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Abstract

We provide an easy method for the construction of characteristic polynomials of simple ordinary abelian
varieties A of dimension g over a finite field Fq, when q ≥ 4 and 2g = ρb−1(ρ − 1), for some prime ρ ≥ 5
with b ≥ 1. Moreover, we show thatA is absolutely simple if b = 1 and g is prime, butA is not absolutely
simple for any prime ρ ≥ 5 with b > 1.
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1. Introduction

For positive integers g and q, we that say f (t) ∈ Z[t] is a q-polynomial if

f (t) = t2g + a1t2g−1 + · · · + agtg + ag−1qtg−1 + · · · + a1qg−1t + qg

= t2g + agtg + qg +

g−1∑
j=1

aj(t2g−j + qg−jt j), (1.1)

and all zeros of f (t) have modulus q1/2. Not all polynomials of the form (1.1) are
q-polynomials since the condition on the moduli of the zeros of f (t) imposes severe
restrictions on its coefficients. For example,

f (t) = t6 + t5 + t4 + 5t3 + 2t2 + 4t + 8

has the form (1.1) with g = 3 and q = 2, and although f (t) has four zeros with modulus
21/2, f (t) has two real zeros, neither of which has modulus 21/2.

Most likely, D. H. Lehmer [14] in 1932 was the first mathematician to investi-
gate q-polynomials. He was mainly interested in q-polynomials with the property
that all zeros have the form q1/2ζ, for some root of unity ζ. Lehmer called such
polynomials quasi-cyclotomic. Since then, certain q-polynomials, including Lehmer’s
quasi-cyclotomics, have become central to the study of abelian varieties over finite
fields.
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Throughout this paper we let k denote the finite field Fq, where q = pn for some
prime p and positive integer n. It is well known from the Honda–Tate theorem
[10, 18–20] that the isogeny class of an abelian variety A of dimension g over k
is determined by the characteristic polynomial fA(t) ∈ Z[t] of its Frobenius endo-
morphism [18, 20]. With a slight abuse of terminology, we refer here to fA(t) as
the characteristic polynomial of A. It follows from the Weil conjectures [9, 21]
(conjectured in 1949 by Weil and subsequently proven by Dwork [4], Grothendieck
[5], Deligne [2] and others) that fA(t) has the form in (1.1) [17], and all zeros of fA(t)
have modulus q1/2. In other words, fA(t) is a q-polynomial. If a q-polynomial f (t) is
such that f (t) = fA(t), for some abelian variety A over k, then f (t) is called a Weil
polynomial. Not every q-polynomial is a Weil polynomial, since additional restrictions
on the coefficients of fA(t) are imposed by the Honda–Tate theorem. For example, it
is straightforward to verify that

f (t) = t4 + 2t3 + 2t2 + 16t + 64

is an irreducible q-polynomial with g = 2 and q = 8, but f (t) is not the characteristic
polynomial of an abelian variety over k = F8 [15, 16], and so f (t) is not a Weil
polynomial.

REMARK 1.1. We caution the reader that while we have chosen to follow [12] in
making no distinction between Weil polynomials and characteristic polynomials fA(t),
certain authors [7, 8, 15] have given a broader definition for Weil polynomials.

For small dimensions, explicit necessary and sufficient conditions on the coef-
ficients of (1.1) have been given [7, 8, 15–17, 20] to determine which irreducible
q-polynomials actually arise as characteristic polynomials of abelian varieties. Typ-
ically, Newton polygons are useful in the derivation of such conditions. For larger
dimensions, however, this task becomes increasingly difficult and a complete charac-
terisation in arbitrary dimension seems infeasible.

An abelian variety A over k of dimension g is called simple if A has no proper
nontrivial subvarieties over k, and A is called absolutely simple if A is simple over
the algebraic closure of k. Additionally,A is called ordinary if the rank of its group of
p-torsion points over the algebraic closure of k equals g.

