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Abstract

For each of the groups G = O(2), SU (2),U (2), we compute the integral and
F2-cohomology rings of BcomG (the classifying space for commutativity of G), the action
of the Steenrod algebra on the mod 2 cohomology, the homotopy type of EcomG (the homo-
topy fiber of the inclusion BcomG→ BG), and some low-dimensional homotopy groups of
BcomG.
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1. Introduction

Let G be a topological group for which the identity element 1G ∈G is a non-degenerate
basepoint. The set of homomorphisms Hom(Zn,G) can be topologized as the subspace of
Gn consisting of n-tuples (g1, ..., gn) such that gi g j = g j gi for all 1≤ i, j ≤ n. The inclu-
sions in : Hom(Zn,G)→Gn are compatible with the degeneracy and face maps arising form
N G, the nerve of G thought of as a (topological) category with one object, which means that
the collection {Hom(Zn,G)}n≥0 assembles into a simplicial subspace Hom(Z∗,G) of N G –
the latter being a simplicial model of the classifying space BG. Let

BcomG := |Hom(Z∗,G)|.
This space was originally introduced in [3], and further studied in [2]. The latter authors
among other results, show that BcomG classifies principal G-bundles whose transition func-
tions ραβ : Uα ∩Uβ→G are transitionally commutative, that is, the functions ραβ commute
whenever they are simultaneously defined. In particular, the pullback of the universal bundle
EG→ BG along the inclusion ι : BcomG→ BG has a transitionally commutative structure.
This bundle is denoted EcomG→ BcomG.

So far most of the attention in the literature, both for proving general results and in exam-
ples, has been given to compact connected Lie groups. The focus on compact groups is justi-
fied in part by the main result of [10] which states that if G is the group of complex (or real)
points of a (real) reductive algebraic group, and K ⊂G is a maximal compact subgroup then
the induced map Hom(Zn, K )→Hom(Zn,G) is a strong deformation retract. As shown in
[3, theorem 3·1], this implies that the induced maps Bcom K → BcomG and Ecom K → EcomG
are homotopy equivalences. This theorem is surprising because the commuting tuples in
G can be much more complicated than those in K . Notice, for example, that the theorem
applies to G = SL(2,R) whose maximal compact subgroup is K = SO(2), which happens
to be abelian. Thus, BcomSL(2,R)
 BSO(2) and EcomSL(2,R) is contractible.

Summary of our main results. This paper is devoted to concrete calculations with exam-
ples of low-dimensional compact Lie groups, calculations which refine the general structural
information available from [2] for compact, connected Lie groups. In [2] the rational coho-
mology rings of BcomG1 (see the start of Section 2 for an explanation of the subscript 1) and
EcomG1 are computed in terms of the Weyl group actions on the rational cohomology of BT
and G/T (where T , as usual, denotes a maximal torus). Namely [2, proposition 7·1] says that

H ∗(BcomG1;Q)= (H ∗(BT ;Q)⊗Q H ∗(G/T ;Q))W

and [2, corollary 7·4] states that

H ∗(EcomG1;Q)= (H ∗(G/T ;Q)⊗Q H ∗(G/T ;Q))W .

The authors note in [2, remark 7·3] that integrally those descriptions cannot hold because
the example of G = SU (2) shows that H ∗(BcomSU (2),Z) contains 2-torsion. One of our
main results is the description of the cup products of these interesting torsion classes.

Our example groups are G = O(2), SU (2), U (2) and SO(3) (notice that while our exam-
ples are all compact, O(2) is disconnected). In the first two thirds of the paper we compute
cohomology of BcomG for these groups — except for G = SO(3), where we focus on
BcomSO(3)1 instead. In each case we compute the integral cohomology ring. They turn out
to all be either torsion free or to have only 2-torsion, so we also compute the F2-cohomology
rings together with the action of the Steenrod algebra. The results of these calculations are
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collected in Theorems 1·1, 4·1, 1·2 and 3·1 (the integral cohomology rings for the exam-
ple groups G =U (2), SU (2) and SO(3) first appeared in [11]). In Theorem 4·1 we give a
presentation of the ring

H ∗(BcomU (2);Z)∼=Z[c1, c2, y1, y2]/(2y2 − y1c1, y2
1 , y1 y2, y2

2)

which contains the subring H ∗(BU (2);Z)∼=Z[c1, c2], where c1 and c2 are the first and
second Chern classes, respectively. The embedding H ∗(BU (2);Z) ↪→ H ∗(BcomU (2);Z)
is induced by the inclusion map ι : BcomU (2)→ BU (2). It turns out that the cohomology
of BcomSU (2) is easier to describe via the ring H ∗(BcomU (2);Z). The following theorem
describes the cohomology of BcomSU (2).

THEOREM 1·1.

(i) The map BcomSU (2)→ BcomU (2) arising from the inclusion induces a surjective
homomorphism of integral cohomology rings with kernel generated by the class c1.
In particular

H ∗(BcomSU (2);Z)∼=Z[c2, y1, x2]/(2x2, y2
1 , x2 y1, x2

2),

where c2, y1 are in degree 4 and x2 in degree 6. The class c2 is pulled back from the
second Chern class in H 4(BSU (2);Z) under the inclusion BcomSU (2)→ BSU (2),
and the classes y1 and x2 are the images of the classes y1 and y2 in H ∗(BcomU (2);Z).

(ii) Let z̄ again denote reduction mod 2 of z. Then

H ∗(BcomSU (2); F2)∼= F2[c̄2, ȳ1, x1, x̄2]/(ȳ2
1 , ȳ1x1, x2

1 , x̄2 ȳ1, x1 x̄2, x̄2
2),

where x1 has degree 5. Moreover, β(x1)= x2 where β denotes the integral Bockstein.
(iii) The action of the Steenrod algebra on H ∗(BcomSU (2); F2) is given by the total

Steenrod squares
Sq(c̄2)= c̄2 + c̄2

2

Sq(ȳ1)= ȳ1

Sq(x1)= x1 + x̄2

Sq(x̄2)= x̄2 + c̄2 ȳ1.

We next turn to the real matrix groups SO(2) and O(2). For SO(2) there is not much to
say, since BcomSO(2)= BSO(2). The case of O(2) is more interesting. In fact, we found an
intriguing relation intertwining the integral and F2-cohomology groups of Bcom O(2): They
can be described entirely in terms of the cohomology of BO(2), the monodromy invariants
in the cohomology of Ecom O(2) and the Bockstein homomorphism. To state our result recall
that H ∗(BO(2); F2)∼= F2[w1, w2] with w1 and w2 the first and second Stiefel-Whitney
classes, and H ∗(BO(2);Z)∼=Z[W1,W2, p1]/(2Wi ,W 2

2 −W1 p1), where Wi = β(wi ) and
p1 is the first Pontryagin class. Abusing notation, we denote by the same letters the pullback
of these classes along the inclusion ι : Bcom O(2)→ BO(2).

THEOREM 1·2.

(i) There is an isomorphism of graded rings

H ∗(Bcom O(2); F2)∼= F2[w1, w2, r̄ , s]/(r̄w1, r̄ 2, r̄ s, s2),

where deg(r̄)= 2, deg(s)= 3 and r̄ is the reduction modulo 2 of the integral class r
(see (ii)).
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(ii) There is an isomorphism of graded rings

H ∗(Bcom O(2);Z)∼=Z[W1,W2, p1, r, b1, b2, b3]/I,

where deg(r)= 2, deg(bi)= i+3 for 1≤ i≤ 3, b1= β(s), b2 = β(w1s), b3 = β(w2s)
and where I is the ideal generated by W 2

2 − p1W1, r 2 − 4p1, b2 p1 − b3W2, b2W2 −
b3W1, 2Wi , r Wi and b1Wi for i = 1, 2 as well as 2bi , rbi and bi b j for 1≤ i, j ≤ 3.

(iii) The action of the Steenrod algebra on H ∗(Bcom O(2); F2) is determined by its action
on H ∗(BO(2); F2) and the total Steenrod squares

Sq(r̄)= r̄

Sq(s)= s +w2r̄ +w2
1s .

In all three cases G = SU (2), U (2), O(2) our calculations show that the inclusion
ι : BcomG→ BG induces an embedding ι∗ : H ∗(BG;Z) ↪→ H ∗(BcomG;Z). In fact, in
Remark 3·5 we argue that this is also true for G = SO(3), without calculating the
cohomology of BcomSO(3) in this paper. This brings up the following question:

Question 1·3. For which compact Lie groups G does the inclusion ι : BcomG→ BG
induce an injective map on cohomology? In particular, does it always happen on integral
cohomology when G is compact and connected?

One has to be at least a little cautious with this question. For example, it is also true that
ι : BcomG→ BG induces an injection on cohomology with F2-coefficients for G = SU (2),
U (2), O(2); and again in Remark 3·5 we show this is true as well for G = SO(3) (without
computing H ∗(BcomSO(3); F2)). However in [11, remark 3·2·2] it is shown that for the
finite quaternion group Q8, the homomorphism ι∗ : H ∗(Bcom Q8; F2)→ H ∗(B Q8; F2) is not
injective.

In the last third of our paper we study the homotopy fiber hofib(BcomG→ BG)= EcomG.
For compact and connected Lie groups G a reasonable intuition for EcomG is to think of it
as how far is G from being abelian. The paper [2] proves that for a compact, connected Lie
group G, EcomG1 is homotopy equivalent to a finite CW-complex (this direct corollary of
[2, theorem 6·5] is mentioned in [2, remark 6·6]). In this paper we compute the homotopy
type of the Ecom’s for our example groups, namely EcomG for G = SU (2),U (2), O(2) and
EcomSO(3)1. In fact, according to Proposition 6·4 to cover most of our cases we only need
to consider EcomSU (2), because EcomSU (2), EcomU (2) and EcomSO(3)1 are all homotopy
equivalent.

THEOREM 1·4. There is a homotopy equivalence EcomSU (2)
 S4 ∨�4RP2.

The remaining case is Ecom O(2), which we compute separately.

THEOREM 1·5. There is a homotopy equivalence Ecom O(2)
 S2 ∨ S2 ∨ S3.

Application to bundle theory: transitionally commutative bundle structures. We say that a
principal G-bundle over a space X with classifying map f : X→ BG has a transitionally
commutative structure if there is a lift of f to BcomG along the inclusion ι. A choice of a
transitionally commutative structure is a homotopy class in [X, BcomG]. The exact sequence

1→ πn(EcomG)→ πn(BcomG)
ι#−→ πn(BG)→ 1
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proved in [2] implies that any bundle over a sphere admits a transitionally commutative
structure. It also follows that ker ι# ∼= πn(EcomG), which is the set of transitionally commu-
tative structures on the trivial bundle over Sn . In Remarks 7·1 and 8·4 we compute some
low dimensional homotopy groups of Bcom O(2) and BcomSU (2). It is very surprising that
even in the simplest case of G = O(2), where πn(BO(2))= 0 for n > 2, the trivial bundle
over Sn has so many distinct transitionally commutative structures. Namely, for n > 2 each
element of the groups listed in Remark 7·1 represents a transitionally commutative structure
on the trivial O(2)-bundle over Sn!

On the other hand, it seems considerably harder to find examples of bundles, which do
not admit any transitionally commutative structure. Predictably, these examples should arise
from universal bundles, and indeed it was proved in [9] that for a large class of connected Lie
groups G the universal bundle EG→ BG cannot be made commutative. With the results
of the present paper, however, we can give the first example of a vector bundle defined on a
complex of dimension as small as four, which does not admit a transitionally commutative
structure: the tautological bundle γ2,4→Gr2(R

4) over the Grassmannian of 2-planes in R4.

COROLLARY 1·6. For any n ≥ 4 the tautological 2-plane bundle γ2,n→Gr2(R
n) does

not admit a transitionally commutative structure. In particular, the universal bundle over
Gr2(R

∞)= BO(2) does not have a transitionally commutative structure.

2. A homotopy pushout square for BcomG

When G is compact and connected, a very useful tool towards the understanding of BcomG
are the maximal tori T ⊂G. Let Hom(Zn,G)1 denote the connected component of the trivial
homomorphism 1 : Zn→G in Hom(Zn,G). By [4, lemma 4·2], the map

φ̃n : G × T n→Hom(Zn,G)1

given by (g, �t) �→ g�tg−1 is surjective. Moreover, φ̃n is invariant under the diagonal action of
N (T ) the normalizer of T , which is given by right translation on G and by conjugation on
T n . Thus the induced map

φn : G/T ×W T n =G ×N (T ) T n→Hom(Zn,G)1

is also surjective. Since conjugation by elements of G is a group homomorphism, it is com-
patible with the simplicial structure. Therefore, after taking geometric realisations, we get
a map

φ : G/T ×W BT → BcomG1,

where BcomG1 := |Hom(Z∗,G)1|. This map, which we’ll call the conjugation map, is the
key to computations for BcomG1. For G compact and connected, it is a rational homology
isomorphism (see the first page of [2, section 7]). In many interesting cases, BcomG1 =
BcomG; for example, in [1] it is shown that whenever any abelian subgroup of G is contained
in a path-connected abelian subgroup, Hom(Zn,G) is connected. This is the case for G =
U (k), SU (k) or Sp(k), but not for SO(3).

The basis for all of our calculations are certain homotopy pushout squares for BcomG
involving the conjugation map.

LEMMA 2·1. Let G denote SO(3), SU (2) or U (2), T ⊂G a maximal torus, N = N (T ),
and Z the center of G. Then we have a homotopy pushout square
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G/N × B Z i ��

π2

��

G/T ×W BT

φ

��
B Z � � j �� BcomG1,

(2·1)

where i is the map induced by the inclusion Z ↪→ T and π2 is the projection. (As remarked
above, the 1 only makes a difference for SO(3).)

This lemma is a corollary of [2, theorem 6·3], which expresses BcomG1 for a compact
connected Lie group as a homotopy colimit. In the case of SO(3), SU (2) or U (2), their dia-
gram reduces to precisely the homotopy pushout above. (For SU (2) this is [2, example 6·4],
and it is easy to check for the other two cases as well.) We give an independent proof here,
partly because our approach is more direct and also establishes a homotopy pushout for
Hom(Zn,G)1 (see Corollary 2·4 below), but mostly because we also need a similar (but not
completely analogous!) pushout for O(2), which is not covered by their theorem.

LEMMA 2·2. There is a homotopy pushout

O(2)/N (D4)× B Z i ��

q

��

O(2)×N (D4) B D4

φ

��
BSO(2)

j �� Bcom O(2),

(2·2)

where Z = {±I } is the center of O(2), D4 is the dihedral subgroup of O(2) generated by
two reflections in perpendicular lines, i is the map induced by the inclusion Z ↪→ D4 and q
is the composite of the projection onto B Z and the map induced by Z ↪→ SO(2), and φ is a
conjugation map for D4 ≤ O(2) (defined analogously to the one above for T ≤G).

We will deduce both from the following technical lemma.

LEMMA 2·3. Let G be a compact Hausdorff group, Z its center, A be a closed abelian
subgroup of G with normalizer N, and H be a closed normal abelian subgroup of G such
that (a) any two different conjugates of A have intersection Z, and (b) A intersects H in Z.
Then we have a square which is both a pushout and a homotopy pushout:

G/N × Zn in ��

qn

��

G ×N An

φn

��
H n � � jn �� Hom(Zn,G)?,

(2·3)

where in is induced by the inclusion Z ↪→ A, qn is the composite of the projection onto Zn

and the map induced by Zn ↪→ H n, φn is the conjugation map for A≤G and Hom(Zn,G)?
denotes the image of the map ( jn, φn) : H n �G ×N An→Hom(Zn,G).

In the cases we will use this lemma, we’ll have either Hom(Zn,G)? =Hom(Zn,G) or
Hom(Zn,G)1, which explains the odd notation for the image.

Proof. It is enough to prove the square is a pushout: the diagonal action of N on G × A
induces a N -CW-complex structure such that G × Zn is an N -subcomplex, so passing to
N -orbits we see that in is a cofibration.

https://doi.org/10.1017/S0305004119000240 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000240


Classifying spaces for commutativity of low-dimensional Lie groups 439

The map ( jn, φn) is a surjective continuous map between compact Hausdorff spaces, and
as such is closed and therefore a quotient map. This quotient can also be expressed as the
quotient by an equivalence relation, namely, by the relation ∼H of having the same image
under ( jn, φn).

Now, the actual pushout, say P , is also a quotient of H n �G ×N An , namely it is the
quotient by the equivalence relation generated by qn(ζ )∼P in(ζ ) for any ζ ∈G/N × Zn .
Thus, to see that (2·3) is a pushout, it is enough to show the equivalence relation ∼P is the
same as ∼H above.

The fact that (2·3) commutes shows that qn(ζ )∼H in(ζ ) for any ζ ∈G/N × Zn . Since
∼P was defined to be generated by those pairs, this shows that the relation ∼P implies the
relation∼H . Now we must show that any points related by∼H are also related by∼P . There
are three cases for a pair of points α, β ∈ H n �G ×N An related by ∼H :

(i) both points are from H n: Since jn is injective, we have α = β and thus α ∼P β;
(ii) both points are from G ×N An: Say α = [g, �u] and β = [h, �v] with φn(α)= φn(β),

which means g�ug−1 = h�vh−1. Here we have again two cases: the conjugates g Ag−1

and h Ah−1 can either be the same or different. If they are the same, then g−1h ∈ N (A)
and is witness to the fact that [g, �u] = [h, �v] in G ×N An , so again α = β.
If the conjugates are different, because their intersection is just the center Z , it fol-
lows that �u = �v ∈ Zn . In this case, letting ζα := (gN (A), �u) and ζβ := (hN (A), �v) we
see that

α = in(ζα)∼P qn(ζα)= �u = �v = qn(ζβ)∼P in(ζβ)= β,

so that α ∼p β, as desired;
(iii) one point is from H n and one from G ×N An: Say α = �s ∈ H n and β = [g, �u] with

jn(α)= φn(β). Since the intersection of H with any conjugate of A is the center,
it follows that �s = �u ∈ Zn and thus letting ζ := (gN (A), �s) we have α = qn(ζ )∼P

in(ζ )= β.

