
The Knowledge Engineering Review, Vol. 35, e26, 1 of 40. © Cambridge University Press, 2020
doi:10.1017/S0269888920000235

Adaptable and stable decentralized task allocation
for hierarchical domains

VERA A. KAZAKOVA and GITA R. SUKTHANKAR

Intelligent Agents Laboratory, University of Central Florida, Orlando, FL, USA
e-mails: kazakova.cs@ucf.edu, gitars@eecs.ucf.edu

Abstract

Many real-world domains can benefit from adaptable decentralized task allocation through emergent
specialization, especially in large teams of non-communicating agents. We begin with an existing
bio-inspired response threshold reinforcement approach for decentralized task allocation and extend
it to handle hierarchical task domains. We test the extension on self-deployment of a large team of
non-communicating agents to patrolling a hierarchically defined set of areas. Results show near-ideal
performance across all areas, while minimizing wasteful task switching through the development of spe-
cializations and subsequent respecializations when area demands change. A genetic algorithm is then
used to evolve even more adaptable and stable task allocation behavior, by incorporating weight and
power coefficients into agents’ response threshold reinforcement action probability calculations.

1 Introduction

We investigate decentralized task allocation for dynamic domains with non-communicating workers who
are neither limited nor informed by the actions of others or by task availability. Our goal is decentral-
ized and communication-free task allocation that can adapt to dynamic environments of multiple tasks,
by maximizing per-task performance while also minimizing how often agents switch between tasks. An
existing dynamic task allocation approach is adapted for a hierarchically defined patrolling domain, con-
sisting of multiple areas patrolled by 1000 agents. We assess whether the expected number of agents is
present in each area over time, the stability of agents’ self-assignments when per-area patrolling demands
remain stable, and the adaptability of these self-assignments when the patrolling demands change.

We focus on decentralized, communication-free, emergent cooperation among agents whose task
choices are neither limited nor informed by the choices of the other agents. Many real-world domains
involve ubiquitously available tasks which can be taken up by any number of agents at any time, though
the actual task demands may vary. These are referred to as ongoing tasks. Consider patrolling: 10 agents
may be required to patrol an area at all times. Less patrolling would decrease security, while excess
patrolling is wasteful and can even cause interference. Additionally, patrolling cannot be accumulated:
patrolling more now does not reduce patrolling needs later. Patrolling is also never completed, requiring
ongoing action from the agents. Other examples of Ongoing tasks include system monitoring, equipment
diagnostics and maintenance, and perishable-resource gathering. Existing patrolling studies often ignore
a need for flexible and scalable task allocation, neglect considerations of communication and load balanc-
ing, and focus on deterministic and centralized approaches (Portugal & Rocha, 2011) which usually rely
on some form of task availability limitations (e.g., only one agent can win a task auction). Ongoing tasks
without availability limits are seldom discussed in existing task allocation literature. Note that, while we
focus our discussion on the self-allocation of patrolling agents to multiple areas with patrolling needs,

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235
https://orcid.org/0000-0001-9691-4883
https://doi.org/10.1017/S0269888920000235

2 V. A. KAZAKOVA AND G. R. SUKTHANKAR

the tasks in this work can be equivalently seen as any set of tasks with ongoing demands. Our goal is task
allocation that is: (1) effective, in that it optimizes per-task performance (i.e., not too much or too little
patrolling); (2) stable, in that any unnecessary switching between tasks is minimized; and (3) adaptable,
in that agents can self-reallocated as system needs change, while preserving that effecting and stable task
allocation.
Response threshold reinforcement (Theraulaz et al., 1998) is a probabilistic bio-inspired decentralized

approach that uses adapting agent thresholds to achieve decentralized task allocation, which has been
previously applied to ongoing tasks (Theraulaz et al., 1998; Wu & Kazakova 2017; Kazakova et al.
2018). We note that other approaches exist where agents respond based on adapting thresholds, such
as when agents act deterministically when a stimulus exceeds an agent’s threshold (Liu et al., 2007).
To avoid ambiguity, we uniquely refer to the model defined in Theraulaz et al. (1998) as StimHab,
referencing its use of stimuli and habit thresholds to calculate agents’ action probabilities.

Biologically inspired techniques for emergent task allocation show comparatively high scalability,
adaptability, and resource utilization, as well as low complexity and communication requirements (Zhang
et al., 2014). Approaches that do require communication can improve scalability (Murciano et al. 1997)
and robustness in environments where communication is unreliable or not feasible (Kanakia et al.,
2016). Decentralized multi-agent approaches offer increased robustness and scalability, as they are not
dependent on the availability of a central element (Almeida et al., 2004; van Lon & Holvoet 2017).
Entomology shows that insect societies achieve complex decentralized behavior among simple individ-
uals such as ants and bees, leading to successful cooperation that facilitates colony life. Observing and
modeling insect behaviors evolved in nature can then serve as inspiration for artificial multi-agent sys-
tems. StimHab, originally proposed as a model of observed insect behavior, employs task stimuli and
action-reinforced task habit thresholds to calculate agents’ action probabilities, which increase for tasks
with higher stimuli and lower habit thresholds (Theraulaz et al., 1998). StimHab agents do not com-
municate, nor are they aware of each other’s capabilities, preferences, circumstances, or even existence,
making the approach highly scalable. Agents sense current task stimuli, which change over time based
on the system’s performance on each task. Agents also maintain individual adaptable habit thresholds,
indicating their preferences for each task. An agent’s probability to act on a task increases with given
a higher stimulus and a lower habit threshold. An agent decreases its threshold for the chosen task and
increases its thresholds for the other tasks, becoming more likely to repeatedly select the same action,
leading to emergent specialization over time. Here, specialization refers to an agent’s preference and the
resulting increased propensity to act on some task over the alternatives. Emergent cooperation among
decentralized agents is characterized by adaptable behavior, beneficial to dynamic applications, such as
patrolling (Almeida et al., 2004; Portugal & Rocha 2011). Specialized agents lead to decreased interfer-
ence and task switching, as well as to increased performance (Ono & Fukumoto 1996; Murciano et al.
1997; Li et al., 2002; Nitschke 2008; Hsieh et al., 2009; Campbell & Wu 2011; Agmon et al., 2011;
Román et al., 2014).

Within StimHab, the basis of agents’ habit thresholds and current system needs is domain-specific.
In addition to action-reinforced habit, agents’ thresholds can reflect experience, current circumstances,
or physical suitability. Task demands are unknown to the agents, and system needs are inferred from
performance levels on each task (see Section 4 for details). Performance can be relayed to the agents by
surveillance cameras, via a central informer transmitting global state of performance, or even through
agents individually observing storage levels, lengths of request or production queues, counts of encoun-
ters of each task type, etc. As the cost of monitoring performance is less affected (if at all) by increasing
numbers of agents, emergent StimHab coordination is highly scalable.

In this work, we further investigate decentralized task allocation by extending a model of insect
behavior (Theraulaz et al., 1998), StimHab, to handle hierarchical sets of ongoing tasks by a team of
1000 agents, without relying on any additional methods of coordination. The natural behavior modeled
by StimHab evolved to over millennia. Drawing further inspiration from this evolution and from the
model itself, in this work, we also employ a genetic algorithm (GA) to evolve some newly defined model
parameters, to better suit the results of natural evolution to our artificial system needs. The resulting
task allocation is tested on a high-level patrolling domain composed of nested areas, each with dynamic

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

Adaptable and stable decentralized task allocation 3

patrolling demands. We assess (1) the performance for each area over time, measured by how closely
agents match the established area deployment requirements; (2) how well are the agents able to special-
ize, as measured by the amount of area switches (i.e., task switches) over time, and (3) how well agents
reallocate when area demands change. Our tests show that StimHab allows agents to self-allocate pro-
portionately, while promoting specialization and maintaining adaptability. GA results further show that
task allocation quality and stability can be improved by changes to the relation between stimuli and agent
thresholds.

2 Related work

There is little research on ongoing tasks allocation without communication. In this section, we review
some existing approaches to decentralized task allocation and discuss their applicability to domains with
ongoing tasks.

Task allocation often relies on task supply limitations and information about the choices of others.
Discrete tasks are commonly presented one at a time (e.g., bidding on truck-painting jobs; Cicirello &
Smith (2004)). When multiple tasks are available in unlimited quantities, agents must decide which task is
needed more and for which is the agent better suited. Not having to recruit or confer with others can allow
for faster responses to system changes, as well as for improved scalability, but having no communication
nor limits on task availability does preclude the use of approaches employing auctions (McIntire et al.,
2016; Nunes et al., 2016; Zheng & Koenig 2011), token-passing (Farinelli et al., 2006; Ma et al., 2017),
or interagent recruitment (dos Santos & Bazzan, 2009, 2011; Ducatelle et al., 2009; Wawerla & Vaughan
2010).
Ongoing task allocation without supply limitations has been addressed by probabilistic state transitions

and by StimHab. For proportionate agent deployment to multiple locations (e.g., multi-area surveillance),
locations/tasks can be assigned probabilities for agents to transition from one task to another (Berman
et al., 2007; Halász et al., 2007; Hsieh et al., 2008). Relying on global transition probabilities does not
promote specialization, while the need for explicitly defined transition values complicates adaptability
in dynamic environments. StimHab can address generalized task allocation with no communication for
a non-hierarchical set of ongoing tasks, promoting specialization to reduce wasteful task switching (Wu
& Kazakova 2017). StimHab may struggle during respecialization in dynamic domains, but performance
can be improved by strategically resetting agent specializations (Kazakova et al., 2018). While many
other applications of StimHab exist, they commonly rely on limited task supply, having agents compete
for each ‘job’ (e.g., RoboCup Rescue, dos Santos & Bazzan (2012); factory job assignments, Campos
et al. (2000); Nouyan (2002); Cicirello & Smith (2004); Nouyan et al. (2005); Ghizzioli et al. (2005);
threshold dependent competition, Merkle & Middendorf (2004); and token-passing for Unmanned Aerial
Vehicle surveillance, Schwarzrock et al. (2018)). To our knowledge, ongoing hierarchical tasks are not
addressed in the literature.

3 Domain: hierarchical deployment

We apply StimHab to a high-level patrolling domain, with hierarchically defined areas to be patrolled by
a large group of non-communicating agents. Below we discuss why hierarchical tasks are interesting and
how patrolling fits multi-agent task allocation for hierarchical ongoing tasks.

A hierarchical domain can be seen as a layered version of multiple sets of linear tasks, to which
StimHab has been successfully applied (Kazakova et al., 2018). This layering groups tasks under parent
tasks, where the amount of work needed for the parent equals the sum of the amounts of work needed
by the siblings, that is, if insufficient agents allocate themselves to a parent task, then there will be
insufficient allocations for its children tasks. Thus, choosing among parent tasks obscures the individual
needs of the children tasks, which could hinder the agents’ ability to task allocate effectively. However,
selecting among all the tasks in a flattened domain does not scale well to domains with many tasks. When
selection is layered, large sets of tasks can be eliminated by deciding against a single parent task, resulting

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

4 V. A. KAZAKOVA AND G. R. SUKTHANKAR

in better scaling. Additionally, a hierarchical task breakdown into subdomains allows agents to self-
allocate at higher levels, while lower levels can employ alternative task allocation methods, potentially
better suited for these subdomains. For example, while explicit scheduling may be prohibitive in very
large systems as a whole, it may be the optimal choice for smaller sets of tasks that require more precise
task allocation or more explicit cooperation. Hierarchically defined StimHab would allow a subset of
agents to individually self-allocate to the subdomain of interest and then switch to an alternative multi-
agent control method. Even if StimHab is used at all levels, other parameters can be varied per level, such
as how often agents reconsider their current task choice, given that different subdomains may be more
or less dynamic, have higher or lower task-switching costs, etc. A final benefit of hierarchical domain
definition is that it can allow for a more intuitive domain breakdown, potentially simplifying system
design.

Multi-area patrolling fits multi-agent allocation for ongoing tasks: multiple locations in constant need
of patrolling, a natural hierarchical breakdown of the overall space to be patrolled, patrolling demands
per area that vary over time, and performance that benefits from each agent specializing on any one area.
Decentralized approaches to patrolling usually involve some form of communication among the agents.
Patrolling approaches that rely solely on marking patrolling frequency, such as using a pheromone dif-
fusion model (Chu et al., 2007), do not promote specialization, which has been shown to be beneficial
for patrolling (Agmon et al., 2011). Hierarchical patrolling represents an intuitive breakdown of a large
area to be patrolled (e.g., a school campus subdivided into quadrants, each quadrant with multiple build-
ings, each building with multiple floors). Each subarea represents a subtask of the larger area (or task)
that encompasses it. Specializing on patrolling a single area diminishes the time agents spend traveling
between areas, thus increasing patrolling efficiency.

To minimize the dependence of our results on domain-specific area adjacency and traveling costs,
we model patrollable areas as an abstract set of ongoing tasks. Patrolling performance then depends
on whether agents self-deploy proportionately to demands, using stimuli for indirect coordination. The
patrolling performance of each area per time unit is the number of agents that patrolled the area during
that time, seen as a percentage of the desired number of patrolling units for that area, where the desired
number can depend on expected targets within the area, scheduled events, etc. The actual performance
calculations are highly domain-specific, but for physical areas it can be set up as counters of patrolling
units versus targets entering and exiting an area. Agents need no direct awareness of where the other
agents are currently patrolling, only whether an area is currently sufficiently patrolled.

4 Probabilistic action using StimHab

We propose an extension for an existing approach for decentralized task allocation (Theraulaz et al.,
1998), which we term StimHab (for brevity and to distinguish it from other threshold-response methods).
First, we review how stimuli and habit thresholds are defined, updated, and used within StimHab to
calculate agents’ action probabilities, as well as how the resulting actions lead to specialization. We then
extend StimHab formulation to handle hierarchical task domains.

4.1 Global task stimuli

Agents perceive system needs through globally observable stimuli (e.g., dimensions of a fire to be put
out Kanakia et al. (2016) or task performance Kazakova et al. (2018)) and use them for decentralized
coordination.

StimHab stimuli do not directly indicate task demands, instead being a sort of gas pedal to incite agents
to act more or less on a given task. Knowing the total number or ratio of agents needed by a task per some
time unit does not help an agent decide whether to take on that task. Instead, agents can decide whether
their services are needed based on how well the task is being handled, that is, task performance. Using
inverse performance values directly as stimuli, however, results in an environment that is too unstable
for specialization. No activity on a task corresponds to maximal stimulus (1.0), while the correct amount
of activity corresponds to minimal stimulus (0.0). Achieving the correct work distribution leads to no

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

Adaptable and stable decentralized task allocation 5

stimulus, a sharp drop in activity, and a subsequent drop in performance, leading to an increasing stim-
ulus, an increase in activity back to previous levels, leading to zero stimulus again, etc. This oscillating
stimulus precludes agents from stabilizing their task assignments.

