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Regions at Risk: Predicting Conflict Zones in African
Insurgencies*

SEBASTIAN SCHUTTE

A method for predicting conflict zones in civil wars based on point process models is
presented in this paper. Instead of testing the validity of specific theoretical conjectures
about the determinants of violence in a causal framework, this paper builds on classic

literature and a wide body of recent studies to predict conflict zones based on a series of
geographic conditions. Using an innovative cross-validation design, the study shows that the
quantitative research program on the micro-foundations of violence in civil conflict has crafted
generalizable insights permitting out-of-sample predictions of conflict zones. The study region
is delimited to ten countries in Sub-Saharan Africa that experienced full-blown insurgencies in
the post-Cold War era.

In June 2014, the civil war in Iraq reached a turning point when the “Islamic State of Iraq
and the Levant” (ISIL) group captured seven major cities in the northern part of the
country.1 The Kurdish-dominated areas in Iraq and Syria have been traditionally calmer in

both war-torn countries and neither international organizations nor governments had seen this
escalation coming. This episode demonstrates that regions at risk in ongoing conflicts are hard
to identify even under the watchful eye of the international community. With the recent
uprisings of the Arab Spring, the ongoing violence in Iraq and Afghanistan, and numerous
conflicts in central Africa, ISIL’s advances will not be the last geographic expansion of conflict
with disastrous humanitarian consequences.

The question therefore springs to mind whether and to what extent the scholarly research
program on irregular conflicts can help us to predict major conflict zones in civil wars in advance.
Recent empirical research on the spatial determinants of violence in civil conflict has generated
substantial insights. Theoretically, the failure of states to control their remote periphery has been
repeatedly used as an explanation for political violence (Herbst 2000; Fearon and Laitin 2003;
Herbst 2004; Buhaug, Gates and Lujala 2009; Scott 2009). Drawing on these insights, a
series of studies has combined Geographic Information Systems and multivariate regression
designs to test related hypotheses (Buhaug and Gates 2002; Buhaug and Rød 2006; Buhaug,
Gates and Lujala 2009). Moreover, properties of irregular conflicts have also been modeled in
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disaggregated computational studies drawing on geographic information (see Bhavnani,
Miodownik and Nart 2008; Bhavnani et al. 2013; Weidmann and Salehyan 2013).

Despite this progress in combining theoretical and quantitative insights, the external validity
and in particular the predictive capabilities of this research program remain understudied. On
the country level, quantitative predictions of political instability have made substantial progress
in recent years (see Goldstone et al. 2010; Ward et al. 2013). Beyond their practical utility of
informing relief organizations and policy decision, predictions offer scientific benefits as they
directly communicate the degree to which a studied phenomenon is understood (Ward,
Greenhill and Bakke 2010; Schrodt 2014).

Another advantage of predictions is that they are not restricted to the empirical sample:
predicting locations of violent conflict beyond the sample that the model was fitted on reveals to
what extent the data-generating mechanism and relevant variables were correctly identified.
Based on these considerations, this paper tests to what extent geographic covariates of irregular
warfare that have been identified in previous work improve predictions of conflict zones. To
evaluate these predictions, I rely both on a quantitative and a qualitative metric. Spatial
predictions of conflict intensities are compared with empirically observed intensities to calculate
error scores. Moreover, high-intensity conflict regions yielding >50 percent of the maximal
conflict intensity are compared visually with empirically observed hot spots.

The merit of this exercise is twofold: first, a direct comparison between the predictions
of models and random baselines serves as a reality check for the geographic research
program, clearly communicating to what extent informed predictions outperform random
guesses. Second, the applied methodology generates easily communicable predictions that
could be utilized beyond basic research to aid planning of humanitarian relief operations, for
example.2

To demonstrate the predictive capabilities of the associated variables, point process models
(PPM) are used to predict instances of lethal violence in ten recent insurgencies in Sub-Saharan
Africa. Predictions of these models are compared with the empirical record using an innovative
cross-validation design. The results indicate that central variables of the geo-quantitative
research program lead to drastically improved out-of-sample predictions in comparison with
uniform baselines.

LITERATURE REVIEW

The connection between geography and war has long been considered important. Already the
classic literature of revolutionary warfare and counterinsurgency devoted attention to the topic
(see Guevara 1961, 10; Mao [1938] 1967; McColl 1969). Contemporary research has stressed
the primarily local determinants of fighting in civil conflicts (Buhaug and Gates 2002; Buhaug
and Rød 2006; O’Loughlin and Witmer 2010; Buhaug et al. 2011; Rustad et al. 2011). While
regular armies generally move and fight under central command, irregular conflicts are
frequently fought out between local militias and rebel supporters. Instead of strategic decisions
of where to send mechanized armies to fight, local encounters between irregular fighters and
military units determine much of the violence in civil conflicts (Kalyvas 2005).3

2 To this end, I have extrapolated likely conflict zones for Africa and the Greater Middle East as explained in
the supplementary information.

