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Abstract

We provide an easy method for the construction of characteristic polynomials of simple ordinary abelian
varieties A of dimension g over a finite field F,, when ¢ > 4 and 2g = p?~!(p — 1), for some prime p > 5
with b > 1. Moreover, we show that (A is absolutely simple if » = 1 and g is prime, but A is not absolutely
simple for any prime p > 5 with b > 1.
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1. Introduction
For positive integers g and g, we that say f(¢) € Z[¢] is a g-polynomial if
FO=1+a1® "+t a f +ag gt + o+ ar gt + g8
g-1
=18+ aff + ¢ + Z a (P87 + gt t), (L)
=1

and all zeros of f(f) have modulus ¢'/?. Not all polynomials of the form (1.1) are

g-polynomials since the condition on the moduli of the zeros of f(f) imposes severe
restrictions on its coefficients. For example,

fO =0+ ++52 +2 +41+8

has the form (1.1) with g = 3 and ¢ = 2, and although f(¥) has four zeros with modulus
2172 (1) has two real zeros, neither of which has modulus 2!/2.

Most likely, D. H. Lehmer [14] in 1932 was the first mathematician to investi-
gate g-polynomials. He was mainly interested in g-polynomials with the property
that all zeros have the form ¢'/?Z, for some root of unity /. Lehmer called such
polynomials quasi-cyclotomic. Since then, certain g-polynomials, including Lehmer’s
quasi-cyclotomics, have become central to the study of abelian varieties over finite
fields.
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Throughout this paper we let k denote the finite field F,, where g = p” for some
prime p and positive integer n. It is well known from the Honda-Tate theorem
[10, 18-20] that the isogeny class of an abelian variety ‘A of dimension g over k
is determined by the characteristic polynomial f#(?) € Z[f] of its Frobenius endo-
morphism [18, 20]. With a slight abuse of terminology, we refer here to f#(¢) as
the characteristic polynomial of A. It follows from the Weil conjectures [9, 21]
(conjectured in 1949 by Weil and subsequently proven by Dwork [4], Grothendieck
[5], Deligne [2] and others) that f#(#) has the form in (1.1) [17], and all zeros of f#()
have modulus ¢'/2. In other words, f(f) is a g-polynomial. If a g-polynomial f(¢) is
such that f(r) = fa(1), for some abelian variety A over k, then f(¢) is called a Weil
polynomial. Not every g-polynomial is a Weil polynomial, since additional restrictions
on the coefficients of fx(¢) are imposed by the Honda—Tate theorem. For example, it
is straightforward to verify that

f)=1*+2 + 26 + 161 + 64

is an irreducible g-polynomial with g = 2 and g = 8, but f(¢) is not the characteristic
polynomial of an abelian variety over k = Fg [15, 16], and so f(¢) is not a Weil
polynomial.

REMARK 1.1. We caution the reader that while we have chosen to follow [12] in
making no distinction between Weil polynomials and characteristic polynomials f#(%),
certain authors [7, 8, 15] have given a broader definition for Weil polynomials.

For small dimensions, explicit necessary and sufficient conditions on the coef-
ficients of (1.1) have been given [7, 8, 15-17, 20] to determine which irreducible
g-polynomials actually arise as characteristic polynomials of abelian varieties. Typ-
ically, Newton polygons are useful in the derivation of such conditions. For larger
dimensions, however, this task becomes increasingly difficult and a complete charac-
terisation in arbitrary dimension seems infeasible.

An abelian variety A over k of dimension g is called simple if A has no proper
nontrivial subvarieties over k, and A is called absolutely simple if A is simple over
the algebraic closure of k. Additionally, A is called ordinary if the rank of its group of
p-torsion points over the algebraic closure of k equals g.

It is the purpose of this paper to present an easy method for the construction of
characteristic polynomials f#(#), where A is a simple ordinary abelian variety of
dimension g over k such that ¢ > 4 and 2g = p”~!(p — 1) for some prime p > 5 with
b > 1. More precisely, we prove the following result.

THEOREM 1.2. Let p > 5 be a prime, let b > 1 be an integer and let 2g = p"~'(p — 1).
Let r be a prime such that r is a primitive root modulo p*. Let p be a prime and let n
be a positive integer such that q := p" > 4 and g = 1 (mod r). Let m be an integer such
that m # —1/r (mod p) and

quh—l/z(qph—l/z _ 1) _ l
- .

0<m<
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Define
g-1
F@) =254 Omr + D+ g5+ a(1%57 + g, (1.2)
j=1
where
1 ifj =0 (modp’! .
aj:{() gtézerwige ) forjeil,2,....g = 1. (1.3)

Then f(t) is the characteristic polynomial f#(t) of a simple ordinary abelian variety
A of dimension g over the field k = F,. Furthermore,

(1) ifb=1and g is prime, then A is absolutely simple;
(2) ifb> 1and p is arbitrary, then A is not absolutely simple.

