequalities, we conclude that

E(φ(N∗
0 , . . . , N

∗
n+1))

≥
∑

0≤i0,...,in≤m
P(N∗

0 = i0, . . . , N
∗
n = in)ψ(i0, . . . , in) = E(ψ(N∗

0 , . . . N
∗
n )).
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Since the functionφ is nondecreasing on N
n+2 and since the Markov chain (Nn)n≥0 is monotone

(by Proposition 4.1), then the function ψ is also nondecreasing on N
n+1. Now, the induction

hypothesis yields that

E(ψ(N∗
0 , . . . , N

∗
n )) ≥ E(ψ(N0, . . . , Nn)) = E(φ(N0, . . . , Nn,Nn+1))

and the induction step is completed.
If N(Xn, f ∗

0 ) > m/
√
π then necessarily

1

m
(f (Xn(1))+ · · · + f (Xn(m))) >

1√
π
f ∗

0 ≥ √
πf̄0

and, thus, τ̄ < n. The above coupling inequality therefore implies that

P(τ̄ < n) ≥ P

(
there exists k ≤ n, N(Xk, f

∗
0 ) >

m√
π

)
≥ P

(
there exists k ≤ n, Nk >

m√
π

)
.

We study next the dynamics of the Markov chain (Nn)n≥0 on {0, . . . , m}. Our goal is to prove
that, for some κ > 0, with a probability larger than a constant independent of m, this Markov
chain will reach a value strictly larger than m/

√
π before time κ lnm. Let us explain briefly

the heuristics for this result. The transition mechanism of the chain is built with the help of
i.i.d. Bernoulli random variables, some of parameter 1 − pC and some of parameter εm(i),
i ∈ {0, . . . , m}. The typical number of pairs of chromosomes with no crossover from one
generation to another is (1 − pC)m/2 and we can control accurately the deviations from this
typical value. For i small compared to m, the parameter εm(i) is of the order of a constant
multiplied by i/m, thus, conditionally on the event that Nn = i, the distribution of Nn+1 is
roughly the binomial law of parameters m(1 − pC) and a constant multiplied by i/m. In this
regime, it can be approximated adequately by a Poisson law of parameter

m(1 − pC)εm(i) ∼ i
√
π.

We conclude that, as long as Nn is small compared to m, we have

E(Nn+1) ∼ √
π E(Nn).

In the next proposition we derive a rigorous estimate, which indeed shows that the Markov
chain (Nn)n≥0 is likely to grow geometrically until a value larger than m/

√
π . The proof is

elementary, in the sense that it relies essentially on two classical exponential inequalities (which
are recalled in Appendix A). This proof is an adaptation of the proof of Proposition 6.7 in [2].
In Proposition 4.4 we shall then bound from below the probability of hitting a value larger than
m/

√
π before time κ lnm and this will conclude the proof of Theorem 2.2.

Proposition 4.3. Let π > 1 be fixed. There exist ρ > 1, c0 > 0, m0 ≥ 1, which depend
on π and the ratio f ∗

0 /f̄0 only, such that, for any set of parameters �, pC, pM satisfying
π = (f ∗

0 /f̄0)(1 − pC)(1 − pM)
�, we have, for all m ≥ m0, i ≤ m/

√
π ,

P(Nn+1 ≤ ρi | Nn = i) ≤ exp(−c0i).
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Proof. We recall that, conditionally on Nn = i, the law of Nn+1 is the same as the law of
the random variable

2Bn∑
k=1

Y ik ,

whereBn is distributed according to the binomial law B(m/2, 1−pC), the variables Y ik , k ∈ N,
i ∈ {1, . . . , m}, are Bernoulli random variables with parameter εm(i), and all these random
variables are independent. Let ε > 0 be such that

√
π(1 − 2ε) > 1 and let

l(m, ε) =
⌊
m

2
(1 − pC)(1 − ε)

⌋
+ 1 + m

4
(1 − pC)ε.

For large enough m, we have

l(m, ε) <
m

2
(1 − pC)

(
1 − ε

2

)
+ 1 <

m

2
(1 − pC).