3 Especially the conflicts in Sub-Saharan Africa since 1990 have seen major involvements of irregular forces.
This also applies to the series of clashes referred to as “Africa’s World War” between 1998 and 2003 (see Prunier
2009).
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A series of publications has been devoted explicitly to coding and explaining the location,
size, and extent of primary conflict zones in armed conflict. Buhaug (2010) applies a
distance-decay model from the study of interstate war to internal conflicts and finds that the
relative military strength of the belligerents is a strong predictor for the location of primary
conflict zones. Drawing on a bargaining perspective, Butcher (2014) analyzes the location of
conflict zones and concludes that multilateral sub-national conflicts tend to occur more in the
periphery. Braithwaite (2010) analyzes under which conditions hot spots of international armed
conflict are likely to emerge. Hallberg (2012) contributes a geo-referenced data set on primary
conflict zones in civil wars since 1989. The recent turn toward more disaggregated empirical
studies has led to an increased interest in data on single conflict events (Raleigh and Hegre
2005; Sundberg, Lindgren and Padskocimaite 2011) and geo-referenced data on local deter-
minants of conflict intensity. Consequently, geographic and local socioeconomic conditions
have moved into the focus of empirical studies. Drawing on spatially disaggregated data on
wealth and data on conflict events, Hegre, Østby and Raleigh (2009) found that violence tends
to cluster in more wealthy regions, possibly because rebels prioritize them in their attacks.
Raleigh and Hegre (2009) also found that population concentrations generally see higher levels
of fighting. While the statistical association is strong, it remains unclear how this effect comes
about. A relatively constant per capita rate of violence as well as strategic targeting of civilian
concentrations spring to mind as possible explanations.

While the emphasis on local determinants of conflict is justified both theoretically and
empirically, the diffusion of irregular civil conflict over time has also been studied. Schutte
and Weidmann (2011) investigated different diffusion scenarios for violence in civil wars,
comparing instances of empirical diffusion against random baseline scenarios. Zhukov (2012)
used road-network information in a refined empirical analysis and found that violence in the
north Caucasus tended to relocate over time along roads. Both studies point to the fact that a
substantive number of civil war events result from previous fighting in neighboring regions
rather than being solely caused by local conditions. Beyond spatial expansion, reaction to
specific instances of violence has also been analyzed (Lyall 2009; Kocher, Pepinsky and
Kalyvas 2011; Braithwaite and Johnson 2012; Schutte and Donnay 2014). Again, reactive
patterns in conflict event data underline that the conflict history as well as local socioeconomic
and geographic conditions jointly affect levels of violence in civil wars.

In summary, the presented literature on the determinants of violence in civil conflicts
suggests an interaction of multiple factors. Strategically, the military capabilities of the actors as
well as terrain conditions and infrastructure play an important role for the locations of major
battle zones. On a tactical level, violence tends to cluster as actors fight repeatedly over specific
locations, but it also diffuses into previously unaffected regions. Finally, the types of violence
applied by actors in the field crucially affects subsequent levels of violence. While these insights
are important for testing and building theories of the dynamics of violence in irregular conflict,
the question of whether or not they translate into generalizable and ultimately actionable
knowledge remains unanswered. Regression studies and matching designs are generally
used to test whether or not specific variables have a causal effect in line with theoretical
considerations. The estimated effects, however, relate solely to hypothetical all-else-being-
equal, or “ceteris paribus” scenarios.

Despite the obvious merit of inferential designs, the added scientific and practical value of
predictions has been pointed out in recent publications (Goldstone et al. 2010; Ward, Greenhill
and Bakke 2010; Gleditsch and Ward 2012; Schrodt 2014). Tangible predictions about the
location and timing of violence are a concern of policy makers and relief organizations.
Consequently, political scientists have embarked on generating predictions for which countries
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are likely to experience civil wars (Goldstone et al. 2010; Ward, Greenhill and Bakke
2010; Weidmann and Ward 2010; Ward, Greenhill and Bakke 2013) and which regions
are most prone to violence in Afghanistan (Zammit-Mangion et al. 2012). Advancing this
line of research, this paper is a first attempt to predict major conflict zones across civil
conflicts. The performance of these predictions is assessed in comparison with random
baselines. In essence, this paper communicates how much predictive power the quantitative
research program on the micro-dynamics of civil wars has gained in comparison with agnostic
guessing about where violence will occur. This exercise serves as an important reality check
for our ability to predict sub-national conflict intensity based on central variables identified in
the literature.

Of course, assessing the predictive performance of these variables requires a suitable
empirical setup. The paper proceeds as follows: in the next section, I will discuss the case
selection for this study. After that, I will identify central variables for the prediction of variation
in conflict intensity from the above-referenced literature. A generic setup for predicting violence
based on these variables is presented in the subsequent section, loosely based on Zammit-
Mangion et al. (2012). Finally, I will test whether and to what extent these variables produce
improved out-of-sample predictions in comparison with agnostic baselines.

