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INITIAL SEGMENTS OF THE Σ02 ENUMERATION DEGREES

HRISTO GANCHEV AND ANDREA SORBI

Abstract. Using properties ofK-pairs of sets, we show that every nonzero enumeration degree a bounds
a nontrivial initial segment of enumeration degrees whose nonzero elements have all the same jump as a.
Some consequences of this fact are derived, that hold in the local structure of the enumeration degrees,
including: There is an initial segment of enumeration degrees, whose nonzero elements are all high; there
is a nonsplitting high enumeration degree; every noncappable enumeration degree is high; every nonzero
low enumeration degree can be capped by degrees of any possible local jump (i.e., any jump that can be
realized by enumeration degrees of the local structure); every enumeration degree that bounds a nonzero
element of strictly smaller jump, is bounding; every low enumeration degree below a non low enumeration
degree a can be capped below a.

§1. Introduction. Turing reducibility formalizes the notion of relative com-
putability of sets, for which, given sets A and B of numbers, A is computable
relatively toB if there is an algorithm by means of which any decision procedure for
B can be transformed into some decision procedure forA. Enumeration reducibility
is, in turn, a formalization of the idea of relative enumerability of sets:A is enumer-
able relatively to B if there is an algorithm that transforms any enumeration of B
into some enumeration ofA. Following [12], this intuitive notion is made precise by
definingA to be enumeration reducible to B (or, simply,A e-reducible toB, notation:
A ≤e B) if there is a computably enumerable (or, simply, c.e.) set Φ, such that

A = {x : (∃u)[〈x, u〉 ∈ Φ&Du ⊆ B]}
(Du is the finite set with canonical index u). We usually write in this caseA = Φ(B):
thus, every c.e. set defines in this way what is called an enumeration operator
(or, simply, e-operator), i.e., a mapping Φ, from sets of numbers to sets of num-
bers, taking a set B to the set Φ(B). Enumeration reducibility gives rise in the usual
way to a degree structureDe , a poset whose elements are called enumeration degrees
(or, simply, e-degrees): we use the symbol ≤ to denote the partial ordering relation
on the e-degrees, whereas the symbol≤e is reserved for e-reducibility on sets of num-
bers; the equivalence relation induced by ≤e will be denoted by ≡e . The poset De
turns out to be an upper semilattice with least element 0e , consisting of the c.e. sets.
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On De , one can define a jump operation ′, which maps any e-degree a to a strictly
bigger e-degree a′. Interest in enumeration reducibility is motivated by the fact that
the e-degrees provide a wider context for the Turing degrees: the mapping sending
the Turing degree of a set A to the e-degree of the characteristic function of A
(or equivalently, to the e-degree of A ⊕ A, where A denotes the complement of A,
and ⊕ is the usual operation of disjoint union of sets of numbers), is an embed-
ding of upper semilattices, preserving the least element and the jump operation.
Recent developments have shown that, under this embedding, the Turing degrees
are first order definable in De (Cai, Ganchev, Lempp, Miller, and Soskova [3]), and
the Turing degress below the first Turing jump are first order definable in the local
structure Ge , i.e., the poset of the e-degrees below the first e-jump 0′e (Ganchev and
Soskova [16]). The proofs of these results use the so-called Kalimullin pairs
(K-pairs), introduced by Kalimullin [20].
Definition 1.1. A pair of sets {A,B} is a K-pair of sets if there is a c.e. setW ,
such that A × B ⊆ W and A × B ⊆ W . Moreover if both A and B are not
c.e. we shall say that theK-pair is nontrivial. A pair of e-degrees {a, b} is aK-pair of
e-degrees, if there are setsA ∈ a andB ∈ b, such that {A,B} is aK-pair; theK-pair
{a, b} is nontrivial if the K-pair {A,B} of sets is nontrivial.
K-pairs of e-degrees are the first nontrivial example of a class of e-degrees
that is both arithmetically and degree-theoretically definable. Indeed, it turns out
(Kalimullin [20]) that {a, b} is a K-pair if and only if for every e-degree x,

x = (x ∨ a) ∧ (x ∨ b).
The simplicity of the degree-theoretic definition of K-pairs is not an isolated phe-
nomenon. In fact all degree-theoretic definitions involving K-pairs turn out to be
quite simple and understandable. For example, the degree-theoretic definition of
the jump, given by Kalimullin [20], says that the jump of an e-degree, say u, is the
least degree bounding a triple {a1, a2, a3}, such that each pair {ai , aj}, for i �= j,
is a nontrivial K-pair relative to u: in other words, u′ is the least e-degree bounding
a triple {a1, a2, a3}, such that ai , aj �≤ u and