Now we specialise this lemma to the groups we will study.

COROLLARY 2·4. Let G denote SO(3), SU (2) or U (2), T ⊂G a maximal torus, N =
N (T ), and Z the center of G. The following square is both a pushout and a homotopy
pushout:

G/N × Zn jn ��

π2

��

G/T ×W T n

φn

��
Zn � � �� Hom(Zn,G)1.

(2·4)

The 1 modifier is only necessary for SO(3): for G = SU (2) or U (2), Hom(Zn,G)1 =
Hom(Zn,G).

Proof. We apply Lemma 2·3 with A= T and H = Z . Taking H = Z automatically ensures
the second hypothesis, that H intersects any conjugate of A in Z . We must also show that
the intersection of any two different maximal tori in G is the center Z .
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For G = SU (2), a short proof can be seen in [12, example 2·22]. The double cover
SU (2)→ SU (2)/{±I } ∼= SO(3) implies that any two different maximal tori in SO(3) inter-
sect at the identity matrix, which is the center of SO(3). Consider the 2-fold covering map
p : S1 × SU (2)→U (2) (we think of S1 as the scalar matrices in U (2) which is the center
in this case). Let T2 ⊂U (2) denote the maximal torus consisting of the diagonal matrices in
U (2). Then T2 is the image of S1 × T under p, where T ⊂ SU (2) is the subspace of diagonal
matrices in SU (2). Notice that U (2) acts on S1 × SU (2), trivially on S1 and by conjugation
on SU (2), making p a U (2)-equivariant map. Let g ∈U (2) such that T2 �= g−1T2g and sup-
pose x ∈ T2 ∩ g−1T2g. Let (λ, x̄) be an element in p−1(x). Then x̄ ∈ T ∩ h−1T h = {±I }
(where h

√
det(g)= g) which implies that x =±λI , a scalar matrix. Since any conjugate of

T contains the scalar matrices, T2 ∩ g−1T2g= S1.
Finally, recall that [4, Lemma 4.2] says the map φ̃n : G × T n→Hom(Zn,G)1 is

surjective on its own, without any help from jn .

COROLLARY 2·5. The following square is both a pushout and a homotopy pushout:

O(2)/N (D4)× Zn in ��

qn

��

O(2)×N (D4) Dn
4

φn

��
SO(2)n

jn �� Hom(Zn, O(2)).

(2·5)

Proof. We apply Lemma 2·3 with G = O(2), A= D4 and H = SO(2). Any conjugate of
A= D4 consists of the elements of Z and two reflections in perpendicular lines. This shows
that the hypothesis of Lemma 2·3 are satisfied: any two conjugates of A have intersection Z ,
and any conjugate of A intersects H in precisely Z .

It is an elementary observation that (1) a rotation R ∈ O(2) and a reflection r ∈ O(2)
commute if and only if R ∈ Z and (2) two reflections r, r ′ ∈ O(2) commute if and only if they
are reflections across perpendicular axes. Therefore, any n-tuple of commuting elements in
O(2) is either an n-tuple of elements in SO(2), or it is conjugate to an n-tuple of elements
in D4. This proves the map

( jn, φn) : SO(2)n � O(2)×N (D4) Dn
4→Hom(Zn, O(2))

is surjective, so that in this case the image of ( jn, φn) is all of Hom(Zn, O(2)).

Now Lemmas 2·1 and 2·2 follow from Corollaries 2·4 and 2·5.

Proof of Lemmas 2·1 and 2·2. One can easily check that the maps in diagrams (2·4) and
(2·5) commute with the simplicial structure maps, making those diagrams pushouts and
homotopy pushouts of simplicial spaces. Since geometric realization commutes with both
colimits and homotopy colimits, the conclusion follows.

3. Cohomology of BcomSO(3)1
In this section we compute the integral and F2-cohomology rings of BcomSO(3)1, as well

as the action of the Steenrod algebra on the F2-cohomology. We begin by recalling the
cohomology of BSO(3). We have
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H ∗(BSO(3);Z)∼=Z[χ, p1]/(2χ),
where p1 is the first Pontryagin class and χ is the Euler class of the universal oriented bundle
over BSO(3) (in degree 3) and

H ∗(BSO(3); F2)∼= F2[w2, w3],
where wi is the i th Stiefel–Whitney class. Consider the inclusion ι : BcomSO(3)1→
BSO(3). Abusing notation, we denote the pullback of p1 and wi under ι by the same letters.

THEOREM 3·1.

(i) There is an isomorphism of graded rings

H ∗(BcomSO(3)1;Z)∼=Z[p1, w, y1]/(2w, y2
1 , wy1, w

3),

where w= ι∗(χ) and deg y1 = 4.
(ii) There is an isomorphism of graded rings

H ∗(BcomSO(3)1; F2)∼= F[w2, w̄, ȳ1]/(ȳ2
1 , w̄ ȳ1, w̄

2 +w2 ȳ1),

where w̄ and ȳ1 are the reduction mod 2 of w and y1 in part (i), respectively, and
ι∗(w3)= w̄.

(iii) The action of the Steenrod algebra on H ∗(BcomSO(3)1; F2) is determined by the
total Steenrod squares

Sq(w2)=w2 + w̄
Sq(w̄) = w̄+w2w̄+w2 ȳ1

Sq(ȳ1) = ȳ1 +w2 ȳ1.

The proof of this theorem occupies the rest of this section. We will tackle each part in turn.

3·1. The integral cohomology ring

As we said before, the center of SO(3) is trivial. A maximal torus is the canonically
embedded SO(2)⊂ SO(3) with normaliser O(2)⊂ SO(3). Thinking of the elements of
SO(2) as 2 by 2 matrices, the action of W = O(2)/SO(2)=Z/2 on SO(2) is given by
swapping columns and then swapping rows. That is, if a rotation in SO(2) is defined by an
angle θ , the generating element in O(2)/SO(2) acts by negating the angle of the rotation.
This corresponds to complex conjugation in S1 ∼= SO(2). The homotopy pushout of Lemma
2·1 for G = SO(3) then reads

SO(3)/O(2) i ��

��

SO(3)/SO(2)×W BSO(2)

φ

��
∗ �� BcomSO(3)1.

(3·1)

To compute the cohomology ring of BcomSO(3)1, it is enough to give a presentation of
the cohomology ring of SO(3)/SO(2)×W BSO(2), and then describe the top horizontal
map of (3·1) in cohomology.
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Consider the inclusion ι : BcomSO(3)1→ BSO(3). Define p̃1 := (ιφ)∗(p1). Let U ∈
H 2(RP2;Z) be the generator, and π : SO(3)/SO(2)×W BSO(2)→ SO(3)/SO(2)/W ∼=
RP2 be the projection. Abusing notation, write U for π∗(U ).

LEMMA 3·2. There is an isomorphism of graded rings

H ∗(SO(3)/SO(2)×W BSO(2);Z)∼=Z[U,x, p̃1, y]/(2U,2x,U 2, xy,U y,U x,y2,x2− p̃1U ),

where deg x = 3 and deg y = 4.

Proof. Identifying SO(3)/SO(2) with S2, and writing SO(2)= T , we compute the inte-
gral cohomology of S2 ×W BT using the Serre spectral sequence associated to the fibration
BT → S2 ×W BT → S2/W ∼=RP2. To do this we need to determine the action of π1(RP

2)

on H ∗(BT ;Z)∼=Z[a], where a ∈ H 2(BT ;Z) is a generator. Lifting a representative of
the generator of π1(RP

2)∼=W under the fibration S2 ×W BT →RP2 shows that the mon-
odromy action on BT is the same as the action of the Weyl group, which is induced by
complex conjugation on T . On the cohomology group H 1(T ;Z) this is multiplication by
−1, and the same holds for H 2(�T ;Z) via the suspension isomorphism. This implies that
the action on H ∗(BT ;Z) is generated by an �→ (−a)n . We conclude that H q(BT ;Z) is the
trivial representation Z when q ≡ 0 (mod 4) and the sign representation Zw when q ≡ 2
(mod 4).

Now we can compute the E2-page of the Serre spectral sequence in cohomology. We have
that E p,q

2 = H p(RP2; H q(BT ;Z)), where

H q(BT ;Z)=
⎧⎨
⎩

Z q ≡ 0 (mod 4)
Zw q ≡ 2 (mod 4)
0 else.

Since H ∗(RP2;Z)∼=Z[U ]/(2U,U 2), where deg U = 2, and H p(RP2;Zw)=
H2−p(RP

2;Z) by Poincaré Duality, we get that the E2-page looks like

8 b2Z 0 U4Z/2

7 0 0 0

6 0 x2Z/2 y2Z

5 0 0 0

4 bZ 0 U2Z/2

3 0 0 0

2 0 xZ/2 yZ

1 0 0 0

0 Z 0 UZ/2

0 1 2

and for p> 2, E p,q
2 = 0. From this it follows that xy =U y=U x = y2 = x3 =U 2 = 0.

We claim that bn y = y2n, bnU =U2n, bn x = x2n , for all n ≥ 1, and the class x2 in
H 2(RP2; H 4(BT ;Z)) equals U2. The cup product in H ∗(BT ;Z) induces a product in the
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local coefficient system H 4n(BT ;Z)× H s(BT ;Z)→ H 4n+s(BT ;Z), given by the bilinear
maps Z×Zw→Zw or Z×Z→Z. In both cases, choosing the positive generator of Z in
the first argument, we get the identity map. Thus, bnU =U2n and bn y = y2n . Consider the
diagram

H 1(RP2; H 2(BT ;Z))× H 1(RP2; H 2(BT ;Z)) ��

��

H 2(RP2; H 4(BT ;Z))

��
H 1(RP2;Z/2)× H 1(RP2;Z/2) � �� H 2(RP2;Z/2),

where the vertical arrows are induced by the reduction modulo 2 homomorphisms Zw→
Z/2 and Z→Z/2, respectively. It is not hard to see that these are all isomorphisms (see
Appendix B in the arXiv version of this paper). Let x̂ ∈ H 1(RP2;Z/2) be the reduction
modulo 2 of x in H 1(RP2; H 2(BT ;Z)). Notice that the bottom arrow maps the class x̂ × x̂
to the generator in H 2(RP2;Z/2), that is, x̂2. By commutativity of the diagram, x2 is also a
generator and thus non-zero. Now the relation x2 − bU = 0 follows.

All further differentials are zero and the spectral sequence collapses at the E2-page.
Therefore, the E∞-page has the multiplicative structure

E∗,∗∞ ∼=Z[U, x, b, y]/(2U, 2x,U 2, xy,U y,U x, y2, x2 − bU )

where deg U = 2, deg x = 3 and deg b= deg y = 4. Notice there are no additive extensions,
since the only groups appearing as quotients are the Z’s in the first column. Next we will
show that all relations between the generators still hold in H ∗(S2 ×W BT ;Z), but to see
this, we need to make a choice of the class b in H 4(S2 ×W BT ;Z), that corresponds to a
representative of the class a2 in H 4(BT ;Z). Consider the composite

BT �� S2 ×W BT
ιφ �� BSO(3). (3·2)

The first Pontryagin class p1 ∈ H 4(BSO(3);Z) maps to a2, and so we choose b :=
(ιφ)∗(p1).

Any “zero” relation in E∗,∗∞ takes place in F p+q
i , the i-th term of the associated filtration

of H p+q(S2 ×W BT ;Z) with i ≥ 2. For i ≥ 3, they are all zero and F p+q
2 is a subgroup.

Therefore we have an isomorphism of graded rings H ∗(S2 ×W BT ;Z)∼= E∗,∗∞ .

PROPOSITION 3·3. There is an isomorphism of graded rings

H ∗(BcomSO(3)1;Z)∼=Z[p1, w, y1]/(2w, y2
1 , wy1, w

3),

where w and p1 are the pullbacks of χ ∈ H 3(BSO(3);Z) and p1 ∈ H 4(BSO(3);Z) under
the inclusion BcomSO(3)1 ↪→ BSO(3), and y1 satisfies φ∗(y1)= y with y as in Lemma 3·2.

Proof. Notice that the composition

RP2 j−→ S2 ×W BSO(2)
π−→RP2 (3·3)

is the identity map, where j is the inclusion at the basepoint of BSO(2) and π is the pro-
jection map in our fibration. By inspection of the above spectral sequence, we see that the
class U in Lemma 3·2 maps under j∗ to the generator of H 2(RP2;Z). Applying Mayer–
Vietoris to (3·1), we see that H̃ ∗(BcomSO(3)1;Z)= ker j∗. An easy check shows that the
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kernel of j∗ is the ideal generated by x , y and p̃1. Since U x =U y = 0 and p̃1U = x2, we
see that the ideal generated by x , y and p̃1 is equal to the positive degree part of the sub-
ring of H ∗(S2 ×W BSO(2);Z) generated by x , y and p̃1, and thus the cohomology ring
H ∗(BcomSO(3)1;Z) is isomorphic to said subring.

Now we try to identify the classes in H ∗(BcomSO(3)1;Z) that map to x , y and p̃1

under φ∗. First let’s deal with x . Using the fact that EcomSO(3)1 is 3-connected and Serre’s
exact sequence for the homotopy fibration EcomSO(3)1→ BcomSO(3)1→ BSO(3), it is
readily seen that the pullback of χ under the inclusion BcomSO(3)1→ BSO(3) is non-
zero, so that we must have φ∗(w)= x . As for p̃1, it was defined as (ιφ)∗(p1), and therefore
φ∗(p1)= p̃1 if we regard p1 as a class in H ∗(BcomSO(3)1;Z). Finally, we have nothing to
say about the pre-image of y which we simply call y1.

The relations claimed for p1, w and y follow easily from the presentation in
Lemma 3·2. The only non-immediate one is w3 = 0, which follows from x3 = x(x2 −
p̃1U )+ (U x) p̃1. To show that no other relations are needed, we used SINGULAR (see
Appendix A.3 in the arXiv version of this paper) to verify that the kernel of the
ring homomorphism Z[p1, w, y1]→ H ∗(S2 ×W BSO(2);Z), (p1, w, y1) �→ ( p̃1, x, y) is
indeed (2w, y2

1 , wy1, w
3).

Remark 3·4. When G is a compact Lie group, the inclusion BT → BG is injective in ratio-
nal cohomology. The fact that this inclusion factors through BcomG1→ BG implies that the
induced map H ∗(BG;Q)→ H ∗(BcomG1;Q) is also injective. Proposition 3·3 shows that
this is not true with integral coefficients for G = SO(3). Indeed, χ3 is pulled back tow3 = 0.

Remark 3·5. In light of the above remark, it is natural to ask about the differences between
BcomSO(3)1 and the “full” classifying space for commutativity BcomSO(3). The main differ-
ence between these two spaces is that B D4 appears as a natural subcomplex of BcomSO(3),
because of the subgroup of SO(3) isomorphic to D4 consisting of diagonal matrices with
±1 diagonal entries (and determinant 1), which is not contained in any maximal torus and
thus does not contribute to BcomSO(3)1. With help from that B D4 we can show that the
inclusion ι : BcomSO(3)→ BSO(3) induces an injective homomorphism H ∗(BSO(3))→
H ∗(BcomSO(3)) with either Z or F2 coefficients.

Consider the inclusions

BSO(2) ��

j1 ��

BcomSO(3)

ι

��
BSO(3)

B D4
��

j2 ��

BcomSO(3)

ι

��
BSO(3).

(3·4)

In integral cohomology, ker j∗1 = (χ) and it can be shown that ker j∗2 = (2p1). Since the
above triangles show that ker ι∗ ⊂ ker j∗1 and ker ι∗ ⊂ ker j∗2 , we must have ker ι∗ ⊂ ker j∗1 ∩
ker j∗2 = 0.

For F2-coefficients we only need the second diagram. We will show that j∗2 is injective
on F2-cohomology, which implies that ι∗ must be as well. Let x, y be the generators in
degree 1 of the cohomology ring of B D4 = BZ/2× BZ/2. Thinking of D4 as {±1} × {±1}
for convenience, the inclusion D4→ SO(3) is given by (ε1, ε2) �→ diag(ε1, ε2, ε1ε2). Now,
that same formula embeds D4 in O(1)3 and the induced map on cohomology, F2[t1, t2, t3] ∼=
H ∗(BO(1)3; F2)→ H ∗(B D4; F2) is given by t1 �→ x , t2 �→ y and t3 �→ x + y. Recall that
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the F2-cohomology of O(3) is the subring of symmetric polynomials inside the cohomology
of its subgroup O(1)3 and the classes w2 and w3 map to t1t2 + t1t3 + t2t3 and t1t2t3, respec-
tively. Therefore the inclusion D4→ SO(3) induces the homomorphism on cohomology of
classifying spaces given by

w2 �−→ t1t2 + t1t3 + t2t3 �−→ xy + x(x + y)+ y(x + y)= x2 + xy + y2

and

w3 �−→ t1t2t3 �−→ xy(x + y)= x2 y + xy2.