SCOPE AND CASE SELECTION

Because the literature on revolutionary warfare and counterinsurgency studies have been most
vocal in proposing a direct link between rebel presence and terrain conditions, I decided to
narrow down the empirical analysis to insurgencies, that is, conflicts in which the rebels are not
recognized as belligerents and heavily rely on civilian assistance to wage a guerrilla war against
the state (Galula 1964; CIA 2009, 2). However, not all civil or irregular conflicts are insur-
gencies. Kalyvas and Balcells (2010) report a declining trend for this type of conflict and an
increase in wars that blend elements of conventional fighting with irregular rebellions. More-
over, fighting in quasi-conventional civil wars, such as in Yugoslavia in the early 1990s, might
be better predicted by ethnic boundaries than terrain conditions. Despite the overall decline in
the frequency of insurgencies, they still constitute the most frequent type of armed conflict in
the post-World War II period. Conflict events from the “Geo-Referenced Event Dataset” (GED)
(Sundberg, Lindgren and Padskocimaite 2011) cover lethal clashes that occurred between 1990
and 2010 from 42 African countries. Drawing on a separate data set by Lyall and Wilson
(2009), I identified 11 cases of insurgency that are covered in GED.4 I decided to exclude
Djibouti (1991–2001) because the country is too small for meaningful geographic analysis,
given the resolution of the covariates. Table 1 shows the remaining cases that were used for the
analysis.

Due to the exclusive coverage of African conflicts in GED, the generated insights
might capture aspects that are specific to the region: for example, Herbst (2000, 21–31) argues
that low average population densities, porous colonial borders, and capital city locations
close to the shore shaped fundamental aspects of the African state system. In comparison
with Europe, less competition over territory between nation-states can be seen, while controlling
the remote periphery of the states’ territories posed a bigger challenge. Therefore, the
geographic determinants of fighting in insurgencies could be more important in Africa than in

4 In the GED data set, I focused on violence by or against the state and observations that fell into periods and
countries experiencing active insurgencies according to Lyall and Wilson (2009).
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other regions. Future research based on global event data might show whether the results
generalize beyond Africa.

SPATIAL DETERMINANTS OF FIGHTING

The localized nature of fighting in civil conflicts provides a suitable starting point for predictive
modeling. Recent studies have utilized digital information on geographic conditions and conflict
events to reveal a series of robust statistical relationships. I will therefore introduce conflict
event data sets and data on the spatial determinants of violence that have been identified by
previous studies to systematically test to what extent predictions of conflict intensity can be
improved by each variable.

Geographic Data on Armed Conflict

In the past decade, several data collection efforts have been started to disaggregate civil conflicts
into a series of events. These events range from skirmishes to major battles or atrocities against
civilians. Both the “Armed Conflict Location and Event Dataset” (ACLED) (see Raleigh and
Hegre 2005) as well as the GED (see Sundberg, Lindgren and Padskocimaite 2011) rely on
news reports that contain information on violent events primarily in Sub-Saharan Africa. GED
is based on an elaborate coding procedure that ensures reliability by cross-validating records
with multiple coders (Sundberg, Lindgren and Padskocimaite 2011). Definitions of what
constitutes a conflict event vary slightly between the data sets: in ACLED, violence against
civilians as well as battle outcomes such as changes in territorial control are recorded.
Sporadically, ACLED also has information on initiators of violence, but information on
casualties is not recorded. GED is restricted to lethal encounters between political actors and
provides estimates for civilian and military casualties. Information on both outcomes of battles
and initiators are missing. For this study, I used the GED data set on lethal events in African
civil conflicts between 1990 and 2010. The advantage of GED for this particular project is that
lethal encounters are particularly relevant and conceptually clear. In the next sections, I will
introduce covariates to predict spatial variation in lethal violence in insurgencies.

Population. Based on the notion of “population-centric warfare” (see CIA 2009, 2), civilian
population concentrations have been identified as a predictor of conflict events (Raleigh and

TABLE 1 Overview of the Cases Used for the Statistical Analysis

Numbers GW Number Country War Start War End

1 615 Algeria 1992-01-01 2002-12-31
2 490 Congo, DRC 1994-01-15 1998-12-28
3 516 Burundi 1994-04-20 2005-12-24
4 484 Republic of Congo 1997-06-05 1999-12-06
5 483 Chad 1994-01-23 1998-03-09
6 517 Rwanda 1994-02-13 1998-11-27
7 404 Guinea-Bissau 1998-06-06 1999-05-06
8 450 Liberia 2000-05-01 2003-11-21
9 437 Ivory Coast 2002-09-19 2004-11-06
10 451 Sierra Leone 1991-03-23 1999-12-19

Note: Start- and end-dates correspond to the first and last observations in the GED data set for the corresponding
conflicts.
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Hegre 2009). Insurgents seek contact with the civilian population for various reasons: to hide
from incumbent forces (Salehyan and Gleditsch 2006), to recruit additional combatants
(Sheehan 1988, 50), and to extend their geographic control over relevant parts of the country
(Kalyvas 2006, 202–7). Spatially disaggregated population counts from the Gridded Population
of the World dataset (CIESIN 2005) were therefore included in the predictive models.

Distances to capital and border. The ultimate goal of irregular uprisings is to conquer the
capital city, as was the case in Saigon in 1975, in Kabul in 1996, and in Monrovia in 2003.
Defending the center is therefore a strategic imperative for the state. Repeated attempts to attack
the government and incumbent counteractions make distance to the capital city a spatial
predictor of higher levels of violence (see Buhaug, Gates and Lujala 2009; Buhaug 2010;
Toellefsen, Strand and Buhaug 2012). Along the same lines, distance to the nearest international
border that provides refuge to the rebels has been associated with levels of violence (Salehyan
2009; Buhaug 2010). Cases in point are the Vietcong that moved their vital supply lines
partially to Laos and Cambodia and the Afghan Mujaheddin that traditionally fight superpowers
from bases in the border regions in Pakistan. Distances to capital cities and international
boundaries were calculated based on Weidmann, Kuse and Gleditsch (2010).