Task t’s stimulus st is updated as a change in the previous stimulus, with the assumption that the
absence of work on a task with non-zero demand must lead to a stimulus increase. This can mean a drop
in performance (e.g., fewer than desired agents patrolling a given area) or a drop in the level of a stored
resource (e.g., materials being expended faster than collected).

s′t = st + (�st given no work) ∗ (1− (step performance))

= st +
(

1

steps in cycle

)
∗
(
1− step work done

step work needed

)

up to a min(st) = 0.0 and max(st) = 1.0. If agents perform the correct amount of work, st remains
unchanged; excess work leads to st decrease, while insufficient work leads to increase. We set �st to
increase the task’s stimulus from minimum 0.0 to maximum 1.0 within a single cycle, defined as some
number of consecutive decision steps. After any one step, if agents do no work on task t, st will increase
by 1.0/(steps in cycle), that is, given a cycle of 100 steps, s′t = st + 0.01.

4.2 Individual task habit thresholds

Each agent maintains its own habit threshold for every task. These are often referred to as ‘response
thresholds’, which can be misleading when agents do not respond based solely on these thresholds. Thus,
we regard these thresholds as preferences toward each task.

When agent a acts on a task t, its threshold for that task θa,t is reduced, while thresholds for the other
tasks are increased. Lower thresholds increase action probability (see Section 4.3), causing agents to
become more likely to act on the same task in the future, leading to specialization over time. As agent
a repeatedly acts on task t, θa,t tends to 0.0, while all other θa,t′ �=t tend to 1.0 according to the following
threshold reinforcement rules:

θa,t = θa,t − ξ (where ξ is the affinity rate)

θa,t′ �=t = θ ′
a,t + φ (where φ is the aversion rate)

with θ restricted to the range [0.0, 1.0]. Affinity and aversion rates dictate how fast agents specialize
based on their actions.

4.3 Action selection

StimHab achieves task allocation through probabilistic actions based on global task stimuli and agents’
individual habits (Theraulaz et al., 1998). An increase in a task’s stimulus indicates that more work is
needed on that task, while a lower agent’s task threshold indicates that agent has developed an affinity
for this task, inciting it to act at lower stimuli than agents with higher thresholds for that task.

Every time step, each agent a calculates the probability Ps,θ to act on every task t, by combining the
task’s stimulus st with its own affinity for that task θa,t:

Ps,θ = s2t /(s
2
t + θ2

a,t) where s ∈ [0.0, 1.0], θ ∈ [0.0, 1.0]
Ps,θ = 0.5 where undefined (st = θa,t = 0.0)

The redefinition at st = θa,t = 0 avoids division by zero, while leading to a 50%/50% chance to select
the task or not, which falls precisely between the adjacent values Ps,θ = 1.0 for (st > 0.0, θa,t = 0.0) and
Ps,θ = 0.0 for (st = 0.0, θa,t > 0.0), while also matching the values along the rest of the diagonal where
st = θa,t, as every [st = θa,t] > 0.0 results in Ps,θ = (s2t /(s

2
t + s2t) = 0.5.

Having all ongoing tasks always available, agents must choose whether to act on any one of them. In
prior work, we extend StimHab to allow agents to choose among multiple tasks (Wu & Kazakova, 2017),

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

6 V. A. KAZAKOVA AND G. R. SUKTHANKAR

as the original definition presents agents with one task at a time (Theraulaz et al., 1998). Agents consider
tasks in descending order of Ps,θ (different across agents as their θa,t differ), which promotes proportionate
task allocation and specialization. When considering each task, if (random value) ∈ [0.0, 1.0] < Ps,θ , the
agent acts on that task; else the task with the next highest Ps,θ is considered. If no task triggers action, the
agent idles until the next time step.

4.4 Hierarchical task assignment

We extend StimHab to hierarchical domains composed of tasks and subtasks. To this end, task selection
and the reinforcement of task habit thresholds both require newly recursive definitions.

Agents will choose from among a subset of tasks at each level, recursively diving deeper in the hier-
archy until selecting a task with no subtasks, or defaulting to idle. Under StimHab with a linearly defined
set of tasks, once an action is selected, the agent can act. For a hierarchical set of tasks, a chosen task must
then be checked for subtasks: if the task has subtasks, the agent will repeat the task selection process, this
time choosing among the subtasks of the originally selected task; if the task has no subtasks, the agent
will act on the chosen task. At any level of the hierarchy, if the probabilities Ps,θ for the tasks under
consideration do not trigger any one task to be selected, the agent will idle. Thus, action selection always
ends at a ‘leaf’ task (either an actual task or at idling, which is a type of ‘leaf’ task implicitly available at
every level).

Selecting a task must trigger habit threshold updates for that task and its sibling tasks, that is, we are
choosing to specialize on that task and against the alternatives. Under StimHab with a linearly defined set
of tasks, acting on a task causes its threshold to reduce, while the thresholds for all other tasks increase.
For a hierarchical set of tasks, only the tasks at the same level as the chosen task (i.e., sibling tasks)
will have their thresholds increased. Additionally, since choosing a task means its parent task (if any)
was also chosen along the path down the hierarchy, updates must then propagate upward. This means
the parent task’s threshold will also be reduced, while the thresholds of the parent task’s siblings will be
increased; the update will then be moved further up to the grandparent task and so on until the top level
is reached.

5 Testing domain setup

Our patrolling scenario has 12 hierarchically arranged areas, that is, 12 tasks (see Figure 1). Agents
are not directly aware of task demands, instead sensing globally monitored task performance values.
Ideal behavior corresponds to continuously having the correct number of agents patrolling each area.
To establish an optimal baseline, we ensure that demands at each level in the hierarchy always add up
to 100% of the available agents (i.e., demands for T1–T5 always add up to 100% of agents; if demand
for T2 = x%, demands for its subtasks T2.1, T2.2, and T2.3 add up to x%). Thus, any misallocation
will necessarily cause some tasks to fall below 100% performance. The team consists of 1000 non-
communicating, homogeneous agents with uniformly random initial habit thresholds ∈ [0.0, 1.0]. Each
simulation lasts for 500 cycles = 50 000 steps. Patrolling demands change 10 times, once every 50
cycles (5000 steps or task-choosing decisions by each agent). Patrolling demand values are provided in
Table 1.

Adaptability of decentralized solutions often depends on population diversity, which can be lost after
initial adaptation, complicating readaptation (Mavrovouniotis et al., 2017; Price & Tiño 2004; Kazakova
et al., 2018). Partial or full resetting of conditioning can be used to improve performance: forgetting
older observations in adversarial decision-making (Villacorta et al., 2013), forgetting older training
environments in case-based reasoning robotic navigation (Kira & Arkin 2004), and resetting habits in
a task allocation using StimHab (Kazakova et al., 2018). Thus, we test two versions of each consid-
ered approach: one without resetting of thresholds θa,t back to uniformly random values when demands
change, requiring agents to respecialize from the previously developed specializations, and one with
resetting.

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

Adaptable and stable decentralized task allocation 7

Table 1 Patrolling demands per area (T1 through T5 and subareas). Demands change every 50 cycles, 10 times per
simulation (e.g., on cycle 100, the domain changes from needing 4% of all agents patrolling T1 to needing 16%. T2

changes from needing 16% to 40%: 4% on T2.1, 20% on T2.2, 15% on T2.3)

CYCLES T1 T2 T2.1 T2.2 T2.3 T3 T4 T4.1 T4.2 T4.2.1 T4.2.2 T5

1–50 4% 20% 4% 8% 8% 32% 20% 4% 16% 8% 8% 24%
51–100 4% 16% 8% 4% 4% 24% 32% 8% 24% 12% 12% 24%
101–150 16% 40% 4% 20% 16% 4% 12% 4% 8% 4% 4% 28%
151–200 24% 12% 4% 4% 4% 28% 16% 4% 12% 4% 8% 20%
201–250 4% 32% 12% 8% 12% 16% 36% 12% 24% 8% 16% 12%
251–300 36% 16% 4% 4% 8% 4% 20% 8% 12% 4% 8% 24%
301–350 16% 16% 4% 4% 8% 8% 12% 4% 8% 4% 4% 48%
351–400 56% 12% 4% 4% 4% 4% 20% 12% 8% 4% 4% 8%
401–450 12% 16% 8% 4% 4% 4% 52% 36% 16% 12% 4% 16%
451–500 32% 24% 8% 12% 4% 20% 12% 4% 8% 4% 4% 12%

T1 (4%) T2 (20%) T3 (32%) T4 (20%) T5 (24%)

T2.1 (4%) T2.2 (8%) T2.3 (8%) T4.1 (4%) T4.2 (16%)

T4.2.1 (8%) T4.2.2 (8%)

PATROLLING

Figure 1 Hierarchical patrolling domain: nested areas T1–T5 and their subareas have patrolling demands (shown
as percentages of total work possible per step) that change over time. Without communicating, agents choose areas
based on the area stimuli and agents’ own evolving habit thresholds for each area. If a chosen area has subareas
(shown in light gray), selection repeats among subareas

6 Behavioral metrics

To assess respecialization capabilities of each approach, we employ the following terms:
Demand period: A period during which task demands remain stable; when demands change, a new

demand period begins and will end when demands change again; observing average behavior across
demand periods showcases the agents’ average ability to adapt to changes in task demands.
Task performance: ongoing tasks are never finished, and thus, performance represents the proportion

of work done as compared to work needed per unit of time, such as per time step (a period of one action
from each agent) or per cycle (a period of multiple action steps).

|Deviation| from 100% task performance: The percentage of work misallocation with respect to a
task, either above or below the ideal task requirement; as task performance can exceed or fall below
100%, averaging deviations prevents positive and negative misallocations from canceling each other
(e.g., average task performance of two steps of 95% and 105% performance is 100%, but absolute average
deviation is 5%, more meaningfully showcasing the task allocation behavior).
Task switch: A change in agent activity, switching from acting on one task to acting on another

(including switching to or from idling).

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

8 V. A. KAZAKOVA AND G. R. SUKTHANKAR

Task-switching rate: For any time period, the percentage of all actions that involved a task switch (e.g.,
given 100 steps per cycle and 100 agents, 10 000 actions take place in a cycle; a 20% task-switching rate
indicates 2000 task switches for that cycle).
Ideal task allocation: That resulting in continuous task performances of 100% or, equivalently,

average task performance deviations of 0%, with average task switching approaching 0% over time.
Adaptation period:A period between demand changes, during which agents must respecialize in order

to fulfill new system needs. Looking at average adaptation period behavior, we can assess the expected
task allocation behavior in dynamic environments.

Performance is assessed using: (1) task performance percentages over time (ideal at 100%, i.e., no
over- or underworking), (2) average task deviations calculated for each cycle of a 50-cycle demand
period (ideal at 0%), and (3) average task-switching rates for each cycle of a 50-cycle demand period
(ideal at 0%, although some switches are expected during adaptation).

Observing task performance percentages over all 10 demand periods of a simulation showcases the
average adaptation behavior of each approach in a dynamic environment. Ideally satisfied tasks are those
that quickly reach and maintain 100% task performance after task demands change, while task per-
formance below and above 100% indicates insufficient and excess agents on that task, respectively.
Observing average task performance deviations and average task switch counts showcases how each
approach is able to respond to changes in task demands. Average deviations show the agents’ ability to
fulfill newly updated task demands, with deviations approaching 0% over time indicating near ideal task
fulfillment resulting from an appropriate self-allocation. Average task switch counts show the stability of
the task assignments, with values nearing 0% over time indicating agents specializing and continuously
working on a single task.

7 Experiments, part I: StimHab vs. Average(s, θ)

To verify the benefits of StimHab for decentralized allocation with specialization, we compare agents
behavior under StimHab to that resulting from a direct averaging of the two signals for our objectives,
that is, stimuli and habit thresholds. While agents could be made to follow stimulus or thresholds alone,
neither would achieve the dual aim of maximizing performance while minimizing task switching. Below
we present the specifics of the tested approaches, the hierarchical set of tasks used, and the actual demand
values used for the different tasks throughout the simulations.

To assess the ability of a decentralized team to self-allocate to a set of ongoing hierarchically defined
tasks, we compare the capabilities of StimHab and Average(s, θ) approaches to deploy agents to a set of
areas with dynamic patrolling demands. Both approaches combine stimuli and habits to maximize perfor-
mance and minimize task switching. Average(s, θ) uses the same definitions of stimuli and thresholds,
while its probability to act is the average of the two values, accounting for the inverse relationship of
thresholds and action probability:

Average(s, θ) : Ps,θ = st + (1− θa,t)

2
vs. StimHab: Ps,θ = s2t

s2t + θ2
a,t

where a is an agent, t is a task, st is the task’s stimulus, and θa,t is the agent’s habit threshold for that task.
All st and θa,t are initialized to uniformly random ∈ [0.0, 1.0].

To assess performance with and without resetting of agents’ thresholds, we test four approaches:
StimHab with resets, StimHab without resets, Average(s, θ) with resets, and Average(s, θ) without
resets. We compare their ability to provide the expected number of agents to each area as demands
change, as well as to allow for specialization by reducing task switching over time. First, we look at the
behavior over the entire simulation and then over an average demand period, to establish the average
adaptation that can be expected when demands change.

Figures 2, 3, 4, and 5 depict per-area (or per-task) performances for each cycle of a 500-
cycle representative simulation run. The x-axis shows cycles and the y-axis shows performancet =
(workachievedt/workneededt). Each color line represents the patrolling performance for a single area.

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

Adaptable and stable decentralized task allocation 9

0%

50%

100%

150%

200%

250%

 0 50 100 150 200 250 300 350 400 450 500

Ta
sk

 p
er

fo
rm

an
ce

Cycle

T1
T2

T2.1
T2.2

T2.3
T3
T4

T4.1

T4.2
T4.2.1
T4.2.2

T5

Figure 2 StimHab without resets—full simulation

0%

50%

100%

150%

200%

250%

 0 50 100 150 200 250 300 350 400 450 500

Ta
sk

 p
er

fo
rm

an
ce

Cycle

T1
T2

T2.1
T2.2

T2.3
T3
T4

T4.1

T4.2
T4.2.1
T4.2.2

T5

Figure 3 StimHab with resets—full simulation

0%

50%

100%

150%

200%

250%

 0 50 100 150 200 250 300 350 400 450 500

Ta
sk

 p
er

fo
rm

an
ce

Cycle

T1
T2

T2.1
T2.2

T2.3
T3
T4

T4.1

T4.2
T4.2.1
T4.2.2

T5

Figure 4 Average(s, θ) without resets—full simulation

Ideal task allocation corresponds to 100% performance in every area, as we do not want too many
nor too few patrolling agents. Patrolling demands change every 50 cycles, causing spiking from 100%
performance. Under StimHab with resetting (Figure 3) and Average(s, θ) with resetting (Figure 5), per-
formances approach 100% performances faster than their versions without resetting, corroborating prior
research that indicates that threshold reinforcement is more effective starting from random thresholds
(i.e., specialization) than starting from previously reinforced thresholds (i.e., respecialization) (Kazakova
et al., 2018). Figures 6, 7, 8, and 9 provide an averaged view of the same runs, showcasing average adap-
tation behavior between changes in patrolling demands. The x-axis represents each nth cycle between
demand changes, and the y-axis displays the average percentage deviation from the work needed on each
task. Deviations are used in place of raw performance to ensure that values above and below 100% do
not cancel out: deviationt = |100− performancet|. Ideal patrolling performance corresponds to 0% devi-
ation for each area. StimHab with resetting (Figure 7) and Average(s, θ) with resetting (Figure 9) both
reach near 0% deviation for all areas over time, while versions without resetting remain at as high as 25%
(Figure 6) and 20% (Figure 8) deviation.