It is the purpose of this paper to present an easy method for the construction of
characteristic polynomials fA(t), where A is a simple ordinary abelian variety of
dimension g over k such that q ≥ 4 and 2g = ρb−1(ρ − 1) for some prime ρ ≥ 5 with
b ≥ 1. More precisely, we prove the following result.

THEOREM 1.2. Let ρ ≥ 5 be a prime, let b ≥ 1 be an integer and let 2g = ρb−1(ρ − 1).
Let r be a prime such that r is a primitive root modulo ρ2. Let p be a prime and let n
be a positive integer such that q := pn ≥ 4 and q ≡ 1 (mod r). Let m be an integer such
that m � −1/r (mod p) and

0 ≤ m ≤ 2qρ
b−1/2(qρ

b−1/2 − 1) − 1
r

.

https://doi.org/10.1017/S000497272100006X Published online by Cambridge University Press

https://doi.org/10.1017/S000497272100006X


[3] Characteristic polynomials of abelian varieties 393

Define

f (t) := t2g + (mr + 1)tg + qg +

g−1∑
j=1

aj(t2g−j + qg−jt j), (1.2)

where

aj =

{
1 if j ≡ 0 (mod ρb−1)
0 otherwise for j ∈ {1, 2, . . . , g − 1}. (1.3)

Then f (t) is the characteristic polynomial fA(t) of a simple ordinary abelian variety
A of dimension g over the field k = Fq. Furthermore,

(1) if b = 1 and g is prime, thenA is absolutely simple;
(2) if b > 1 and ρ is arbitrary, thenA is not absolutely simple.

2. Preliminaries

For any integer N ≥ 1, let ΦN(x) denote the cyclotomic polynomial of index N.

THEOREM 2.1 [6]. Let r be a prime such that r � n. Let ordn(r) denote the order
of r modulo n. Then Φn(x) factors modulo r into a product of φ(n)/ ordn(r) distinct
irreducible polynomials, each of degree ordn(r).

COROLLARY 2.2. Let ρ ≥ 3 and r be primes such that r is a primitive root modulo ρ2.
Let b ≥ 1 be an integer. If f (x) ∈ Z[x] is monic with f (x) ≡ Φρb (x) (mod r), then f (x)
is irreducible over Q.

PROOF. Since r is a primitive root modulo ρ2, r is a primitive root modulo ρe for
all e ≥ 1 [1]. That is, ordρe (r) = φ(ρe). Thus, it follows from Theorem 2.1 that f (x) is
irreducible modulo r and hence irreducible over Q. �

DEFINITION 2.3. We say that f (x) ∈ R[x] is reciprocal if f (x) = xdeg f f (1/x).

THEOREM 2.4 [13]. Let N ≥ 2 be an integer and let

PN(x) =
N∑

j=0

cjxj ∈ R[x]

be reciprocal with cN � 0. If there exists δ ∈ R with cNδ ≥ 0 and |cN | ≥ |δ|, such that

|cN + δ| ≥
N−1∑
j=1

|cj + δ − cN |,

then all zeros of PN(x) are on the unit circle.

THEOREM 2.5 [3]. Let n and g be positive integers. Let p be a prime and let q = pn.
Suppose that f (t) ∈ Z[t] is monic with deg( f ) = 2g and that ag is the coefficient of tg.
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If all zeros of f (t) have modulus q1/2 and gcd(ag, p) = 1, then f (t) is the characteristic
polynomial fA(t) of an ordinary abelian varietyA of dimension g over k.

By the Honda–Tate theorem, we have the following result.

THEOREM 2.6 [11, 12]. Let A be an ordinary abelian variety of dimension g over k,
and let fA(t) be the characteristic polynomial of A. Then A is simple if and only if
fA(t) is irreducible.

The following theorem gives an easy test for determining whether a simple ordinary
abelian varietyA of dimension 2 over k is absolutely simple.