2. Preliminaries
For any integer N > 1, let @y (x) denote the cyclotomic polynomial of index N.

THEOREM 2.1 [6]. Let r be a prime such that r { n. Let ord,(r) denote the order
of r modulo n. Then ®,(x) factors modulo r into a product of ¢(n)/ ord,(r) distinct
irreducible polynomials, each of degree ord,(r).

COROLLARY 2.2. Let p > 3 and r be primes such that r is a primitive root modulo p?.
Let b > 1 be an integer. If f(x) € Z[x] is monic with f(x) = ®,(x) (mod r), then f(x)
is irreducible over Q.

PROOF. Since r is a primitive root modulo p?, r is a primitive root modulo p¢ for
all e > 1 [1]. That is, ord,.(r) = ¢(p°). Thus, it follows from Theorem 2.1 that f(x) is
irreducible modulo r and hence irreducible over Q. O

DEFINITION 2.3. We say that f(x) € R[x] is reciprocal if f(x) = x%&/ f(1/x).

THEOREM 2.4 [13]. Let N > 2 be an integer and let
N .
Pyn(x) = cix' € R[x]
j=0

be reciprocal with cy # 0. If there exists 6 € R with cy6 > 0 and |cy| = |0], such that

N-1

ICN+6| > Z|0j+6—CN|,
J=1

then all zeros of Py(x) are on the unit circle.

n

THEOREM 2.5 [3]. Let n and g be positive integers. Let p be a prime and let g = p".
Suppose that f(t) € Z[t] is monic with deg(f) = 2g and that a, is the coefficient of 8.
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If all zeros of f(t) have modulus q''* and ged(ag, p) = 1, then f(t) is the characteristic
polynomial f#(t) of an ordinary abelian variety A of dimension g over k.

By the Honda-Tate theorem, we have the following result.

THEOREM 2.6 [11, 12]. Let A be an ordinary abelian variety of dimension g over k,
and let f#(t) be the characteristic polynomial of A. Then A is simple if and only if
fa(t) is irreducible.

The following theorem gives an easy test for determining whether a simple ordinary
abelian variety A of dimension 2 over k& is absolutely simple.

THEOREM 2.7 [12, 15]. Let A be a simple ordinary abelian variety of dimension 2
over k with characteristic polynomial fz(t) = t* + a1’ + ayt* + aiqt + ¢*. Then A is
absolutely simple if and only ifa% ¢ {0,q + az,2ay,3a; — 3q}.

PROPOSITION 2.8 [12, Lemma 5]. Let 6 be an algebraic number with minimal
polynomial f € Q[x], and suppose that d is a positive integer such that the field
Q(#) is a proper subfield of Q(0) and such that Q(6%) = Q(6) for all positive integers
z <d. Then either f € Q[x?] or there is a primitive dth root of unity {; such that
Q(0) = QE“, Za).

The following theorem addresses when a simple ordinary abelian variety A of
arbitrary dimension over k is absolutely simple.

THEOREM 2.9 [12]. Let A be a simple ordinary abelian variety over k with charac-
teristic polynomial f#(t). Suppose that f#(0) = 0. Then A is absolutely simple if and
only if Q(0) = Q(8%) for all integers d > 0.

3. Proof of Theorem 1.2

We first prove that f(¢) is a g-polynomial. To accomplish this task, it is enough to
show that all zeros of f(f) have modulus ¢'/?, since it is obvious that f(¢) has the form
(1.1). Let ay := mr + 1. Since

g-l1_& ,_p=3
pb-1 _ph—l )

>

we have from (1.3) that

(p-3)2
b-1 b—1 b-1
f(O) =175 + a,t® + ¢f + Z (P87 g 0,
u=1

Thus

(p=3)/2
F(t) := £(q"%1) = g5 + ¢*%a,t® + ¢ + Z qRs w2 (2w e

u=1
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is reciprocal. Let

N-1

S:|CN+5|—Z|C]‘+6—CN|,
)

where N = 2g, cy = 6 = ¢® and ¢; is the coefficient of t/ in F(¢), forj=12,....N—-1.
Then, using the fact that

a, <2¢" (g7 - 1),
we have
S =2g°% - 2(61(28—0[”1)/2 + q(2g—2ﬂb")/2 +oeee 4 q(Zg—((P—3)/2)pb’])/2) _ agqg/Z
=2g% - 2q(2g—((P—3)/2)pb‘l)/2((qpb‘l/2)(p—5)/2 +eet qp"‘l/2 +1)- agqg/2
b1y (qpb“/Z)(p—3)/2 -1

o 20—((0=3)/2 0/2
= Zqé _ Zq( g—((0—=3)/2)p qp/kl/z — 1 — angg/
b=1/27(p-3)/2
—((— b—1 (qp / ) -1 b-1 b—1
> 28 — 2qe=(=312p" D12 T 207 R~ g