Figure 10 plots the task switches for each of the four approaches, averaged over the 10 changes in
demands. The x-axis depicts the average nth cycle of a 50-cycle period (i.e., between changes in patrolling
demands), and the y-axis shows the average number of times agents switch tasks during that cycle. Given
1000 agents and 100 steps per cycle, a maximum number of switches per cycle is 100 000. We see

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

10 V. A. KAZAKOVA AND G. R. SUKTHANKAR

0%

50%

100%

150%

200%

250%

 0 50 100 150 200 250 300 350 400 450 500

Ta
sk

 p
er

fo
rm

an
ce

Cycle

T1
T2

T2.1
T2.2

T2.3
T3
T4

T4.1

T4.2
T4.2.1
T4.2.2

T5

Figure 5 Average(s, θ) with resets—full simulation

0%

20%

40%

60%

80%

100%

 0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 |d
ev

ia
tio

n|
 fr

om
 1

00
%

Average cycle (in 50-cycle adaptation period)

T1
T2

T2.0
T2.1

T2.2
T2.3

T3
T4

T4.0
T4.1
T4.2

T4.2.0

Figure 6 StimHab without resets—average adaptation

0%

20%

40%

60%

80%

100%

 0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 |d
ev

ia
tio

n|
 fr

om
 1

00
%

Average cycle (in 50-cycle adaptation period)

T1
T2

T2.0
T2.1

T2.2
T2.3

T3
T4

T4.0
T4.1
T4.2

T4.2.0

Figure 7 StimHab with resets—average adaptation

0%

20%

40%

60%

80%

100%

 0 5 10 15 20 25 30 35 40 45 50

A
ve

ra
ge

 |d
ev

ia
tio

n|
 fr

om
 1

00
%

Average cycle (in 50-cycle adaptation period)

T1
T2

T2.0
T2.1

T2.2
T2.3

T3
T4

T4.0
T4.1
T4.2

T4.2.0

Figure 8 Average(s, θ) without resets—average adaptation

here that although StimHab and Average(s, θ) (both with resetting) had similar ability to fulfill aver-
age patrolling demands, StimHab with resetting is able to reduce task switches to approximately 2000
per cycle, amounting to two switches per agent per 100 task-choosing decisions (one decision per step,
thus 100 per cycle). StimHab without resetting comes in second, only reducing task switching to approxi-
mately 18 000 times per cycle, while Average(s, θ)with and without resetting result in twice as much task
switching. Thus, we see that StimHab greatly reduces task switching, though never quite eliminates it.

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

Adaptable and stable decentralized task allocation 11

0%

20%

40%

60%

80%

100%

 0 5 10 15 20 25 30 35 40 45 50

A
vg

 |d
ev

ia
tio

n|
 fr

om
 1

00
%

Average cycle (in 50-cycle adaptation period)

T1
T2

T2.0
T2.1

T2.2
T2.3

T3
T4

T4.0
T4.1
T4.2

T4.2.0

Figure 9 Average(s, θ) with resets—average adaptation Numbered color lines represent individual area (or task)
performance. LEFT: entire simulation, with demands changing on every 50th cycle; values near 100% are ideal;
RIGHT: adaptation behavior, averaged over 10 demand periods; values near 0% are ideal.

0%

20%

40%

60%

80%

100%

 0 5 10 15 20 25 30 35 40 45 50

Ta
sk

-s
w

itc
hi

ng
 ra

te

Average cycle (in 50-cycle adaptation period)

StimHab with resets
StimHab without resets

Average(s,θ) with resets
Average(s,θ) without resets

Figure 10 Average task-switching adaptation (approacheswith threshold resetting result in fewer task switches over
time, i.e. better stabilization)

0%

50%

100%

150%

200%

250%

300%

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Ta
sk

 p
er

fo
rm

an
ce

Step

T1
T2

T2.1
T2.2

T2.3
T3
T4

T4.1

T4.2
T4.2.1
T4.2.2

T5

Figure 11 StimHab with resets—first 5000 steps of a simulation

To further investigate the cause of these task switches, we graph task allocation performance at each
step of a representative sample run for the approaches with lowest overall task switching: StimHab with
resetting in Figure 11 and Average(s, θ) with resetting in Figure 12. To ensure visibility, only the first
5000 steps (of the total 50 000) are shown, but the discussed behavior repeats itself every 5000 steps.
We see that although task allocations averaged for each cycle were nearing the ideal 100%, at the step
level there is considerable oscillation in both approaches. It is nevertheless clear that while Average(s, θ)

performance oscillates continuously throughout the entire 5000-step period (notice the dense spiking in
Figure 12), StimHab performance (Figure 11) initially approaches the desired task allocation and then
begins to oscillate. The spikes here are sparser than under Average(s, θ) but have higher amplitude,
indicating intermittent large shifts in agent assignment.

Looking closer at the simulation data, we see that StimHab’s performance begins to oscillate once
tasks with too many agents (performance line above 100%) reach st = 0. By this point, agents have
strongly developed habits (θa,t = 1.0 one of the tasks), causing Ps,θ to drop from 1.0 to 0.5, and leading
to a decrease of activity on that task and an increase on the others. A sharp decrease in activity brings st
down, restarting the cycle. This oscillation hinders fine-tuning hierarchical specializations and is precisely
why resetting is beneficial for threshold adaptation: fully specialized agents have trouble choosing what

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

12 V. A. KAZAKOVA AND G. R. SUKTHANKAR

0%

50%

100%

150%

200%

250%

300%

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Ta
sk

 p
er

fo
rm

an
ce

Step

T1
T2

T2.1
T2.2

T2.3
T3
T4

T4.1

T4.2
T4.2.1
T4.2.2

T5

Figure 12 Average(s, θ) with resets—first 5000 steps of a simulation

is needed over what they now prefer (Kazakova et al., 2018). We hypothesize that respecialization can
be improved by altering probability calculation in favor of tasks where st = 1.0.

8 Favoring readaptation: altering behavior when (st = θa,t = 1.0)

Comparing StimHab to a direct averaging of the stimulus and habits shows that agents can approach the
expected task allocation at the cycle level, but oscillations are observed at the step level after an initial
adaptation period. In this section, we consider how altering the probability formula used by StimHab can
improve agents’ respecialization, thus making a decentralized system more adaptable within dynamic
domains.

Consider the probability values for StimHab shown in Figure 13. The depicted map shows all possible
probabilities (up to two decimal discretization) resulting from stimulus and threshold value pairings.
Threshold values are shown below the probability map, representing the x-axis, while stimulus values
are shown vertically to the left of the map, representing the y-axis, with the pairing (0.0, 0.0) at the
bottom-left corner.

The behavioral oscillations observed in our earlier experiments (Figure 11) can be explained by com-
paring the probabilities in the bottom-left versus top-right corners of the map: both ends of the Ps,θ = 0.5
diagonal have equal action probability, while representing vastly different stimulus-threshold pairings.
The bottom-left corner st = θa,t = 0.0 corresponds to tasks that are minimally needed, but for which an
agent has developed maximal specialization (or preference). The top-right corner st = θa,t= 1.0 corre-
sponds to tasks that are maximally needed, but for which an agent has developed minimal specialization
(or aversion). A single agent may find itself in both of these situations simultaneously (albeit for different
tasks). A need for system adaptability would dictate the agent should respecialize, but since both corners
have identical probability, alternating choices often take place, resulting in the oscillatory behavior.

To aid respecialization, we propose favoring (st = θa,t = 1.0) by altering the Ps,θ formula. We hypoth-
esize that an alteration may not only reduce oscillations at the step level but may also help respecialization
when existing specializations are not reset to random values beforehand. StimHab probability formula
can be adjusted to favor (st = θa,t = 1.0), that is, to favor the task that agents have specialized against, but
which has now reached maximum stimulus due to continuous insufficient activity. Assigning different
exponents to stimuli and thresholds will curve the diagonal Ps,θ = 0.5 line, but will not alter the point
Ps=1,θ=1 = 0.5 (see the example in Figure 14(a)). In order to favor tasks that fall into the s= θ = 1.0
corner of the probability map, we can assign different weights to the stimulus and threshold components
in the probability formula (see the example in Figure 14(b)).

9 Evolving the s− θ relationship

We hypothesize that improvement can be achieved by fine-tuning the relationship between the system’s
stimuli and the habit thresholds developing over time. To this end, we will employ a simple GA to evolve
the exponents and weights for the Ps,θ formula. GAs are a type of optimization algorithms inspired by
the mechanisms of natural selection, such as survival of the fittest, genetic mutations, and inheritance

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

Adaptable and stable decentralized task allocation 13

S
θ

1.00 1.00 1.00 0.99 0.98 0.96 0.94 0.92 0.89 0.86 0.83 0.80 0.77 0.74 0.70 0.67 0.64 0.61 0.58 0.55 0.53 0.50

0.95 1.00 1.00 0.99 0.98 0.96 0.94 0.91 0.88 0.85 0.82 0.78 0.75 0.71 0.68 0.65 0.62 0.59 0.56 0.53 0.50 0.47

0.90 1.00 1.00 0.99 0.97 0.95 0.93 0.90 0.87 0.84 0.80 0.76 0.73 0.69 0.66 0.62 0.59 0.56 0.53 0.50 0.47 0.45

0.85 1.00 1.00 0.99 0.97 0.95 0.92 0.89 0.86 0.82 0.78 0.74 0.70 0.67 0.63 0.60 0.56 0.53 0.50 0.47 0.44 0.42

0.80 1.00 1.00 0.98 0.97 0.94 0.91 0.88 0.84 0.80 0.76 0.72 0.68 0.64 0.60 0.57 0.53 0.50 0.47 0.44 0.41 0.39

0.75 1.00 1.00 0.98 0.96 0.93 0.90 0.86 0.82 0.78 0.74 0.69 0.65 0.61 0.57 0.53 0.50 0.47 0.44 0.41 0.38 0.36

0.70 1.00 0.99 0.98 0.96 0.92 0.89 0.84 0.80 0.75 0.71 0.66 0.62 0.58 0.54 0.50 0.47 0.43 0.40 0.38 0.35 0.33

0.65 1.00 0.99 0.98 0.95 0.91 0.87 0.82 0.78 0.73 0.68 0.63 0.58 0.54 0.50 0.46 0.43 0.40 0.37 0.34 0.32 0.30

0.60 1.00 0.99 0.97 0.94 0.90 0.85 0.80 0.75 0.69 0.64 0.59 0.54 0.50 0.46 0.42 0.39 0.36 0.33 0.31 0.29 0.26

0.55 1.00 0.99 0.97 0.93 0.88 0.83 0.77 0.71 0.65 0.60 0.55 0.50 0.46 0.42 0.38 0.35 0.32 0.30 0.27 0.25 0.23

0.50 1.00 0.99 0.96 0.92 0.86 0.80 0.74 0.67 0.61 0.55 0.50 0.45 0.41 0.37 0.34 0.31 0.28 0.26 0.24 0.22 0.20

0.45 1.00 0.99 0.95 0.90 0.84 0.76 0.69 0.62 0.56 0.50 0.45 0.40 0.36 0.32 0.29 0.26 0.24 0.22 0.20 0.18 0.17

0.40 1.00 0.98 0.94 0.88 0.80 0.72 0.64 0.57 0.50 0.44 0.39 0.35 0.31 0.27 0.25 0.22 0.20 0.18 0.16 0.15 0.14

0.35 1.00 0.98 0.92 0.84 0.75 0.66 0.58 0.50 0.43 0.38 0.33 0.29 0.25 0.22 0.20 0.18 0.16 0.14 0.13 0.12 0.11

0.30 1.00 0.97 0.90 0.80 0.69 0.59 0.50 0.42 0.36 0.31 0.26 0.23 0.20 0.18 0.16 0.14 0.12 0.11 0.10 0.09 0.08

0.25 1.00 0.96 0.86 0.74 0.61 0.50 0.41 0.34 0.28 0.24 0.20 0.17 0.15 0.13 0.11 0.10 0.09 0.08 0.07 0.06 0.06

0.20 1.00 0.94 0.80 0.64 0.50 0.39 0.31 0.25 0.20 0.16 0.14 0.12 0.10 0.09 0.08 0.07 0.06 0.05 0.05 0.04 0.04

0.15 1.00 0.90 0.69 0.50 0.36 0.26 0.20 0.16 0.12 0.10 0.08 0.07 0.06 0.05 0.04 0.04 0.03 0.03 0.03 0.02 0.02

0.10 1.00 0.80 0.50 0.31 0.20 0.14 0.10 0.08 0.06 0.05 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.01

0.05 1.00 0.50 0.20 0.10 0.06 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.50 0.00

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Figure 13 StimHab probability map: Ps,θ = s2

s2+θ2

through gene recombination. GAs have been successfully applied toward a variety of complex opti-
mization problems, such as evolving atom positions within metallic nano-cluster formations (Kazakova
et al., 2013), flying drone path planning (Ragusa et al., 2017), and even the evolution of neural network
topologies (Stanley & Miikkulainen, 2002). GAs are a subset of evolutionary computation approaches.
For an overview of GAs and other evolutionary computation approaches, please see De Jong (2006).
In this section, we describe the specifics of our GA design: solution encoding, fitness functions, genetic
operators, and evolution parameters. We then compare the performance of the evolved solutions to that
of the standard StimHab algorithm.

