Bull. Aust. Math. Soc. **104** (2021), 391–397 doi:10.1017/S000497272100006X

CHARACTERISTIC POLYNOMIALS OF SIMPLE ORDINARY ABELIAN VARIETIES OVER FINITE FIELDS

LENNY JONES

(Received 1 December 2020; accepted 15 January 2021; first published online 19 February 2021)

Abstract

We provide an easy method for the construction of characteristic polynomials of simple ordinary abelian varieties \mathcal{A} of dimension g over a finite field \mathbb{F}_q , when $q \ge 4$ and $2g = \rho^{b-1}(\rho - 1)$, for some prime $\rho \ge 5$ with $b \ge 1$. Moreover, we show that \mathcal{A} is absolutely simple if b = 1 and g is prime, but \mathcal{A} is not absolutely simple for any prime $\rho \ge 5$ with b > 1.

2020 Mathematics subject classification: primary 11G25; secondary 14G15, 14K05.

Keywords and phrases: simple ordinary abelian variety, absolutely simple abelian variety, finite field, characteristic polynomial.

1. Introduction

For positive integers g and q, we that say $f(t) \in \mathbb{Z}[t]$ is a q-polynomial if

$$f(t) = t^{2g} + a_1 t^{2g-1} + \dots + a_g t^g + a_{g-1} q t^{g-1} + \dots + a_1 q^{g-1} t + q^g$$

= $t^{2g} + a_g t^g + q^g + \sum_{j=1}^{g-1} a_j (t^{2g-j} + q^{g-j} t^j),$ (1.1)

and all zeros of f(t) have modulus $q^{1/2}$. Not all polynomials of the form (1.1) are q-polynomials since the condition on the moduli of the zeros of f(t) imposes severe restrictions on its coefficients. For example,

$$f(t) = t^6 + t^5 + t^4 + 5t^3 + 2t^2 + 4t + 8$$

has the form (1.1) with g = 3 and q = 2, and although f(t) has four zeros with modulus $2^{1/2}$, f(t) has two real zeros, neither of which has modulus $2^{1/2}$.

Most likely, D. H. Lehmer [14] in 1932 was the first mathematician to investigate *q*-polynomials. He was mainly interested in *q*-polynomials with the property that all zeros have the form $q^{1/2}\zeta$, for some root of unity ζ . Lehmer called such polynomials *quasi-cyclotomic*. Since then, certain *q*-polynomials, including Lehmer's quasi-cyclotomics, have become central to the study of abelian varieties over finite fields.

^{© 2021} Australian Mathematical Publishing Association Inc.

L. Jones

Throughout this paper we let k denote the finite field \mathbb{F}_q , where $q = p^n$ for some prime p and positive integer n. It is well known from the Honda–Tate theorem [10, 18–20] that the isogeny class of an abelian variety \mathcal{A} of dimension g over k is determined by the characteristic polynomial $f_{\mathcal{A}}(t) \in \mathbb{Z}[t]$ of its Frobenius endomorphism [18, 20]. With a slight abuse of terminology, we refer here to $f_{\mathcal{A}}(t)$ as the *characteristic polynomial of* \mathcal{A} . It follows from the Weil conjectures [9, 21] (conjectured in 1949 by Weil and subsequently proven by Dwork [4], Grothendieck [5], Deligne [2] and others) that $f_{\mathcal{A}}(t)$ has the form in (1.1) [17], and all zeros of $f_{\mathcal{A}}(t)$ have modulus $q^{1/2}$. In other words, $f_{\mathcal{A}}(t)$ is a q-polynomial. If a q-polynomial f(t) is such that $f(t) = f_{\mathcal{A}}(t)$, for some abelian variety \mathcal{A} over k, then f(t) is called a *Weil polynomial*. Not every q-polynomial is a Weil polynomial, since additional restrictions on the coefficients of $f_{\mathcal{A}}(t)$ are imposed by the Honda–Tate theorem. For example, it is straightforward to verify that

$$f(t) = t^4 + 2t^3 + 2t^2 + 16t + 64$$

is an irreducible q-polynomial with g = 2 and q = 8, but f(t) is not the characteristic polynomial of an abelian variety over $k = \mathbb{F}_8$ [15, 16], and so f(t) is not a Weil polynomial.

REMARK 1.1. We caution the reader that while we have chosen to follow [12] in making no distinction between Weil polynomials and characteristic polynomials $f_{\mathcal{A}}(t)$, certain authors [7, 8, 15] have given a broader definition for Weil polynomials.