∀x ≥ u(x = (x ∨ ai) ∧ (x ∨ aj)
)
,

for 1 ≤ i < j ≤ 3.
A further analysis by Ganchev and Soskova revealed a degree-theoretic definition
of the jump operation (on nonzero e-degrees), not requiring the relativisation of
the notion of K-pair. This definition relies on the following simple facts. Firstly, the
jump of an e-degree x is the biggest degree containing a set of the form A ⊕ A, for
which the e-degree a ofA satisfies a ≤ x. Secondly, for each nontrivialK-pair {a, b}
and every A ∈ a, the e-degree a of A satisfies b ≤ a. Finally, for every non c.e. set
X , with e-degree x, there is a K-pair {a, a}, for which a ≤ x and a ∨ a is the degree
of X ⊕ X . Thus the jump of a nonzero e-degree x is the biggest degree, which is the
least upper bound of a nontrivial K-pair {a, b}, such that a ≤ x.
Note that the second property used above yields that for every nontrivial K-pair

{a, a}, if A ∈ a and A ∈ a for some set A, then the pair {a, a} is maximal, i.e., for
every K-pair {b1, b2}, if a ≤ b1 and a ≤ b2, then a = b1 and a = b2. Now, this,
combined with the third property, yields that the images of the nonzero Turing
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degrees under the standard embedding of theTuring degreesDT inDe are least upper
bounds of nontrivial maximal K-pairs. On the other hand it turns out that the least
upper bounds of nontrivial K-pairs are images of Turing degrees (Cai, Ganchev,
Lempp,Miller, andSoskova [3], andGanchev and Soskova [16]), so that an e-degree
x is the image of a nonzero Turing degree under the standard embedding of DT in De
if and only if x = a ∨ a for some nontrivial maximal K-pair {a, a}.
Kalimullin pairs turn out to be very useful also in the context of the local structure

Ge of the e-degrees. Most of the literature on the subject of e-degrees is dedicated
to the investigation of Ge . A lot of results have been obtained so far, including but
not only: the degrees in Ge are exactly the e-degrees of the Σ02 sets (Cooper [5]);
the degrees in Ge are dense (Cooper [5]); there are noncuppable nonzero degrees
(Cooper, Sorbi, and Yi [10]); every nonzero degree containing a Δ02 set is cup-
pable (Cooper, Sorbi, and Yi [10]); there are noncappable degrees strictly below 0′e
(Cooper and Sorbi [9]); every finite lattice is embeddable preserving both 0 and 1
(Lempp and Sorbi [22]); a decidable necessary and sufficient condition for exten-
sion of embeddings of finite partial orders (Lempp, Slaman, and Sorbi [23]); every
nonzero degree bounds a nonsplitting degree (Kent and Sorbi [21]); 0′e is split-
table over every degree a < 0′e containing a Δ

0
2 set (Arslanov and Sorbi [1]); there

is a degree a < 0′e , such that 0′e is not splittable over a (Soskova [28]).
Typically these results are proven by very complex and sophisticated priority argu-
ments. They shed light on the structural properties of Ge , but nevertheless they do
not answer any natural question about the definability in Ge of arithmetically defin-
able classes of degrees, such as: the degrees containing Δ02 sets (usually referred
to as Δ02 e-degrees); the degree not containing Δ

0
2 sets (usually referred to as

properly Σ02 e-degrees); the degrees that do not bound any nonzero Δ
0
2 e-degree

(usually referred to as downwards properly Σ02 e-degrees); the degrees that are not
bounded by any Δ02 e-degree different from 0