Accessibility. Remote and difficult terrain provides insurgents with the opportunity to prepare
attacks and temporarily evade the fighting (Fearon and Laitin 2003). In order to counterbalance
the material superiority of the state, rebels utilize less accessible areas to prepare military
operations and recruit from the local population (McColl 1969). Terrain and soil conditions,
road and railroad networks, bodies of water, and forested regions all affect the accessibility of
sub-national regions. A comprehensive aggregation of these factors has been performed by
Nelson (2008). Their provision of a global friction map for traveling times between all cities
with > 50,000 inhabitants in the year 2000 offers a suitable operationalization for infrastructural
accessibility.

Wealth. Spatial variation in wealth has been associated with conflict events (Hegre, Østby
and Raleigh 2009). Two principal scenarios are imaginable for this variable to affect levels of
violence. First, materially deprived regions could see stronger support for insurgent
activities. Second, rebels might strategically target wealthier regions for private gains and/or to
finance the uprising. Lootable resources in particular have been linked to intense standoffs in
civil conflicts (Gilmore et al. 2005). Spatially disaggregated data on wealth (Nordhaus
2006) codes disaggregated GDP data on a global scale. The derived unit is gross cell product:
an estimate for the market value of all goods and services in a geographic region. Cells
with a maximal size of 60 nautical square miles (about 111 km2) are coded in this data set,
which was also included. While the exact causal roles of these geographic factors remain
disputed, general correlations between the corresponding variables and levels of violence are
widely accepted.

Natural land cover. Densely forested regions can be as inaccessible as high mountain
ranges. Consequently, they severely limit situation awareness and mobility for regular forces
(see Crawford 1958). In Columbia, the FARC rebels have evaded defeat for almost four
decades, Ugandan LRA rebels are still at large despite regional and international attempts to
stop their activities, and Vietnamese rebels waged three successful campaigns against three
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different global powers between 1941 and 1975. In all of these cases, dense forestation has been
cited as an important enabler of guerrilla actions. I therefore included a data set that codes the
percentage of green vegetation for the year 2001 on a global scale and with a spatial resolution
of 1 km2 (Broxton et al. 2014).

While the exact causal roles of these geographic factors remain disputed, general correlations
between the corresponding variables and levels of violence are widely accepted. But to
what extent are these factors capable of predicting the spatial variation of the intensity of
violence in civil wars? As mentioned above, this paper seeks to provide an easily communicable
answer to this question. The next section details the corresponding approaches to modeling and
validation.

MODELING APPROACH

Several possible modeling approaches spring to mind for predicting conflict events based on the
presented data. Many contemporary studies of violence in civil wars draw on econometric
analyses. While the breadth of econometric methodology and the rapid rate at which it advances
cannot be overlooked, the analysis of inherently spatial data introduces problems. First and most
importantly, the nature of the dependent variable—conflict events distributed in space—has no
obvious equivalent in the econometrician’s toolbox. Researchers therefore usually aggregate
event counts within spatial units such as artificial grid cells and then apply count-dependent
variable models (see, e.g., Fjelde and Hultman 2013; Pierskalla and Hollenbach 2013; Basedau
and Pierskalla 2014). Unfortunately, in most cases there is no empirically or theoretically
informed strategy for choosing the sizes of such cells.

Of course, statistical predictions both in- and out-of-sample also hinge (to some extent) on
design decisions in the spatial aggregations as defined by the chosen grid cells and their origin.
Moreover, within the possibly large cells, event are analyzed independently from their exact
location. These insights leads Cressie (1993, 591) to the conclusion that “[t]he reduction of
complex point patterns to counts of the number of events in random quadrats and to
one-dimensional indices results in a considerable loss of information.”

This presents a serious problem for the ambition of this paper: if the claim was made that
out-of-sample predictions of conflict intensity were possible based on a grid-cell approach,
this finding would partly be due to an ad hoc choice of a specific cell size. Moreover,
precise local information would be given up in favor of aggregate covariate values at the
cell level.

Ideally, a non-parametric technique would be used for mapping conflict events to covariate
information. To address this issue, an alternative modeling approach more frequently chosen in
biology and epidemiology relies on PPM. While PPM have been applied to conflict research
before (Zammit-Mangion et al. 2012), the relative novelty of this approach requires a more
in-depth discussion of their properties. The next section gives an overview of PPM and their
application to multivariate inference, as well as the chosen setup for prediction, cross-validation,
and extrapolation.

PPM

Before discussing this type of model in further detail, some terminology needs to be
introduced. Spatial point patterns are generally analyzed within clearly demarcated areas. These
areas are referred to as “windows” and can be either artificial geometric structures or irregularly
shaped polygons. In this study, the country polygons obtained from Weidmann, Kuse and
Gleditsch (2010) are used as observational windows with one model being fitted per country.