This homomorphism F2[w2, w3]→ F2[x, y] can easily be seen to be injective, for example,
by computing the kernel in SINGULAR.

3·2. The F2-cohomology ring and Steenrod squares

Let w̃2 = (ιφ)∗(w2), and write H ∗(RP2; F2)= F2[u]/(u3).

LEMMA 3·6. There is an isomorphism of graded rings

H ∗(S2 ×W BSO(2); F2)∼= F2[w̃2, u]/(u3).

Proof. Since F2 has a unique automorphism, the monodromy action of π1(RP
2) on

H ∗(BSO(2); F2) must be trivial. The E2-page of the Serre spectral sequence associated to
BSO(2)→ S2 ×W BSO(2)→RP2 is then H ∗(BSO(2); F2)⊗ H ∗(RP2; F2)∼= F2[w2] ⊗
F2[u]/(u3) and all differentials are zero. In fact, the spectral sequence also collapses at
the E2-page. To lift the multiplicative structure from the E∞–page to the cohomology
of S2 ×W BSO(2) we check that w̃2 is a lift of w2 in the E∞–page. Since w2 is sta-
ble, the class w2 ∈ H 2(BSO(3); F2) maps to w2 ∈ H 2(BSO(2); F2) under the inclusion
BSO(2) ↪→ BSO(3). The latter factors through the conjugation map φ,

BSO(2) �� S2 ×W BSO(2)
ιφ �� BSO(3)

and, therefore, w̃2 is a lift of w2 in E0,2
∞ .

PROPOSITION 3·7. Let w2 ∈ H 2(BcomSO(3)1; F2) also denote the pullback of w2 ∈
H 2(BSO(3); F2) under the inclusion BcomSO(3)1→ BSO(3). Then

H ∗(BcomSO(3)1; F2)∼= F[w2, w̄, ȳ1]/(ȳ2
1 , w̄ ȳ1, w̄

2 +w2 ȳ1),

where w̄, ȳ1 are the reduction mod 2 of w, y1 in Proposition 3·3, respectively.

Proof. Similarly to the computation with integer coefficients, here we also have that
H̃ ∗(BcomSO(3)1; F2)= ker j∗, where j is the first map in (3·3). In the case of F2–
coefficients the kernel of j∗ is the ideal generated by w̃2. We claim that w̃2u and w̃2u2 are the
reduction mod 2 of the classes x and y in Lemma 3·2, respectively. We compare the E2-pages
of the integral and the mod 2 Serre spectral sequences via the mod 2 reduction homomor-
phism H 2(BSO(2);Z)→ H 2(BSO(2); F2). As a morphism of π1(RP

2)-representations,
this is the non-trivial morphism Zw→ F2. One can check see that x and y indeed map to
the generators w̃2u and w̃2u2 on the E2-page (see Appendix B in the arXiv version of this
paper), and thus this is also true on the E∞-page. Since the classes x, y and w̃2u, w̃2u2 are in
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honest subgroups of the cohomology groups of the corresponding total spaces, this contin-
ues to hold in these cohomology groups. The stated presentation follows from the naturality
of reduction modulo 2.

The Steenrod algebra action. Recall that the Steenrod squares in H ∗(BSO(3); F2)∼=
F2[w2, w3] are given by Sq1(w2)=w3, Sq1(w3)= 0 and Sq2(w3)=w2w3. Now under the
inclusion ι : BcomSO(3)1→ BSO(3) we have ι∗(w3)= w̄. We can immediately conclude

Sq1(w2)= w̄ Sq1(w̄)= 0

Sq2(w̄)= w̄w2.

To determine Sqn(ȳ1), recall from the proof of Proposition 3·7 that φ∗(ȳ1)= w̃2u2 and
φ∗(w̄)= w̃2u. Since φ∗ is injective, it is enough to calculate Sqn(w̃2u2). By construction
(ιφ)∗(w2)= w̃2, and hence

Sq1(w̃2)= (ιφ)∗(Sq1(w2))= (ιφ)∗(w3)= φ∗(w̄)= w̃2u.

An easy check shows that Sq1(w̃2u2)= 0, Sq2(w̃2u2)= w̃2
2u2, and Sq3(w̃2u2)= 0. Thus,

Sq1(ȳ1)= 0

Sq2(ȳ1)=w2 ȳ1

Sq3(ȳ1)= 0.

4. Cohomology of BcomU (2) and BcomSU (2)

The goal of this section is to compute the cohomology rings of the spaces BcomU (2)
and BcomSU (2) with both integral and F2-coefficients, as well as the action of the Steenrod
algebra on the F2-cohomology. Our calculations for the two groups are inextricably inter-
twined, which is why we present them together. Our calculations of the ring structure and
the Steenrod squares for F2-cohomology rings are also intertwined.

Recall that the integral cohomology rings of BU (2) and BSU (2) are described in
terms of Chern classes, namely, H ∗(BU (2);Z)∼=Z[c1, c2], where ci has degree 2i ,
and H ∗(BSU (2);Z)∼=Z[c2]. The inclusion SU (2) ↪→U (2) does the obvious thing on
cohomology: c1 �→ 0, c2 �→ c2.

Our results for SU (2) were already stated in Theorem 1·1. Here is the corresponding
omnibus theorem for U (2).

THEOREM 4·1.

(i) There is an isomorphism of graded rings

H ∗(BcomU (2);Z)∼=Z[c1, c2, y1, y2]/(2y2 − y1c1, y2
1 , y1 y2, y2

2),

where ci ∈ H 2i (BcomU (2);Z) and yi ∈ H 2i+2(BcomU (2);Z). Moreover, ci is the
pullback of the ith Chern class along the inclusion BcomU (2)→ BU (2).

(ii) Let z̄ denote reduction mod 2 of z. Then

H ∗(BcomU (2); F2)∼= F2[c̄1, c̄2, ȳ1, ȳ2]/(ȳ1c̄1, ȳ2
1 , ȳ1 ȳ2, ȳ2

2).
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(iii) The Steenrod algebra action is given by the following total Steenrod squares:

Sq(c̄1)= c̄1 + c̄2
1

Sq(c̄2)= c̄2 + c̄1c̄2 + c̄2
2

Sq(ȳ1)= ȳ1

Sq(ȳ2)= ȳ2 + c̄2 ȳ1 + c̄2
1 ȳ2.

Even though x2 ∈ H 6(BcomSU (2);Z) is the image of y2 ∈ H 6(BcomU (2);Z), we’ve
changed the name to heighten awareness of the fact that y2 is non-torsion while x2 is
2-torsion.

4·1. The integral cohomology rings

The homotopy pushout for G =U (2) (Lemma 2·1) reads

RP2 × BS1 i ��

π2

��

S2 ×W BT2

φ

��
BS1 j �� BcomU (2).

(4·1)

To compute the integral cohomology ring of BcomU (2), we need to know what the map i∗

does in cohomology.
Let c̃i := (ιφ)∗(ci), where ci ∈ H 2i (BU (2);Z) is the i th Chern class.

LEMMA 4·2. There is an isomorphism of graded rings

H ∗(S2 ×W BT2;Z)∼=Z[c̃1, c̃2, c,U ]/(2U,U 2, c2, c̃1U, cU ),

where deg c= 4 and deg U = 2.

Proof. We have a fibration BT2→ S2 ×W BT2→RP2. The action of the Weyl group W
on T2 is by swapping the entries of the diagonal. Thus the induced action of π1(RP

2) on
H 2(BT2;Z)= 〈a1, a2〉 is generated by (a1, a2) �→ (a2, a1), i.e. H 2(BT ;Z) is the regular
representation Z[Z/2] = {m + τn |m, n ∈Z, τ 2 = 1}. Since H q(BT2;Z) is zero for q odd
and is generated by the elements ai1

1 ai2
2 , where i1, i2 ≥ 0 and i1 + i2 = q

2 when q is even, we
obtain

H q(BT2;Z)=
⎧⎨
⎩

Z[Z/2]n+1 q = 4n + 2 n ≥ 0
Z[Z/2]n ⊕Z q = 4n n ≥ 0

0 else.

Recall that H p(RP2;Z[Z/2])∼= H p(S2;Z). Thus the E2-page of the Serre spectral sequence
associated to the above fibration is given by

E p,q
2 = H p(RP2; H q(BT2;Z))∼=

⎧⎪⎪⎨
⎪⎪⎩

Zn+1 p= 0, 2 q = 4n + 2 n ≥ 0
Zn+1 p= 0 q = 4n n ≥ 0

Zn ⊕Z/2 p= 2 q = 4n n ≥ 0
0 else.

It is easy to determine the multiplicative structure of the E∗,∗2 -page:
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4n + 2 Zn+1 0 Zn+1

4n + 1 0 0 0

4n Zn+1 0 Zn ⊕Z/2
...

...
...

...

4 b2
1Z⊕ b2Z 0 b1cZ⊕ b2uZ/2

3 0 0 0

2 b1Z 0 cZ

1 0 0 0

0 Z 0 UZ/2

0 1 2

(4·2)

Here c2 =U 2 = b1U = cU = 0. The only non-trivial products occur in the zero column,
as well as between the zero and second column, where we have bn

2U for n ≥ 0, each giving a
copy of Z/2, and p(b1, b2)c (where p is any polynomial in b1, b2) giving the free summands
in the second column. These products are easy to determine (see Appendix B in the arXiv
version of this paper). All differentials are zero, in fact E p,q

2
∼= E p,q

∞ and

E∗,∗∞ ∼=Z[b1, b2, c,U ]/(2U,U 2, c2, b1U, cU ), (4·3)

where deg b1 = deg U = 2 and deg b2 = deg c= 4. Since E p,q
∞ = 0 for p≥ 3, the classes

in the second column lift uniquely to H ∗(S2 ×W BT ;Z) and any product involving these
classes is uniquely determined. On the other hand, there may be multiplicative extensions
for the products in the zero column. However, these products are determined by those in
H ∗(BU (2);Z) once we’ve shown that c̃1 = (ιφ)∗(c1) and c̃2 = (ιφ)∗(c2) represent b1 and
b2, respectively, in the E∞–page. The latter follows from the factorisation

BT2
�� S2 ×W BT2

ιφ �� BU (2) (4·4)

and the fact that the Chern classes c1, c2 pull back to the generators of the invariant ring
H 0(RP2; H ∗(BT2;Z)) isomorphic to H ∗(BT2;Z)W . Note that any other representative of
b1, say c̃1 + kU , still satisfies (c̃1 + kU )U = 0 so that the presentation of the ring (4·3)
remains unaltered. Upon replacing b1, b2 by c̃1, c̃2, this gives the cohomology ring claimed
in the lemma.

Consider the trivial fibration BS1→RP2 × BS1→RP2 and let E ′ p,qr denote the associ-
ated Serre spectral sequence. The map i induces a map of fibrations and hence a morphism
of spectral sequences and E∞–pages i∞ : E p,q

∞ → E ′ p,q∞ . We use i∞ to describe the map

i∗ : H ∗(S2 ×W BT2;Z)→ H ∗(RP2 × BS1;Z)∼=Z[U, t]/(2U,U 2) ,

where deg U = deg t = 2.

LEMMA 4·3. In the presentation of Lemma 4·2, i∗(U )=U, i∗(c̃1)= 2t , i∗(c)= tU , and
i∗(c̃2)= t2.
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Proof. The map of fibrations is the identity map on base spaces, thus i∗(U )= i∞(U )=U .
We analyse the class i∞(c) ∈ H 2(RP2; H 2(BS1;Z)). The map i∞ in bi-degree (2,2) is
induced by the morphism of Z/2-representations Z[Z/2]→Z sending m + τn �→m + n.
The induced map H 2(RP2;Z[Z/2])→ H 2(RP2;Z) is readily shown to be reduction mod-
ulo 2 (see Appendix B in the arXiv version of this paper). Both spectral sequences are
concentrated in degrees p= 0, 2, which means that E2,2

∞ and E ′2,2∞ are actual subgroups
of H 4(S2 ×W BT2;Z) and H 4(RP2 × BS1;Z), respectively. Thus i∗(c)= tU . Consider the
commutative diagram

RP2 × BS1 i ��

π2

��

S2 ×W BT2
φ �� BcomU (2)

ι

��
BS1 j1 �� BT2

j2 �� BU (2) ,

where j1 is the diagonal inclusion. Suppose a1, a2 are the generators of degree 2 of the
cohomology ring H ∗(BT2;Z). Recall that the inclusion T2 ↪→U (2) induces an isomor-
phism H ∗(BU (2);Z)∼= H ∗(BT2;Z)W given by j∗2 (c1)= a1 + a2 and j∗2 (c2)= a1a2. Then
j∗1 (ak)= t implies that ( j2 ◦ j1 ◦ π2)

∗(c1)= 2t and ( j2 ◦ j1 ◦ π2)
∗(c2)= t2. Now we have a

complete description of i∗, since by the definition of c̃1 and c̃2 we have i∗(c̃1)= 2t and
i∗(c̃2)= t2.

LEMMA 4·4. The integral cohomology ring of BcomU (2) is as claimed in Theorem 4·1.

Proof. From the previous lemma it follows that (π∗2 − i∗)n : H n(BS1;Z)⊕ H n(S2 ×W

BT2;Z)→ H n(RP2 × BS1;Z) is surjective for every n ≥ 0. From the Mayer–Vietoris
sequence associated to (4·1) we see that the ring homomorphism

H ∗(BcomU (2);Z) ( j∗,φ∗)−−−→ H ∗(BS1 ∨ (S2 ×W BT2);Z)
∼=Z[t, c̃1, c̃2, c,U ]/(2U,U 2, c2, c̃1U, cU, t z; z ∈ {c̃1, c̃2, c,U })

is injective. Therefore, H ∗(BcomU (2);Z) is isomorphic to the subring im( j∗, φ∗), where
im( j∗, φ∗)n = ker(π∗2 − i∗)n for each n.

The above reasoning implies that im( j∗, φ∗) is generated by the kernel of i∗, given
by ker i∗ = (2c, c̃1c, c̃2

1 − 4c̃2), together with the two classes 2t + c̃1 and t2 + c̃2. Define a
map f : Z[c1, c2, y1, y2]→ im( j∗, φ∗) by f (c1)= 2t + c̃1, f (c2)= t2 + c̃2, f (y1)= 2c and
f (y2)= c̃1c. We claim that f is surjective. Indeed, all there remains to check is that f sur-
jects onto ker i∗. This follows from c̃2

1 − 4c̃2 = f (c2
1 − 4c2) and the relations c̃1(c̃2

1 − 4c̃2)=
f (c3

1 − 4c1c2), c̃2(c̃2
1 − 4c̃2)= f (c2

1c2 − 4c2
2) and c(c̃2

1 − 4c̃2)= f (y2c1 − 2y1c2), together
with the fact that U annihilates ker i∗. Using SINGULAR (see Appendix A.1 in the arXiv
version of this paper) we can verify that the kernel of f is (2y2 − y1c1, y2

1 , y1 y2, y2
2). The

fact that c1 and c2 (as generators of the polynomial ring) can indeed be identified with
the pullback of the Chern classes follows from that fact that ( j∗, φ∗)(ι∗(c1))= 2t + c̃1 and
( j∗, φ∗)(ι∗(c2))= t2 + c̃2.

LEMMA 4·5. The integral cohomology ring of BcomSU (2) is as stated in Theorem 1·1.

Proof. In [8, lemma 3·5], the author verifies the existence of a homotopy fiber
sequence BcomSU (2)→ BcomU (2)→ BS1, and hence a homotopy fiber sequence S1→
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BcomSU (2)→ BcomU (2). The E p,q
2 -page of the associated Serre spectral sequence is

concentrated in q = 0, 1. Let e be the generator of H 1(S1;Z), and consider d2 : E0,1
2 → E2,0

2 .
Then d2(e)= c1 ∈ H 2(BcomU (2);Z), since BcomSU (2) is 3-connected (see [2]) and in par-
ticular its cohomology in degrees 1 and 2 is zero. Therefore d2 : E4,1

2 → E6,0
2 satisfies

d2(ey1)= 2y2. Computing the remaining differentials d2, we see that the E p,q
3 -page is con-

centrated in degree q = 0, and is generated by c2, y1 and x2, the generator of y2Z/2y2Z in
bi-degree (6, 0).

Remark 4·6. The integral cohomology groups of BcomSU (2) were computed in [2], and our
computations agree with their results.

COROLLARY 4·7. H ∗(EcomSU (2);Z)∼=Z[y1, x2]/(2x2, y2
1 , y1x2, x2

2), where deg y1 = 4
and deg x2 = 6.

Proof. We analyse the Serre spectral sequence (E∗,∗, d) associated to the fiber sequence
SU (2)→ EcomSU (2)→ BcomSU (2) by comparing it to the one associated to the universal
bundle SU (2)→ E SU (2)→ BSU (2). Denote the latter by (E ′∗,∗, d ′). By Theorem 1·1,
BcomSU (2)→ BSU (2) induces an injection H ∗(BSU (2);Z)→ H ∗(BcomSU (2);Z) send-
ing the second Chern class c2 to the identically named class c2. Let e be the generator in
H 3(SU (2);Z). Since d ′4(e)= c2, then also d4(e)= c2. Therefore, the only non-vanishing
generators in the E5-page are y1 and x2 in bi-degrees (4, 0) and (6, 0), respectively.