′
e (usually referred to as upwards prop-

erly Σ02 e-degrees); the degrees whose n-th jump is equal to the n-th jump of 0e
(usually referred to as lown e-degrees; the low1 e-degrees are usually called low);
the degrees whose n-th jump is equal to the n + 1-st jump of 0e (usually referred to
as highn e-degrees; the high1 e-degrees are usually called high).
In this context, K-pairs once again play a very important role. K-pairs turn out
to be definable in Ge (Ganchev and Soskova [14]) by the very formula defining
them in the global structure of the e-degrees (Cai, Miller, Lempp, and Soskova [4]).
Thus, once again, K-pairs are the first example of an arithmetically definable class
of degrees which is first order definable in Ge . From the definability ofK-pairs in Ge
and the fact that the images of the Turing degrees under the standard embedding
of DT in De are exactly the least upper bounds of maximal K-pairs, it follows that
the class of the images of Turing degrees in Ge is definable in Ge .
Further, according to a result by Ganchev and Soskova [13], every nonzero Δ02
degree bounds a nontrivialK-pair, so that the downwards properly Σ02 e-degrees are
exactly the degrees that do not bound nontrivial K-pairs. On the other hand every
low e-degree does not bound any downwards properly Σ02 degree, whereas every non
low e-degree, which is the image of a Turing degree, bounds a downwards properly
Σ02 degree (Giorgi, Sorbi, and Yang [17]). Thus x ∈ Ge is the image of a low Turing
degree if and only if x is the least upper bound of a nontrivial maximal K-pair, and
further for every 0e < y < x, y bounds a nontrivialK-pair. Note that for the moment
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it is not known whether the class of low Turing degrees is definable in the local
structure of the Turing degrees. Thus the above definition is a clear evidence of the
advantages of considering the Turing degrees in the wider context of the e-degrees.
Finally let us mention that, using the structural properties of K-pairs, Ganchev
and Soskova [15] have managed to prove that true arithmetic is interpretable in Ge
and hence the first order theory of the upper semilattice Ge is as complex as possible.
This said, it is clear that Kalimullin pairs have turned out to be one of the most
powerful tools for studying the e-degrees, and their local structure.
In this paper, we use a simple theorem on K-pairs (Theorem 3.4), to derive as
straightforward and immediate corollaries, some new and somewhat unexpected
results on the local structure of the e-degrees, including: Theorem 4.1 (every level
of the high/low hierarchy of the local structure of the e-degrees contains an inter-
val of the form (0e, a], for some nonzero a ∈ Ge : in particular, with the exception
of the level of the low e-degrees, every such interval consists entirely of down-
wards properly Σ02 e-degrees); Corollary 4.2 (there is a nontrivial initial segment of
e-degrees,whose nonzero elements are all high);Corollary 4.3 (there is a nonsplitting
high e-degree); Corollary 4.4 (every noncappable e-degree is high); Corollary 4.8
(every e-degree that bounds a nonzero e-degree of strictly smaller jump, is bound-
ing; hence the nonzero degrees below a nonbonding degree have all the same jump
as the nonbonding e-degree itself). In other cases, we obtain new and very simple
proofs of nontrivial extensions of known results, whose original proofs were very
complicated and sometimes used complex priority arguments, including (references
to the original papers containing the results that have been extended are given in
the text): Corollary 4.9 (for every possible local jump, every low e-degree caps with
some e-degree having that jump); Corollary 4.11 (every low e-degree below a non
low a can be capped below a).

§2. Background. Our terminology and notations are standard. For an excellent
introduction to the e-degrees and their local structure, the reader is referred to
Cooper’s survey paper [6]. We only recall the definition of the jump operation, and
the basic properties of K-pairs of sets. More technical definitions are postponed to
Section 4, where and when are specifically needed.
For every set of numbers A let

EA = {e : e ∈ Φe(A)},
where {Φe : e ∈ �} is the standard listing of the e-operators, and define

A′ = EA ⊕ EA.
This allows us to introduce a well defined jump operation in the e-degrees, namely if
a is the e-degree ofA, then one defines a′ to be the e-degree ofA′. The local structure
Ge = {a : a ≤ 0′e} partitions, under ≡e , the Σ02 sets. The classes of highn and lown
e-degrees, with n ≥ 1, introduced in Section 1, form the so-called high/low hierarchy
of the e-degrees in the local structure, which parallels the much studied high/low
hierarchy in the Turing degrees, see e.g. Cooper’s textbook [7, Definition 12.1.1].
A left-open interval of e-degrees is a set of the form (a, b] = {c ∈ De : a < c ≤ b};
an initial segment I of e-degrees is nontrivial if I �= ∅, and I �= {0e}.
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2.1. Properties ofK-pairs. K-pairs of sets (see Definition 1.1) have the following
basic properties, proved by Kalimullin [20] (item (5) comes from [20, Theorem 2.6];
(3) and (4) are in [20, Proposition 2.7]; (2) follows from (5)):

(1) If A is a c.e. set, then {A,B} is a K-pair for every set B;
(2) Given a set A, the sets B for which {A,B} is a K-pair form an ideal with
respect to the preorder relation ≤e . In other words, if

IA = {B | {A,B} is a K-pair},
then
(a) B ∈ IA & C ≤e B =⇒ C ∈ IA,
(b) B ∈ IA & C ∈ IA =⇒ B ⊕ C ∈ IA;

(3) If {A,B} is a nontrivial K-pair, then A ≤e B and B ≤e A;
(4) If {A,B} is a nontrivialK-pair andW is the c.e. set from the definition, then
A ≤e W ⊕ B and B ≤e W ⊕ A;

(5) {A,B} is a K-pair if and only if
(∀X )(∀Y )[Y ≤e X ⊕ A & Y ≤e X ⊕ B =⇒ Y ≤e X ].