Let ρ be such that 1 < ρ <
√
π(1 − 2ε). We have

P(Nn+1 < ρi | Nn = i ) = P

(2Bn∑
k=1

Y ik < ρi

)

≤ P(Bn ≤ l(m, ε))+ P

(2l(m,ε)∑
k=1

Y ik < ρi

)
.

We control the first probability with the help of Hoeffding’s inequality (see Appendix A). The
expected value of Bn is m(1 − pC)/2 > l(m, ε), thus,

P(Bn ≤ l(m, ε)) ≤ exp

(
− 2

m

(
m

2
(1 − pC)− l(m, ε)

)2)
.

Recall that 1 − pC > f̄0/f
∗
0 . For large enough m, we have

m

2
(1 − pC)− l(m, ε) ≥ m

2
(1 − pC)

ε

2
− 1 ≥ mε

4

f̄0

f ∗
0

− 1 ≥ mε

8

f̄0

f ∗
0
.

It follows that, for large enough m,

P(Bn ≤ l(m, ε)) ≤ exp

(
−m

32

(
εf̄0

f ∗
0

)2)
.

Let us try to also apply Hoeffding’s inequality to control the second probability. We obtain

P

(2l(m,ε)∑
k=1

Y ik < ρi

)
≤ exp

(
− 1

l(m, ε)
(2l(m, ε)εm(i)− ρi)2

)
.

Now

2l(m, ε)εm(i) ≥ 2
m

2
(1 − pC)(1 − ε)

if ∗
0

m
√
π f̄0

(1 − pM)
� = (1 − ε)i

√
π,
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whence, using the hypothesis on ρ,

P

(2l(m,ε)∑
k=1

Y ik < ρi

)
≤ exp

(
−πε

2i2

m

)
.

This inequality becomes useful only when i is of the order δm for some δ > 0. For smaller
values of i, we must proceed differently in order to control this probability. Thus, we decompose
the sum into i blocks and we use the Chebyshev exponential inequality. Each block follows a
binomial law, and we bound the Cramér transform of each block by the Cramér transform of a
Poisson law having the same mean. More precisely, we choose for the block size

b =
⌊

2l(m, ε)− (m/4)(1 − pC)ε

i
+ 1

⌋
,

and we define the sum associated to each block of size b as, for all j ∈ {1, . . . , i},

Y ′
j =

bj∑
k=b(j−1)+1

Y ik .

Note that Y ′
1 follows the binomial law with parameters b and εm(i). We will next estimate from

below the product bεm(i). By the choice of b and l, we have

b ≥ 1

i

(
2l(m, ε)− m

4
(1 − pC)ε

)
, l(m, ε) ≥ m

2
(1 − pC)

(
1 − ε

2

)
,

whence

b ≥ m

i
(1 − pC)(1 − ε) and E(Y ′

1) = bεm(i) ≥ √
π(1 − ε) > ρ.

Let δ0 > 0 be such that δ0 < (1 − pC)ε/4. Suppose that i ≤ δ0m. We also have

bi ≤ 2l(m, ε)− m

4
(1 − pC)ε + i ≤ 2l(m, ε)− m

4
(1 − pC)ε + δ0m ≤ 2l(m, ε).

Using the Chebyshev exponential inequality (see Appendix A), we have

P

(2l(m,ε)∑
k=1

Y ik ≤ ρi

)
≤ P

( bi∑
k=1

Y ik ≤ ρi

)

≤ P

( i∑
j=1

Y ′
j ≤ ρi

)

≤ P

( i∑
j=1

−Y ′
j ≥ −ρi

)
≤ exp(−i�∗

−Y ′
1
(−ρ)),

where�∗
−Y ′

1
is the Cramér transform of −Y ′

1. Let Y ′′
1 be a random variable following the Poisson

law of parameter bεm(i). We use Lemma A.4 to compare the Cramér transforms of −Y ′
1 and

−Y ′′
1 . We have

�∗
−Y ′

1
(−ρ) ≥ �∗

−Y ′′
1
(−ρ) = ρ ln

(
ρ

bεm(i)

)
− ρ + bεm(i).
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The map

λ �→ ρ ln

(
ρ

λ

)
− ρ + λ

is nondecreasing on [ρ,+∞], and bεm(i) ≥ √
π(1 − ε), thus,

�∗
−Y ′′

1
(−ρ) ≥ ρ ln

(
ρ√

π(1 − ε)

)
− ρ + √

π(1 − ε).