4·2. The F2-cohomology rings and Steenrod squares

Now we move on to the F2-cohomology rings. For U (2) there’s not much left to do.

LEMMA 4·8. The F2-cohomology ring of BcomU (2) is as claimed in Theorem 4·1.

Proof. From the presentation we’ve obtained for it, it is clear that the integral cohomology
ring is torsion free. Then the presentation for the F2-cohomology ring follows from the
universal coefficients theorem.

For SU (2), on the other hand, we still have some work to do. This includes figuring out a
small part of the Steenrod algebra action.

LEMMA 4·9. The F2-cohomology ring of BcomSU (2) is as claimed in Theorem 1·1.

Proof. We use the mod 2 Serre spectral sequence of the homotopy fibration used in Lemma
4·5. Now let this time e denote the generator of H 1(S1; F2). The same argument made
above shows that d2(e)= c̄1. In this case, the class eȳ1 in bi-degree (4, 1) maps to zero
under d2. The zeroth row of the E3-page is generated by c̄2, ȳ1 and x̄2. In the first row we
have the class eȳ1, and the remaining classes are determined by the non-zero multiples of
ȳ1 in H ∗(BcomU (2); F2) (non-zero entries in bi-degree (p, 1) lie in honest subgroups of
H p+1(BcomSU (2); F2), since the cohomology of the base is concentrated in even degrees).
The spectral sequences collapses at the E3-page and the only remaining product to check
is (eȳ1)

2 (bi-degree (8, 2)). This requires a different approach: because of possible mul-
tiplicative extensions we cannot decide if the product is zero or equal to c̄2 x̄2 (bi-degree
(10,0)).
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Instead, we use the homotopy pushout for G = SU (2) (Lemma 2·1) that reads

RP2 ×RP∞ i ��

π2

��

S2 ×W BT

φ

��
RP∞

j �� BcomSU (2).

(4·5)

Let x1 denote the (unique) lift of eȳ1 to H 5(BcomSU (2); F2). We claim that x1 is in the
image of δ, the connecting homomorphism in the Mayer–Vietoris sequence of (4·5). To
see this we use Lemma 3·6. Notice that BcomSU (2) being 3-connected and considerations
with the rank imply that (π∗2 − i∗) : H 3(RP∞; F2)⊕ H 3(S2 ×W BT ; F2)→ H 3(RP2 ×
RP∞; F2) is injective and of rank 2. Therefore, the kernel of the connecting homomorphism
δ : H 3(RP2 ×RP∞; F2)→ H 4(BcomSU (2); F2) has rank 2. Also, H 4(S2 ×W BT ; F2) has
rank 2, so that the relevant piece of the Mayer–Vietoris sequence in degree 4 reads

0−→ F2 −→ H 4(BcomSU (2); F2)−→ F3
2 −→ F3

2
δ−→H 5(BcomSU (2); F2)−→ · · ·

Since H 4(BcomSU (2); F2) has rank 2 (by the first paragraph of this proof), exactness implies
ker δ = F2

2 and therefore imδ = 〈x1〉, which proves our claim.
Now we can easily compute x2

1 via Sq5(x1). Since Sqn commutes with the connecting
homomorphism, Sq5(x1)= δ(Sq5(l)) for some l, but Sq5(l)= 0, because l has degree 4.
Therefore x2

1 = Sq5(x1)= 0. The presentation now follows.
Finally we must have β(x1)= x2, simply because x2 is 2-torsion meaning it must be in

the image of β and x1 is the only non-zero class in degree 5.

The Steenrod algebra action. We’ve already computed some of the Steenrod squares; let’s
take stock of what we have, what is obvious and what is left to do.

For BcomU (2), the claimed total Steenrod squares for c̄1 and c̄2 are simply what they are
well–known to be for the Chern classes in H ∗(BU (2); F2). Also, since all the cohomology
of BcomU (2) is in even degree, all Steenrod squares Sqn with n odd are automatically zero.
The ring structure says that Sq4(ȳ1)= ȳ2

1 = 0, and the same for Sq6(ȳ2). That only leaves
three squares to calculate: Sq2(ȳ1), Sq2(ȳ2) and Sq4(ȳ2).

For BcomSU (2), the total Steenrod square of c̄2 again ultimately comes from BU (2).
Since ȳ1 and x̄2 are the images of ȳ1 and ȳ2 in H ∗(BcomU (2); F2), we can already say that
Sqn(ȳ1)= 0 when n > 0 except possibly for n = 2, and that Sqn(x̄2)= 0 when n > 0 except
possibly for n = 2 or n = 4.

Of course, there is also x1 which is not in the image of the map from H ∗(BcomU (2); F2).
We already know that β(x1)= x2, which implies upon reducing mod 2, that Sq1x1 = x̄2. We
now show that all higher Steenrod squares of x1 vanish.

LEMMA 4·10. The total Steenrod square of the class x1 ∈ H 5(BcomSU (2); F2) is given
by Sq(x1)= x1 + x̄2.

Proof. We have Sq2(x1) ∈ H 7(BcomSU (2); F2)= 0; and then, the Adem relation Sq3 =
Sq1Sq2 implies that Sq3(x1)= 0 as well. From our calculation of the ring structure we know
that Sq5(x1)= x2

1 = 0.
Now we want to find Sq4(x1) ∈ H 9(BcomSU (2); F2)= 〈x1c̄2〉. If it happened that

Sq4(x1)= x1c̄2, by the Adem relation Sq5 = Sq1Sq4, we’d have 0= Sq5(x1)= Sq1(x1c̄2)=
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Sq1(x1)c̄2 + x1Sq1(c̄2)= x̄2c̄2, contradicting the ring structure we obtained. Therefore,
Sq4(x1)= 0, as desired.

Before we tackle the six remaining squares, we need to recall exactly how we defined
the classes c1, c2, y1, y2 in H ∗(BcomU (2);Z). This was done in the proof of Lemma 4·4,
which calculates the integral cohomology ring of BcomU (2). Recall the inclusion j : BS1→
BcomU (2) and conjugation map φ : S2 ×W BT2→ BcomU (2) appearing in the crucial homo-
topy pushout (4·1). Together they specify a map f := ( j, φ) : BS1 ∨ (S2 ×W BT2)→
BcomU (2), which in the course of the proof of Lemma 4·4 was shown to induce an injective
homomorphism on integral cohomology. The integral cohomology classes in BcomU (2)were
then defined to satisfy f ∗(c1)= 2t + c̃1, f ∗(c2)= t2 + c̃2, f ∗(y1)= 2c and f ∗(y2)= c̃1c.

Notice that for F2-cohomology we have f ∗(ȳ1)= 2c̄= 0, using z̄ to denote the mod 2
reduction of an integral class z. So unlike what happens integrally, with F2-coefficients f ∗ is
not injective. The kernel of the F2-version of f ∗ is the ideal generated by ȳ1, but we’ll only
need a few low-degree instances of this fact.

LEMMA 4·11. The class ȳ1 ∈ H 4(BcomU (2); F2) satisfies Sq2(ȳ1)= 0, and thus the same
is true for its image, the identically named ȳ1 ∈ H 4(BcomSU (2); F2).

Proof. We have f ∗(Sq2(ȳ1))= Sq2( f ∗(ȳ1))= 0. While f ∗ is not injective in general, on
H 6(BcomU (2); F2)= 〈c̄3

1, c̄1c̄2, ȳ2〉 it clearly is, by the above formulas, so we conclude that
Sq2(ȳ1)= 0.

LEMMA 4·12. The class ȳ2 ∈ H 6(BcomU (2); F2) satisfies Sq4(ȳ2)= c̄2
1 ȳ2.

Proof. We have f ∗(Sq4(ȳ2))= Sq4( f ∗(ȳ2))= Sq4( ¯̃c1c̄). The class c̃1 was pulled back from
the Chern class c1, so ¯̃c1 only has non-zero Sq0 and Sq2. The Cartan formula then says that
Sq4( ¯̃c1c̄)= ¯̃c1Sq4(c̄)+ ¯̃c2

1Sq2(c̄). Since c2 = 0, the mod 2 reduction satisfies Sq4(c̄)= c̄2 = 0,
too. Putting this together we have f ∗(Sq4(ȳ2))= ¯̃c2

1Sq2(c̄).
We next compute Sq2(c̄). This square must be a linear combination of ¯̃c1c̄ and ¯̃c2Ū .

This can be easily seen from the spectral sequence for the fibration S2 ×W BT2→RP2 with
F2–coefficients. The relevant part of the E2-page (total degree≤ 6) is the reduction modulo 2
of (4·2) with additional classes in bi-degrees (1, 0) and (1, 4). For degree reasons, however,
the only classes contributing to Sq2(c̄) are those in bi-degree (2, 4), which are named b̄1c̄
and b̄2Ū in the E2–page, or ¯̃c1c̄ and ¯̃c2Ū in the cohomology of S2 ×W BT2. We next observe
that the contribution from ¯̃c2Ū is non-zero. Indeed, by Lemma 4·3 and naturality of reduc-
tion modulo 2, we have i∗(Sq2(c̄))= Sq2(i∗(c̄))= Sq2(t̄Ū )= t̄2Ū , as well as i∗( ¯̃c1c̄)= 0
and i∗( ¯̃c2Ū )= t̄2Ū . To determine the contribution from ¯̃c1c̄ to Sq2(c̄) we consider a map

ρ : S2 ×W (CP
1 ×CP1)−→ S2 ×W BT2

induced by the obvious inclusion CP1 ×CP1→CP∞ ×CP∞ 
 BT2. We claim that
ρ∗( ¯̃c1c̄)= ρ∗( ¯̃c2Ū ) and ρ∗( ¯̃c1c̄) �= 0. By naturality, we may alternatively check ρ∗(c̃1c)=
ρ∗(c̃2U ). To prove this we compare the spectral sequences for the fibrations over RP2. The
relevant bi-degree is (2, 4), where ρ∗ corresponds to a map

σ : H 2(RP2;Z[Z/2] ⊕Z)−→ H 2(RP2;Z)
induced by the projection of coefficient modules Z[Z/2] ⊕Z→Z (see the proof of
Lemma 4·2). It can be checked that under the isomorphism H 2(RP2;Z[Z/2] ⊕Z)∼=
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H 2(RP2;Z[Z/2])⊕ H 2(RP2;Z)∼=Z⊕Z/2 the class b1c corresponds to the element
(1, 1) ∈Z⊕Z/2 and b2U corresponds to (0, 1). Therefore, σ(b1c)= σ(b2U ) �= 0 in Z/2
and, consequently, ρ∗( ¯̃c1c̄)= ρ∗( ¯̃c2Ū ) �= 0.

We are now left with two possibilities for Sq2(c̄) depending on whether ρ∗(Sq2(c̄)) is
zero or not. In the first case Sq2(c̄)= ¯̃c1c̄+ ¯̃c2Ū , while in the second case Sq2(c̄)= ¯̃c2Ū . We
claim that ρ∗(Sq2(c̄))= 0. Since W acts freely on S2, the space M := S2 ×W (CP

1 ×CP1)

is a 6-manifold. The class ρ∗(c̄) has degree four, so Sq2(ρ∗(c̄)) lands in the top dimensional
cohomology group of M . Thus, the Steenrod square can be computed by taking cup product
with the second Wu class ν2(M), which can be expressed in terms of Stiefel-Whitney classes
as follows: ν2(M)=w2(M)+w1(M)2. In the E2–page of the spectral sequence for the fibra-
tion M→RP2 there are no non-trivial cup products between the first and second columns,
so w1(M)ρ∗(c̄)= 0. For the same reason, the product w2(M)ρ∗(c̄) only depends on the
restriction of w2(M) to the fiber in the fibration sequence CP1 ×CP1→ M→RP2. Let ι
denote the inclusion of the fiber. Since M→RP2 is a locally trivial fiber bundle, the normal
bundle of ι is trivial, hence ι∗(w2(M))=w2(CP

1 ×CP1)= 0. Therefore, w2(M)ρ∗(c̄)= 0
and consequently Sq2(ρ∗(c̄))= ν2(M)ρ∗(c̄)= 0, too. This proves Sq2(c̄)= ¯̃c1c̄+ ¯̃c2Ū .

Finally, the result for Sq2(c̄) implies that f ∗(Sq4(ȳ2))= ¯̃c3
1 c̄. The kernel of f ∗ is the ideal

generated by ȳ1, hence f ∗ is injective in degree 10. Since f ∗(c̄2
1 ȳ2)= ¯̃c3

1 c̄, we conclude that
Sq4(ȳ2)= c̄2

1 ȳ2.

LEMMA 4·13. We have Sq4(x̄2)= 0 for the class x̄2 ∈ H 6(BcomSU (2); F2).

Proof. The claim for x̄2 follows because ȳ2 ∈ H 6(BcomU (2); F2) maps to it and by the
previous lemma Sq4(ȳ2) is a multiple of c̄1 which maps to 0.

Alternatively one can show Sq4(x̄2)= 0 directly by applying the Adem relation Sq4Sq1 =
Sq5 + Sq2Sq3 to x1. The left-hand side is Sq4(x̄2) and the right-hand side is zero by Lemma
4·10.

LEMMA 4·14. We have Sq2(x̄2)= c̄2 ȳ1 for the class x̄2 ∈ H 6(BcomSU (2); F2).

Proof. This is similar to the argument for x2
1 = 0 in the proof of Lemma 4·9. Consider

again the Mayer–Vietoris sequence for the homotopy pushout square (4·5). Let H ∗(RP2 ×
RP∞; F2)= F2[u, v]/(u3), where u and v are the generators in degree 1 for H ∗(RP2) and
H ∗(RP∞). We will show that x̄2 is in the image of connecting homomorphism, specifically
that x̄2 = ∂(u2v3). To do that we look at the portion of the Mayer–Vietoris around degrees 5
and 6 (let’s omit the coefficients for brevity, they are F2 throughout this proof):

H 5(RP∞)⊕ H 5(S2 ×W BT )
π∗2−i∗−−−→ H 5(RP2 ×RP∞) ∂−→ H 6(BcomSU (2)).

Now, H 5(RP2 ×RP∞)= 〈v5, uv4, u2v3〉. The image of π∗2 is clearly 〈v5〉. We claim that
the image of i∗ is rank one and is either 〈uv4〉 or 〈uv4 + u2v3〉. Assuming that for the
moment, we see that in either case u2v3 is guaranteed to not be in the image of π∗2 − i∗,
and thus ∂(u2v3) �= 0, which establishes that ∂(u2v3)= x̄2, as there is only one non-zero
class in degree 6 in H ∗(BcomSU (2)).

First we need to compute H ∗(S2 ×W BT ; F2), but by a charming coincidence we
already did that in the course of computing the cohomology of BcomSO(3)1. According to
Lemma 3·6, the cohomology ring is F2[u, z]/(u3) (where we’ve used z to name the generator
of H ∗(BT ; F2) instead of w̃2 as in the lemma).
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The map i : RP2 ×RP∞→ S2 ×W BT fits into a map of fibrations from the trivial fibra-
tion RP∞→RP2 ×RP∞→RP2 to the fibration considered above. This map of fibrations
is the identity on the base and the inclusion RP∞ = B Z ↪→ BT on the fibre. So we can eas-
ily identify the map on E∞-pages: it is given by u �→ u and z �→ v2. In degree 5 the only
class in the E∞-page of the S2 ×W BT fibration is uz2 and this maps to uv4 in the E∞-page
of the trivial fibration. On cohomology, rather than E∞-pages, there can be correction terms
of higher filtration, so we’ve only shown that i∗(uz2) is uv4 or uv4 + u2v3, as mentioned
earlier.

All of this was to show that x̄2 = ∂(u2v3). Since the connecting homomorphism commutes
with Steenrod squares, we see that Sq2(x̄2)= ∂(Sq2(u2v3))= ∂(u2v5). The same argument
as above, but two degrees higher, shows that u2v5 is not in the image of π∗2 − i∗, and thus
that ∂(u2v5) �= 0. The only non-zero classes in degree 8 in H ∗(BcomSU (2)) are c̄2 ȳ1 and c̄2

2.
Since the pullback of x̄2 to BT ⊂ BcomSU (2) is zero, c̄2

2 cannot contribute to the Steenrod
square. Hence, Sq2(x̄2)= c̄2 ȳ1 as claimed.

LEMMA 4·15. We have Sq2(ȳ2)= c̄2 ȳ1 for the class ȳ2 ∈ H 6(BcomU (2); F2).

Note that the previous lemma, Sq2(x̄2)= c̄2 ȳ1, is a direct consequence of this lemma, but
that fact will be needed in the proof.

Proof. We first observe that f ∗(Sq2(ȳ2))= Sq2( ¯̃c1c̄)= 0, using knowledge of Sq2(c̄) from
the proof of Lemma 4·12. Therefore, Sq2(ȳ2) ∈ ker( f ∗)= 〈c̄2 ȳ1〉. By Lemma 4·14 the image
of Sq2(ȳ2) in H ∗(BcomSU (2); F2) is non-zero, hence Sq2(ȳ2)= c̄2 ȳ1.

That’s the last of the Steenrod squares we needed and this concludes the proof of
Theorems 4·1 and 1·1.

Remark 4·16. Notice that it is not that easy to tell BcomSU (2) and EcomSU (2)× BSU (2)
apart: they become homotopy equivalent after looping once according to [3, theorem 6·3],
and they have isomorphic integral cohomology rings and F2-cohomology rings! But our
calculation of the Steenrod algebra action on H ∗(BcomSU (2); F2) shows they are not
equivalent, indeed Sq2(x̄2)= c̄2 ȳ1, mixes the two factors.