Property (5) of K-pairs of sets shows that the property of being a K-pair of
e-degrees is first order definable in the structure of the e-degrees De , as remarked in
Section 1.

§3. The theorem. In this section we state and prove (Theorem 3.4) the main
result of the paper, namely, every nonzero e-degree a bounds a nontrivial principal
ideal whose nonzero elements have all the same jump as a.
We begin by using properties (2a), (3), and (4), of K-pairs of sets, in order to
prove that if {a, b} form a nontrivial K-pair of e-degrees, then a′ = b′.
Proposition 3.1. Let {A,B} be a nontrivial K-pair of sets. Then A′ ≡e B ′.

Proof. Fix a nontrivialK-pair {A,B}. SinceA ≡e EA andB ≡e EB , by property
(2a) we have that {EA,EB} is a nontrivial K-pair. Let W be a c.e. set such that
EA × EB ⊆ W and EA × EB ⊆ W . According to properties (3) and (4) we have
respectively EA ≤e EB and EA ≤e W ⊕ EB . Hence

A′ = EA ⊕ EA ≤e W ⊕ (EB ⊕ EB) ≤e ∅′ ⊕ B ′ ≤e B ′.

Analogously, B ′ ≤e A′, so that A′ ≡e B ′. �
Corollary 3.2. Let a be a half of a nontrivial K-pair of e-degrees. Then for every
nonzero e-degree c ≤ a, we have c′ = a′.
Proof. Let {a, b} be a nontrivial K-pair of e-degrees and let us fix a nonzero
e-degree c ≤ a. According to property (2a), {c, b} is also a nontrivial K-pair. Now
applying Proposition 3.1 we obtain

a′ = b′ = c′. �
Next, we recall the following result from Ganchev and Soskova [16], and Cai,
Ganchev, Lempp, Miller, and Soskova [3]:

Theorem 3.3. For every nonzero e-degree x there is an e-degree a, which is a half
of a nontrivial K-pair and such that a′ = x′.
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Proof. We sketch the proof: for full details, see Ganchev and Soskova [16] and
Cai, Ganchev, Lempp, Miller, and Soskova [3]. For a given set A let us denote by
LA the collection of the codes of all finite binary strings that are lexicographically
less than the characteristic function of A, denoted by �A, i.e.,

LA = {� ∈ 2<� | � <L �A}.
Further, by RA we shall denote the complement of LA. The sets LA and RA have
the following properties:

(i) LA ≤e A, RA ≤e A;
(ii) LA ⊕RA ≡e A⊕ A;
(iii) {LA,RA} is a K-pair; moreover LA×RA ⊆WL and LA×RA ⊆WL, where

WL = {〈�1, �2〉 ∈ 2<� × 2<� | �1 <L �2 ∨ �2 ⊂ �1}.
Coming back to the proof of the theorem, suppose first thatx is low.Then x is a Δ02
degree so that it bounds a nontrivialK-pair (this has been proved byKalimullin [20,
Theorem 4.3]), each side of which is low.
Now let x′ > 0′e . Fix a set X ∈ x. Consider the sets LEX and REX as defined
above. Applying property (ii), we obtain

X ′ = EX ⊕ EX ≡e LEX ⊕REX ≤e L′
EX .

On the other hand by property (i) LEX ≤e X , so that L′
EX

≤e X ′. Thus

X ′ ≡e L′
EX .

Finally, neither LEX nor REX is c.e., for otherwise we would have LEX ⊕REX ≤e ∅′,
contradicting ∅′ �≤e X ′.
Thus {LEX ,REX } is a nontrivial K-pair, such that LEX ≤e X and L′

EX
≡e X ′. �

Theorem 3.4. Every nonzero e-degree a bounds a nontrivial initial segment of
e-degrees whose nonzero elements have all the same jump as a.

Proof. A direct application of Theorem 3.3 and Corollary 3.2. �

§4. Applications to the local structure. Now we turn to some applications of
Theorem 3.4 to the local theory of the e-degrees.