Regions at Risk 453

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/p

sr
m

.2
01

5.
84

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/psrm.2015.84


Statistical models of spatial point patterns have been developed for several decades and
successfully applied to various fields, such as biology, geography, and criminology. One
obvious quantity of interest in spatial point patterns is their intensity, defined as the expected
number of points per area in a given spatial window. The intensity of the point process can vary
continuously within the window as a function of covariates or another point pattern. While the
introduction of a temporal dimension provides additional challenges, PPM are attractive
alternatives to econometric models for cross-sectional analyses of conflict events. Their main
advantage is that they offer empirically driven and non-parametric solutions for selecting the
area around the points for aggregating covariate information. In the next section, I will introduce
some implementational details of PPM starting with underlying assumptions. After that, I will
provide a closer look at fitting these models to data.

Underlying assumptions for spatial Poisson processes. Any quantitative model must strike a
balance between mathematical tractability and theoretical adequacy. Very much in favor
of the first requirement for this application is the spatial Poisson process, which can serve as
a suitable starting point for predictive modeling. For the spatial variant of the Poisson
process, two principal sub-types must be distinguished: homogeneous and inhomogeneous
processes. In the case of the homogeneous spatial Poisson process, the intensity (i.e., the
number of points per area) λ is uniform for the entire observational window. Of course,
modeling high- or low-intensity areas within countries requires the intensity to vary as a
function of covariates.

The introduction of subregions within the spatial window is a way to achieve this. A heuristic
method for choosing subregions for a given empirical point pattern will be discussed in the next
section. For each of the subregions, covariate values can be established and used to estimate
marginal effects. Points per subregion are Poisson-distributed with probability mass function for
natural positive numbers X and k:

PrðX = kÞ= λk

k !
e�λ: (1)

Across regions, however, the intensity of the Poisson processes may vary and the numbers
of points per subregion are independent (see Baddeley and Turner 2005, 72ff.). Applying this
formalism to the study of civil conflict does justice to the strand of literature that points to the
local determinants of violence. However, it omits the well-described escalatory dynamics of
violence and spatial diffusion.5 For the spatial modeling, this also entails that the approach is
prone to overdispersion: the variance encountered in empirical event intensity is larger than the
variance predicted by the Poisson models. This is due to the fact that mean and variance are
characterized by the same variable (λ) in the Poisson distribution. However, this study focuses
on predicting the average intensity of violence in a given region and not the variance in
intensity.

Poisson process models therefore serve as an eligible point of departure for predictive
purposes and do not require ad hoc design decisions about the spatial scale of point-to-point
interactions.

5 Please refer to section 4 of the supplementary information for a discussion of modeling nested point
processes and corresponding computational problems. Section 6 of the supplementary information discusses the
possibility of predicting conflict zones within larger geographic regions composed of several country polygons to
overcome the “closed polity” assumption underlying the main analysis.
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Choosing tiles for covariate information. Modeling point intensity as a function of geographic
covariates requires that the points in the empirical sample are associated with the
covariate information. As mentioned before, PPM does not rely on predefined spatial units
to achieve this and instead choose suitable tiles heuristically from the point pattern. As
illustrated in Figure 1, this is accomplished in two steps: first, a number of “dummy” points are
superimposed on the empirical point pattern. They are either arranged in a grid-like structure
(as shown in Figure 1 on the right), or are uniformly distributed at random. In a second step,
the study window is divided into tiles which are either associated with dummy points or
empirical ones. The tiling algorithm is usually chosen to optimally demarcate regions that are
closest to the empirical or simulated points, for example, by calculating Dirichilet tiles
(i.e., Voronoi diagrams; see Mitchell 1997, 233). For each of the resulting tiles, covariate
information is then aggregated. Of course, the exact tiles resulting from the tessellation are still
dependent to some extent on the number of dummy points in the sample and their spatial
distribution. However, the great advantage of this approach is that covariate values that are
subsequently used for model fitting are obtained from areas that are closer to the empirical
points than the simulated dummies. This is arguably a better approach to mapping covariate
information to empirical points than an arbitrary spatial grid with empirically uninformed cell
size and origin.

Fitting models to data. For the estimation of β-parameters, the applied tessellation techniques
usually generate tiles intersecting with points in the sample and a comparable number of tiles for
areas without points. A widely used approach for fitting point patterns to data relies on the
Berman–Turner algorithm (see Algorithm 1), which implements a maximum pseudo-likelihood
approach to parameter estimation: instead of choosing parameters based on their likelihood,
Berman and Turner (1992) suggest choosing them according to their conditional intensity—that
is, the observed number of points per area in the tiles given the estimated intensity. Berman and
Turner (1992) observe that the conditional intensity of the inhomogeneous spatial Poisson
process has the same functional form as likelihood functions employed in generalized linear

Fig. 1. Illustration of a quadrature scheme based on Dirichilet tessellation
Source: Figure taken from Baddeley and Turner (2000).
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models (GLM). This allows for a wide range of PPM to be fitted in readily available GLM
software. In detail, Berman and Turner (1992) suggest the following setup:

Algorithm 1 Berman–Turner Algorithm for Poisson process models.

1. In addition to the empirical points in the sample, generate a number of dummy points.
Together with the empirical points, these are referred to as “quadrature points.” Based on
a tessellation scheme (Dirichilet tessalation), the observational window is split up into areas
associated with one quadrature point each.