The non-splitting was already proven for an arbitrary compact and connected Lie group
in [9, theorem 1·2·2], but this proof for SU (2) via Steenrod squares is essentially different.

5. Cohomology of Bcom O(2)

In this section we compute the cohomology ring of Bcom O(2) with both integral and F2

coefficients, as well as the action of the Steenrod algebra on the F2-cohomology. These
results were stated as Theorem 1·2.

Let β denote the Bockstein homomorphism for the coefficient sequence Z
2−→Z→Z/2.

Recall that

H ∗(BO(2); F2)∼= F2[w1, w2],
where w1 and w2 are the first two Stiefel–Whitney classes, and that

H ∗(BO(2);Z)∼=Z[W1,W2, p1]/(2W1, 2W2,W 2
2 − p1W1),
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where Wi = β(wi ) ∈ H i+1(BO(2);Z) and where p1 ∈ H 4(BO(2);Z) is the first Pontryagin
class of the universal 2-plane bundle over BO(2) (see [6]). In order to describe the corre-
sponding cohomology rings of Bcom O(2) we will only need to define two additional classes.
To define these we consider the following three maps:

(i) the map j : BSO(2)→ Bcom O(2) induced by the inclusion of the identity component
SO(2) ↪→ O(2);

(ii) the map k : B D4→ Bcom O(2) induced by the inclusion of the dihedral group D4 ↪→
O(2) as the subgroup generated by the reflections across the first and second axis;

(iii) a map l : Tτ→ Bcom O(2), where τ is the self-map of S1 × S1 interchanging the two
factors and Tτ is the corresponding mapping torus. This map is obtained as follows:
Let the normaliser N (D4) act on B D4 by conjugation and on O(2) by translation from
the right. One can show that N (D4)∼= D8 and that the action on S1 × S1 factors through
D8→ D8/D4

∼=Z/2 and swaps the two factors. The quotient space O(2)×N (D4) B D4

has the natural subcomplex O(2)×N (D4) (S
1 × S1)
 Tτ and l is the composition

O(2)×N (D4) (S
1 × S1)

incl.−−→ O(2)×N (D4) B D4
φ−→ Bcom O(2),

where φ is the conjugation map. Note that Tτ is a (non-orientable) 3-manifold, thus
H 3(Tτ ; F2)∼= F2.

Pick a generator a ∈ H 2(BSO(2);Z). Later we will see that there is a unique class r ∈
H 2(Bcom O(2);Z) restricting along j to 2a and restricting to zero along both k and l. There
is also a unique class s ∈ H 3(Bcom O(2); F2) which restricts to zero along both j and k and
goes to the generator of H 3(Tτ ; F2) under l. In addition, we have the images of w1, w2, W1,
W2 and p1 in the cohomology of Bcom O(2), which we denote by the same letters.

Theorem 1·2 yields the rational cohomology ring of Bcom O(2) as a corollary. Note
that this result cannot be directly deduced from the work of Adem, Cohen and Torres–Giese
[3, theorem 6·1], since their theorem only applies to the decorated version of the classifying
space, i.e., to BcomG1.

COROLLARY 5·1. We have an isomorphism of Q–algebras H ∗(Bcom O(2);Q)∼=Q[r ]
where deg(r)= 2.

We can now prove the application mentioned in the introduction:

COROLLARY 1·6. For any n ≥ 4 the tautological 2-plane bundle γ2,n→Gr2(R
n) does

not admit a transitionally commutative structure. In particular, the universal bundle over
Gr2(R

∞)= BO(2) does not have a transitionally commutative structure.

Proof. It is enough to prove the case n = 4 since given any transitionally commutative struc-
ture on γ2,n we could pull it back to one on γ2,4 via the usual inclusion Gr2(R

4) ↪→Gr2(R
n).

Assume now that γ2,4 had a transitionally commutative structure corresponding to some

factorisation Gr2(R
4)

g−→ Bcom O(2)
ι−→ BO(2) of the classifying map for γ2,4. According

to Borel’s classic computation [5], H ∗(Gr2(R
4);Q)=Q[p1]/(p2

1), where p1 is indeed
the pullback of p1 ∈ H ∗(BO(2);Q) under the classifying map of γ2,4. Then the class
g∗(r) ∈ H 2(Gr2(R

4);Z) satisfies (g∗(r))2 = 4p1, but this is impossible because, passing to
rational cohomology, H 2(Gr2(R

4);Q)= 0 and thus contains no square root of 4p1.
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In Section 5·1 we begin the proof of Theorem 1·2 by calculating the integral cohomology
ring, i.e. part (ii) of the theorem, but without proving the statement about the Bockstein
homomorphism. In Section 5·2 we establish the result for F2-coefficients, i.e. part (i) of
the theorem, and compute the image of the Bockstein homomorphism. To determine the
ring structure of H ∗(Bcom O(2); F2) we use Steenrod squares, which we determine along the
way. Putting everything together gives us the proof of Theorem 1·2.

5·1. The integral cohomology ring

The basis for all our cohomology computations is the homotopy pushout square given in
Lemma 2·2. We start by describing the cohomology rings of the spaces in the top left and
right corner of diagram (2·2) and the map between them.

Let π1 : O(2)×N (D4) B D4→ O(2)/N (D4)∼= S1 be the projection and let e ∈ H 1(S1;Z)
be a generator. One can show that N (D4)= D8, which we will use from now on. Let t =
π∗1 (e) and let W̃1, W̃2 and p̃1 denote the images of W1, W2 and p1, respectively, under the
map induced by ιφ : O(2)×D8 B D4→ BO(2).

LEMMA 5·2. There is an isomorphism of graded rings

H ∗(O(2)×D8 B D4;Z)∼=Z[t, W̃1, W̃2, {x}, p̃1]/I ,

where deg({x})= 3, and I is the ideal generated by 2W̃1, 2W̃2, 2{x}, 2 p̃1, W̃ 2
2 + p̃1W̃1, t2,

t W̃1, t{x} as well as {x}2.

Proof. We describe the E2-page of the Serre spectral sequence associated to the homotopy
fibration B D4→ O(2)×D8 B D4→ O(2)/D8. Since O(2)/D8

∼= S1 the p-th column of the
E2-page is zero for p> 1, and thus E∗,∗2

∼= E∗,∗∞ . Recall that

H ∗(B D4;Z)∼=Z[x, y, w]/(2x, 2y, 2w, w2 + x2 y + xy2),

where x = β(u), y = β(v), w= β(uv), and u, v are the basis elements for H 1(B D4;Z/2)
determined by reflection in the first and second axis. A generator of π1(O(2)/D8)∼=Z acts
on the generators of H ∗(B D4;Z) by swapping x and y, and fixing w.

The 0-column and the 1-column of the E2-page are given by H 0(S1; H ∗(B D4;Z)) and
H 1(S1, H ∗(B D4;Z)), respectively. The 0-column can be identified with the ring of invari-
ants H ∗(B D4;Z)Z, which is generated by x + y, w and xy with bi-degrees (0, 2), (0, 3)
and (0, 4), respectively. By Poincaré Duality with twisted coefficients, the 1-column of the
E2-page is given by

H 1(S1; H ∗(B D4;Z))∼= H0(S
1; H ∗(B D4;Z)) ,

which can be identified with the module of coinvariants H ∗(B D4;Z)Z. The structure of the
1-column as a module over the 0-column via cup product then corresponds to the usual
structure of the coinvariants as a module over the ring of invariants.

For a class z ∈ H ∗(B D4;Z) let {z} denote its image in H ∗(B D4;Z)Z. The 1-column
consists of linear combinations of {wεxk yl} for ε ∈ {0, 1} and 0≤ l ≤ k. Since {wεxk yl} =
wε(xy)l{xk−l} and {xk+1} = (x + y){xk} + (xy){xk−1} the 1-column is generated as a mod-
ule over the 0-column by the classes {1} and {x} of bi-degrees (1, 0) and (1, 2), respectively.
This shows that E∗,∗2 is generated multiplicatively by x + y, w, xy, {1} and {x}, hence so
is E∗,∗∞ .
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We need to describe the products of these generators. The only products missing are the
products of two coinvariant classes, but they are all zero for dimension reasons. To finish the
proof we must lift the multiplicative structure from the E∞-page to H ∗(O(2)×D8 B D4;Z).
We first choose lifts of x + y, w and xy. Recall that the map in cohomology induced by the
inclusion B D4 ↪→ BO(2) is given on generators by p1 �→ xy, W1 �→ x + y and W2 �→w

(this is easily seen from the description via the Bockstein homomorphism given earlier, the
fact that the Stiefel–Whitney classesw1 andw2 map to the symmetric polynomials u + v and
uv in H ∗(B D4;Z/2) and p1 maps to w2

2 under the coefficient homomorphism Z→Z/2).
Since the inclusion factors as

B D4
�� O(2)×D8 B D4

ιφ �� BO(2) (5·1)

the classes W̃1, W̃2 and p̃1 can be taken as lifts of x + y, w and xy, respectively. The prod-
ucts of these lifts are then determined by the products in H ∗(BO(2);Z). Since E p,q = 0
for p> 1, the classes {1} and {x} lift uniquely and there are no multiplicative extensions.
Renaming t := {1} and extracting the relations from H ∗(BO(2);Z) and E∗,∗∞ gives the
desired presentation. Also recall that {1} is the Poincaré dual of a generator e ∈ H 1(S1;Z),
so t can be identified with π∗1 (e).

Next consider the diagram

O(2)/D8 × B Z i ��

��

O(2)×D8 B D4

π1

��
O(2)/D8 O(2)/D8

(5·2)

induced by the inclusion Z ↪→ D4, where both vertical maps are the projection onto the first
factor. We want to describe the map i in integral cohomology. By slight abuse of notation,
we write

H ∗(O(2)/D8 × B Z;Z)∼=Z[t, z]/(2z, t2) ,

where z ∈ H 2(B Z;Z)∼=Z/2 is a generator and t is the pullback of e ∈ H 1(O(2)/D8;Z)
under the projection, thus also the image of t ∈ H ∗(O(2)×D8 B D4;Z) under i∗.

LEMMA 5·3. In the presentation of Lemma 5·2 we have i∗(W̃1)= 0, i∗({x})= t z,
i∗(W̃2)= 0 and i∗( p̃1)= z2.

Proof. Consider the inclusion B Z ↪→ B D4. On cohomology this map is determined by
sending x �→ z and y �→ z. Thus it sends x + y �→ 0, x2 y + xy2 �→ 0 and xy �→ z2. Under
the inclusion B Z ↪→ BO(2) we therefore have W1 �→ 0, W2 �→ 0 and p1 �→ z2. From the
commutativity of

O(2)/D8 × B Z i ��

π2

��

O(2)×D8 B D4

ιφ

��
B Z � � �� BO(2)

we now obtain i∗(W̃1)= 0, i∗(W̃2)= 0 and i∗( p̃1)= z2. To show that i∗({x})= t z we com-
pare the Serre spectral sequences associated to the two fibrations in diagram (5·2). On the
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E2-page the map of 1-columns is the map H 1(S1; H ∗(B D4;Z))→ H 1(S1; H ∗(B Z;Z))
induced by the morphism of local coefficient systems coming from B Z ↪→ B D4. Note that
the local coefficient system H ∗(B Z;Z) is constant. By naturality of Poincaré duality, we
can identify this map with the obvious map

H ∗(B D4;Z)Z −→ H ∗(B Z;Z)Z ∼= H ∗(B Z;Z) ,
which is an isomorphism in degree 2 sending {x} �→ {z}. The coinvariant class {z} lifts to the
class t z and since both spectral sequences have E p,q

2 = 0 for p> 1 there are no ambiguities
in choosing this lift.

Now we return to the homotopy pushout (2·2) in Lemma 2·2. Fix a generator a ∈
H 2(BSO(2);Z). The map q factors through the projection O(2)/D8 × B Z→ B Z , thus
q∗(a)= z. By Lemma 5·3, the homomorphism

H n(BSO(2);Z)⊕ H n(O(2)×D8 B D4;Z) q∗−i∗−−−→ H n(O(2)/D8 × B Z;Z)
is surjective for every n ≥ 0. Thus, from the Mayer–Vietoris sequence for the homotopy
pushout we get an injective ring map

H ∗(Bcom O(2);Z)−→ H ∗(BSO(2)∨ O(2)×D8 B D4;Z), (5·3)

whose image is isomorphic to ker(q∗ − i∗). As a group we can describe the kernel by
ker(i∗)⊕ J , where ker(i∗) can be identified with the ideal ((0, W̃1), (0, W̃2)) in the coho-
mology ring of the wedge sum, and J is the Z-linear span of {(a2l, p̃l

1) | l ≥ 0}. Then the
ring structure on ker(q∗ − i∗) (and thus on the image of (5·3)) corresponds to component-
wise products. A presentation for this ring will be a presentation for the cohomology ring
H ∗(Bcom O(2);Z).

The discussion in the preceding paragraph shows that there is a unique class r ∈
H 2(Bcom O(2);Z) satisfying

j∗(r)= 2a;
φ∗(r)= 0 .

It is immediate that this class also satisfies k∗(r)= 0 and l∗(r)= 0 (where k and l were
defined in the introduction to this chapter). Conversely, if r is a class of degree 2 in the kernel
of k∗, then Lemma 5·2 implies that φ∗(r)= 0, since φ∗(r) is a multiple of W̃1 and B D4→
O(2)×D8 B D4 detects this class. This shows that the conditions above specify the same
class r ∈ H 2(Bcom O(2);Z) as the one defined in the introduction to this chapter. Similarly,
let bi ∈ H i+3(Bcom O(2);Z) for 1≤ i ≤ 3 be the unique classes satisfying

j∗(bi)= 0 for all i;
φ∗(b1)= t W̃2, φ

∗(b2)= {x}W̃1 and φ∗(b3)= {x}W̃2.

The following intermediate result is part (2) of Theorem 1·2 modulo the statement about
the Bockstein homomorphism.

PROPOSITION 5·4. There is an isomorphism of graded rings

H ∗(Bcom O(2);Z)∼=Z[W1,W2, p1, r, b1, b2, b3]/I,
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where deg(r)= 2, deg(bi)= i + 3 for 1≤ i ≤ 3, and where I is the ideal generated by W 2
2 −

p1W1, r 2 − 4p1, b2 p1 − b3W2, b2W2 − b3W1, 2Wi , r Wi and b1Wi for i = 1, 2 as well as 2bi ,
rbi and bi b j for 1≤ i, j ≤ 3.

Proof. Consider the ring homomorphism

f :Z[W1,W2, p1, r, b1, b2, b3] −→ H ∗(BSO(2)∨ O(2)×N (D4) B D4;Z)
sending W1 �→ (0, W̃1), W2 �→ (0, W̃2), p1 �→ (a2, p̃1), r �→ (2a, 0), b1 �→ (0, t W̃2), b2 �→
(0, {x}W̃1) and b3 �→ (0, {x}W̃2). It is readily checked that the image of f is isomorphic to
ker(q∗ − i∗), and one can show that the kernel of f is I using SINGULAR (see Appendix
A.2 in the arXiv version of this paper).

5·2. The F2-cohomology ring and Steenrod squares

The next lemma is the F2-analogue of Lemma 5·2. If e ∈ H 1(S1; F2) is the generator and
π1 : O(2)×D8 B D4→ O(2)/D8

∼= S1 is the projection, let t = π∗1 (e). Thus, in this section t
is a mod 2 cohomology class. Let w̃1 and w̃2 denote the images of w1 respectively w2 under
the map induced by ιφ : O(2)×D8 B D4→ BO(2).

LEMMA 5·5. There is an isomorphism of graded rings

H ∗(O(2)×D8 B D4; F2)∼= F2[t, w̃1, w̃2, {u}]/(t2, tw̃1, t{u}, {u}2),
where deg({u})= 2.

Proof. The proof is parallel to that of Lemma 5·2 and we leave the details to the reader. The
new class {u} is the (unique) lift of the coinvariant {u} ∈ H 1(B D4; F2)Z of bi-degree (1, 1),
where the action of Z on H ∗(B D4; F2)∼= F2[u, v] is by swapping u and v.

Write H ∗(O(2)/D8 × B Z; F2)∼= F2[t, z]/(t2), where t ∈ H 1(O(2)/D8; F2) and z ∈
H 1(B Z; F2) are generators. Consider the inclusion O(2)/D8 × B Z

i
↪−→ O(2)×D8 B D4.

LEMMA 5·6. In the presentation of Lemma 5·5 we have i∗(w̃1)= 0, i∗({u})= t z and
i∗(w̃2)= z2.

Proof. Again, the proof is parallel to that of Lemma 5·3 and will be omitted.