4.1. The jump hierarchy. Our first application shows that for every possible jump
of a local e-degree, there is a nonempty left-open interval (0e , a] of e-degrees, all
having that jump. Thus, every level of the high/low hierarchy of the local theory
of the e-degrees contains a nonempty left-open interval of e-degrees. In particular,
with the exception of the level L1 of the high/low hierarchy (i.e., the level of the low
e-degrees), every such left-open interval consists entirely of downwards properly
Σ02 e-degrees. (As a corollary of a stronger result, the fact that every non low
e-degree bounds a downwards properly Σ02 degree, was observed also byHarris [18].)
More precisely we have the following:

Theorem 4.1. Let x ∈ Ge be a nonzero e-degree. Then there is an e-degree 0e <
a ≤ x, such that, for every 0e < c ≤ a, c′ = x′. Moreover, if x is not low, then a is
downwards properly Σ02.
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Proof. Fix an e-degree x ∈ Ge . The first part of the claim of the theorem is
a paraphrase of Theorem 3.4. For the second part, recall that every nonzero Δ02
e-degree bounds a nonzero low e-degree (seeMcEvoy andCooper [24, Theorem 7]):
so, if x is not low, then no nonzero a ≤ x can contain Δ02 sets. �
We would like to emphasize the following somewhat surprising corollary:
Corollary 4.2. There is a nontrivial initial segment of e-degrees whose nonzero
elements are high e-degrees.
Proof. Take x to be high. Then by Theorem 3.4 there is a ≤ x, such that (0e , a]
consists of high e-degrees. �
Recall that an e-degree a is said to be nonsplitting, if there is no pair of smaller
e-degrees whose join is a. Then the following results holds:
Corollary 4.3. There is a high nonsplitting e-degree.
Proof. This follows fromCorollary 4.2, together with the fact that every nonzero
Σ02 e-degree bounds a nonzero nonsplitting e-degree (see Kent and Sorbi [21]). �
Notice that this gives an elementary difference between the high e-degrees and
the high Turing degrees, for which it is known, that every high Turing degree is
join-reducible, see Posner [25], in fact the join of two minimal degrees, see Ellison
and Lewis [11].

4.2. Capping and noncapping. Recall that a pair {a, b} of nonzero e-degrees in
Ge is a minimal pair if the infimum a ∧ b = 0e . An e-degree a caps (or, is capping)
if a = 0e , or there exists b such that {a, b} is a minimal pair. Finally, a degree
x ∈ Ge is noncappable if it is not half of a minimal pair. The existence of incomplete
(i.e., �= 0′e) noncappable e-degrees was proved by Cooper and Sorbi [9].
As another application of Theorem 4.1 we obtain the following property of
noncappable e-degrees.
Corollary 4.4. Let x ∈ Ge be a noncappable degree. Then x bounds an e-degree
of every possible local jump. In particular x is high.
Proof. Let x ∈ Ge be a noncappable e-degree. Fix any jump b′ of an element
b ∈ Ge , and by Theorem 4.1 let a ∈ Ge be such that the interval (0e , a] consists
entirely of e-degrees having jump b′. Since x is noncappable, the pair {x, a} is not
minimal and hence there is a nonzero e-degree c such that c ≤ a and c ≤ x. By the
choice of a, one has that c has the same jump as b. �
In particular, we have the following corollary.
Corollary 4.5. If x ∈ Ge is not high, then x caps.
Proof. Immediate, by contraposition. �
The inclusion of the noncappale e-degrees in the high e-degrees is a proper inclu-
sion, since it is known that there exist capping high e-degrees, in fact minimal pairs
of high e-degrees, see e.g. Sorbi, Wu, and Yang [26], or diamonds formed by a low
and a high e-degree, see Sorbi, Wu, and Yang [27]. However this proper inclusion is
also an immediate consequence of Theorem 4.1, as shown in the following corollary:
Corollary 4.6. There exists a high a such that all c ∈ (0e , a] are high and cappable.
Proof. Consider a high x, and let a ≤ x be as in Theorem 4.1. Then all nonzero
c ≤ a are high. Now, if 0e < c ≤ a, then c caps with every d that is not high, as c
and d can not bound a nonzero e-degree. �
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For the following corollary, recall that an e-degree a is noncuppable if there is no
incomplete e-degree b such that a ∨ b = 0′e . The existence of nonzero noncuppable
e-degrees was proved by Cooper, Sorbi, and Yi [10].