Let us denote by c0 the right-hand quantity. Then c0 is positive and it depends only on ρ, π ,
f ∗

0 /f̄0, and ε. Finally, we have, for large enough m, for all i ∈ {1, . . . , �δ0m�},

P

(2l(m,ε)∑
k=1

Y ik ≤ ρi

)
≤ exp(−c0i),

whence

P(Nn+1 ≤ ρi | Nn = i ) ≤ exp

(
−m

32

(
εf̄0

f ∗
0

)2)
+ exp(−c0i).

For i such that δ0m ≤ i < m/
√
π , we had obtained

P(Nn+1 ≤ ρi | Nn = i) ≤ exp

(
−m

32

(
εf̄0

f ∗
0

)2)
+ exp(−πε2δ2

0m).

Let η ∈ (0, 1) be small enough so that ηc0 ≤ πε2δ2
0 and, for large enough m,

exp

(
−m

32

(
εf̄0

f ∗
0

)2)
≤ exp

(
−ηmc0

2

)(
1 − exp

(
−ηc0

2

))
.

For large enough m and i ∈ {1, . . . , �δ0m�}, we have

P(Nn+1 ≤ ρi | Nn = i) ≤ exp

(
−η ic0

2

)(
1 − exp

(
−ηc0

2

))
+ exp(−ηic0)

≤ exp

(
−η ic0

2

)
.

For large enough m and δ0m ≤ i < m/
√
π , we also have

P(Nn+1 ≤ ρi | Nn = i) ≤ exp

(
−ηmc0

2

)(
1 − exp

(
−ηc0

2

))
+ exp(−ηmc0)

≤ exp

(
−η ic0

2

)
.

These inequalities yield the claim of the proposition. �
We define τ ∗ = inf{n ≥ 0 : Nn ≥ m/

√
π}.

Proposition 4.4. Let π > 1 be fixed. There exist κ > 0 and p∗ > 0, which depend on π and
the ratio f ∗

0 /f̄0 only, such that, for all m ≥ 1,

P(τ ∗ ≤ κ lnm | N0 = 1) ≥ p∗.
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Proof. Let us define
τ0 = inf{n ≥ 1 : Nn = 0}.

Recall that 0 is an absorbing state. Thus, if the hitting time of m is finite then, necessarily, it is
smaller than the hitting time of 0. It follows that

P(τ ∗ ≤ κ lnm | N0 = 1) = P(τ ∗ ≤ κ lnm, τ ∗ < τ0 | N0 = 1).

It is annoying to work with a Markov chain which has an absorbing state, so we first eliminate
this problem. We consider the modified Markov chain (Ñn)n≥0 which has the same transition
probabilities as (Nn)n≥0, except that we set the transition probability from 0 to 1 to be 1. The
event we wish to estimate has the same probability for both processes, because they have the
same dynamics outside of 0. So, from now onwards, we work with the Markov chain (Ñn)n≥0,
which is irreducible. Let ρ > 1, c0 > 0, andm0 ≥ 1 be as given in Proposition 4.3. For k ≥ 0,
let Tk be the first time the process (Ñn)n≥0 hits k, i.e.

Tk = inf{n ≥ 0 : Ñn = k}.
Let E be the event

E =
{

for all k <
m√
π
, ÑTk+1 ≥ ρk

}
.

We claim that, on the event E , we have, for all n ≤ τ ∗,

Ñn+1 ≥ ρÑn.

Let us prove this inequality by induction on n. We have T1 = 0 and Ñ1 > ρÑ0, so that the
inequality is true for n = 0. Suppose that the inequality has been proved until rank n < τ ∗, so
that, for all k ≤ n,

Ñk+1 ≥ ρÑk.