The Mayer–Vietoris sequence for cohomology with F2-coefficients applied to the homo-
topy pushout square (2·2) reads

· · · −→ H n−1(O(2)/D8 × B Z; F2)
δ−→ H n(Bcom O(2); F2)−→

H n(BSO(2); F2)⊕ H n(O(2)×D8 B D4; F2)
q∗−i∗−−−→ H n(O(2)/D8 × B Z; F2)−→ · · ·

Let H ∗(BSO(2); F2)= F2[a] with deg(a)= 2. Then q∗(a)= z2. Lemma 5·6 shows that the
image of q∗ − i∗ is spanned by the elements z2k and t zk for k ≥ 0. In particular, q∗ − i∗ is not
surjective, so we cannot regard H ∗(Bcom O(2); F2) as a subring of H ∗(BSO(2)∨ O(2)×D8

B D4; F2) as we have done before with integer coefficients. However, q∗ − i∗ is surjective in
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even degrees and we find that

H ∗(Bcom O(2); F2)∼= ker(q∗ − i∗)⊕ im(δ) (5·4)

as a vector space, where the image of δ is the F2-linear span of all δ(z2i+1) for i ≥ 0 and

ker(q∗ − i∗)= ((0, w̃1))⊕ F2〈(al, w̃l
2) | l ≥ 0〉,

where ((0, w̃1))⊂ H ∗(BSO(2)∨ O(2)×D8 B D4; F2) is the ideal generated by (0, w̃1)

and F2〈−〉 means F2-linear span. This completely describes the cohomology groups
H n(Bcom O(2); F2). It remains to determine the products.

It follows from the preceding paragraph that there is a unique s ∈ H 3(Bcom O(2); F2)

satisfying

j∗(s)= 0;
φ∗(s)= {u}w̃1.

To see that this is the same cohomology class as the one specified at the beginning of this
chapter, consider the map ρ : Tτ 
 O(2)×D8 (S

1 × S1)→ O(2)×D8 B D4 induced by the
obvious inclusion of S1 × S1 ∼=RP1 ×RP1 into RP∞ ×RP∞ 
 B D4. The Serre spectral
sequence for the fibration of Tτ over the circle takes a similar form as the one for O(2)×D8

B D4 (cf. the proof of Lemma 5·5) in terms of invariants and coinvariants of H ∗(RP1 ×
RP1; F2)∼= F2[u, v]/(u2, v2). In particular, the class {u} ∈ H 2(O(2)×D8 B D4; F2) maps
to the corresponding class {u} ∈ H 2(Tτ ; F2) (abusing notation), and similarly for t . In the
spectral sequence the generator of H 3(Tτ ; F2) corresponds to the coinvariant class {uv} of
bi-degree (1, 2). Therefore,

l∗(s)= ρ∗({u}w̃1)= {u}(u + v)= {u2} + {uv} = {uv} (5·5)

is the generator for H 3(Tτ ; F2). We also have that k∗(s)= 0, since the restriction along
B D4→ O(2)×D8 B D4 sends {u} to zero. Conversely, suppose that s ∈ H 3(Bcom O(2); F2)

satisfies j∗(s)= 0, k∗(s)= 0 and l∗(s) �= 0. By Lemma 5·5, the class φ∗(s) is a linear combi-
nation of {u}w̃1, tw̃2 and terms involving only w̃1 and w̃2. By (5·4), φ∗(s) must not contain
the term tw̃2. Furthermore, since k∗(s)= 0, it cannot contain any monomials in w̃1, w̃2.
Finally, since l∗(s) is non-zero, we must have φ∗(s)= {u}w̃1. Together this shows that the
class s specified via j∗ and φ∗ is the same class as the one specified at the beginning of
Section 5.

Next we compute the total Steenrod square Sq(s). To do this, we first consider {u} ∈
H 2(O(2)×D8 B D4; F2).

LEMMA 5·7. We have Sq1{u} = {u}w̃1 + tw̃2.

Proof. In general we have that Sq1{u} = ε1{u}w̃1 + ε2tw̃2 for some ε1, ε2 ∈ F2. By
Lemma 5·6,

ε2t z2 = i∗(Sq1{u})= Sq1(t z)= t z2,

hence ε2 = 1. We claim that also ε1 = 1. Since ρ∗({u}w̃1)= {uv} (see (5·5)) and similarly
ρ∗(tw̃2)= {uv}, it is enough to check that Sq1{u} computed in H ∗(Tτ ; F2) is zero. Since Tτ
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is a 3-manifold, Sq1{u} is given by cup product with the first Wu class ν1(Tτ ). The latter
is the same as the first Stiefel-Whitney class w1(Tτ ) of the manifold Tτ (by the formula
Sq(ν)=w). Using the fact that the fiber of Tτ→ S1 is orientable, one can see that w1(Tτ )
restricts to zero on the fibers. From the spectral sequence for the fibration Tτ→ S1 we then
see that Sq1{u} =w1(Tτ ){u} must be zero in H ∗(Tτ ; F2).

Let r̄ ∈ H 2(Bcom O(2); F2) be the reduction modulo 2 of the class r ∈ H 2(Bcom O(2);Z).
Then clearly Sq1(r̄)= 0, and Sq2(r̄)= r̄ 2 = 0, since r 2 = 4p1 by Proposition 5·4. Thus, the
following lemma completes the proof of part (3) in Theorem 1·2.

LEMMA 5·8. We have Sq1s =w2r̄ and Sq2s =w2
1s.

Proof. We begin with Sq2s. Since the degree of Sq2s is odd, it is uniquely characterized by
its image under j∗ and φ∗. We have j∗(Sq2s)= 0 (by definition of s) and

φ∗(Sq2s)= Sq2({u}w̃1)= Sq2({u})w̃1 + Sq1({u})w̃2
1

= ({u}w̃1 + tw̃2)w̃
2
1 [Sq2{u} = {u}2 = 0 and Lemma 5·7]

= {u}w̃3
1 [since tw̃1 = 0]

= φ∗(w2
1s),

and therefore Sq2s =w2
1s.

Now j∗(Sq1s)= Sq1( j∗s)= 0 and

φ∗(Sq1s)= Sq1({u}w̃1)= tw̃1w̃2 [by Lemma 5·7]
= 0 [since tw̃1 = 0].

Therefore Sq1s ∈ im(δ), so either Sq1s = 0 or Sq1s = δ(z3). We claim that Sq1s �= 0.
Assume, for contradiction, Sq1s = 0. Recall that Sq1 can be expressed as the compos-

ite of the Bockstein homomorphism β and the natural transformation R : H ∗(−;Z)→
H ∗(−;Z/2) induced by reduction modulo 2. By assumption, R(β(s))= 0, hence

β(s) ∈ ker(R)= im(H 4(Bcom O(2);Z) 2−→ H 4(Bcom O(2);Z))∼=Z〈2p1〉,
where the isomorphism follows from Proposition 5·4. At the same time β(s) is torsion,
hence β(s)= 0. Therefore, s ∈ ker(β)= im(R). However, there is no element which reduces
modulo 2 to s. The only candidate is b1, but

φ∗(R(b1))= R(φ∗b1)= R(t W̃2)= tSq1w̃2 = tw̃1w̃2 = 0, (5·6)

while φ∗(s) �= 0. We arrive at a contradiction. Hence Sq1s = δ(z3). The assertion of the
lemma follows from the identity δ(z3)=w2r̄ which will be established in the proof of
Proposition 5·9 (without making our argument circular).

The following proposition corresponds to part (i) of Theorem 1·2 as well as the statement
about the Bockstein homomorphism in part (ii). It thus concludes the proof of Theorem 1·2.

PROPOSITION 5·9. There is an isomorphism of graded rings

H ∗(Bcom O(2); F2)∼= F2[w1, w2, r̄ , s]/(r̄w1, r̄ 2, r̄ s, s2),
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where deg(r̄)= 2 and deg(s)= 3. Moreover, β(s)= b1, β(w1s)= b2 and β(w2s)= b3 in
H ∗(Bcom O(2);Z).
Proof. The isomorphism (5·4) and Lemma 5·5 show that H ∗(Bcom O(2); F2) is generated as
a ring by w1, w2, s and δ(z2i+1) for i ≥ 0. More precisely, the classes δ(z2i+1) account for
im(δ), w2 accounts for F2〈(al, w̃l

2) | l ≥ 0〉, since j∗(wl
2)= al and φ∗(wl

2)= w̃l
2, and finally

w̃1, w̃2 and φ∗(s)= {u}w̃1 are enough to generate the ideal ((0, w̃1)).

Multiplicative relations:

(i) w1δ(z)= 0 and sδ(z)= 0. These products have odd degree, and since δ(z) is in ker(φ∗)
and φ∗ is injective in these degrees, the products must be zero;

(ii) δ(z)2 = 0. This follows from δ(z)2 = Sq2δ(z)= δ(Sq2z)= 0, since z has degree one;
(iii) w2δ(z2i−1)= δ(z2i+1) for all i > 0. First, we establish the relation R(r)= δ(z). We have

that j∗(R(r))= R(2a)= 0 and φ∗(R(r))= 0, so R(r) is either 0 or δ(z). Since r is
not divisible by 2, R(r) is non-zero, hence R(r)= δ(z). For every i ≥ 0 the monomial
r pi

1 ∈ H 4i+2(Bcom O(2);Z) is not divisible by 2, so R(r pi
1)=w2i

2 δ(z) is non-zero, hence
also wi

2δ(z) �= 0. Since wi
2δ(z) lies in the image of δ, we must have

wi
2δ(z)= δ(z2i+1) .

In particular, this shows w2r̄ = δ(z3) and finishes the proof of Lemma 5·8;
(iv) s2 = 0. Using the Adem relation Sq3 = Sq1Sq2, Lemma 5·8 and w1r̄ = 0 we get

s2 = Sq3s = Sq1Sq2s = Sq1(w2
1s)=w2

1Sq1s =w2
1w2r̄ = 0.

Together this shows that we have a surjective ring homomorphism

F2[w1, w2, r̄ , s]/(r̄w1, r̄ 2, r̄ s, s2)−→ H ∗(Bcom O(2); F2).

This is easily seen to be an isomorphism, by comparing the dimension of the domain and
target in every degree, using (5·4) and Lemma 5·5.

The image of the Bockstein homomorphism:

Note that the image of multiplication by 2 on H ∗(Bcom O(2);Z) is spanned by 2r i p j
1 for

i = 0, 1 and j ≥ 0. In particular, R(b1), R(b2) and R(b3) are all non-zero.

(i) β(s)= b1. We have that j∗(R(b1))= 0 and φ∗(R(b1))= 0 (see (5·6)), hence R(b1) is
in the image of the connecting homomorphism, i.e. R(b1)=w2r̄ . On the other hand,
we also have that R(β(s))= Sq1(s)=w2r̄ , hence β(s)− b1 ∈ ker(R)∼=Z〈2p1〉. Since
both β(s) and b1 are torsion, we must have β(s)− b1 = 0.

(ii) β(w1s)= b2. Again, we compute j∗(R(b2))= 0 and

φ∗(R(b2))= R(φ∗(b2))= R({x}W̃1)

= {u2}w̃2
1 = ({u}w̃1 + tw̃2)w̃

2
1 = {u}w̃3

1 = φ∗(w2
1s).

This implies that R(b2)=w2
1s = Sq1(w1s)= R(β(w1s)), hence β(w1s)− b2 = 0.

(iii) β(w2s)= b3. We find j∗(R(b3))= 0 and φ∗(R(b3))= φ∗(w1w2s). However, in this
degree j∗ and φ∗ only determine R(b3) modulo the image of the connecting homo-
morphism, so that R(b3)=w1w2s + εw2

2r̄ where ε may be 0 or 1. We also have that
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R(β(w2s))=w1w2s +w2
2r̄ , hence β(w2s)= b3 + (1+ ε)r p1 modulo Z〈2r p1〉. Again,

since both β(w2s) and b3 are torsion and r p1 is of infinite order, this implies that
β(w2s)= b3.

This finishes the proof of the proposition.

6. A homotopy pushout square for EcomG

Just as all our cohomology calculations for BcomG were based on the homotopy pushout
squares in Lemmas 2·1 and 2·2, our determination of the homotopy type of EcomG will also
be based on describing those spaces as homotopy pushouts. The aim of this section is to
obtain such a description.

We start with finding the homotopy fiber of the variant of the conjugation map that lands
in BG. Let G be a compact Lie group, H � G a closed subgroup and N (H) the normalizer
of H in G. For any N ′ � N (H) there is a conjugation map ψ :G ×N ′ B H→ BG. Consider
the action of N (H) on G/H given by

n · gH = ngn−1 H (n ∈ N (H), gH ∈G/H), (6·1)

and write G ×N ′ G/H for the quotient of G ×G/H by the induced diagonal N ′-action.

LEMMA 6·1. For any closed subgroup N ′ � N (H) there is a homotopy fiber sequence

G ×N ′ G/H −→G ×N ′ B H
ψ−→ BG.

Proof. We replace the conjugation map ψ by an equivalent fibration. Let B(G,G/H) be the
bar construction for the action of G on G/H by left-translation. Let us write μ :G × BG→
BG for the G-action on BG induced by conjugation in G. Similarly, we have an action
of N (H) on B(G,G/H) induced by the conjugation action of N (H) on G and the action
of N (H) on G/H specified in (6·1). Let us write π : B(G,G/H)→ BG for the projection
map. Then the composite map μ ◦ (id× π) :G × B(G,G/H)→ BG factors through a map

ψ̃ :G ×N ′ B(G,G/H)−→ BG.

Now consider the homotopy equivalence B H
∼−→ B(G,G/H) induced by H ↪→G. This is

an N (H)-equivariant map. After taking the product with G we obtain a homotopy equiv-
alence of free N (H)-spaces G × B H 
G × B(G,G/H), thus an N (H)-equivalence. In
particular, there is an induced homotopy equivalence of orbit spaces

f :G ×N ′ B H
∼−→G ×N ′ B(G,G/H).

This fits into a commutative diagram

G ×N ′ B H
ψ ��

f

��

BG

G ×N ′ B(G,G/H)
ψ̃ �� BG ,

thus hofib(ψ)
 hofib(ψ̃). To compute the homotopy fiber of ψ̃ we check that ψ̃ is a fibra-
tion. To see this, it is enough to show that μ ◦ (id× π) is a fibration and we can check this
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separately for μ and for π . Clearly, π is a fibration. Moreover, μ is isomorphic to the pro-
jection onto BG via the shear map on G × BG and thus is a fibration too. The homotopy
fiber of ψ̃ is then simply the fiber over the basepoint, which is G ×N ′ G/H .

Remark 6·2. If G is connected, H = T is a maximal torus for G, N ′ = N (T ) and W =
N (T )/T is the Weyl group, the homotopy fiber sequence of the lemma takes the form

G/T ×W G/T −→G/T ×W BT
ιφ−→ BG, (6·2)

where an element w= nT ∈W acts on G/T by w · gT = gn−1T . To see that (6·2) is a fiber
sequence note that G ×N (T ) BT =G/T ×W BT and that there is a homeomorphism

G ×N (T ) G/T
∼=−→G/T ×W G/T

sending an equivalence class [g, g′T ] �→ [gT, gg′T ], whose inverse given by [gT, g′T ] �→
[g, g−1g′T ].
Remark 6·3. In view of [3, theorem 6·1] the homotopy fiber sequence (6·2) gives an alterna-
tive and short proof of the first statement in [2, corollary 7·4] which says that for a compact
connected Lie group G there is an isomorphism of algebras

H ∗(EcomG1;Q)∼= (H ∗(G/T ;Q)⊗ H ∗(G/T ;Q))W .

This follows from the comparison theorem for the Serre spectral sequence.

In the following we only compute the homotopy types of Ecom O(2) and EcomSU (2), but
according to the following proposition this covers all of our targets.

PROPOSITION 6·4. The are homotopy equivalences

EcomSU (2)
 EcomU (2)
 EcomSO(3)1.

This is a direct corollary of [9, lemma 1·2·8], which we now state:

LEMMA 6·5 ([9, lemma 1·2·8]). If G̃→G is a homomorphism of compact connected
Lie groups which is also a covering map, then the following induced square is a homotopy
pullback square:

BcomG̃1
��

��

BG̃

��
BcomG1

�� BG.

Proof of Proposition 6.4. Applying the previous lemma to the double cover homomor-
phisms SU (2)→ SO(3) and S1 × SU (2)→U (2) (given by (λ, M) �→ λM), we get the
following homotopy pullbacks squares:

BcomSU (2) ��

��

BSU (2)

��
BcomSO(3)1 �� BSO(3)

and BS1 × BcomSU (2) ��

��

BS1 × BSU (2)

��
BcomU (2) �� BU (2).
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It follows the homotopy fibers of the horizontal arrows are weakly homotopy equivalent,
so that

EcomSU (2)
 EcomSO(3)1 and EcomU (2)
 E S1 × EcomSU (2)
 EcomSU (2).

Now we will use Lemma 6·1 to obtain descriptions for EcomSU (2) and Ecom O(2) as
homotopy pushouts. A common language for both was setup in Section 2, which we now
recall. Let G be either SU (2) or O(2) and let Z be its center.

(i) For G = SU (2), let A= T = S1 the maximal torus, and H = Z .
(ii) For G = O(2), let A= D4, and H = SO(2).

In both cases, let N = NG(A) and W = N/A. With that notation, for both groups we had the
following homotopy pushout:

G/N × B Z

��

�� G/A×W B A

��
B H �� BcomG.

LEMMA 6·6. With the above notation for G = SU (2) or G = O(2), we have the following
homotopy pushout square for EcomG:

G/N ×G/Z

��

�� G/A×W G/A

��
G/H �� EcomG ,

where the left vertical arrow is the composite of the projection onto G/Z and the canonical
projection G/Z→G/H, and the top horizontal map is given by (gN , x Z) �→ [g A, xg A].
Proof. By composing with the inclusion ι : BcomG→ BG, we can regard all the spaces as
objects in the category of spaces over BG and by the second Mather cube theorem, the
homotopy fibers over the basepoint of BG also form a homotopy pushout square. Let’s look
at each corner.