2. For each quadrature area u of the spatial window W, weights are computed according to
weightj =

areaðujÞ
areaðWÞ for each ujεW .

3. For each quadrature area u, binary indicators are computed according to

(a) zj = 1 for empirical points

(b) zj = 0 for dummy points.

4. For each quadrature area u, a response variable is computed according to yj = zj=weightj.

5. Values for the spatial covariates are obtained for each quadrature point through an
intersection of the points with the underlying data vj = Sðuj; xÞ.

6. Finally, the response variable can be estimated as ŷ being a function of covariates v with
weights weight in a log-linear Poisson regression.

Being able to fit models to data is a central prerequisite for assessing the predictive gain
associated with individual variables. In the next section, I will introduce the remaining
requirements: a general error score to compare prediction and empirical data and a
cross-validation setup for out-of-sample tests.

Error Score

To keep the validation approach as general as possible, I decided to simulate point patterns from
the fitted prediction models and then compare them with the empirical patterns.6 Of course,
simulated point patterns vary from simulation run to simulation run as they are generated
probabilistically. To establish average predictions, I simulated point patterns from the fitted
models 100 times for each in-sample and out-of-sample test. A suitable method that yields a
continuous non-parametric estimate for the point process was described by Diggle (1985).7

I decided to compare simulated and empirical intensities numerically to assess the performance
of different models.

While this setup might look rather cumbersome at first glance, it essentially generates a
side-by-side comparison between empirically estimated and simulated intensities. This direct
comparison communicates the performance of the models in a straightforward manner and

6 The Metropolis–Hastings Algorithm otherwise familiar from Bayesian statistics is generally used to
simulate point patterns from spatial probability distributions (see Baddeley and Turner 2005).

7 Diggle (1985) states that this method assumes that data-generating mechanism to be a Cox process (such as
the spatial inhomogeneous Poisson process) and requires a type of kernel to be specified. I used Gaussian kernels
with empirically estimated bandwidth parameters in absence of any theoretical reasons to deviate from this setup.
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easily generalizes to other models such as more advanced PPM, agent-based models, or
grid-cell-based econometric models. Figure 2 depicts empirical and simulated conflict events, as
well as corresponding intensity surfaces.

The prediction error is computed based on the absolute differences in the densities for
empirical and simulated events. Density surfaces are represented as fine-grained arrays. The
mean absolute error for an array with J cells is calculated as follows:

MAE=

PJ

1
absðempj�simjÞ

J
: (2)

Figure 3 illustrates the comparison and the calculation of average prediction errors visually.
In this setup, the total number of events is still given by the empirical sample, that is, the

specific county the model was fitted on. Of course, predicting the overall number of conflict

Fig. 2. Example of empirical and simulated events from the Second Liberian Civil War (1999–2003)
Note: On the top left, the empirical events from the Geo-Referenced Event Dataset can be seen for this
conflict. On the top right, a corresponding Gaussian intensity estimation is visible. In the bottom row,
simulated events and the corresponding surface are depicted.
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events (i.e., the severity of the civil war) is not in the focus of this study. Numerous
socioeconomic, political, and military factors influence the severity of conflicts and it would be
impossible to do justice to them in this article. I therefore decided to normalize the predicted
intensities to one. As a result, the predictions reflect relative intensities scaled from 0 to 1.

Cross-Validation

In order to assess the predictive capabilities of the fitted models out-of-sample, a suitable
cross-validation setup had to be defined as well. Basically, cross-validation works by dividing
the available empirical sample into a training and a test set. Models are fitted on the training set
and then used to generate predictions for the test set. Those predictions are then validated
against the empirically observed results from the test set. This setup serves as a more realistic
test framework than simply assessing the in-sample predictions of statistical models—that is,
their ability to replicate the test data they were trained on.8

In this case, I chose to apply a leave-one-out cross-validation scheme.9 Models were fitted on
all but one of the countries in the statistical sample. A prediction model was generated by
averaging the β-coefficients of these models. The resulting model was subsequently used to
predict the point pattern in the remaining country. This setup mimics the real-world challenge of
predicting the spatial distribution of violence in future civil wars based on a set of historical
conflicts. In the next section, I will present results for predictions of conflict intensity for all ten
African cases.

RESULTS

In order to assess the predictive capabilities of the models, I computed density differences both
in-sample and out-of-sample. For the in-sample assessment, I fitted a series of Poisson models
based on the introduced covariates and fitting techniques using the spatstat package for the
R programming language. I simulated 100 distinct point patterns from the fitted models and
calculated intensity surfaces. One expected density for each model was established by averaging
over these simulations. Table 2 shows cumulative differences between the empirical density and
the average simulated density. To generate a baseline against which the models could be

Area of misprediction

Emprical density

Simulated density

Fig. 3. Depiction of the error metric used for the prediction models
Note: The two lines are the cross sections of the point intensity estimates for empirical and simulated point
patterns. The differences in densities (gray areas) are approximated numerically.

8 A typical problem that can arise in in-sample predictions is overfitting: instead of generalizing from the
underlying data-generating process, an overfitted model tends to replicate the noise of the specific sample it was fitted
on. Overfitting leads to low in-sample prediction errors combined with high out-of-sample prediction errors.