THEOREM 2.7 [12, 15]. Let A be a simple ordinary abelian variety of dimension 2
over k with characteristic polynomial fA(t) = t4 + a1t3 + a2t2 + a1qt + q2. Then A is
absolutely simple if and only if a2

1 � {0, q + a2, 2a2, 3a2 − 3q}.

PROPOSITION 2.8 [12, Lemma 5]. Let θ be an algebraic number with minimal
polynomial f ∈ Q[x], and suppose that d is a positive integer such that the field
Q(θd) is a proper subfield of Q(θ) and such that Q(θz) = Q(θ) for all positive integers
z < d. Then either f ∈ Q[xd] or there is a primitive dth root of unity ζd such that
Q(θ) = Q(θd, ζd).

The following theorem addresses when a simple ordinary abelian variety A of
arbitrary dimension over k is absolutely simple.

THEOREM 2.9 [12]. Let A be a simple ordinary abelian variety over k with charac-
teristic polynomial fA(t). Suppose that fA(θ) = 0. Then A is absolutely simple if and
only if Q(θ) = Q(θd) for all integers d > 0.

3. Proof of Theorem 1.2

We first prove that f (t) is a q-polynomial. To accomplish this task, it is enough to
show that all zeros of f (t) have modulus q1/2, since it is obvious that f (t) has the form
(1.1). Let ag := mr + 1. Since

⌊g − 1
ρb−1

⌋
=

g
ρb−1 − 1 =

ρ − 3
2

,

we have from (1.3) that

f (t) = t2g + agtg + qg +

(ρ−3)/2∑
u=1

(t2g−uρb−1
+ qg−uρb−1

tuρb−1
).

Thus

F(t) := f (q1/2t) = qgt2g + qg/2agtg + qg +

(ρ−3)/2∑
u=1

q(2g−uρb−1)/2(t2g−uρb−1
+ tuρb−1

)
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is reciprocal. Let

S = |cN + δ| −
N−1∑
j=1

|cj + δ − cN |,

where N = 2g, cN = δ = qg and cj is the coefficient of t j in F(t), for j = 1, 2, . . . , N − 1.
Then, using the fact that

ag ≤ 2qρ
b−1/2(qρ

b−1/2 − 1),

we have

S = 2qg − 2(q(2g−ρb−1)/2 + q(2g−2ρb−1)/2 + · · · + q(2g−((ρ−3)/2)ρb−1)/2) − agqg/2

= 2qg − 2q(2g−((ρ−3)/2)ρb−1)/2((qρ
b−1/2)(ρ−5)/2 + · · · + qρ

b−1/2 + 1) − agqg/2

= 2qg − 2q(2g−((ρ−3)/2)ρb−1)/2 (qρ
b−1/2)(ρ−3)/2 − 1
qρb−1/2 − 1

− agqg/2

≥ 2qg − 2q(2g−((ρ−3)/2)ρb−1)/2 (qρ
b−1/2)(ρ−3)/2 − 1
qρb−1/2 − 1

− 2qρ
b−1/2(qρ

b−1/2 − 1)qg/2

=
2q(2g+ρb−1)/2 − 4qg − 2q(g+3ρb−1)/2 + 4q(g+2ρb−1)/2

qρb−1/2 − 1

=
2q(g+2ρb−1)/2(q(g−2ρb−1)/2 − 1)(qρ

b−1/2 − 2)

qρb−1/2 − 1
≥ 0,

since g ≥ 2ρb−1 and q ≥ 4. Hence, from Theorem 2.4, all zeros of F(t) are on the unit
circle, and consequently, all zeros of f (t) have modulus q1/2.

We now show that f (t) is a Weil polynomial. In particular, we prove that f (t) = fA(t)
for a simple ordinary abelian variety of dimension g over k. Observe that gcd(ag, p) =
1 since m � −1/r (mod p), and so we deduce from Theorem 2.5 that f (t) = fA(t),
where A is an ordinary abelian variety of dimension g over k. Since r is a primitive
root modulo ρ2 and fA(t) ≡ Φρb (t) (mod r), it follows from Corollary 2.2 that fA(t) is
irreducible over Q. Therefore, since A is ordinary, we conclude that A is simple by
Theorem 2.6.