9.1 Chromosome formulation

For ease of discussion, consider the line where Ps,θ = 0.5. Values above the line correspond to higher
likelihood of acting, while values below correspond to lower likelihood of acting. Thus, the curvature
and placement of this like are crucial to the overall behavior. Our goal is to search the space of Ps,θ
mappings by (1) changing the curvature of the Ps,θ = 0.5 line by varying the power to which st and θa,t

values are elevated and (2) changing the overall height of the curve to allow for altering the tug-of-war
oscillatory behavior observed between the tasks at (st = θa,t = 0.0) and those at (st = θa,t = 1.0), that is,

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

14 V. A. KAZAKOVA AND G. R. SUKTHANKAR

Ps,θ = s3

s3+θ2

1.00 1.00 1.00 0.99 0.98 0.96 0.94 0.92 0.89 0.86 0.83 0.80 0.77 0.74 0.70 0.67 0.64 0.61 0.58 0.55 0.53 0.50

0.95 1.00 1.00 0.99 0.97 0.96 0.93 0.91 0.87 0.84 0.81 0.77 0.74 0.70 0.67 0.64 0.60 0.57 0.54 0.51 0.49 0.46

0.90 1.00 1.00 0.99 0.97 0.95 0.92 0.89 0.86 0.82 0.78 0.74 0.71 0.67 0.63 0.60 0.56 0.53 0.50 0.47 0.45 0.42

0.85 1.00 1.00 0.98 0.96 0.94 0.91 0.87 0.83 0.79 0.75 0.71 0.67 0.63 0.59 0.56 0.52 0.49 0.46 0.43 0.40 0.38

0.80 1.00 1.00 0.98 0.96 0.93 0.89 0.85 0.81 0.76 0.72 0.67 0.63 0.59 0.55 0.51 0.48 0.44 0.41 0.39 0.36 0.34

0.75 1.00 0.99 0.98 0.95 0.91 0.87 0.82 0.77 0.73 0.68 0.63 0.58 0.54 0.50 0.46 0.43 0.40 0.37 0.34 0.32 0.30

0.70 1.00 0.99 0.97 0.94 0.90 0.85 0.79 0.74 0.68 0.63 0.58 0.53 0.49 0.45 0.41 0.38 0.35 0.32 0.30 0.28 0.26

0.65 1.00 0.99 0.96 0.92 0.87 0.81 0.75 0.69 0.63 0.58 0.52 0.48 0.43 0.39 0.36 0.33 0.30 0.28 0.25 0.23 0.22

0.60 1.00 0.99 0.96 0.91 0.84 0.78 0.71 0.64 0.57 0.52 0.46 0.42 0.38 0.34 0.31 0.28 0.25 0.23 0.21 0.19 0.18

0.55 1.00 0.99 0.94 0.88 0.81 0.73 0.65 0.58 0.51 0.45 0.40 0.35 0.32 0.28 0.25 0.23 0.21 0.19 0.17 0.16 0.14

0.50 1.00 0.98 0.93 0.85 0.76 0.67 0.58 0.51 0.44 0.38 0.33 0.29 0.26 0.23 0.20 0.18 0.16 0.15 0.13 0.12 0.11

0.45 1.00 0.97 0.90 0.80 0.69 0.59 0.50 0.43 0.36 0.31 0.27 0.23 0.20 0.18 0.16 0.14 0.12 0.11 0.10 0.09 0.08

0.40 1.00 0.96 0.86 0.74 0.62 0.51 0.42 0.34 0.29 0.24 0.20 0.17 0.15 0.13 0.12 0.10 0.09 0.08 0.07 0.07 0.06

0.35 1.00 0.94 0.81 0.66 0.52 0.41 0.32 0.26 0.21 0.17 0.15 0.12 0.11 0.09 0.08 0.07 0.06 0.06 0.05 0.05 0.04

0.30 1.00 0.92 0.73 0.55 0.40 0.30 0.23 0.18 0.14 0.12 0.10 0.08 0.07 0.06 0.05 0.05 0.04 0.04 0.03 0.03 0.03

0.25 1.00 0.86 0.61 0.41 0.28 0.20 0.15 0.11 0.09 0.07 0.06 0.05 0.04 0.04 0.03 0.03 0.02 0.02 0.02 0.02 0.02

0.20 1.00 0.76 0.44 0.26 0.17 0.11 0.08 0.06 0.05 0.04 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01

0.15 1.00 0.57 0.25 0.13 0.08 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00

0.10 1.00 0.29 0.09 0.04 0.02 0.02 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.05 1.00 0.05 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.50 0.00

 S
 θ

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

(a)
1.00 1.00 1.00 0.99 0.99 0.97 0.96 0.94 0.92 0.90 0.88 0.86 0.83 0.81 0.78 0.75 0.73 0.70 0.67 0.65 0.62 0.60

0.95 1.00 1.00 0.99 0.98 0.97 0.96 0.94 0.92 0.89 0.87 0.84 0.82 0.79 0.76 0.73 0.71 0.68 0.65 0.63 0.60 0.58

0.90 1.00 1.00 0.99 0.98 0.97 0.95 0.93 0.91 0.88 0.86 0.83 0.80 0.77 0.74 0.71 0.68 0.65 0.63 0.60 0.57 0.55

0.85 1.00 1.00 0.99 0.98 0.96 0.95 0.92 0.90 0.87 0.84 0.81 0.78 0.75 0.72 0.69 0.66 0.63 0.60 0.57 0.55 0.52

0.80 1.00 1.00 0.99 0.98 0.96 0.94 0.91 0.89 0.86 0.83 0.79 0.76 0.73 0.69 0.66 0.63 0.60 0.57 0.54 0.52 0.49

0.75 1.00 1.00 0.99 0.97 0.95 0.93 0.90 0.87 0.84 0.81 0.77 0.74 0.70 0.67 0.63 0.60 0.57 0.54 0.51 0.48 0.46

0.70 1.00 1.00 0.99 0.97 0.95 0.92 0.89 0.86 0.82 0.78 0.75 0.71 0.67 0.63 0.60 0.57 0.53 0.50 0.48 0.45 0.42

0.65 1.00 1.00 0.98 0.97 0.94 0.91 0.88 0.84 0.80 0.76 0.72 0.68 0.64 0.60 0.56 0.53 0.50 0.47 0.44 0.41 0.39

0.60 1.00 1.00 0.98 0.96 0.93 0.90 0.86 0.82 0.77 0.73 0.68 0.64 0.60 0.56 0.52 0.49 0.46 0.43 0.40 0.37 0.35

0.55 1.00 0.99 0.98 0.95 0.92 0.88 0.83 0.79 0.74 0.69 0.64 0.60 0.56 0.52 0.48 0.45 0.41 0.39 0.36 0.33 0.31

0.50 1.00 0.99 0.97 0.94 0.90 0.86 0.81 0.75 0.70 0.65 0.60 0.55 0.51 0.47 0.43 0.40 0.37 0.34 0.32 0.29 0.27

0.45 1.00 0.99 0.97 0.93 0.88 0.83 0.77 0.71 0.65 0.60 0.55 0.50 0.46 0.42 0.38 0.35 0.32 0.30 0.27 0.25 0.23

0.40 1.00 0.99 0.96 0.91 0.86 0.79 0.73 0.66 0.60 0.54 0.49 0.44 0.40 0.36 0.33 0.30 0.27 0.25 0.23 0.21 0.19

0.35 1.00 0.99 0.95 0.89 0.82 0.75 0.67 0.60 0.53 0.48 0.42 0.38 0.34 0.30 0.27 0.25 0.22 0.20 0.18 0.17 0.16

0.30 1.00 0.98 0.93 0.86 0.77 0.68 0.60 0.52 0.46 0.40 0.35 0.31 0.27 0.24 0.22 0.19 0.17 0.16 0.14 0.13 0.12

0.25 1.00 0.97 0.90 0.81 0.70 0.60 0.51 0.43 0.37 0.32 0.27 0.24 0.21 0.18 0.16 0.14 0.13 0.11 0.10 0.09 0.09

0.20 1.00 0.96 0.86 0.73 0.60 0.49 0.40 0.33 0.27 0.23 0.19 0.17 0.14 0.12 0.11 0.10 0.09 0.08 0.07 0.06 0.06

0.15 1.00 0.93 0.77 0.60 0.46 0.35 0.27 0.22 0.17 0.14 0.12 0.10 0.09 0.07 0.06 0.06 0.05 0.04 0.04 0.04 0.03

0.10 1.00 0.86 0.60 0.40 0.27 0.19 0.14 0.11 0.09 0.07 0.06 0.05 0.04 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.01

0.05 1.00 0.60 0.27 0.14 0.09 0.06 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00

0.00 0.50 0.00

 S
 θ

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

(b)

Ps,θ = 0.6s2

0.6s2+0.4θ2

Figure 14 Sample probability maps for reference: how StimHab probabilities change if we alter (a) exponents or (b)
weights

tasks that agents have specialized toward but that are not needed versus tasks that agents have specialized
against but that are now needed, which under StimHab both result in Ps=0,θ=0 = Ps=1,θ=1 = 0.5

To explore the curvature and height variations of the Ps,θ = 0.5 curve, we consider the following
variables: n exponent of st, m exponent of θ , and w weight of st, to calculate new Ps,θ as:

Ps,θ = w ∗ s n

w ∗ s n + (
1.0− w

)
*θ m

where, exponent of st n ∈ [0.0, 15.0], exponent of θa,t m ∈ [0.0, 15.0]. With exponents greater than
15.0, the probability map becomes almost entirely filled with values of 0.0 and 1.0, excepting the diago-
nal, which remains at 0.5. Such a steep landscape may hinder gradual adaptation, so we use 15.0 as the
highest exponent our GA will consider during evolution.

Note that we evolve the weight of stimuli st to be between 0.0 and 1.0 and calculate the weight of θa,t

as the remaining 1.0− (weight of st). While the original StimHab places equal weight on stimulus and
habit contributions, we allow our GA to decide what the weights should be.

The space of solutions covered by these variables is, however, still larger than will be useful. Consider
again the probability maps presented in Figure 13. In order to give priority to the tasks at Ps=1,θ=1, the
Ps,θ = 0.5 diagonal must curve downward. Concavity will occur when the exponent on θa,t is smaller
than the exponent on st. Thus, regardless of the evolved exponent of st, the exponent of θa,t should be a
fraction of it. Consequently, the following three values are evolved instead: weight of st w , exponent

of st n , and a scaling coefficient θ k that will be used to calculate the exponent m from the evolved
exponent n . The new formula is then

Ps,θ = w ∗ s n

w ∗ s n + (
1.0− w

)
*θ k ∗

where weight of st w ∈ [0.0, 1.0], exponent of st n ∈ [0.0, 15.0], and m is calculated as k ∗ n ,

with the new scaling factor of exponent of st k ∈ [0.0, 1.0], which reduces the space of solutions to be
searched by the GA. Additionally, as the relative scale of the exponents is what dictates the curvature of
the Ps,θ = 0.5 line, we expect this scaling factor k to be more indicative of higher performing solutions

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

Adaptable and stable decentralized task allocation 15

than the actual evolved n and calculated m exponents themselves. Thus, our evolved chromosomes

each consist of a three-real-valued gene vector:
〈
n , k , w

〉
.

9.2 Fitness function

To allow better solutions to survive from one generation to the next and to share ‘genetic’ information
(i.e., the values of the evolving variables), GAs require a fitness function, that is, a formula for calculat-
ing the relative or absolute quality of each solution. In this section, we discuss our evolutionary goals,
quantify the dimensions by which we measure the quality of each candidate solution in our population,
and then provide a set of five fitness functions that could be of interest for the decentralized allocation of
ongoing tasks.

The decentralized task allocation domain we are addressing involves the simultaneous optimization
of two objectives: to have all ongoing tasks to be continuously performed exactly as much as they are
needed, while reducing the amount of superfluous task switching. We are not interested in the extremes,
that is, in neglecting task fulfillment in favor of minimizing task switching nor in optimizing task ful-
fillment while task switching freely. Instead, we seek a balance between the two performance metrics.
Given our two main task allocation quality indicators, task performance and task switching, to quantify
the quality of our evolved solutions, we establish a formula for penalizing each approach for (1) devi-
ating from the ideal performance as expected from task demand values and (2) for any amount of task
switching (although some switches are inevitable during readaptation after demands change).

• penalty-DEV: average performance deviation (allocation quality)∑last step
first step |deviation from 100% perfromance this step|, averaged across tasks

number of steps in simulation

• penalty-TS: average task-switching rate (allocation stability)∑last step
first step task switches this step/agent count representing maximum switches possible

number of steps in simulation

In order to facilitate the comparison of our evolving solutions, we combine these two penalties into a
single value that will represent the fitness of each solution. One intuitive way to combine the two penalty
components is to view them as x and y components of a solution vector, the magnitude of which becomes
the solution fitness to be optimized (see Figure 15):

• overall penalty: composite solution fitness

fitness=
√

(penalty-DEV)2 + (penalty-TS)2

composite of penalty-DEV and penalty-TS, such that minimizing either of both or the penalties
reduces the overall resulting fitness. Solutions with smaller fitnesses will thus represent lower under-
or overworking and/or reduced task switching than solutions with higher fitnesses.

The GA is, therefore, tasked with minimizing both penalty components by minimizing the fitness of
the evolved solutions. The average task switching rate is within 0–100%, as are most average performance
deviations (although higher is possible, e.g., 30 agents on a task that needs 10 corresponds to a 200%
deviation), keeping the two components generally on the same scale.

The theoretical optimal performance in our environment with multiple dynamic task needs is to have
agents act on the task where the work is needed and to remain there for as long as it is needed. Without
a centralized controller and no information about the choices of other agents, the only source of infor-
mation is the task stimuli changes over time. Thus, we assume that a period of adaptation after task
demands change is inevitable. Nevertheless, there are trade-offs when it comes to the adaptation speed,
task performance fluctuations, and the quality of the new resulting task allocation.

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

16 V. A. KAZAKOVA AND G. R. SUKTHANKAR

fitn
es

s

A
ve

ra
ge

 ta
sk

-
sw

itc
hi

ng
 ra

te

Average performance
deviation

Figure 15 Fitness function components

With these trade-offs in mind, we consider several possible fitness functions, each designed to favor a
specific potentially desirable behavior. Considering the general applicability of decentralized task alloca-
tion, we want to assess whether a variety of potentially desirable dynamic task allocation behaviors can
be evolved. The following five adaptation behaviors are defined and encoded as fitness functions, to be
used by our GA in five separate evolutionary runs:

(i) Arithmetic average fitness. Consider only the quantity of performance deviations and task switches,
without any regard for when the values occurred. Thus, penalty components are calculated exactly
as defined above, as a direct arithmetic average of the values.

(ii) Timing-weighted average fitness. Deficiencies in behavior that happen further in time from a
demand switch carry higher penalty. Consider that as demands change, agents need time to
adjust, which inevitably leads to a period of higher performance deviations and higher task
switching. Over time agents should respecialize, adapting to the new system needs, ideally reach-
ing 0% performance deviations and 0% task switching. To evolve solutions that adapt quicker
to system changes, we employ weighted averaging, where each step’s average task deviation
is given a weightstep = (numberofstepssincedemandschanged)2. Thus, in a 15 000-step simula-
tion with demands changing every 5000 steps, the weights for steps 1 through 15 000 are
[1, 2, 3, ...5000, 1, 2, 3, ...5000, 1, 2, 3, ...5000]. These weights are applied both to the average task
performance deviations and to the task switch rates.