This implies, in particular, that

Ñ0 < Ñ1 < · · · < Ñn <
m√
π
.

Suppose that Ñn = i. The above inequalities imply that Ti = n and ÑTi+1 = Ñn+1 ≥ ρÑn,

so that the inequality still holds at rank n+ 1. Iterating the inequality until time τ ∗ − 1, we see
that Ñτ∗−1 ≥ ρτ

∗−1. Moreover, Ñτ∗−1 ≤ m/
√
π , thus,

τ ∗ ≤ 1 + lnm

ln ρ
.

Let m1 ≥ 1 and κ > 0 be such that, for all m ≥ m1,

1 + lnm

ln ρ
≤ κ lnm.

The constants m1 and κ depend only on ρ, and we have

P(τ ∗ ≤ κ lnm, τ ∗ < τ0 | Ñ0 = 1) ≥ P(E).

We shall use the following lemma to bound P(E) from below. To avoid indices that are too
small, we write T (i) instead of Ti .
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Lemma 4.1. Let k ∈ {1, . . . , m} and let i1, . . . , ik be k distinct points of {1, . . . , m}. The
random variables ÑTi1+1, . . . , ÑTik+1 are independent.

Proof. We prove this by induction over k. For k = 1, there is nothing to prove. Let k ≥ 2
and suppose that the result has been proved until rank k − 1. Let i1, . . . , ik be k distinct points
of {1, . . . , m}. Let j1, . . . , jk be k points of {1, . . . , m}. Let us set

T = min{T (il) : 1 ≤ l ≤ k }.
We denote by (p(i, j))0≤i,j≤m the transition matrix of the Markov chain (Ñn)n≥0. Using the
Markov property, we have

P(ÑT (i1)+1 = j1, . . . , ÑT (ik)+1 = jk)

=
∑

1≤l≤k
P(ÑT (i1)+1 = j1, . . . , ÑT (ik)+1 = jk, T = T (il))

=
∑

1≤l≤k
P(ÑT (i1)+1 = j1, . . . , ÑT (ik)+1 = jk | T = T (il))P(T = T (il))

=
∑

1≤l≤k
P(for all h �= l, ÑT (ih)+1 = jh, Ñ1 = jl | Ñ0 = il)P(T = T (il))

=
∑

1≤l≤k
p(il, jl)P(for all h �= l, ÑT (ih)+1 = jh | Ñ0 = jl)P(T = T (il)).

We use the induction hypothesis

P(for all h �= l, ÑT (ih)+1 = jh | Ñ0 = jl) =
∏
h�=l

p(ih, jh).

Reporting in the sum, we obtain

P(ÑT (i1)+1 = j1, . . . , ÑT (ik)+1 = jk) =
∑

1≤l≤k

∏
1≤h≤k

p(ih, jh)P(T = T (il))

=
∏

1≤h≤k
p(ih, jh).

This completes the induction step and the proof. �
We return to the proof of Proposition 4.4. Using Lemma 4.1 and Proposition 4.3, we obtain,

for m larger than m0 and m1,

P(E) ≥
∏

1≤k≤m
P(ÑTk+1 ≥ ρk)

=
∏

1≤k≤m
(1 − P(N1 < ρk | N0 = k))

≥
∏

1≤k≤m
(1 − exp(−c0k))

≥
∞∏
k=1

(1 − exp(−c0k)).
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The last infinite product is converging. Let us denote its value by p1. Let also

p2 = min {P(τ ∗ ≤ κ lnm | N0 = 1) : m ≤ max(m0,m1)}.
The value p2 is positive and the stated inequality holds with p∗ = min(p1, p2). �

Appendix A

Monotonicity. We first recall some standard definitions concerning monotonicity and cou-
pling for stochastic processes. A classical reference is [8], especially for applications to particle
systems. In the next two definitions we consider a discrete-time Markov chain (Xn)n≥0 with
values in a space E . We suppose that the state space E is finite and that it is equipped with a
partial order ≤. A function f : E → R is nondecreasing if, for all x, y ∈ E ,

x ≤ y �⇒ f (x) ≤ f (y).