Corollary 4.7. Every noncappable e-degree bounds a noncuppable e-degree.

Proof. This follows from Corollary 4.4, and the fact that every high e-degree
bounds a noncuppable e-degree, see Giorgi, Sorbi, and Yang [17]. �
4.3. Bounding and nonbounding minimal pairs. An e-degree a bounds a minimal
pair if there exist b, c ≤ a such that {b, c} is a minimal pair: an e-degree is bounding,
if it bounds a minimal pair. Bounding e-degrees have been studied in McEvoy and
Cooper [24], and in Cooper, Li, Sorbi, and Yang [8]: in this latter paper it is proved
that every nonzero Δ02 e-degree bounds a minimal pair.

Corollary 4.8. In Ge , if a′ � b′ and b �= 0e then there exists c ≤ a such that
c′ = a′ and {b, c} is a minimal pair.
Proof. Given a, b as in the statement of the corollary, by Theorem 4.1 let 0e <
c ≤ a be such that all the nonzero elements below c have the same jump as a.
Then {b, c} is clearly a minimal pair, as {b, c} can not bound a nonzero e-degree. �
The following particular case of the previous corollary can be seen as a gener-
alization of a result in Badillo and Harris [2], stating that there is a nonzero low
e-degree that caps with a nonzero low e-degree and a high e-degree:

Corollary 4.9. For every possible jump of an element in Ge , every low e-degree
caps with some nonzero e-degree having that jump.

Proof. Let a ∈ Ge , and let b be a low e-degree: we may assume that b is nonzero,
as by definition 0e caps with every e-degree. We distinguish two cases: if a is low,
then by Kalimullin [19, Theorem 2], b caps with a nonzero Δ02 e-degree, and hence
(as every nonzero Δ02 e-degree bounds a nonzero low e-degree, see [24]), caps with
a nonzero low e-degree, which has the same jump as a. On the other hand, if a is
not low, then a′ � b′: by Corollary 4.8, we conclude that there is some c having the
same jump as a, and forming a minimal pair with b. �
Corollary4.10. InGe , if a nonzero a is either low, or bounds an e-degree of strictly
smaller jump, then a is bounding.

Proof. Let a be nonzero. If a is low then we can use the fact that every nonzero
low e-degree is bounding, see [8]. If a bounds an e-degree b such that b′ < a′, then
by Corollary 4.8 there is a c ≤ a such that {b, c} form a minimal pair. �
An immediate consequence of Corollary 4.10 is the following extension of a
theorem in McEvoy and Cooper [24], stating that if a is Δ02 and high, then for every
nonzero low b ≤ a there exists c ≤ a such that {b, c} form a minimal pair.
Corollary 4.11. In Ge , if a is not low, then for every nonzero low b ≤ a there
exists c ≤ a such that {b, c} form a minimal pair.
Our last corollary shows that thenonzero e-degrees belowanonboundingonehave
all the same jump: the existence of nonzero nonbounding e-degrees (i.e., e-degrees
bounding no minimal pairs) was proved by Cooper, Li, Sorbi, and Yang [8].

Corollary 4.12. In Ge , if a is nonbounding, then the left-open interval (0e, a]
consists of elements having all the same jump.
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Proof. Suppose that a is a nonzero nonbounding e-degree, and there exists
0e < b ≤ a, such that b′ �= a′: then a′ � b′. By Corollary 4.8, there exists c ≤ a such
that {b, c} is a minimal pair, so a is bounding, contrary to the assumptions. �

§5. Conclusion. Kalimullin pairs have turnedout to be a powerful tool for obtain-
ing simple and elegant proofs of nontrivial strucural properties and definability
results in the structure of the e-degrees. A clear evidence for this is the proof
of the existence of a nontrivial initial segment whose nonzero elements are high
e-degrees, given in Corollary 4.2. Although there are already several papers inves-
tigating K-pairs, in our opinion, the full potential of the Kalimullin pairs has not
yet been achieved. Indeed, the results obtained so far suggest that K-pairs might
be used in order to define in Ge the high e-degrees, the Δ02 e-degrees and the images
of the c.e. Turing degrees under the standard embedding of the Turing degrees in
De . The last class mentioned is the most likely to be definable in Ge , since it is
definable in the global structure of the e-degrees (Cai, Ganchev, Lempp,Miller, and
Soskova [3]). We strongly encourage the researchers interested in Turing and enu-
meration reducibility to study thoroughly Kalimullin pairs and to introduce them
in their toolbox.
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No. DMU 03-07/12.12.2011.
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