(iii) Improvement-discounted fitness. Any performance deficiencies are not penalized as long as there is
improvement as compared to the previous step. While the previous fitness (ii) incites faster adapta-
tion, speed may hinder quality. In this fitness formulation, we consider that some systems may be
tolerant of longer adaptation periods that ultimately lead to a more stable task allocation, such as
systems where demands changes less frequently. To evolve solutions that approximate the ‘(possi-
bly) slowly but surely’ approach the ideal behavior, we compare each step’s penalty to that of the
previous step and set it to zero if the new penalty is lower. This is done for both the average task
performance deviations as well the average task switch rates, independently.

(iv) Acceptable-range-discounted fitness. Performance deficiencies within some small range are not
penalized. Here, we consider systems where small deviations from ideal performance are accept-
able on a continuous basis. In some domains, precise task allocation may not be as vital as faster
adaptation or prevention of big changes in performance. To evolve solutions that allow for a pre-
defined range of tolerable deviations from the ideal behavior, we compare each step’s penalty to a
predefined acceptable value (e.g., 0.05, representing a 5% non-penalty range from 0% task perfor-
mance deviations and from 0% task switching). Note, however, that such acceptability is a per-task
quality, and therefore, it is the raw per-task deviations that are compared to the acceptable value
and set to zero before the average task deviation for the step is calculated (this is in contrast to the
previous fitness (iii), as stabilization is a system-wide quality).

(v) Smaller-value-discounted fitness. Small performance deficiencies are penalized less than larger defi-
ciencies. In general, smaller deviations from the ideal behavior are more tolerable than larger
fluctuations. In some cases, especially during initial adaptation to changes in demand, performance

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

Adaptable and stable decentralized task allocation 17

on a task can jump to above 2.0 (i.e., above 200% of the needed work). Such jumps may be par-
ticularly detrimental in certain domains. To evolve solutions that increase penalty for values further
from the ideal behavior, we employ a predefined exponent to scale the penalties. Specifically, we
cube each step’s average performance deviation and average task switching rate before calculating
the final fitness, making the small-valued penalties smaller and the large penalties larger.

These fitness functions provide relative quality of the solutions within each population with respect
to the goal assumed by each fitness function and thus should not be directly compared across fitness
functions. Instead, to compare the best evolved solutions to each other and the StimHab baseline, we
assess their average adaptation behavior by comparing (1) the graphs of average deviations from ideal
task performance per step and (2) the graphs of average task switching per step. To provide a better sense
of the actual behaviors, the unaveraged per-task per-step deviations and task switching are also provided.

9.3 Genetic operators and parameters

GAs employ a variety of evolutionary techniques inspired by natural evolution. In this section, we
describe our general evolution settings, as well as the specific elitism, mutation, selection, and crossover
operators employed by the GA.

For our search, we setup a population of 30 randomly generated candidate solutions, to be mutated
and recombined the course of 30 generations. To facilitate comparison with experiments in 7 and 8,
we use the same hierarchical task set to evolve behavior (tasks and their demands per time period are
provided in Table 1). A separate evolution is performed twice for each of the five fitness functions, once
with and once without resetting of agent specializations when demands change. Each test is conducted
using a team of 100 agents, as evolving with 1000 agents in our sequential simulation setup would
take considerably longer. We also later test the evolved approaches on a different task set to assess
generalization capabilities of the evolved solutions.

To ensure that best found solutions are not lost over the course of evolution, we also employ elitism:
the top performing 10% of chromosomes of each generation are automatically copied into the next gen-
eration. This is on the higher end of elitism rates, but we expect there to be some variety of equivalently
good solutions and thus must allow for a larger set of good solutions to persist through the generations.

We employ two types of real-valued mutation to balance large exploratory changes with smaller fine-
tuning changes. Each chromosome in the current generation has a 25% chance to be mutated. Any time a
chromosome is mutated, it will undergo either an exploratory or a local mutation, with equal probability.
(I) The exploratory mutation considers each gene and mutates it with 1/(number of genes)= 1/3 prob-
ability, by adding an amount determined by a random Gaussian variable with zero mean and a standard
deviation of 15% of the gene’s range. Note that all genes could be simultaneously mutated here, but
none is also possible. (II) The local mutation selects a single gene and adds to it a value determined by
a random Gaussian variable with zero mean and a standard deviation of 5% of the gene’s range. Exactly
one gene is locally mutated at a time, ensuring that each change can be evaluated independently by the
algorithm.

After elites and mutated chromosomes are copied into the next generation, the remainder of the new
generation’s chromosomes are generated by genetic recombination. We employ rank proportional selec-
tion to choose parents for crossover to balance exploration with exploitation through the lowering of
selection pressure (Baker, 1985). Solutions are sorted by their fitness values and given a rank, with the
lowest fitness receiving the highest rank, as we are minimizing. Then, a roulette-wheel selection is per-
formed on the chromosome ranks instead of on the raw fitness values. Each chromosomei thus has a
chance to be selected for crossover equal to:

(Ranked selection probability)chromosomei =
rank of chromosomei

sum of all ranks
= ranki∑popSize

r=1 (r)

where popSize is the number of candidate solutions (i.e., chromosomes) in each generation.

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

18 V. A. KAZAKOVA AND G. R. SUKTHANKAR

Once two distinct parents are selected for crossover, their chromosomes are recombined via a weighted
averaging of each of their real-valued genes. During each crossover, a random value between 0.0 and 1.0
is selected to indicate what proportion of each gene will come from the first parent, with the remaining
portion being contributed by the second parent as follows:

given weight1 = random ∈ (0.0, 1.0), weight2 = 1.0−weight1, the resulting progeny is:

child :
〈(
weight1 ∗ n 1+weight2∗ n 2

)
,
(
weight1∗ k 1+weight2∗ k 2

)
,
(
weight1∗ w 1+weight2∗ w 2

)〉
We do not weight the genes based on relative fitness, to avoid adding selection pressure beyond that of
the initial parent selection, so as to protect our GA from early convergence. Additionally, through the
use of the random weight component, even if the same parents are selected for crossover again, a new
child may be generated, thus promoting exploration. Pairs of parents are selected repeatedly until the new
population is full.

10 Experiments, part II: GA evolution results

In this section, we review the best GA solutions found by each fitness function and compare them to
standard StimHab as a baseline. We consider evolution with and without specialization resets separately,
as they are amenable to different task set changes, thus applying to different domains.

10.1 Evolving without resetting prior specializations

We test respecialization (specialization from previously adapted thresholds) by evolving and testing solu-
tions without resetting agents’ θa,t when demands change. For the existing per-agent per-task thresholds
to be at all applicable (even if outdated) across changes in system demands, the tasks and their hierarchi-
cal structure must remain the same across demand periods. Thus, the approaches presented in this section
are evolved on a task set with a static hierarchy and dynamic demands, employing a team of 100 agents,
over 10 demand periods. To assess generalization and scalability, the approaches are later retested on a
new static hierarchy and a team of 1000 agents.

In Table 2, we list the best solutions evolved with each fitness function; baseline StimHab is listed for
comparison. All evolved solutions have a much higher st exponent than StimHab, a θa,t exponent that
is slightly above half of st exponent, and over 90% of the weight is given to st. To visually compare
these relationships, we provide their probability maps in Figure 16, which show that all evolved versions
have an almost binary breakdown of action probabilities, as well as concave downward Pa,t = 0.5 lines
(shown in yellow). Comparing upper-right quarters of the maps, agents under the evolved solutions are
guaranteed to act at higher stimuli, regardless of thresholds. Additionally, we see a clear preference
for moving the Pa,t = 0.5 line down and away the st = θa,t = 1.0 corner, allowing it to be favored over
the st = θa,t = 0.0, which we hypothesized would benefit respecialization (Section 8). Comparing lower-
left quarters, we see that under evolved solutions agents will not act at lower stimuli, unless they are
maximally specialized (θa,t = 0.0) toward that task. Overall, in the evolved solutions, all finer probability
changes are restricted to a much narrower area, making agents actions less probabilistic and closer to a
step function.

First, we compare how these solutions handle the original training set: 100 agents and a static task
hierarchy with dynamic demands, used for fitness assessments during evolution. The tasks and demands,
provided in Table 3, match our earlier per-cycle tests, although per-step behavior is considered here, as it
provides a more detailed view. Results are presented in Figure 17: average task performance deviations
shown in the LEFT column and average task switching rates shown in the RIGHT column. While values
will spike as demands change and agents begin readapting, we want to see a decrease over time, indicating
that the correct agent allocation is achieved (average deviation near 0%) and remains stable over time
(average task switching rate near 0%). The x-axis represents average steps during adaptation (each nth
step since demands changed); the y-axis shows performance deviations in graphs on the LEFT and task
switch rates on the RIGHT. We see no significant difference among the evolved solutions, but each

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

Adaptable and stable decentralized task allocation 19

Table 2 StimHab baseline versus best solutions evolved without specialization resets (The extended Ps,θ formula
is reiterated on the right-hand side, for reference.)

FITNESS FUNCTION n k w

(baseline) StimHab: 2.000 1.000 0.500
(i) Arithmetic average: 0.424 0.130 0.995
(ii) Timing-weighted: 13.885 0.399 0.385

WITH (iii) Improvement: 13.872 0.394 0.988
RESETTING (iv) Acceptable range: 14.032 0.693 0.579

(v) Smaller value: 11.915 0.632 0.606

Pst,θa,t= w ∗st n

w ∗st n +(1.0− w)∗θa,t
k ∗ n

Table 3 TRAINING SET for evolution without resets: task demands for a static task hierarchy; demands change
every 5000 steps, 10 times per simulation; values match those used in our earlier test

STEPS T1 T2 T2.1 T2.2 T2.3 T3 T4 T4.1 T4.2 T4.2.1 T4.2.2 T5

1–5000 4% 20% 4% 8% 8% 32% 20% 4% 16% 8% 8% 24%
5001–10 000 4% 16% 8% 4% 4% 24% 32% 8% 24% 12% 12% 24%
10 001–15 000 16% 40% 4% 20% 16% 4% 12% 4% 8% 4% 4% 28%
15 001–20 000 24% 12% 4% 4% 4% 28% 16% 4% 12% 4% 8% 20%
20 001–25 000 4% 32% 12% 8% 12% 16% 36% 12% 24% 8% 16% 12%
25 001–30 000 36% 16% 4% 4% 8% 4% 20% 8% 12% 4% 8% 24%
30 001–35 000 16% 16% 4% 4% 8% 8% 12% 4% 8% 4% 4% 48%
35 001–40 000 56% 12% 4% 4% 4% 4% 20% 12% 8% 4% 4% 8%
40 001–45 000 12% 16% 8% 4% 4% 4% 52% 36% 16% 12% 4% 16%
45 001–50 000 32% 24% 8% 12% 4% 20% 12% 4% 8% 4% 4% 12%

Figure 16 Probability maps: baseline versus best evolved without resets (same format as Figure 13)

greatly outperforms the StimHab baseline in both average deviations and average task switching rates.
Some spiking long after demands changed are present in all solutions, meaning that agents are not able
to find the exact correct assignments and remain there, but they appear to get quite close. The interested
reader can refer to Appendix A-I for graphs of the actual per-task deviations (Figure A1) and the overall
task switching rate (Figure A2) for each of the 50 000 simulation steps of each approach.

Next, we assess whether the evolved solutions can scale to larger teams and generalize toward new
task hierarchies. For our testing set, we use 1000 agents and a new randomly generated static hierarchy
with dynamic demands, provided in Table 4. Results are provided in Figure 18. Again, the evolved
solutions perform similarly across all fitness functions. Additionally, when comparing training and testing
set results (Figures 17 vs. 18), we see that StimHab performs better on the testing set, but the averages of

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

20 V. A. KAZAKOVA AND G. R. SUKTHANKAR

Figure 17 TRAINING SET for evolution without resetting: average adaptation to demand changes % deviations
from work needed (LEFT) and % of agents that switched tasks (RIGHT)

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

A
daptable

and
stable

decentralized
task

allocation
21

Table 4 TESTING SET for solutions evolved without resets: per-task dynamic demands for a static task hierarchy. Demands change every 5000 steps, 10 times per simulation.
This static task hierarchy differs from the one used during evolution, to test for potential overfitting

STEPS T1 T1.1 T1.1.1 T1.1.2 T1.1.2.1 T1.1.2.2 T1.1.2.2.1 T1.1.2.2.2 T1.1.2.2.3 T1.2 T2 T2.1 T2.2

1–5000 93.5% 71.6% 21.0% 50.6% 13.9% 36.7% 20.0% 13.0% 3.7% 21.9% 6.5% 5.0% 1.5%
5001–10 000 81.0% 71.9% 11.2% 60.7% 6.4% 54.3% 42.0% 5.3% 7.0% 9.1% 19.0% 4.5% 14.5%
10 001–15 000 89.7% 83.5% 24.0% 59.5% 4.6% 54.9% 42.2% 10.0% 2.7% 6.2% 10.3% 7.0% 3.3%
15 001–20 000 90.2% 86.6% 14.3% 72.3% 40.8% 31.5% 18.1% 7.0% 6.4% 3.6% 9.8% 4.7% 5.1%
20 001–25 000 88.1% 82.9% 35.1% 47.8% 24.5% 23.3% 7.3% 4.0% 12.0% 5.2% 11.9% 6.5% 5.4%
25 001–30 000 90.4% 50.4% 28.8% 21.6% 6.5% 15.1% 4.5% 6.1% 4.5% 40.0% 9.6% 3.4% 6.2%
30 001–35 000 88.6% 63.6% 15.2% 48.4% 29.4% 19.0% 6.2% 4.4% 8.4% 25.0% 11.4% 4.2% 7.2%
35 001–40 000 66.0% 41.8% 7.1% 34.7% 14.2% 20.5% 4.0% 13.0% 3.5% 24.2% 34.0% 2.0% 32.0%
40 001–45 000 87.5% 62.5% 2.5% 60.0% 30.0% 30.0% 8.5% 9.5% 12.0% 25.0% 12.5% 8.8% 3.7%
45 001–50 000 62.5% 54.0% 3.8% 50.2% 15.0% 35.2% 30.0% 1.0% 4.2% 8.5% 37.5% 7.5% 30.0%

https://doi.org/10.1017/S0269888920000235 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0269888920000235

22 V. A. KAZAKOVA AND G. R. SUKTHANKAR

Figure 18 TESTING SET for evolutionwithout resetting: average adaptation to demand changes % deviations from
work needed (LEFT) and % of agents that switched tasks (RIGHT)

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

Adaptable and stable decentralized task allocation 23

Table 5 Baseline StimHab versus best solutions evolved with specialization resets (The extended Ps,θ formula is
reiterated on the right-hand side, for reference.)