Definition A.1. The Markov chain (Xn)n≥0 is said to be monotone if, for any nondecreasing
function f , the function

x ∈ E �→ E(f (Xn) | X0 = x)

is nondecreasing.

A natural way to prove monotonicity is to construct an adequate coupling. A coupling for
the Markov chain (Xn)n≥0 is a family of processes (Xxn)n≥0 indexed by x ∈ E , which are all
defined on the same probability space, and such that, for x ∈ E , the process (Xxn)n≥0 is the
Markov chain (Xn)n≥0 starting fromX0 = x. The coupling is said to be monotone if, for all x,
y ∈ E ,

x ≤ y ⇒ for all n ≥ 1, Xxn ≤ X
y
n.

If there exists a monotone coupling then the Markov chain is monotone.

Stochastic domination. Let μ and ν be two probability measures on R. We say that ν
stochastically dominates μ, which we denote by μ 	 ν, if for any nondecreasing positive
function f , we have μ(f ) ≤ ν(f ).

Lemma A.1. If μ and ν are two probability measures on N then μ is stochastically dominated
by ν if and only if, for all i ∈ N,

μ([i,+∞)) ≤ ν([i,+∞)).

Proof. Let f : N → R
+ be a nondecreasing function. We compute

μ(f ) =
∑
i≥0

μ(i)f (i)

=
∑
i≥0

(μ([i,+∞))− μ([i + 1,+∞)))f (i)

= f (0)+
∑
i≥1

μ([i,+∞))(f (i)− f (i − 1)).

Under the above hypothesis, we conclude that indeed μ(f ) ≤ ν(f ). �
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Lemma A.2. Let n ≥ 1, p ∈ [0, 1], λ > 0 be such that (1 − p)n ≥ exp(−λ). Then the
binomial law B(n, p) of parameters n and p is stochastically dominated by the Poisson law
P (λ) of parameter λ.

Proof. Let X1, . . . , Xn be independent random variables with common law being Poisson
of parameter −ln(1−p). Let Y be a further random variable, independent ofX1, . . . , Xn, with
law being Poisson of parameter λ− n ln(1 − p). Obviously, we have

Y +X1 + · · · +Xn ≥ min(X1, 1)+ · · · + min(Xn, 1).

Moreover, the law of the left-hand side is the Poisson law of parameter λ, while the law of the
right-hand side is the binomial law B(n, p). �

Lemma A.3. Let λ > 0 and let Y be a random variable with law being Poisson P (λ) of
parameter λ. For any t ≥ λ, we have

P(Y ≥ t) ≤
(
λe

t

)t
.

Proof. We write

P(Y ≥ t) =
∑
k≥t

λk

k! exp(−λ)

=
∑
k≥t

λk−t

k! exp(−λ)λt

≤
∑
k≥t

t k−t

k! exp(−λ)λt

≤
(
λe

t

)t
. �

Let Y be a random variable following the Poisson law P (λ). For any t ∈ R, we have

�Y (t) = ln E(exp(tY )) = ln

( ∞∑
k=0

λk

k! exp(−λ+ kt)

)
= λ(exp(t)− 1).

For any α, t ∈ R,

�αY (t) = �Y (αt) = λ(exp(αt)− 1).

Let us compute the Fenchel–Legendre transform �∗
αY . By definition, for x ∈ R,

�∗
αY (x) = sup

t∈R

(tx − λ(exp(αt)− 1)).

The maximum is attained at t = (1/α) ln(x/(λα)); hence,

�∗
αY (x) = x

α
ln

(
x

λα

)
− x

α
+ λ.
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Lemma A.4. Let p ∈ [0, 1] and let n ≥ 1. LetX be a random variable following the binomial
law B(n, p). Let Y be a random variable following the Poisson law P (np). For any α ∈ R,
we have �∗

αX ≥ �∗
αY .