For part (1), suppose that b = 1 and g is prime. Since all zeros of fA(t) have
modulus q1/2, the only possible real zeros of fA(t) are ±q1/2. Clearly, q1/2 is not a zero
since fA(q1/2) > 0. If fA(−q1/2) = 0, then the zero −q1/2 has even multiplicity since
deg( fA) ≡ 0 (mod 2), which contradicts the fact that fA(t) is separable. Thus, fA(t)
has no real zeros. It follows that Q(θd) is a CM-field for every integer d ≥ 1. By way of
contradiction, assume that d is the smallest positive integer such that Q(θd) is a proper
subfield of Q(θ). Let K be the maximal real subfield of Q(θd), so that [Q(θd) : K] = 2.
Thus, since g is prime, it follows that K = Q and

[Q(θ) : Q(θd)] = g. (3.1)
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Since fA � Q[xd], we conclude from Proposition 2.8 that Q(θ) = Q(θd, ζd) for some
primitive dth root of unity ζd. Hence,

[Q(θ) : Q(θd)] = φ(d). (3.2)

Combining (3.1) and (3.2), we see that φ(d) = g. Consequently, g = 2. In this case we
have from (1.2) that

fA(t) = t4 + t3 + (mr + 1)t2 + qt + q2,

where a1 = 1 and a2 = mr + 1. Thus, it is easy to check from Theorem 2.7 that A
is absolutely simple, and hence Q(θd) = Q(θ) by Theorem 2.9. This contradiction
proves (1).

Finally, to establish (2), suppose that fA(β) = 0. Since b > 1, it follows from (1.2)
and the irreducibility of fA(t) that the minimal polynomial of βρ

b−1
has degree ρ − 1.

Hence, Q(βρ
b−1

) � Q(β), andA is not absolutely simple by Theorem 2.9.

4. Examples

We give two examples to illustrate Theorem 1.2. The first example, with b = 1,
gives the characteristic polynomial of an absolutely simple ordinary abelian variety
A of dimension 3 over F112 . The second example, with b = 3, gives the characteristic
polynomial of an ordinary abelian varietyA of dimension 50 over F7, which is simple
but not absolutely simple.

EXAMPLE 4.1. Let b = 1 and ρ = 7, so that g = 3 is prime. Since ord49(5) = 42 =
φ(49), we see that r = 5 is a prime primitive root modulo ρ2. Let n = 2 and p = 11.
Then q = 112 ≡ 1 (mod 5). Finally, we choose m = 1, noting that

m � −1/r ≡ −1/5 ≡ 2 (mod 11).

Thus, mr + 1 = 6. Since ρb−1 = 1, we have aj = 1 for j ∈ {1, 2} in (1.3). Therefore,

fA(t) = t6 + 6t3 + (112)3 +

2∑
j=1

(t6−j + (112)3−jt j)

= t6 + t5 + t4 + 6t3 + 112t2 + (112)2t + (112)3

= t6 + t5 + t4 + 6t3 + 121t2 + 14641t + 1771561.

EXAMPLE 4.2. Let b = 3 and ρ = 5, so that g = ρ2(ρ − 1)/2 = 50. Since ord25(2) =
20 = φ(25), we see that r = 2 is a prime primitive root modulo ρ2. Let n = 1 and p = 7.
Then q = 7 ≡ 1 (mod 2). Finally, we choose m = 9, noting that

m ≡ 2 � 3 ≡ −1/2 ≡ −1/r (mod 7).

Thus, mr + 1 = 19. Since ρb−1 = 25, it follows that aj = 1 for j = 25 and aj = 0 for
j ∈ {1, 2, . . . , 49} \ {25} in (1.3). Therefore,

fA(t) = t100 + t75 + 19t50 + 725t25 + 750.
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