Fitness function n k w

(baseline) StimHab: 2.000 1.000 0.500
(i) Arithmetic average: 0.424 0.130 0.995
(ii) Timing-weighted: 13.885 0.399 0.385

WITH (iii) Improvement: 13.872 0.394 0.988
RESETTING (iv) Acceptable range: 14.032 0.693 0.579

(v) Smaller value: 11.915 0.632 0.606

Pst,θa,t= w ∗st n

w ∗st n +(1.0− w)∗θa,t
k ∗ n

Figure 19 Probability maps: baseline versus best evolved with resets (same format as Figure 13)

the evolved solutions are still better. Deviation spikes in the evolved solutions may seem to imply lower
stability than the baseline but recall that we are looking at the behavior of an average task. Observing the
actual per-task fluctuations in Figure A3 (Appendix A-I) can provide a clearer view: StimHab exhibits
continuous spiking across all tasks, while the evolved solutions’ spikes are concentrated to a few steps.
Per-step task switching is provided in Figure A4 (Appendix A-I). Recall that given no explicit penalty
for task switching in these experiments, performance is not directly affected. If there was an activity
delay with each task switch, higher task switching under StimHab would further increase its performance
deviations, widening the task allocation quality gap between the baseline and the evolved versions.

Overall, results show that more adaptable s− θ relationships for Ps,θ calculations are possible and
can be successfully evolved with a variety of fitness functions. As evolved solutions performed slightly
better on the training set, it may be possible to evolve highly tailored solutions. Nevertheless, the testing
set simulations also reach low-performance deviations and task switching, while vastly outperforming the
baseline, indicating an ability to generalize. Additionally, recall from earlier tests (Figures 2 and 3) that
resetting was crucial for respecialization. In the evolved solutions, no resetting takes place, demonstrating
that the newly defined and evolved parameters obviate the need for resetting specializations when the task
hierarchy remains static.

10.2 Evolving with resetting prior specializations

We now test the GA’s ability to evolve solutions that allow agents to task allocate effectively when
presented with entirely new task sets each time. We conduct a series of evolution experiments where
agents’ θa,t thresholds are reset every time demands change. As all specializations get reset, there is no
requirement for the task set to remain consistent across demand switches, thus giving us the freedom to
evolve solutions using randomly generated task hierarchies for each demand period. Thus, the approaches
presented in this section are evolved on sets of randomly generated task hierarchies and demands, using
a team of 100 agents, over 10 demand periods. To assess generalization and scalability, these approaches
are later tested on a new set of randomly generated hierarchies and a team of 1000 agents.

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

24 V. A. KAZAKOVA AND G. R. SUKTHANKAR

Figure 20 TRAINING SET for evolutionwith resetting: average adaptation to task changes % deviations from work
needed (LEFT) and % of agents that switched tasks (RIGHT)

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

Adaptable and stable decentralized task allocation 25

Figure 21 TESTING SET for evolution with resetting: average adaptation to task changes % deviations from work
needed (LEFT) and % of agents that switched tasks (RIGHT)

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

26 V. A. KAZAKOVA AND G. R. SUKTHANKAR

In Table 5, we list the best solution vectors evolved with each fitness function (StimHab baseline is
also listed, for reference). Unlike with our earlier solution vectors, there is no clear pattern across the
evolved values. Particularly interesting is the vector evolved using the arithmetic averaging fitness func-
tion, which employs a considerably smaller st exponent (0.424 vs. 9.443–14.125 in the other vectors) and
a θa,t exponent that is only 13% of the st exponent (as compared to 39.9–69.3% in the other vectors). To
visually compare the evolved relationships, we provide the corresponding probability maps in Figure 19.
First, we see more variation in the Pa,t = 0.5 curve (shown in yellow) than in the no-reset solutions
(Figure 16), as this time not all solutions move the line away from the top-right corner st = θa,t = 1.0.
Recall that our initial motivation for the GA was to evolve parameters that favor the st = θa,t = 1.0 corner
over the bottom-left corner st = θa,t = 0.0, since under standard StimHab both pairings lead to Pa,t = 0.5,
hindering agent respecialization (Section 8). As these solutions are tested with resetting, no respecial-
ization takes place, with agents specializing from random θa,t each time demands change. Comparing
lower-left quarters, we see that under evolved solutions agents will not act at lower stimuli, unless they
are maximally specialized (θa,t = 0.0) toward that task. Once again, in all evolved solutions, the finer
probability changes are restricted to a narrow line, making agents actions less probabilistic and closer
to a step function. The most extreme case is the arithmetic average solution (i), which appears to result
in Pa,t = 1.0 for all st > 0. Looking closer, however, there are small differences in probabilities, rang-
ing from 0.9824 in the bottom-right to 1.0 at the top-left (a detailed view is available in Appendix C,
Figure C1). The result is that (1) the tiny differences sort agents’ tasks by giving most preference to full
specialization (θa,t = 0.0), then ordered by decreasing need (high to low st), and finally with a small focus
on other specialization levels (low to high θa,t > 0.0) and (2) the first task in this ordering will be acted
on with a near 100% chance.

We first compare how the evolved solutions handle the initial training set: 100 agents and dynamic
task sets identical to those used during evolution fitness testing, provided in Table 6 (note that we can-
not follow the earlier column format, as the tasks for each demand period now differ). Per-step results
are presented in Figure 20, with average task performance deviations shown in the LEFT column and
average task switching rates shown in the RIGHT column. Recall that values near 0% are best in both
cases and successful adaptation corresponds to averages decreasing quickly over the depicted 5000-step
average adaptation period. As expected from our experiments in Section 7, baseline StimHab perfor-
mance deviations and task switching are lower when specializations are reset between changes in demand
(compare StimHab in Figures 17 vs. 20). Nevertheless, all of the evolved solutions still significantly out-
perform the baseline. Arithmetic average showcases ideal behavior, with fast and stable adaptation, as
indicated by performance deviations and task-switching rates dropping to 0% early in the adaptation
period. It is evident that its unique values (Table 5) and resulting probability mapping (Figures 19(i) and
C1) are highly beneficial for this training set, which could suggest overfitting, but also the viability of
highly domain-tailored solutions. All other evolved solutions perform similarly. While the spiking in the
improvement-discounted solution may seem potentially worse than even the more consistent baseline
behavior, this is once again a result of graphing performances of an average task and how concentrated
spiking deviations are across the steps. Based on the unaveraged behavior provided in Appendix B-I,
Figures B1 and B2, we see that there is no clear difference among the remaining evolved solutions, while
the baseline shows significantly more per-task performance and task- switching fluctuations throughout.

Next, we assess whether the evolved solutions can scale to larger teams and generalize to new chang-
ing task hierarchies. For our testing set presented in Table 7, we use 1000 agents and a new randomly
generated task hierarchy for each demand period. Results are shown in Figure 21. When comparing the
earlier training and these testing set results (Figures 20 vs. 21), we see that performance on the test-
ing set is worse, with more frequent spiking, less obvious improvement over time, and higher averages,
although still better than StimHab in all cases. StimHab appears to oscillate indefinitely at higher aver-
ages after a small initial adaptation. The arithmetic average solution performs significantly worse than
for the training set, supporting our earlier overfitting hypothesis. It is likely that when a more general
solutions is required, evolution will need longer fitness tests, with a larger variety of task sets. Despite
overfitting, improvement over baseline StimHab is easily found. Looking at the actual task performances

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

Adaptable and stable decentralized task allocation 27

Table 6 TESTING SET for evolution with resets: per-task demands for a dynamic task hierarchy. The entire task
set changes every 5000 steps, 10 times per simulation

Steps Training Dynamic Task Sets and Demands

1–5000 T1 92.0%, T2 8.0%

50 01–10 000 T1 72.0%, T1.1 48.0%, T1.1.1 20.0%, T1.1.2 24.0%, T1.1.2.1 4.0%, T1.1.2.2
4.0%, T1.1.2.3 12.0%, T1.1.2.4 4.0%, T1.1.3 4.0%, T1.2 24.0%, T1.2.1
20.0%, T1.2.2 4.0%, T2 28.0%, T2.1 4.0%, T2.2 4.0%, T2.3 20.0%

10 001–15 000 T1 24.0%, T1.1 16.0%, T1.1.1 4.0%, T1.1.2 8.0%, T1.1.3 4.0%, T1.2 8.0%,
T2 76.0%, T2.1 32.0%, T2.1.1 4.0%, T2.1.2 16.0%, T2.1.2.1 8.0%, T2.1.2.2
4.0%, T2.1.2.3 4.0%, T2.1.3 12.0%, T2.1.3.1 4.0%, T2.1.3.2 8.0%, T2.2
4.0%, T2.3 32.0%, T2.3.1 24.0%, T2.3.2 8.0%, T2.4 8.0%

15 001–20 000 T1 28.0%, T1.1 4.0%, T1.2 12.0%, T1.3 12.0%, T2 16.0%, T2.1 4.0%, T2.2
4.0%, T2.3 8.0%, T3 24.0%, T3.1 16.0%, T3.2 8.0%, T4 32.0%

20 001–25 000 T1 72.0%, T2 28.0%

25 001–30 000 T1 52.0%, T1.1 32.0%, T1.1.1 8.0%, T1.1.2 12.0%, T1.1.2.1 4.0%, T1.1.2.2
8.0%, T1.1.3 12.0%, T1.2 12.0%, T1.3 4.0%, T1.4 4.0%, T2 48.0%, T2.1
32.0%, T2.1.1 16.0%, T2.1.2 16.0%, T2.1.2.1 8.0%, T2.1.2.2 4.0%, T2.1.2.3
4.0%, T2.2 8.0%, T2.3 8.0%

30 001–35 000 T1 48.0%, T1.1 36.0%, T1.2 8.0%, T1.3 4.0%, T2 52.0%, T2.1 4.0%, T2.2
8.0%, T2.3 40.0%, T2.3.1 4.0%, T2.3.2 20.0%, T2.3.3 16.0%, T2.3.3.1 4.0%,
T2.3.3.2 8.0%, T2.3.3.3 4.0%

35 001–40 000 T1 60.0%, T2 40.0%, T2.1 4.0%, T2.2 8.0%, T2.3 28.0%, T2.3.1 12.0%,
T2.3.1.1 4.0%, T2.3.1.2 8.0%, T2.3.2 8.0%, T2.3.3 8.0%

40 001–45 000 T1 28.0%, T2 72.0%, T2.1 36.0%, T2.2 36.0%, T2.2.1 20.0%, T2.2.1.1
12.0%, T2.2.1.1.1 8.0%, T2.2.1.1.2 4.0%, T2.2.1.2 4.0%, T2.2.1.3 4.0%,
T2.2.2 16.0%

45 001–50 000 T1 88.0%, T1.1 20.0%, T1.1.1 4.0%, T1.1.2 4.0%, T1.1.3 8.0%, T1.1.4 4.0%,
T1.2 68.0%, T1.2.1 32.0%, T1.2.2 36.0%, T2 12.0%, T2.1 8.0%, T2.2 4.0%

in Figure B3 and task switches in Figure B4, we see that while arithmetic average adapts faster, that adap-
tation is less stable over time than under timing-weighted average, resulting in more spiking throughout.
This distinction matters because in systems where demands change infrequently, slow and steady is ben-
eficial in the long term, while in highly dynamic environments, fast adaptation to acceptable performance
can be crucial to reap any specialization benefits. We also see that the acceptable-range-discounted solu-
tion has significantly more spiking here than the other evolved solutions, perhaps most evident in its task
switching, but all still outperform the baseline.

Overall, results indicate that we can evolve sets of coefficients that easily improve upon the standard
StimHab baseline in the general case, but we can also evolve highly specialized (i.e., overfitted) coef-
ficients that will optimize agents’ adaptability and task allocation stability for a specific task set with
dynamic demands. Note, however, that the Pa,t probability formula provides no way for each solution
to learn any specific shifts in demand, so overfitting can only adapt the general st − θa,t relationship.
Approaches without resetting appear to benefit the most from evolution, but this may also be due to the
fact that they have the most to gain, given the extremely poor performance of standard StimHab during
readaptation (compare StimHab against each of the evolved solutions in Figures 17 and 18, for training
and testing data, respectively).

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

28 V. A. KAZAKOVA AND G. R. SUKTHANKAR

Table 7 TRAINING SET for evolution with resets: per task demands for a dynamic task hierarchy. The entire
task set changes every 5000 steps, 10 times per simulation. These tasks and demands differ from those used during

evolution in order to test for potential overfitting

Steps Testing Dynamic Task Sets and Demands

1–5000 T1 72.0%, T2 20.0%, T2.1 3.3%, T2.2 16.7%, T2.2.1 4.4%, T2.2.2 12.3%,
T2.2.2.1 8.0%, T2.2.2.2 4.3%, T3 8.0%

5001–10 000 T1 12.4%, T2 47.6%, T3 15.0%, T4 5.0%, T5 6.1%, T6 5.0%, T7 4.9%, T8
4.0%

10 001–15 000 T1 82.0%, T1.1 63.0%, T1.2 9.5%, T1.3 9.5%, T2 18.0%

15 001–20 000 T1 76.0%, T1.1 12.0%, T1.2 64.0%, T1.2.1 30.0%, T1.2.2 34.0%, T1.2.2.1
4.0%, T1.2.2.2 10.0%, T1.2.2.2.1 6.7%, T1.2.2.2.2 3.3%, T1.2.2.3 16.0%,
T1.2.2.4 4.0%, T2 24.0%

20 001–25 000 T1 45.0%, T1.1 28.0%, T1.1.1 10.0%, T1.1.2 13.0%, T1.1.3 5.0%, T1.2
17.0%, T2 55.0%

25 001–30 000 T1 6.0%, T2 94.0%

30 001–35 000 T1 88.0%, T1.1 12.0%, T1.2 40.5%, T1.3 3.4%, T1.4 32.1%, T1.4.1 8.0%,
T1.4.2 20.1%, T1.4.2.1 4.0%, T1.4.2.2 5.2%, T1.4.2.3 6.9%, T1.4.2.4 4.0%,
T1.4.3 4.0%, T2 12.0%, T2.1 4.0%, T2.2 8.0%

35 001–40 000 T1 24.0%, T1.1 7.4%, T1.2 8.5%, T1.3 4.1%, T1.4 4.0%, T2 40.0%, T2.1
10.3%, T2.2 24.0%, T2.2.1 16.0%, T2.2.1.1 4.0%, T2.2.1.2 12.0%,
T2.2.1.2.1 4.2%, T2.2.1.2.2 7.8%, T2.2.2 3.0%, T2.2.3 5.0%, T2.3 5.7%, T3
36.0%

40 001–45 000 T1 16.5%, T1.1 8.5%, T1.2 4.2%, T1.3 3.8%, T2 19.5%, T3 28.0%, T4
36.0%, T4.1 32.0%, T4.1.1 4.0%, T4.1.2 28.0%, T4.2 4.0%

45 001–50 000 T1 44.0%, T2 56.0%, T2.1 40.0%, T2.1.1 8.0%, T2.1.2 20.0%, T2.1.2.1
4.0%, T2.1.2.2 8.9%, T2.1.2.3 7.1%, T2.1.3 3.6%, T2.1.4 8.4%, T2.2 3.7%,
T2.3 12.3%

11 Conclusions and future work

We apply a bio-inspired model of decentralized task allocation (Theraulaz et al., 1998) (which we refer
to as StimHab) to a dynamic hierarchically defined set of ongoing tasks. Patrolling is used as a sample
domain, where agents self-allocate proportionately to the dynamic patrolling needs of a set of nested areas
using per-area stimuli for coordination. After initial adaptation, task switching in the system reduces to
about 2% of the actions at every step, indicating highly specialized behavior, which has been proven
beneficial in many multi-agent domains. A team of 1000 agents self-allocate effectively without commu-
nicating, demonstrating StimHab’s scalability. Drawing further inspiration from biology, we then employ
a GA to show that the adaptability and stability of decentralized task allocation based on task stimuli and
agents’ specialization thresholds can be improved further by altering coefficients in StimHab’s action
probability formula.