Proof. For any t ∈ R, we have

�X(t) = ln E(exp(tX)) = n ln(1 − p + p exp(t)) ≤ np(exp(t)− 1).

For any α, t ∈ R,
�αX(t) = �X(αt) ≤ np(exp(αt)− 1).

We recall that, if Y is distributed according to the Poisson law of parameter λ, then, for all
t ∈ R,

�Y (t) = λ(exp(t)− 1).

Thus, taking λ = np, we conclude that, for all t ∈ R,

�αX(t) ≤ �αY (t).

Taking the Fenchel–Legendre transform, we obtain, for all x ∈ R,

�∗
αX(x) ≥ �∗

αY (x),

as required. �

Hoeffding’s inequality. We state Hoeffding’s inequality for Bernoulli random variables [6].
Suppose thatX is a random variable with law being binomial B(n, p). We have, for all t < np,

P(X < t) ≤ exp

(
−2

n
(np − t)2

)
.

Chebyshev’s exponential inequality. LetX1, . . . , Xn be i.i.d. random variables with common
law μ. Let � be the log-Laplace of μ, defined by, for all t ∈ R,

�(t) = ln

(∫
R

exp(ts) dμ(s)

)
.

Let �∗ be the Cramér transform of μ, defined by, for all x ∈ R,

�∗(x) = sup
t∈R

(tx −�(t)).

We suppose that μ is integrable and we denote by m its mean, i.e. m = ∫
R
x dμ(x). We then

have (see, for instance, [3]), for all x ≥ m,

P

(
1

n
(X1 + · · · +Xn) ≥ x

)
≤ exp(−n�∗(x)).

Let Y be a random variable following the Poisson law P (λ). For any t ∈ R, we have

�Y (t) = ln E(exp(tY )) = ln

( ∞∑
k=0

λk

k! exp(−λ+ kt)

)
= λ(exp(t)− 1).
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For any α, t ∈ R,
�αY (t) = �Y (αt) = λ(exp(αt)− 1).

Let us compute the Fenchel–Legendre transform �∗
αY . By definition, for x ∈ R,

�∗
αY (x) = sup

t∈R

(tx − λ(exp(αt)− 1)).

The maximum is attained at t = (1/α) ln(x/(λα)), hence,

�∗
αY (x) = x

α
ln

(
x

λα

)
− x

α
+ λ.

Galton–Watson processes. Let ν be a probability distribution on the nonnegative integers.
Let (Yn)n∈N be a sequence of i.i.d. random variables distributed according to ν. The Galton–
Watson process with reproduction law ν is the sequence of random variables (Zn)n∈N defined
by Z0 = 1 and, for all n ∈ N,

Zn+1 =
Zn∑
k=1

Yk.

It is said to be subcritical if E(ν) < 1 and supercritical if E(ν) > 1. The following estimates
are classical (see, for instance, [1]).

Lemma A.5. Let (Zn)n∈N be a subcritical Galton–Watson process. There exists a positive
constant c, which depends only on the law ν, such that, for all n ≥ 1,

P(Zn > 0) ≤ exp(−cn).
Proposition A.1. Let (Zn)n∈N be a supercritical Galton–Watson process such that E(ν) is
finite. Let

τ1 = inf{n ≥ 1 : Zn > n1/4}.
There exist κ > 0, c1 > 0, n1 ≥ 1, such that, for all n ≥ n1,

P(τ1 < κ ln n) ≤ 1

nc1
.

Proof. We have, for k ≥ 0,

P(τ1 = k) ≤ P(τ1 ≥ k, Zk > n1/4)

≤ P(Zk > n1/4)

≤ n−1/4
E(Zk)

≤ n−1/4(E(ν))k.

We sum this inequality. For n ≥ 1,

P(τ1 < n) ≤ n−1/4
n−1∑
k=0

(E(ν))k = n−1/4 (E(ν))
n − 1

E(ν)− 1
.

We choose κ positive and sufficiently small, we apply this inequality with κ ln n instead of n
and we obtain the desired conclusion. �
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