2g8P" N2 _ g8 — 243072 4 448422

qpb—]/z _1
~ 242" N12(g6=2"N/2 _ 1y(gf" 12 — 2)

qpb—l/z -1
>0,

since g > 2p"~! and g > 4. Hence, from Theorem 2.4, all zeros of F(¢) are on the unit
circle, and consequently, all zeros of f() have modulus g'/%.

We now show that f() is a Weil polynomial. In particular, we prove that f(z) = fx(?)
for a simple ordinary abelian variety of dimension g over k. Observe that gcd(ag, p) =
1 since m # —1/r (mod p), and so we deduce from Theorem 2.5 that f(¢) = fa(t),
where A is an ordinary abelian variety of dimension g over k. Since r is a primitive
root modulo p? and fx(f) = @, (1) (mod r), it follows from Corollary 2.2 that f#() is
irreducible over Q. Therefore, since A is ordinary, we conclude that A is simple by
Theorem 2.6.

For part (1), suppose that b =1 and g is prime. Since all zeros of f#(¢) have
modulus ¢'/?, the only possible real zeros of f(t) are +q'/>. Clearly, ¢'/ is not a zero
since fa(q'’?) > 0. If fa(—q'/?) = 0, then the zero —¢g'/? has even multiplicity since
deg(f#) = 0 (mod 2), which contradicts the fact that fz(¢) is separable. Thus, f#(f)
has no real zeros. It follows that Q(6%) is a CM-field for every integer d > 1. By way of
contradiction, assume that d is the smallest positive integer such that Q(6%) is a proper
subfield of Q(6). Let K be the maximal real subfield of Q(6%), so that [Q(6?) : K] = 2.
Thus, since g is prime, it follows that K = Q and

[Q®) : Q)] = g. 3.1)
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Since f4 ¢ Q[x“], we conclude from Proposition 2.8 that Q(8) = Q(6%, ¢,) for some
primitive dth root of unity ;. Hence,

[Q©) : Q1] = ¢(d). (3.2)
Combining (3.1) and (3.2), we see that ¢(d) = g. Consequently, g = 2. In this case we
have from (1.2) that
fa®) =+ + (mr+ D + gt + ¢,

where a; = 1 and a, = mr + 1. Thus, it is easy to check from Theorem 2.7 that A
is absolutely simple, and hence Q(#¢) = Q(f) by Theorem 2.9. This contradiction
proves (1).

Finally, to establish (2), suppose that f#(8) = 0. Since b > 1, it follows from (1.2)
and the irreducibility of fz(¢) that the minimal polynomial of " has degree p — 1.
Hence, Q(BPH) # Q(B), and A is not absolutely simple by Theorem 2.9.

4. Examples

We give two examples to illustrate Theorem 1.2. The first example, with b = 1,
gives the characteristic polynomial of an absolutely simple ordinary abelian variety
A of dimension 3 over Fj;.. The second example, with b = 3, gives the characteristic
polynomial of an ordinary abelian variety A of dimension 50 over F7, which is simple
but not absolutely simple.

EXAMPLE 4.1. Let b=1 and p =7, so that g = 3 is prime. Since ordy(5) =42 =
#(49), we see that » = 5 is a prime primitive root modulo p?. Let n = 2 and p = 11.
Then g = 117 = 1 (mod 5). Finally, we choose m = 1, noting that

m#—1/r=-1/5=2(mod 11).

Thus, mr + 1 = 6. Since pb‘1 = 1, we have a; = 1 for j € {1, 2} in (1.3). Therefore,

2
fa®) =1+ 68 + (1133 + Z(ﬁ—f + (112374
j=1
=+ +4 468 + 1122 + (115)% + (1173
=+ + 4+ 68 + 1217 + 14641t + 1771561.

EXAMPLE 4.2. Let b=3 and p = 5, so that g = p*(p — 1)/2 = 50. Since ord»s(2) =
20 = ¢(25), we see that = 2 is a prime primitive root modulo p?. Letn = 1 and p = 7.
Then g = 7 = 1 (mod 2). Finally, we choose m = 9, noting that

m=2#3=-1/2=-1/r (mod 7).

Thus, mr + 1 = 19. Since p”~! = 25, it follows that a; = 1 for j = 25 and a; = 0 for
je{l,2,...,49}\ {25} in (1.3). Therefore,

fa(®) = 1'% + 7 41990 + 725625 4 759,
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