(i) The bottom right corner is hofib(BcomG→ BG)
 EcomG, which is the reason we are
doing this.

(ii) The bottom left corner is hofib(B H→ BG) where the map is the one induced by the
inclusion H ↪→G. Thus, this corner is G/H .

(iii) Similarly, the top right corner is G/N ×G/Z , because the map G/N × B Z→ BG
factors through B Z→ BG (whose homotopy fiber is G/Z ).

(iv) Finally, the top right corner is the most interesting one. By Lemma 6·1, it is G ×N G/A
and by Remark 6·2 this is homeomorphic to G/A×W G/A.

The left vertical map is simply the projection. To understand the top horizontal map, say σ ,
notice that to figure out what the top left corner of the square is we could have also applied
Lemma 6·1 to the group H = Z and the subgroup N of its normaliser (here, of course,
NG(Z)=G). We would have obtained the description G ×N G/Z for the space in the top
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left corner. The G ×N (−) descriptions have the advantage that the top horizontal map G ×N

G/Z→G ×N G/A is simply the map induced by the canonical projection G/Z→G/A,
namely [g, x Z ] �→ [g, x A]. Let’s see what this map corresponds to for the homeomorphic
descriptions of the spaces we used in the square above. We have the following commuting
square where the vertical maps are homeomorphisms (the one on the right is the one from
Remark 6·2):

G ×N G/Z ��

∼=
��

G ×N G/A

∼=
��

G/N ×G/Z σ �� G/A×W G/A.

The left vertical homeomorphism is given by [g, x Z ] �→ (gN , gxg−1 Z) (to check this
is well-defined, recall the diagonal N action on G ×G/Z used in the top left corner is
given by n · (g, x Z)= (gn−1, nxn−1 Z)), and its inverse is then (gN , x Z) �→ [g, g−1xgZ ].
Following the upper path through the square, we see the bottom horizontal map is given by
σ(gN , x Z)= [g A, xg A].

7. The homotopy type of Ecom O(2)

Throughout this section, we write Rα ∈ O(2) for a rotation in the plane by an angle α ∈
[0, 2π) and rβ ∈ O(2) for a reflection in a line which makes an angle β ∈ [0, π)with the first
axis. The main goal of this section is to prove the following result stated in the introduction.

THEOREM 1·5. There is a homotopy equivalence Ecom O(2)
 S2 ∨ S2 ∨ S3.

Proof. Recall that N (D4)= D8, so that the homotopy pushout diagram for Ecom O(2) given
in Lemma 6·6 reads

O(2)/D8 × O(2)/{±I } s ��

r

��

O(2)/D4 ×D8/D4 O(2)/D4

��
O(2)/SO(2) �� Ecom O(2),

(7·1)

where s(gD8, x Z)= [gD4, xgD4] and r(gD8, x Z)= x SO(2).
The next step is to identify the spaces in the top half of the diagram with more familiar

spaces. There are homeomorphisms

O(2)/D8 × O(2)/{±I } ∼= S1 × (S1 � S1) (7·2)

and

O(2)/D4 ×D8/D4 O(2)/D4
∼= S1 × S1. (7·3)

First we explain (7·2). We have O(2)/D8 = SO(2)/〈Rπ/2〉, where 〈Rπ/2〉 denotes the
cyclic group generated by the rotation Rπ/2. Thus O(2)/D8 is an S1 parametrising rota-
tions modulo π/2. The space O(2)/{±I } is the disjoint union of two circles. The first one
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is SO(2)/〈Rπ 〉 and parametrizes rotations modulo π . The second one parametrizes reflec-
tions rβ ∈ O(2), where β is to be taken modulo π/2. Together this gives the identification
in (7·2).

Now let’s deal with (7·3). We have O(2)/D4 = SO(2)/〈Rπ 〉. Under this identification the
non-trivial element of D8/D4

∼=Z/2 acts as multiplication by Rπ/2 on SO(2)/〈Rπ 〉. We now
have a homeomorphism

SO(2)/〈Rπ 〉 ×Z/2 SO(2)/〈Rπ 〉 ∼=−→ SO(2)/〈Rπ 〉 × SO(2)/〈Rπ 〉
given by [Rα〈Rπ 〉, Rβ〈Rπ 〉] �→ (Rα+β〈Rπ 〉, Rα−β〈Rπ 〉). Then both factors of S1 in (7·3) are
circles parametrising rotations modulo π .

We can now describe the map induced by s from the right–hand side of (7·2) to the right-
hand side of (7·3). Denote this map by s ′. Let us write S0 = {0, 1} and S1 × (S1 � S1)∼= S0 ×
S1 × S1. Chasing through the maps, we find that s ′ : S0 × S1 × S1→ S1 × S1 is given by

(0, Rα〈Rπ/2〉, Rβ〈Rπ 〉) �−→ (R2α+β〈Rπ 〉, R−β〈Rπ 〉)
(1, Rα〈Rπ/2〉, rβ mod π/2) �−→ (R2β〈Rπ 〉, R2(α−β)〈Rπ 〉) .

Equivalently, if we identify S1 = {λ ∈C | |λ| = 1}, then s ′ sends

(0, λ, μ) �−→ (λμ, μ̄)

(1, λ, μ) �−→ (μ, λμ̄) .

Both component maps are homeomorphisms of the torus. By precomposing with their
inverses we make s ′ the folding map. That is, let

σ : S0 × S1 × S1 ∼=−→ S0 × S1 × S1 (7·4)

be the map (0, λ, μ) �→ (0, λμ, μ̄) and (1, λ, μ) �→ (1, λμ, λ). Then s ′ ◦ σ = π2 is the
projection onto S1 × S1. Moreover, we can identify O(2)/SO(2) with S0 and the map
S0 × S1 × S1→ S0 induced by r is simply the projection π1 onto the first factor. Therefore,
diagram (7·1) is equivalent to

S0 × (S1 × S1)

π1

��

π2 �� S1 × S1

��
S0 �� Ecom O(2),

(7·5)

which gives

Ecom O(2)
 S0 ∗ (S1 × S1)
�(S1 × S1)
 S2 ∨ S2 ∨ S3 ,

as claimed.

Remark 7·1. The theorem of Hilton [13, section XI·6] allows us to compute the homo-
topy groups of S2 ∨ S2 ∨ S3 in terms of homotopy groups of spheres. Thus, combining
our Theorem 1·5 with the isomorphism of graded groups π∗(Bcom O(2))∼= π∗(Ecom O(2))⊕
π∗(BO(2)) from [3, theorem 6·3], we obtain the following low-dimensional homotopy
groups of Bcom O(2):
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n πn(Bcom O(2))

1 Z/2

2 Z3

3 Z4

4 Z4 ⊕ (Z/2)4
5 Z7 ⊕ (Z/2)8

n πn(Bcom O(2))

6 Z16 ⊕ (Z/2)11 ⊕ (Z/12)4

7 Z34 ⊕ (Z/2)27 ⊕ (Z/12)4

8 Z68 ⊕ (Z/2)58 ⊕ (Z/24)7

9 Z140 ⊕ (Z/2)113 ⊕ (Z/3)4 ⊕ (Z/24)16

10 Z308 ⊕ (Z/2)215 ⊕ (Z/3)4 ⊕ (Z/15)4 ⊕ (Z/24)34

The homotopy pushout (7·5) makes it easy to describe the monodromy action for the
homotopy fibration Ecom O(2)→ Bcom O(2)→ BO(2). First, we describe the monodromy
action for the homotopy fiber sequence of Lemma 6·1.

LEMMA 7·2. Suppose that g ∈G represents an element of π1(BG)∼= π0(G). The mon-
odromy action in the homotopy fiber sequence of Lemma 6·1 is determined by the
G-action

[x, y H ] �−→ [x, x−1gxy H ]
for [x, y H ] ∈G ×N (H) G/H.

Proof. A loop in the bar construction BG representing the specified class in π1(BG) is given
by the image of the 1-simplex {g} ×�1 in the geometric realisation. A lift of this loop under
the fibration ψ̃ :G ×N (H) B(G,G/H)→ BG with initial point [x, y H ] ∈G ×N (H) G/H is
given by the image of (x, {(x−1gx, y H)} ×�1) in G ×N (H) B(G,G/H). To compute the
end point of this lift we have to use the last face map in the bar construction B(G,G/H),
which multiplies x−1gx onto y H from the left. Thus the end point of the lift is the point
[x, x−1gxy H ] ∈G ×N (H) G/H .

COROLLARY 7·3. For any coefficient ring R, the monodromy representation of the fun-
damental group π1(BO(2))=Z/2 on H 2(Ecom O(2); R)= R ⊕ R is given by (r1, r2) �→
(−r2,−r1), and it is trivial on H 3(Ecom O(2); R)= R.

Proof. Each corner of diagram (7·5) is the homotopy fiber of a map into BO(2). We
determine the monodromy action of π1(BO(2)) on S0, S0 × (S1 × S1) and S1 × S1 in
order to obtain the action on Ecom O(2). The non-trivial element of π1(BO(2)) is repre-
sented by the reflection r0 ∈ O(2). The monodromy action on S0 = O(2)/SO(2) is given by
left-multiplication by r0, which swaps the two points of S0.

To determine the action on S0 × (S1 × S1) we use Lemma 7·2, which asserts that the
action on O(2)×D8 O(2)/{±I } is given by [x, y{±I }] �→ [x, x−1r0x{±I }]. Upon identify-
ing O(2)×D8 O(2)/{±I } with O(2)/D8 × O(2)/{±I } (as in the proof of Lemma 6·6) this
corresponds to left multiplication by r0 on O(2)/{±I } while leaving O(2)/D8 fixed. Thus,
under the identification (7·2), the action is given by

(0, Rα〈Rπ/2〉, Rβ〈Rπ 〉) �−→ (1, Rα〈Rπ/2〉, r0 Rβ〈Rπ 〉) = (1, Rα〈Rπ/2〉, r−β/2 mod π/2)

(1, Rα〈Rπ/2〉, rβ mod π/2) �−→ (0, Rα〈Rπ/2〉, r0rβ mod π/2)= (0, Rα〈Rπ/2〉, R−2β〈Rπ 〉).
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Equivalently, this is the map ε : S0 × (S1 × S1)
∼=−→ S0 × (S1 × S1) given by

(0, λ, μ) �−→ (1, λ, μ̄)

(1, λ, μ) �−→ (0, λ, μ̄) .

To obtain the action in diagram (7·5) we must conjugate ε by the homeomorphism σ (7·4). It
is easy to check that σ−1 ◦ ε ◦ σ is given by (0, λ, μ) �→ (1, μ, λ) and (1, λ, μ) �→ (0, μ, λ).

In a similar way, we use Lemma 7·2 to describe the monodromy action on S1 × S1. We
leave it to the reader to check that the action is given by (λ, μ) �→ (μ, λ). Therefore, the
monodromy action in diagram (7·5) is given by simultaneously swapping the two points in
S0 and the two factors in S1 × S1. On the homotopy pushout Ecom O(2)
�(S1 × S1) this
becomes reflection of the suspension coordinate and simultaneously swapping the factors of
S1. On H ∗(Ecom O(2); R) this induces the monodromy representation stated in the corollary.

Remark 7·4. In [3] the authors show that the homotopy fibre sequence �EcomG→
�BcomG→�BG is split for any compact Lie group G. As a consequence, there is a homo-
topy equivalence �BcomG 
�EcomG ×�BG. They also show that the alternating group
A5 is an example for which this splitting does not deloop. More generally, it was proved in
[9, lemma 1·2·5] that BG is not a retract up to homotopy of BcomG (and therefore the split-
ting does not deloop) whenever G is a non-abelian discrete group. For compact connected
Lie groups G it was shown in [9, theorem 1·2·2] that BG is not a retract up to homotopy of
BcomG1. However, none of these results applies to O(2)!

The calculations in this paper do show that the splitting of �BcomG does not deloop for
G = O(2). Indeed, we can show this in two different ways: it is a consequence of Corollary
7·3 and it is also a consequence of the cohomology calculations for Bcom O(2).

We finish this section with a description of the map Ecom O(2)→ Bcom O(2) on cohomol-
ogy, showing that the generators r ∈ H 2(Bcom O(2);Z) and s ∈ H 3(Bcom O(2); F2) can also
be identified with monodromy invariants in the cohomology of Ecom O(2).

Theorem 1·5 shows H ∗(Ecom O(2);Z)∼=Z〈ω1, ω2, κ〉, where ωi ∈ H 2(S2;Z) and κ ∈
H 3(S3;Z) are generators. By Corollary 7·3, the monodromy action on these generators
is ω1 �→−ω2 and ω2 �→−ω1 while κ remains fixed. Thus, the monodromy invariants are
generated by ω1 −ω2 and κ .

COROLLARY 7·5. In integral cohomology, the map Ecom O(2)→ Bcom O(2) sends r �→
±(ω1 −ω2), while for F2-coefficients it sends r̄ �→ ω̄1 + ω̄2 and s �→ κ̄ . All other classes are
mapped to zero.

Proof. The kernel of the homomorphism H ∗(Bcom O(2);Z)→ H ∗(Ecom O(2);Z) contains
W1, W2 and p1 (as they are pulled back from the base) as well as b1, b2 and b3 (for degree
reasons). That r is mapped to the monodromy invariant±(ω1 −ω2) is most easily seen from
a portion of the Serre spectral sequence associated to the homotopy fibration Ecom O(2)→
Bcom O(2)→ BO(2). The left-hand picture in the following figure depicts the relevant part
of the E2-page where × and • indicate a copy of Z and Z/2, respectively.

The differential drawn is d2 originating from ω1 −ω2 and is clearly zero. The cor-
responding differential d3 will vanish too, since the cohomology of BO(2) injects into
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the cohomology of Bcom O(2), so ω1 −ω2 does not transgress. Thus, ω1 −ω2 lies in the
image of H ∗(Bcom O(2);Z)→ H ∗(Ecom O(2);Z). It also follows that the homomorphism
H ∗(Bcom O(2); F2)→ H ∗(Ecom O(2); F2)maps r̄ �→ ω̄1 + ω̄2. To see that s is mapped to the
top degree class κ̄ we consider again a portion of the Serre spectral sequence, this time
for F2-coefficients (the right-hand picture in the figure above). The differential labelled
d2 originates from the class κ̄ . A simple rank argument shows that the differential must
be zero. The next differential d3 has trivial target, and d4(κ̄) must vanish, since the mod
2 cohomology of BO(2) injects into the mod 2 cohomology of Bcom O(2). Thus, κ̄ lies
in the image of H ∗(Bcom O(2); F2)→ H ∗(Ecom O(2); F2), and s is the only class that can
map to it.

3 × 0 • •
2 × 0 × 0

1 0 0 0 0
0 × 0 • •

0 1 2 3

d2

3 • • •• ••
2 • 0 • 0

1 0 0 0 0
0 • • •• ••

0 1 2 3

d2

8. The homotopy type of EcomSU (2)

In this section we compute the homotopy type of EcomSU (2), starting from the homo-
topy pushout square given in Lemma 6·6. For convenience, we’ll give one letter names to
several groups: in this section, we will let G = SU (2); Z = {±I }, its center; T ∼= S1, the
maximal torus in G; N the normalizer of the torus; and W = N/T ∼=Z/2, the Weyl group.
The homotopy pushout square for EcomSU (2) then reads:

G/N ×G/Z

��

σ �� G/T ×W G/T

��
G/Z �� EcomG.

The left vertical map is simply the projection and the top horizontal map is given by
σ(gN , h Z)= [gT, hgT ].

Now, using that G = SU (2)∼= S3, G/T ∼= S2, our pushout square for EcomSU (2)
looks like:

RP2 ×RP3

��

σ �� S2 ×W S2

��
RP3 �� EcomSU (2).

(8·1)

We’ll use this square to compute the homotopy type of EcomSU (2), but the strategy will
be somewhat indirect. We’ll start by computing the pushout restricted to a certain copy of
RP2 inside of RP3.
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8·1. An easy piece of EcomSU (2)

Fix an “equator” of G = SU (2)∼= S3: that is, a subspace S ⊂G (not a subgroup!), homeo-
morphic to S2 and closed under multiplication by the center Z . Then S/Z (which just means
the space of all cosets s Z ∈G/Z for s ∈ S) is the copy of RP2 inside of G/Z ∼=RP3 we will
focus on.

LEMMA 8·1. Let X be obtained as the following homotopy pushout in which the top
horizontal map is a restriction of the corresponding map in (8·1):

RP2 ×RP2

π2

��

σ| �� S2 ×W S2

��
RP2 �� X.

(8·2)

Then there is homotopy cofiber sequence

X→ EcomSU (2)→�4RP2,

and a homotopy equivalence X 
 S4.

Proof. Consider the following commutative diagram, whose rows are minor modifications
(for convenience) of the pushouts we have for X and EcomSU (2):

RP2
+

ι+
��

RP2
+ ∧RP2

+�� σ| ��

id∧ι+
��

S2 ×W S2

id

��
RP3
+ RP2

+ ∧RP3
+�� σ �� S2 ×W S2.

(8·3)

Here ι : RP2→RP3 is the inclusion S/Z→G/Z and A+ denotes A with a disjoint
basepoint added.

Despite the changes, the homotopy pushouts of the rows are still X and EcomSU (2),
respectively. Take the top row, for example. The middle space is RP2

+ ∧RP2
+ ∼= (RP2 ×

RP2)+, which makes the top row of the form A+← B+→C and such a span has the same
homotopy pushout as A← B→C .