9 One alternative setup frequently chosen in comparable projects is k-fold cross-validation. In this case, the
small number of ten available cases allowed for using each single data point for a separate cross-validation run,
thus providing the best possible approximation of the out-of-sample prediction error.
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compared, I generated 100 random point pattern consisting of an equal number of points as the
empirical sample. The average difference in normalized intensities between random and
empirical patterns serve as a baseline against which the predictions can be compared.

In-Sample Prediction

In total, seven model predictions plus the random baseline were simulated for each country. As
a first test of the introduced setup and the predictive capabilities of the models, the introduced
variables were added subsequently to the model specification. Acronyms in the top row of the
prediction tables indicate the variables that were used: “p” stands for population, “c” for
capital distance, “a” for accessibility, “w” for wealth, “b” for border distance, and “v” for
vegetation. Results from a full-fledged model-averaging setup where each covariate’s predictive
performance is tested against a series of different model specifications are presented in the
supplementary information.10 Table 2 shows cross-validation scores for the different model
specifications and the random baseline. As discussed above, these scores are the average
cumulative absolute difference between the empirical and the simulated point patterns. The last
row in the table shows normalized cross-validation scores across countries with the random
baseline having a value of 1. This row shows that the initial models that only use population as a
predictor already yield half the cumulative error scores (0.45) of the random baseline. As
additional predictors are introduced, the scores drop from 0.27 to 0.22. This setup also shows
that not every predictor yields the same improvements. Model 2, using data on population
centers and capital distances, clearly outperforms model 1, but subsequent additions of
predictors only yield marginal returns.11 Model 3 with an error score of 0.22 performs best in
this setup. These results are encouraging as they demonstrate that the introduced data and
modeling techniques can be used to replicate empirical patterns to some extent. However, the
real test for the presented setup are predictions beyond the sample that the models were fitted
on. Corresponding results can be found in Table 3.

TABLE 2 In-Sample Results Based on Differences Between Normalized Empirical and
Simulated Intensities

Country p(1) pc(2) pca(3) pcaw(4) pcawb(5) pcawbv(6) pwab(7) Random

1 Cote d’Ivoire 0.30 0.29 0.21 0.24 0.28 0.29 0.26 0.36
2 Liberia 0.21 0.14 0.06 0.06 0.07 0.06 0.06 0.28
3 Guinea-Bissau 0.04 0.04 0.04 0.05 0.04 0.05 0.04 0.34
4 Sierra Leone 0.12 0.12 0.12 0.13 0.12 0.12 0.14 0.38
5 Algeria 0.12 0.01 0.01 0.01 0.01 0.01 0.02 0.50
6 Burundi 0.12 0.10 0.10 0.09 0.07 0.07 0.07 0.38
7 Rwanda 0.12 0.12 0.12 0.12 0.15 0.16 0.15 0.39
8 Congo 0.29 0.05 0.04 0.05 0.06 0.06 0.07 0.34
9 DRC 0.34 0.10 0.09 0.09 0.06 0.06 0.11 0.40
10 Chad 0.05 0.05 0.05 0.06 0.05 0.05 0.06 0.46

Sum 1.71 1.02 0.84 0.90 0.91 0.93 0.98 3.84
Normalized 0.45 0.27 0.22 0.23 0.24 0.24 0.26 1.00

10 These results indicate that population numbers are the strongest predictor for the intensity of violence. The
second most important predictor is accessibility measured in the infrastructure-adjusted travel time to the next
major city in the year 2000. Distance to the capital city is the third most relevant predictor.

11 Please refer to the supplementary information for the β-estimates and results from a full model-averaging
setup that shows each variable’s contribution in a series of model specifications.
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Out-of-Sample Prediction

Table 3 shows scores based on the leave-one-out cross-validation setup described in
Cross-Validation section. As one would expect, the cumulative error score across models is
higher than in the in-sample setup (3.90 compared with 3.84). However, the out-of-sample
predictions generally perform surprisingly well: for all but the simple population model, error
scores below 0.3 of the normalized random baseline errors are attained. Interestingly, the lowest
error scores are achieved for models 3, 4, and 7 which only include three to four predictors each.
The slightly lower performance of models 5 and 6 might be due to overfitting. Generally, the
out-of-sample predictions work well and serve as a powerful reminder of the achievements of
geographic and quantitative research on civil conflicts of the last decade. While measuring
deviations between empirical and predicted densities is a good way to quantify the performance
of prediction models, qualitative comparisons as introduced in the next section add another
important angle to the empirical analysis.

Qualitative Comparisons

The final section of this paper shows side by side comparisons of Empirical Densities and
Predictions. For each of the ten countries in the sample, three plots were generated. The plots on
the left show normalized intensity surfaces for the empirical patterns. The columns in the middle
and on the right show model predictions based on model 7, which had the lowest error scores
in the in-sample and out-of-sample predictions. In the middle column, model 7 was fitted
on the country under investigation. In the right column, the cross-validation model based
on the estimates of the remaining cases was used to predict the country under investigation.
The associated legend can be found below the country plots. As seen in Side-By-Side
Comparisons of Empirical Densities and Predictions section, most of the out-of-sample
predictions actually predict high-conflict areas. This is remarkable, as it both underscores
the merit of the used data sets as well as the validity of the chosen modeling approach.
These specific predictions also illustrate the merit of the technology for informing relief
organizations and policy.