Although StimHab produces successful average task allocation over cycles of multiple steps, per-
step behavior exhibits some undesirable oscillations. We employ a simple GA to test whether alternate
stimulus-threshold relationships can improve the emerging task allocation. Our results show that even
after relatively short evolutions on small test sets of only 10 changes in system needs, all tested fitness
functions are able to find stimulus-threshold relationships with better per-step behavior than standard
StimHab, that is, those with more accurate and more stable agent self-assignment and reassignment to

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

Adaptable and stable decentralized task allocation 29

tasks. A variety of coefficients lead to similar overall behavior that approximates a step function, in that
all probabilistic variation is restricted to a small portion of the possible stimulus-threshold pairings.

The benefits of improved emergent task allocation and specialization extend to many decentralized
dynamic domains, hierarchical or not, that have multiple continuously needed tasks always available to
the agents (e.g., perishable-resource gathering, maintenance, on-demand production, etc.), many agents,
and no interagent communication. As StimHab agents are not responding to changes in demand, but
rather to changes in performance, the approach is suitable for a variety of dynamic environments, such
as those with agent failure/replacement, or with environmental variations that can change how work
translates into performance. This means that triggering a reset of specializations when demands change
may not be sufficient if respecialization is needed for other reasons. The evolved solutions show that
altering the relationships between stimuli and threshold in the probability formula can be sufficient to
respecialize effectively without threshold resetting. StimHab task allocating to hierarchical task sets can
reduce micromanagement in dynamic multi-agent systems: agents can self-allocate to large higher level
subdomains, where the newly formed subgroups can subdivide further using StimHab, or switch to a more
controlled but less scalable approach, such as scheduling, auctions, or graph algorithms (Almeida et al.,
2004; Portugal & Rocha 2011), depending on subdomain specifics. Additionally, although we model no
explicit cost to task switching, StimHab still results in highly specialized agent actions, beneficial in many
domains.

Future work includes expanding testing into systems with asynchronous agent actions resulting in
asymmetrical information, subsets of agents with preset capabilities (static θa,t), explicit task switching
costs, and mapping the hierarchical domain to a graph topology to evaluate the behavior on actual physi-
cal layouts. The simplistic GA and fitness functions employed here can be expanded further, such as by
combining timing and value weighting on the penalties into a single fitness function. Evolving on larger
sets of testing data can further guard against overfitting, potentially leading to discovering even more
adaptable stimulus-threshold relationships. Different stimulus-threshold relationships may benefit deeper
hierarchies as opposed to flatter setups, as specialization will propagate slower toward deeper subtasks.
For domains where task-switching costs are known, a more targeted evolution can be implemented (e.g.,
if switching tasks cost two steps of inactivity, performance will be directly affected and thus performance
deviations alone can be used as the solution fitness). In this work, we focus on potential improvements
to StimHab itself, as it has been widely used for decentralized task allocation, but comparison to other
systems is needed and work is currently underway to directly test StimHab’s task allocation against that
achieved by other probabilistic Learning Automata approaches.

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

30 V. A. KAZAKOVA AND G. R. SUKTHANKAR

Appendix A-I Solutions WITHOUT resetting, tested on TRAINING data

0%
50%

100%
150%
200%

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

Ta
sk

 p
er

fo
rm

an
ce

Step

StimHab

0%
50%

100%
150%
200%

Ta
sk

 p
er

fo
rm

an
ce

Step

Arithmetic average

0%
50%

100%
150%
200%

Ta
sk

 p
er

fo
rm

an
ce

Step

Timing-weighted average

0%
50%

100%
150%
200%

Ta
sk

 p
er

fo
rm

an
ce

Step

Improvement-discounted

0%
50%

100%
150%
200%

Ta
sk

 p
er

fo
rm

an
ce

Step

Acceptable-range-discounted

0%
50%

100%
150%
200%

Ta
sk

 p
er

fo
rm

an
ce

Step

Smaller-value-discounted

Figure A1 NO RESET + TRAINING DATA: task performances (color lines; 100% is ideal) throughout all 10 task
switches (every 5000 steps) for the best solutions evolved without resetting. Solutions are tested on a static set
of tasks with dynamic demands identical to those used during evolution (task set and demands are provided in
Table 3)

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

Adaptable and stable decentralized task allocation 31

0%
25%
50%
75%

100%

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

Ta
sk

-s
w

itc
hi

ng
 ra

te

step

StimHab

0%
25%
50%
75%

100%

Ta
sk

-s
w

itc
hi

ng
 ra

te

step

Arithmetic average

0%
25%
50%
75%

100%

Ta
sk

-s
w

itc
hi

ng
 ra

te

step

Timing-weighted average

0%
25%
50%
75%

100%

Ta
sk

-s
w

itc
hi

ng
 ra

te

step

Improvement-discounted

0%
25%
50%
75%

100%

Ta
sk

-s
w

itc
hi

ng
 ra

te

step

Acceptable-range-discounted

0%
25%
50%
75%

100%

Ta
sk

-s
w

itc
hi

ng
 ra

te

step

Smaller-value-discounted

Figure A2 NO RESET + TRAINING DATA: task-switching rates (red line; 0% is ideal) throughout all 10 task
switches (every 5000 steps) for the best solutions evolved without resetting. Solutions are tested on a static set
of tasks with dynamic demands identical to those used during evolution. (task set and demands are provided in
Table 3)

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

32 V. A. KAZAKOVA AND G. R. SUKTHANKAR

Appendix A-II Solutions WITHOUT resetting, tested on TESTING data

0%
50%

100%
150%
200%

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

Ta
sk

 p
er

fo
rm

an
ce

step

StimHab

0%
50%

100%
150%
200%

Ta
sk

 p
er

fo
rm

an
ce

step

Arithmetic average

0%
50%

100%
150%
200%

Ta
sk

 p
er

fo
rm

an
ce

step

Timing-weighted average

0%
50%

100%
150%
200%

Ta
sk

 p
er

fo
rm

an
ce

step

Improvement-discounted

0%
50%

100%
150%
200%

Ta
sk

 p
er

fo
rm

an
ce

step

Acceptable-range-discounted

0%
50%

100%
150%
200%

Ta
sk

 p
er

fo
rm

an
ce

step

Smaller-value-discounted

Figure A3 NO RESET + TESTING DATA: task performances (color lines; 100% is ideal) throughout all 10 task
switches (every 5000 steps) for the best solutions evolved without resetting. Solutions are tested on a static set of
tasks with dynamic demands different from those used during evolution. (task set and demands are provided in
Table 4)

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

Adaptable and stable decentralized task allocation 33

0%
25%
50%
75%

100%

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

Ta
sk

-s
w

itc
hi

ng
 ra

te

step

StimHab

0%
25%
50%
75%

100%

Ta
sk

-s
w

itc
hi

ng
 ra

te

step

Arithmetic average

0%
25%
50%
75%

100%

Ta
sk

-s
w

itc
hi

ng
 ra

te

step

Timing-weighted average

0%
25%
50%
75%

100%

Ta
sk

-s
w

itc
hi

ng
 ra

te

step

Improvement-discounted

0%
25%
50%
75%

100%

Ta
sk

-s
w

itc
hi

ng
 ra

te

step

Acceptable-range-discounted

0%
25%
50%
75%

100%

Ta
sk

-s
w

itc
hi

ng
 ra

te

step

Smaller-value-discounted

Figure A4 NO RESET + TESTING DATA: task-switching rates (red line; 0% is ideal) throughout all 10 task
switches (every 5000 steps) for the best solutions evolved without resetting. Solutions are tested on a static set of
tasks with dynamic demands different from those used during evolution. (task set and demands are provided in
Table 4)

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

34 V. A. KAZAKOVA AND G. R. SUKTHANKAR

Appendix B-I Solutions WITH resetting, tested on TRAINING data

0%
50%

100%
150%
200%

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

Ta
sk

 p
er

fo
rm

an
ce

Step

StimHab

0%
50%

100%
150%
200%

Ta
sk

 p
er

fo
rm

an
ce

Step

Arithmetic average

0%
50%

100%
150%
200%

Ta
sk

 p
er

fo
rm

an
ce

Step

Timing-weighted average

0%
50%

100%
150%
200%

Ta
sk

 p
er

fo
rm

an
ce

Step

Improvement-discounted

0%
50%

100%
150%
200%

Ta
sk

 p
er

fo
rm

an
ce

Step

Acceptable-range-discounted

0%
50%

100%
150%
200%

Ta
sk

 p
er

fo
rm

an
ce

Step

Smaller-value-discounted

Figure B1 RESET + TRAINING DATA: task performances (color lines; 100% is ideal) throughout all 10 task
switches (every 5000 steps) for solutions evolved with resetting. Solutions are tested on dynamically changing
task sets, identical to those used during evolution. (task set and demands are provided in Table 6)

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

Adaptable and stable decentralized task allocation 35

0%
25%
50%
75%

100%

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

Ta
sk

-s
w

itc
hi

ng
 ra

te

Step

StimHab

0%
25%
50%
75%

100%

Ta
sk

-s
w

itc
hi

ng
 ra

te

Step

Arithmetic average

0%
25%
50%
75%

100%

Ta
sk

-s
w

itc
hi

ng
 ra

te

Step

Timing-weighted average

0%
25%
50%
75%

100%

Ta
sk

-s
w

itc
hi

ng
 ra

te

Step

Improvement-discounted

0%
25%
50%
75%

100%

Ta
sk

-s
w

itc
hi

ng
 ra

te

Step

Acceptable-range-discounted

0%
25%
50%
75%

100%

Ta
sk

-s
w

itc
hi

ng
 ra

te

Step

Smaller-value-discounted

Figure B2 RESET + TRAINING DATA: task-switching rates (red line; 0% is ideal) throughout all 10 task switches
(every 5000 steps) for solutions evolved with resetting. Solutions are tested on dynamically changing task sets,
identical to those used during evolution. (task set and demands are provided in Table 6)

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

36 V. A. KAZAKOVA AND G. R. SUKTHANKAR

Appendix B-II Solutions WITH resetting, tested on TESTING data

0%
50%

100%
150%
200%

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

Ta
sk

 p
er

fo
rm

an
ce

Step

StimHab

0%
50%

100%
150%
200%

Ta
sk

 p
er

fo
rm

an
ce

Step

Arithmetic average

0%
50%

100%
150%
200%

Ta
sk

 p
er

fo
rm

an
ce

Step

Timing-weighted average

0%
50%

100%
150%
200%

Ta
sk

 p
er

fo
rm

an
ce

Step

Improvement-discounted

0%
50%

100%
150%
200%

Ta
sk

 p
er

fo
rm

an
ce

Step

Acceptable-range-discounted

0%
50%

100%
150%
200%

Ta
sk

 p
er

fo
rm

an
ce

Step

Smaller-value-discounted

Figure B3 RESET + TESTING DATA: task performances (color lines; 100% is ideal) throughout all 10 task
switches (every 5000 steps) for solutions evolved with resetting. Solutions are tested on dynamically changing
task sets, different from those used during evolution. (task set and demands are provided in Table 7)

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

Adaptable and stable decentralized task allocation 37

0%
25%
50%
75%

100%

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

0 5000 10 000 15 000 20 000 25 000 30 000 35 000 40 000 45 000

Ta
sk

-s
w

itc
hi

ng
 ra

te

Step

StimHab

0%
25%
50%
75%

100%

Ta
sk

-s
w

itc
hi

ng
 ra

te

Step

Arithmetic average

0%
25%
50%
75%

100%

Ta
sk

-s
w

itc
hi

ng
 ra

te

Step

Timing-weighted average

0%
25%
50%
75%

100%

Ta
sk

-s
w

itc
hi

ng
 ra

te

Step

Improvement-discounted

0%
25%
50%
75%

100%

Ta
sk

-s
w

itc
hi

ng
 ra

te

Step

Acceptable-range-discounted

0%
25%
50%
75%

100%

Ta
sk

-s
w

itc
hi

ng
 ra

te

Step

Smaller-value-discounted

Figure B4 RESET + TESTING DATA: task-switching rates (red line; 0% is ideal) throughout all 10 task switches
(every 5000 steps) for solutions evolved with resetting. Solutions are tested on dynamically changing task sets,
different from those used during evolution. (task set and demands are provided in Table 7)

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

38 V. A. KAZAKOVA AND G. R. SUKTHANKAR

Appendix C

1.00 1.0000 0.9958 0.9956 0.9955 0.9954 0.9954 0.9953 0.9953 0.9952 0.9952 0.9952 0.9952 0.9951 0.9951 0.9951 0.9951 0.9951 0.9950 0.9950 0.9950 0.9950

0.95 1.0000 0.9957 0.9955 0.9954 0.9953 0.9953 0.9952 0.9952 0.9951 0.9951 0.9951 0.9951 0.9950 0.9950 0.9950 0.9950 0.9950 0.9949 0.9949 0.9949 0.9949

0.90 1.0000 0.9956 0.9954 0.9953 0.9952 0.9952 0.9951 0.9951 0.9950 0.9950 0.9950 0.9949 0.9949 0.9949 0.9949 0.9949 0.9948 0.9948 0.9948 0.9948 0.9948

0.85 1.0000 0.9955 0.9953 0.9952 0.9951 0.9950 0.9950 0.9949 0.9949 0.9949 0.9948 0.9948 0.9948 0.9948 0.9947 0.9947 0.9947 0.9947 0.9947 0.9947 0.9946

0.80 1.0000 0.9953 0.9952 0.9950 0.9950 0.9949 0.9949 0.9948 0.9948 0.9947 0.9947 0.9947 0.9947 0.9946 0.9946 0.9946 0.9946 0.9946 0.9945 0.9945 0.9945

0.75 1.0000 0.9952 0.9950 0.9949 0.9948 0.9948 0.9947 0.9947 0.9946 0.9946 0.9946 0.9945 0.9945 0.9945 0.9945 0.9944 0.9944 0.9944 0.9944 0.9944 0.9944

0.70 1.0000 0.9951 0.9949 0.9948 0.9947 0.9946 0.9946 0.9945 0.9945 0.9944 0.9944 0.9944 0.9943 0.9943 0.9943 0.9943 0.9943 0.9942 0.9942 0.9942 0.9942