Thus the diagram induces a map j : X→ EcomSU (2) and we can compute hocofib( j) as
the homotopy pushout of the homotopy cofibers of the vertical maps in (8·3). Let’s com-
pute those cofibers: first, hocofib(ι+)
 S3; second, since a functor of the form A ∧ (−)
preserves homotopy cofibers, the middle vertical map has cofiber RP2

+ ∧ S3. Also, since the
left-pointing horizontal maps in (8·3) can be written as q+ ∧ idRPi (i = 2, 3) where q is the
unique map RP2→∗, we see that the induced map between the cofibers of the first two
vertical maps is q+ ∧ idS3 .

Since the last vertical map is the identity, its cofiber is ∗. This means the homo-
topy pushout of the homotopy cofibers reduces to hocofib(q+ ∧ idS3 : RP2

+ ∧ S3→
S3)
 hocofib(q+)∧ S3 
�RP2 ∧ S3 
�4RP2. This establishes the cofiber sequence in
the claim.
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To prove that X 
 S4, we will show that X is a simply-connected integral homology
sphere. That implies first, that π4 X ∼= H4(X;Z)=Z and second, that any choice of a gener-
ator S4→ X of π4 X is an integral homology equivalence between simply-connected spaces
and thus is an equivalence.

To compute the homology of X , we use the two homotopy pushouts we have involv-
ing X . First, from Mayer–Vietoris sequence for the defining homotopy pushout we can
readily compute that Hk(X)= 0 for k > 4. Indeed, S2 ×W S2 and RP2 ×RP2 are both
4-manifolds, and the latter is additionally non-orientable, so that Hk(S2 ×W S2)= 0 for k ≥ 5
and Hk(RP

2 ×RP2)= 0 even for k ≥ 4.
Next we use the Mayer–Vietoris for the cofiber sequence we just established. Since

H̃k(�
4RP2) �= 0 only for k = 5, we learn that the map X→ EcomSU (2) is an integral homol-

ogy isomorphism except possibly in degrees 4 and 5. The portion of the sequence for those
degrees is as follows:

0−→ H5 X −→ H5 EcomSU (2)−→ H5�
4RP2 −→ H4 X −→ H4 EcomSU (2)−→ 0.

Since we found that H5 X = 0, the homomorphism H5 EcomSU (2)→ H5�
4RP2 is injec-

tive. Now, we calculated the integral cohomology of EcomSU (2) previously in Corollary 4·7
and found it was (Z, 0, 0,Z, 0,Z/2), so by the universal coefficient theorem, the homology
is (Z, 0, 0,Z,Z/2). Thus both the domain and codomain of the injective homomorphism
H5 EcomSU (2)→ H5�

4RP2 are Z/2, which forces it to be an isomorphism. This in turn
implies that H4 X→ H4 EcomSU (2) is also an isomorphism. We conclude that X is an
integral homology 4-sphere.

Finally, to show X is simply-connected, we use the Seifert–van Kampen theorem. Since
S2 × S2 is the universal cover of S2 ×W S2, we have π1(S2 ×W S2)∼=W . So the Seifert-van
Kampen theorem says that we have the following pushout in the category of groups:

Z/2×Z/2
σ|∗ ��

π2

��

Z/2

��
Z/2 �� π1(X).

It’s not too hard to check that σ|∗ is the projection π1. Indeed, we are looking for the
effect of the map σ|, given by σ|(gN , s Z)= [gT, sgT ] on the fundamental group. Since
G/T →G/N is the universal cover of G/N , a generator of π1(G/N ) is a loop that lifts
in G/T to path connecting T to n0T , where n0T is a generator of the Weyl group N/T .
Under σ| this loop will go to one that lifts in G/T ×G/T to a path connecting (T, T ) with
(n0T, n0T )= n0T · (T, T ) and thus σ|∗ is non-zero on the generator of π1(G/N ). For the
second factor note that the restriction of σ| to S/Z is given by s Z �→ [I T, sT ] and so factors
through the map G/T →G/T ×W G/T , gT �→ [I T, gT ]. Since G/T ∼= S2, we see that the
restriction σ|S/Z is null-homotopic.

Knowing the two homomorphisms, it is straightforward to compute that π1(X)∼= 1, which
concludes the proof.

8·2. Writing EcomSU (2) as a homotopy cofiber

To obtain the full pushout computing EcomSU (2) from this, we need to attach a 3-cell to
RP2 to obtain RP3. Consider the following diagram, a span of spans:
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∗ RP2�� id �� RP2

S2

��

p

��

RP2 × S2π2��

id×p
��

π1 ��

��

RP2

id

��

�/W

��
RP2 RP2 ×RP2π2�� σ| �� S2 ×W S2.

(8·4)

Here p : S2→RP2 is the canonical quotient map S→ S/Z , and �/W denotes the map
induced on W -orbits by the diagonal � : S2→ S2 × S2. All squares except for the bottom
right one commute. Perhaps surprisingly, the bottom right square commutes up to homotopy,
as we shall prove next.

LEMMA 8·2. The bottom right square of (8·4) commutes up to homotopy.

Proof. The two composite maps RP2 × S2→ S2 ×W S2, or better, the two maps G/N ×
S→G/T ×W G/T , are given by (gN , s) �→ [gT, gT ] for the top route, and (gN , s) �→
[gT, sgT ] for the bottom route. Now, the inclusion S ↪→G is null-homotopic, and pick-
ing a homotopy H : S × [0, 1]→G with H(s, 0)≡ I and H(s, 1)= s, we can easily
define a homotopy G/N × S × [0, 1]→ S2 ×W S2, given by (gN , s, t) �→ [gT, H(s, t)gT ],
between those two maps.

Analysing the diagram (8·4) we will show the following.

LEMMA 8·3. There is some map θ : �3RP2→ S4 such that EcomSU (2)
 hocofib(θ).

Proof. We can compute the homotopy colimit of (8·4) in two different ways. Comparing the
two will establish the result.

Starting by columns:

(i) the homotopy pushout of the left column is RP3, since p is the attaching map of the
3-cell of RP3;

(ii) the middle column is just the image of the left column under the functor RP2 × (−),
which preserves homotopy colimits, so the homotopy pushout of the middle column is
RP2 ×RP3 and the induced map between the homotopy pushouts, RP3←RP2 ×RP3,
is just the projection;

(iii) because one of the maps in the rightmost column is the identity, the homotopy pushout
is the third space, namely, S2 ×W S2.

So taking pushouts by columns gives a span of the form

RP3 π2←−RP2 ×RP3 −→ S2 ×W S2.

Once we show that the right-pointing map is homotopic to the map σ in the pushout (8·1)
for EcomSU (2), we will have proven that the homotopy colimit of (8·4) is EcomSU (2).

To prove that however, it is not enough to know Lemma 8·2 as is: not every homo-
topy making the lower right square commute will induce the correct map between the
homotopy pushouts of the middle and right column! We instead need to make a good
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choice of the null-homotopy H of S ↪→G used in the proof of Lemma 8·2. Notice that
the space of such null-homotopies is �3S3, so there are a Z’s worth of non-homotopic
choices. Here’s how we pick the right one: given a null-homotopy H : S × [0, 1]→G it
induces a map H̄ : C→G/Z , where C = hocofib(S→ S/Z). (Explicitly, say C is given by
C = (S × [0, 1] � S/Z)/∼, where∼ is the equivalence relation generated by (s, 0)∼ (s ′′, 0)
and (s, 1)∼ s Z , then H̄(s, t)= H(s, t)Z and H̄(s Z)= s Z .) Since C 
RP3 ∼=G/Z we can
choose H so that the induced H̄ is an equivalence.

To see that such a choice of H induces the correct homotopy class of map, we factor the
natural transformation between the last two columns of (8·4) as follows:

RP2 id �� RP2 id �� RP2

RP2 × S2

id×p
��

π1 ��

��

RP2 id ��

i
��

id

��

RP2

id

��

�/W

��
RP2 ×RP2 id× j �� RP2 ×RP3 σ �� S2 ×W S2,

where i is the inclusion at the basepoint I Z ∈G/Z ∼=RP3. Notice that all squares here
commute except for the lower left one which commutes up to homotopy, specifically up to
the homotopy idRP2 × (π ◦ H), where π : G→G/Z is the canonical projection.

In this new diagram take pushouts by columns to get

RP2 ×C
id×H̄−−→RP2 ×RP3 σ−→ S2 ×W S2,

whose composite is indeed equivalent to σ as desired.

Starting by rows:

(i) again because one of the maps in the top row is the identity, the homotopy pushout of
the top row is the third space, that is, contractible;

(ii) the homotopy pushout of the middle row is one of the standard ways of describing the
join S2 ∗RP2 
�3RP2;

(iii) the bottom row is the span appearing in Lemma 8·1, whose homotopy pushout was
shown to be S4.

So taking pushouts by columns produces a span ∗←�3RP2 θ−→ S4, showing that the
homotopy colimit of (8·4) is equivalent to the homotopy cofiber of whatever map θ happens
to be induced between the pushouts of the middle and bottom row.

8·3. The two candidates for EcomSU (2)

Unfortunately, the description we have of the map θ is very indirect, as it is depends both
on the homotopy chosen in Lemma 8·2 and the homotopy equivalence that was established
by calculational means in Lemma 8·1. Let’s see what the possibilities for θ are, that is,
let’s determine the group of pointed homotopy classes of maps [�3RP2, S4]. We have the

cofiber sequence S1 2−→ S1→RP2 where 2 denotes a degree 2 map (more generally, we will
use an integer to denote a map of that degree on a sphere). Suspending thrice produces the

https://doi.org/10.1017/S0305004119000240 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004119000240


Classifying spaces for commutativity of low-dimensional Lie groups 475

cofiber sequence S4 2−→ S4→�3RP2 and then applying the pointed mapping space functor
Map∗(−, S4) turns it into a fiber sequence:

Map∗(�
3RP2, S4)−→Map∗(S

4, S4)
2−→Map∗(S

4, S4).

The long exact sequence of homotopy groups of that fiber sequences reads in part:

π5(S
4)

2−→ π5(S
4)

∂−→ [�3RP2, S4] −→ π4(S
4)

2−→ π4(S
4).

Since π5(S4)∼=Z/2 and π4(S4)∼=Z, we obtain that ∂ is an isomorphism and thus
[�3RP2, S4] ∼=Z/2. So there are exactly two possible homotopy classes for the map θ , and
thus two candidates for EcomSU (2). To decide which one is correct, we’ll need an alternate
description of the candidates, which we will give in terms of ϑ := ∂−1(θ) ∈ π5(S4). Recall
that ∂ can be described in terms of the Puppe sequence

S4 2−→ S4 −→�3RP2 δ−→ S5 −2−→ S5 −→ · · · ,
namely, ∂ = (−) ◦ δ, so that θ = ϑ ◦ δ.

Consider then the following diagram all of whose squares are homotopy pushouts:

�3RP2 δ ��

��

S5 ϑ ��

−2
��

S4

��
∗ �� S5 ��

−1
��

hocofib(θ)



��

S5 �� pushout(2, ϑ).

Since −1 is an equivalence, so is the map labelled 
.

This alternate description of EcomSU (2) as the pushout of S5 2←− S5 ϑ−→ S4 is the one we’ll
need later. But we can also make the CW-structure more explicit by using the standard
fact that the homotopy pushout square of pointed spaces on the left can be rewritten as the
homotopy pushout square on the right (where ∇ : A ∨ A→ A is the fold map, given by the
identity on each wedge summand):

A b ��

c
��

B

��
C �� D

A ∨ A

∇
��

b∨c �� B ∨C

��
A �� D.

Using this we can produce the following diagram both of whose squares are homotopy
pushouts:

S5 ρ ��

��

S5 ∨ S5 −2∨ϑ ��

∇
��

S5 ∨ S4

��
∗ �� S5 �� hocofib(θ).
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Here ρ is a variant of the pinch map which is degree −1 onto the first wedge summand,
and degree 1 onto the second. The fact that the outer rectangle is a homotopy pushout shows
that hocofib(θ) is homotopy equivalent to the CW-complex with 5-skeleton S5 ∨ S4 with a

6-cell attached along the map S5 pinch−−→ S5 ∨ S5 2∨ϑ−−→ S5 ∨ S4.
Using any of the three descriptions of the candidates it is easy to see that if θ , or equiva-

lently ϑ , is null-homotopic, we get EcomSU (2)
�4RP2 ∨ S4, which is what we will show
happens.

8·4. Resolving the ambiguity

To decide which of the two candidates for EcomSU (2) is the correct one, we will compute
the action of the Steenrod algebra on the mod 2 cohomology; which is why in this section
all cohomology groups mentioned are with F2 coefficients. Notice first that both candidates
have the same cohomology (even integrally): the description of the CW-structure shows the
two possible attaching maps of the 6-cell, S5→ S5 ∨ S4, differ only in how they map to the
S4 wedge summand, which is in the 4-skeleton of the CW-complex and thus invisible to
the cellular chain complex.

The candidate with θ null-homotopic, namely �4RP2 ∨ S4, is easy: the only non-zero
Steenrod square is Sq1 : H 5→ H 6, which comes from Sq1 : H 1(RP2)→ H 2(RP2). In
particular, Sq2 is zero for this candidate.

We will now show that for the other candidate, the one with non-null θ , the Steenrod
square Sq2 : H 4→ H 6 is non-zero. For this we will use the description as the pushout of

S5 2←− S5 ϑ−→ S4. Recall that the non-zero element of π5(S4) is given by the double suspension
of the Hopf fibration η : S3→ S2, so this candidate is actually�2Y , where Y is the homotopy

pushout of S3 2←− S3 η−→ S2. It is enough to show that Sq2 : H 2(Y )→ H 4(Y ) is non-zero.
Consider the following diagram both of whose squares are homotopy pushouts:

S3

η

��

2 �� S3

��

�� ∗

��
S2 �� Y �� CP2.

The rightmost space on the bottom is CP2, because η is the attaching map for the 4-cell in
the standard CW-structure of CP2. Using the Mayer–Vietoris sequence first for the left-hand
square, we see that the map S3→ Y is an isomorphism on H 3; and then for the right-hand
square, we learn that the map Y →CP2 is an isomorphism on H 4. Since Sq2 is non-zero for
CP2, we conclude it also non-zero for Y .

So now all that is left to do is calculate Sq2 on H 4(EcomSU (2)): if it is zero then
EcomSU (2)
�4RP2 ∨ S4; if it is non-zero then EcomSU (2)
�2Y .

To compute Sq2 for EcomSU (2), we’ll go back to the homotopy pushout square (8·1)
and use the fact that Steenrod squares commute with the connecting homomorphism in the
Mayer–Vietoris sequence. A small portion of the Mayer–Vietoris sequence reads:

H 3(RP3)⊕ H 3(S2 ×W S2)−→ H 3(RP2 ×RP3)
δ−→ H 4(EcomSU (2)).

We can compute H ∗(S2 ×W S2) by using the Serre spectral sequence for the fiber
sequence

S2 −→ S2 ×W S2 −→ S2/W ∼=RP2.
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The fundamental group of the base, π1(RP
2)∼=Z/2, acts by antipodes on the fiber S2,

but with F2 coefficients the corresponding action on H ∗(S2) is trivial! The E2-page of
the spectral sequence is thus E p,q

2 = H p(RP2)⊗ H q(S2). There is no room for differen-
tials and thus, as graded vector spaces, H ∗(S2 ×W S2)∼= H ∗(RP2)⊗ H ∗(S2). In particular,
H 3(S2 ×W S2)∼= F2.

Now, since both H 3(RP3) and H 3(S2 ×W S2) are 1-dimensional over F2, and H 3(RP2 ×
RP3) is 3-dimensional, there must be some element x ∈ H 3(RP2 ×RP3) outside the ker-
nel of the connecting homomorphism δ. This means that δx is the sole non-zero class in
H 4(EcomSU (2)), and we have Sq2(δx)= δ(Sq2x) which is zero because it can easily be
checked that Sq2 is zero on all of H 3(RP2 ×RP3).

We conclude that Sq2 is zero on H 4(EcomSU (2)), and by the discussion above, this proves
the main result on EcomSU (2) stated in the introduction.

THEOREM 1·4. There is a homotopy equivalence EcomSU (2)
 S4 ∨�4RP2.

Remark 8·4. As in Remark 7·1, we can use our calculation of EcomSU (2) to compute the
first few homotopy groups of BcomSU (2). The Hilton-Milnor theorem [13, section XI·6],
readily shows that �EcomSU (2)
�(S4 ×�4RP2 ×�7RP2 × A), where the space A is
10-connected. Many homotopy groups of �kRP2 have been computed in [14]. Using those
we obtain the following table (recall that BcomSU (2) is 3-connected):

n πn(BcomSU (2))

4 Z2

5 (Z/2)3

6 (Z/2)3

7 Z⊕Z/4⊕ (Z/12)2

n πn(BcomSU (2))

8 (Z/2)6

9 (Z/2)6

10 Z/12⊕ (Z/24)2

Remark 8·5. The calculation of EcomSU (2) yields EcomSO(4)1 as a corollary. According to
Lemma 6·5, if G̃→G is a homomorphism of compact connected Lie groups which is also
a covering map, then EcomG̃1 
 EcomG1. Since there is a double cover SU (2)× SU (2)→
SO(4), we see that

EcomSO(4)1 
 Ecom (SU (2)× SU (2))∼= EcomSU (2)× EcomSU (2)
 (S4 ∨�4RP2)2.
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