But how can we explain the fact that some conflicts are predicted quite well while others are
not? A closer look at the (qualitatively) most obvious mispredictions—Ivory Coast and
Republic of the Congo—can provide some answers. In the Ivorian case, the framework of a

TABLE 3 Cross-Validation Results for Predictions that were Fitted on Nine of the Ten
Countries and then Used to Predict the Remaining Country

Country p(1) pc(2) pca(3) pcaw(4) pcawb(5) pcawbv(6) pwab(7) Random

1 Cote d’Ivoire 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.46
2 Liberia 0.12 0.07 0.06 0.06 0.06 0.06 0.06 0.29
3 Guinea-Bissau 0.04 0.05 0.04 0.04 0.04 0.04 0.04 0.34
4 Sierra Leone 0.21 0.21 0.20 0.20 0.18 0.18 0.19 0.39
5 Algeria 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.51
6 Burundi 0.08 0.07 0.07 0.09 0.09 0.11 0.07 0.39
7 Rwanda 0.10 0.10 0.10 0.11 0.15 0.18 0.12 0.39
8 Congo 0.09 0.09 0.09 0.09 0.10 0.10 0.10 0.35
9 DRC 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.37
10 Chad 0.36 0.15 0.09 0.06 0.08 0.09 0.05 0.40

Sum 1.33 1.06 0.98 0.98 1.04 1.08 0.96 3.90
Normalized 0.34 0.27 0.25 0.25 0.27 0.28 0.25 1.00
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peripheral insurgency slowly advancing toward the center simply does not apply very well.
Instead, ethnic and religious tensions between an predominantly Christian South and a pre-
dominantly Muslim North account for a large fraction of the conflict events (see McGovern
2011). This entailed that the region of high-intensity fighting occurred along an East-West axis,
while the model predictions place it in the northern periphery (see predictions in Side-By-Side
Comparisons of Empirical Densities and Predictions section).

In the case of the Republic of Congo, much of the fighting happened during the height of the
civil war in and around the capital city, Brazzaville. Fearing the outcome of a July 1997
Presidential election, followers of the top candidates Pascal Lissouba and Col. Denis Sassou
Nguesso engaged in an armed struggle over control of the capital (see DeRouen and Heo 2007,
129). While the uprising against then-ruling President Lissouba qualifies as a popular
insurgency given the participation of numerous irregular fighters, Mao’s ([1938] 1967) three-
stage model for peripheral insurgencies fails to apply. Instead of building on a protracted and
peripheral campaign, the warring parties opted for a conflict option that could be better
described as a popular coup d’état. Instead of affecting remote areas, the fallout in political
violence of this conflict clustered around the capital city in the far south of the country.

In contrast, the correctly predicted conflict zone in Burundi emerged from an insurgency that
fits the proposed theoretical framework quite well. As Vorrath (2010, 101) observes “one
specific feature of the Burundian civil war was that the Hutu rebels never seized a larger
territory inside the country, but followed a guerrilla strategy of moving in and out. This was
facilitated by the fact that the Hutu rebel groups had bases abroad, namely in Tanzania and the
Congo.” Arguably, the presence of an international border close to Burundi’s capital city
Bujumbura and the concentration of population in the area were contributing factors to the
clustering of conflict events in the region. In this case, the assumptions underlying the modeling
framework line up with the conflict scenario.

DISCUSSION AND CONCLUSION

Studies of armed conflict have identified a number of geographic conditions that correlate with
guerrilla activity. Both protection from state power in terms of remoteness and the presence of
strategic targets such as population centers affect the probability of armed clashes taking place in
insurgencies. Causal effects of selected spatial covariates have been analyzed by a flurry of recent
publications. However, established effects were only valid for specific spatial units, and only hold
under ceteris paribus conditions. An assessment of the external validity of this research
program has been missing so far. Filling this gap, this paper has used geographic data on conflict as
well as a series of theoretically prominent geographic covariates to predict the spatial distribution of
conflict, both in-sample and out-of-sample. The results clearly communicate to what extent these
variables actually improve predictions in direct comparison with an agnostic baseline: in-sample,
cumulative error scores only amount to 25 percent of the cumulative error of the random baseline.
In out-of-sample predictions, the error scores are slightly higher, but they still only amount to <30
percent of the random baseline error. In qualitative comparisons, the locations of high-intensity
conflict zones are correctly predicted in six out of ten countries. Two countries (Sierra Leone and
the Democratic Republic of the Congo) have two distinct high-intensity conflict areas, and only
one of them is predicted correctly. In the two remaining countries (Ivory Coast and Republic of
Congo) the predictions are incorrect. While more work needs to be done to identify and test
predictors of violence and include more advanced modeling techniques, these results underscore
the external validity of the insights generated by geo-quantitative research on civil conflicts and
their potential merit for real-world applications.
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SIDE-BY-SIDE COMPARISONS OF EMPIRICAL DENSITIES AND PREDICTIONS

Empirical In-sample Out-of-sample

Algeria

Burundi

Chad

Congo

DR Congo

Ivory Coast

Guinea-Bissau

Liberia

Rwanda

Sierra Leone
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