0.65 1.0000 0.9949 0.9947 0.9946 0.9945 0.9944 0.9944 0.9943 0.9943 0.9943 0.9942 0.9942 0.9942 0.9941 0.9941 0.9941 0.9941 0.9941 0.9940 0.9940 0.9940

0.60 1.0000 0.9947 0.9945 0.9944 0.9943 0.9943 0.9942 0.9941 0.9941 0.9941 0.9940 0.9940 0.9940 0.9939 0.9939 0.9939 0.9939 0.9939 0.9938 0.9938 0.9938

0.55 1.0000 0.9945 0.9943 0.9942 0.9941 0.9940 0.9940 0.9939 0.9939 0.9938 0.9938 0.9938 0.9937 0.9937 0.9937 0.9937 0.9936 0.9936 0.9936 0.9936 0.9936

0.50 1.0000 0.9943 0.9941 0.9940 0.9939 0.9938 0.9937 0.9937 0.9936 0.9936 0.9936 0.9935 0.9935 0.9935 0.9934 0.9934 0.9934 0.9934 0.9933 0.9933 0.9933

0.45 1.0000 0.9941 0.9938 0.9937 0.9936 0.9935 0.9934 0.9934 0.9933 0.9933 0.9933 0.9932 0.9932 0.9932 0.9931 0.9931 0.9931 0.9931 0.9930 0.9930 0.9930

0.40 1.0000 0.9938 0.9935 0.9934 0.9933 0.9932 0.9931 0.9931 0.9930 0.9930 0.9929 0.9929 0.9928 0.9928 0.9928 0.9928 0.9927 0.9927 0.9927 0.9927 0.9926

0.35 1.0000 0.9934 0.9931 0.9930 0.9929 0.9928 0.9927 0.9927 0.9926 0.9926 0.9925 0.9925 0.9924 0.9924 0.9924 0.9923 0.9923 0.9923 0.9923 0.9922 0.9922

0.30 1.0000 0.9930 0.9927 0.9925 0.9924 0.9923 0.9922 0.9922 0.9921 0.9921 0.9920 0.9920 0.9919 0.9919 0.9919 0.9918 0.9918 0.9918 0.9917 0.9917 0.9917

0.25 1.0000 0.9924 0.9921 0.9919 0.9918 0.9917 0.9916 0.9915 0.9915 0.9914 0.9914 0.9913 0.9913 0.9912 0.9912 0.9912 0.9911 0.9911 0.9911 0.9911 0.9910

0.20 1.0000 0.9916 0.9913 0.9911 0.9910 0.9909 0.9908 0.9907 0.9906 0.9906 0.9905 0.9905 0.9904 0.9904 0.9903 0.9903 0.9903 0.9902 0.9902 0.9902 0.9902

0.15 1.0000 0.9906 0.9902 0.9900 0.9898 0.9897 0.9896 0.9895 0.9894 0.9894 0.9893 0.9892 0.9892 0.9891 0.9891 0.9891 0.9890 0.9890 0.9890 0.9889 0.9889

0.10 1.0000 0.9888 0.9884 0.9881 0.9879 0.9878 0.9877 0.9876 0.9875 0.9874 0.9873 0.9873 0.9872 0.9871 0.9871 0.9870 0.9870 0.9870 0.9869 0.9869 0.9868

0.05 1.0000 0.9851 0.9845 0.9841 0.9839 0.9837 0.9835 0.9834 0.9833 0.9832 0.9831 0.9830 0.9829 0.9828 0.9828 0.9827 0.9826 0.9826 0.9825 0.9825 0.9824

0.00 0.500 0.000

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Figure C1 Probability Pa,t mapping across all pairs of st and θa,t (discretized into 0.05 intervals) for the solution
evolved with resetting, using the arithmetic averaging fitness function

References

Agmon, N., Urieli, D. & Stone, P. 2011. Multiagent patrol generalized to complex environmental conditions. In
Proceedings of the Twenty-Fifth Conference on Artificial Intelligence (AAAI 2011).

Almeida, A., Ramalho, G., Santana, H., Tedesco, P., Menezes, T., Corruble, V. & Chevaleyre, Y. 2004. Recent
advances on multi-agent patrolling. In Advances in Artificial Intelligence – SBIA 2004, Bazzan, A. L. C. & Labidi,
S. (eds). Springer Berlin Heidelberg, 474–483. ISBN: 978-3-540-28645-5.

Baker, J. E. 1985. Adaptive selection methods for genetic algorithms. In Proceedings of an International Conference
on Genetic Algorithms and Their applications, Hillsdale, New Jersey, 101–111.

Berman, S., Halasz, A., Kumar, V. & Pratt, S. 2007. Bio-inspired group behaviors for the deployment of a swarm of
robots to multiple destinations. In Proceedings 2007 IEEE International Conference on Robotics and Automation,
2318–2323.

Campbell, A. & Wu, A. S. 2011. Multi-agent role allocation: Issues, approaches, and multiple perspectives.
Autonomous Agents and Multi-Agent Systems 22(2), 317–355.

Campos, M., Bonabeau, E., Theraulaz, G. & Deneubourg, J.-L. 2000. Dynamic scheduling and division of labor in
social insects. Adaptive Behavior 8(2), 83–95.

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

Adaptable and stable decentralized task allocation 39

Chu, H. N., Glad, A., Simonin, O., Sempe, F., Drogoul, A. & Charpillet, F. 2007. Swarm approaches for the patrolling
problem, information propagation vs. pheromone evaporation. In 19th IEEE International Conference on Tools
with Artificial Intelligence, ICTAI 2007, 1, 442–449. 2007.

Cicirello, V. A. & Smith, S. F. 2004. Wasp-like agents for distributed factory coordination. Autonomous Agents and
Multi-Agent Systems 8(3), 237–266. ISSN: 1573-7454.

De Jong, K. A. 2006. Evolutionary Computation: A Unified Approach, MIT Press, Cambridge, MA, USA.
dos Santos, F. & Bazzan, A. L. 2009. An ant based algorithm for task allocation in largescale and dynamic multiagent

scenarios. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, 73–80.
ACM.

dos Santos, F. & Bazzan, A. L. 2011. Towards efficient multiagent task allocation in the robocup rescue: a
biologically-inspired approach. Autonomous Agents and Multi-Agent Systems 22(3), 465–486.

dos Santos, D. S. & Bazzan, A. L. 2012. Distributed clustering for group formation and task allocation in multiagent
systems: a swarm intelligence approach. Applied Soft Computing 12(8), 2123–2131. ISSN: 1568-4946.

Ducatelle, F., Förster, A., Di Caro, G. A. & Gambardella, L. M. 2009. New task allocation methods for robotic
swarms. In 9th IEEE/RAS Conference on Autonomous Robot Systems and Competitions.

Farinelli, A., Iocchi, L., Nardi, D. & Ziparo, V. A. 2006. Assignment of dynamically perceived tasks by token passing
in multirobot systems. Proceedings of the IEEE 94(7), 1271–1288.

Ghizzioli, R., Nouyan, S., Birattari, M. &Dorigo, M. 2005. An Ant-Based Algorithm for the Heterogeneous Dynamic
Task Allocation Problem, Institut de Recherches Interdisciplinaires et de Développements en Intelligence
Artificielle (IRIDIA), Technical Report TR/IRIDIA/2005-005.

Halász, A., Hsieh, M. A., Berman, S. & Kumar, V. 2007. Dynamic redistribution of a swarm of robots among
multiple sites. In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2007, 2320–2325.
IEEE.

Hsieh, M. A., Halász, Á., Berman, S. & Kumar, V. 2008. Biologically inspired redistribution of a swarm of robots
among multiple sites. Swarm Intelligence 2(2–4), 121–141.

Hsieh, M. A., Halász, Á., Cubuk, E. D., Schoenholz, S. & Martinoli, A. 2009. Specialization as an optimal strategy
under varying external conditions. In IEEE International Conference on Robotics and Automation, ICRA 2009,
1941–1946.

Kanakia, A., Touri, B. & Correll, N. 2016. Modeling multi-robot task allocation with limited information as global
game. Swarm Intelligence 10(2), 147–160.

Kazakova, V. A., Wu, A. S. & Rahman, T. S. 2013. Cluster energy optimizing genetic algorithm. In Proceedings of
the 15th Annual Conference on Genetic and Evolutionary Computation, 1317–1324. ACM.

Kazakova, V. A. & Wu, A. S. 2018. Specialization vs. re-specialization: Effects of hebbian learning in a dynamic
environment. In Florida Artificial Intelligence Research Society Conference FLAIRS-31.

Kira, Z. & Arkin, R. C. 2004. Forgetting bad behavior: memory for case-based navigation. In Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), 4, 3145–3152.

Li, L., Martinoli, A. & Abu-Mostafa, Y. S. 2002. Emergent specialization in swarm systems. In International
Conference on Intelligent Data Engineering and Automated Learning, 261–266. Springer.

Liu, W., Winfield, A. F., Sa, J., Chen, J. & Dou, L. 2007. Towards energy optimization: emergent task allocation in
a swarm of foraging robots. Adaptive Behavior 15(3), 289–305.

Ma, H., Li, J., Kumar, T. & Koenig, S. 2017. Lifelong multi-agent path finding for online pickup and delivery tasks.
In Proceedings of the 16th Conference on Autonomous Agents and MultiAgent Systems, International Foundation
for Autonomous Agents and Multiagent Systems, 837–845.

Mavrovouniotis, M., Li, C. & Yang, S. 2017. A survey of swarm intelligence for dynamic optimization: algorithms
and applications. Swarm and Evolutionary Computation 33, 1–17.

McIntire, M., Nunes, E. & Gini, M. 2016. Iterated multi-robot auctions for precedenceconstrained task scheduling.
In Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems, International
Foundation for Autonomous Agents and Multiagent Systems, 1078–1086.

Merkle, D. & Middendorf, M. 2004. Dynamic polyethism and competition for tasks in threshold reinforcement
models of social insects. Adaptive Behavior 12(3–4), 251–262.

Murciano, A., del R. MillÁn, J. & Zamora, J. Specialization in multi-agent systems through learning. Biological
Cybernetics 76(5), 375–382. ISSN: 1432-0770.

Nitschke, G., Schut, M. & Eiben, A. 2008. Emergent specialization in biologically inspired collective behavior
systems. In Intelligent Complex Adaptive Systems, 215–253. IGI Global.

Nouyan, S. 2002. Agent-based approach to dynamic task allocation. In International Workshop on Ant Algorithms,
28–39. Springer.

Nouyan, S., Ghizzioli, R., Birattari, M. &Dorigo, M. 2005. An insect-based algorithm for the dynamic task allocation
problem. KI 19(4), 25–31.

Nunes, E., McIntire, M. & Gini, M. 2016. Decentralized allocation of tasks with temporal and precedence con-
straints to a team of robots. In IEEE International Conference on Simulation, Modeling, and Programming for
Autonomous Robots (SIMPAR), 197–202. IEEE.

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

40 V. A. KAZAKOVA AND G. R. SUKTHANKAR

Ono, N. & Fukumoto, K. 1996. Multi-agent reinforcement learning: a modular approach. In Second International
Conference on Multiagent Systems, 252–258.

Portugal, D. & Rocha, R. 2011. A survey on multi-robot patrolling algorithms. In Doctoral Conference on
Computing, Electrical and Industrial Systems, 139–146. Springer.

Price, R. & Tiño, P. 2004. Evaluation of adaptive nature inspired task allocation against alternate decentralised
multiagent strategies. In International Conference on Parallel Problem Solving from Nature, 982–990. Springer.

Ragusa, V. R., Mathias, H. D., Kazakova, V. A. & Wu, A. S. 2017. Enhanced genetic path planning for autonomous
flight. In Proceedings of the Genetic and Evolutionary Computation Conference, ACM, 2017, pp. 1208–1215.

Román, J. A., Rodríguez, S. & Corchado, J. M. 2014. Improving intelligent systems: specialization. In International
Conference on Practical Applications of Agents and Multi-Agent Systems, 378–385. Springer.

Schwarzrock, J., Zacarias, I., Bazzan, A. L., de Araujo Fernandes, R. Q., Moreira, L. H. & de Freitas, E. P. 2018.
Solving task allocation problem in multi unmanned aerial vehicles systems using swarm intelligence. Engineering
Applications of Artificial Intelligence 72, 10–20.

Stanley, K. O. & Miikkulainen, R. 2002. Evolving neural networks through augmenting topologies. Evolutionary
Computation 10(2), 99–127.

Theraulaz, G., Bonabeau, E. & Deneubourg, J.-L. 1998. Response threshold reinforcement and division of labour in
insect societies. Proceedings of the Royal Society of London B 265, 327–332.

van Lon, R. R. & Holvoet, T. 2017. When do agents outperform centralized algorithms? Autonomous Agents and
Multi-Agent Systems 31(6), 1578–1609.

Villacorta, P. J., Pelta, D. A. & Lamata, M. T. 2013. Forgetting as a way to avoid deception in a repeated imitation
game. Autonomous Agents and Multi-Agent Systems 27(3), 329–354.

Wawerla, J. & Vaughan, R. T. 2010. A fast and frugal method for team-task allocation in a multi-robot transportation
system. In ICRA, 1432–1437.

Wu, A. S. & Kazakova, V. A. 2017. Effects of task consideration order on decentralized task allocation using time-
variant response thresholds. In Florida Artificial Intelligence Research Society Conference FLAIRS-30, 466–471.

Zhang, Z., Long, K., Wang, J. & Dressler, F. 2014. On swarm intelligence inspired self-organized networking:
its bionic mechanisms, designing principles and optimization approaches. IEEE Communications Surveys &
Tutorials 16(1), 513–537.

Zheng, X. & Koenig, S. 2011. Generalized reaction functions for solving complex-task allocation problems. IJCAI
Proceedings-International Joint Conference on Artificial Intelligence, 22, 478.

https://doi.org/10.1017/S0269888920000235 Published online by Cambridge University Press

https://doi.org/10.1017/S0269888920000235

	Introduction
	Related work
	Domain: hierarchical deployment
	Probabilistic action using StimHab
	Global task stimuli
	Individual task habit thresholds
	Action selection
	Hierarchical task assignment
	Testing domain setup
	Behavioral metrics
	Experiments, part I: StimHab vs. Average (s,)
	Favoring readaptation: altering behavior when (st = a,t = 1.0)
	Evolving the s - relationship

	Chromosome formulation
	Fitness function
	Genetic operators and parameters
	Experiments, part II: GA evolution results
	Evolving without resetting prior specializations
	Evolving with resetting prior specializations
	Conclusions and future work
	Solutions WITHOUT resetting, tested on TRAINING data
	Solutions WITHOUT resetting, tested on TESTING data
	Solutions WITH resetting, tested on TRAINING data
	Solutions WITH resetting, tested on TESTING data
	
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