For small dimensions, explicit necessary and sufficient conditions on the coefficients of (1.1) have been given [7, 8, 15–17, 20] to determine which irreducible *q*-polynomials actually arise as characteristic polynomials of abelian varieties. Typically, Newton polygons are useful in the derivation of such conditions. For larger dimensions, however, this task becomes increasingly difficult and a complete characterisation in arbitrary dimension seems infeasible.

An abelian variety \mathcal{A} over k of dimension g is called *simple* if \mathcal{A} has no proper nontrivial subvarieties over k, and \mathcal{A} is called *absolutely simple* if \mathcal{A} is simple over the algebraic closure of k. Additionally, \mathcal{A} is called *ordinary* if the rank of its group of p-torsion points over the algebraic closure of k equals g.

It is the purpose of this paper to present an easy method for the construction of characteristic polynomials $f_{\mathcal{A}}(t)$, where \mathcal{A} is a simple ordinary abelian variety of dimension g over k such that $q \ge 4$ and $2g = \rho^{b-1}(\rho - 1)$ for some prime $\rho \ge 5$ with $b \ge 1$. More precisely, we prove the following result.

THEOREM 1.2. Let $\rho \ge 5$ be a prime, let $b \ge 1$ be an integer and let $2g = \rho^{b-1}(\rho - 1)$. Let *r* be a prime such that *r* is a primitive root modulo ρ^2 . Let *p* be a prime and let *n* be a positive integer such that $q := p^n \ge 4$ and $q \equiv 1 \pmod{r}$. Let *m* be an integer such that $m \not\equiv -1/r \pmod{p}$ and

$$0 \le m \le \frac{2q^{\rho^{b^{-1}/2}}(q^{\rho^{b^{-1}/2}}-1)-1}{r}.$$

Define

$$f(t) := t^{2g} + (mr+1)t^g + q^g + \sum_{j=1}^{g-1} a_j(t^{2g-j} + q^{g-j}t^j),$$
(1.2)

where

$$a_j = \begin{cases} 1 & \text{if } j \equiv 0 \pmod{\rho^{b-1}} \\ 0 & \text{otherwise} \end{cases} \quad \text{for } j \in \{1, 2, \dots, g-1\}. \tag{1.3}$$

Then f(t) is the characteristic polynomial $f_{\mathcal{A}}(t)$ of a simple ordinary abelian variety \mathcal{A} of dimension g over the field $k = \mathbb{F}_q$. Furthermore,

- (1) if b = 1 and g is prime, then \mathcal{A} is absolutely simple;
- (2) if b > 1 and ρ is arbitrary, then \mathcal{A} is not absolutely simple.

2. Preliminaries

For any integer $N \ge 1$, let $\Phi_N(x)$ denote the cyclotomic polynomial of index N.

THEOREM 2.1 [6]. Let r be a prime such that $r \nmid n$. Let $\operatorname{ord}_n(r)$ denote the order of r modulo n. Then $\Phi_n(x)$ factors modulo r into a product of $\phi(n)/\operatorname{ord}_n(r)$ distinct irreducible polynomials, each of degree $\operatorname{ord}_n(r)$.

COROLLARY 2.2. Let $\rho \ge 3$ and r be primes such that r is a primitive root modulo ρ^2 . Let $b \ge 1$ be an integer. If $f(x) \in \mathbb{Z}[x]$ is monic with $f(x) \equiv \Phi_{\rho^b}(x) \pmod{r}$, then f(x) is irreducible over \mathbb{Q} .

PROOF. Since *r* is a primitive root modulo ρ^2 , *r* is a primitive root modulo ρ^e for all $e \ge 1$ [1]. That is, $\operatorname{ord}_{\rho^e}(r) = \phi(\rho^e)$. Thus, it follows from Theorem 2.1 that f(x) is irreducible modulo *r* and hence irreducible over \mathbb{Q} .

DEFINITION 2.3. We say that $f(x) \in \mathbb{R}[x]$ is *reciprocal* if $f(x) = x^{\deg f} f(1/x)$.

THEOREM 2.4 [13]. Let $N \ge 2$ be an integer and let

$$P_N(x) = \sum_{j=0}^N c_j x^j \in \mathbb{R}[x]$$

be reciprocal with $c_N \neq 0$. If there exists $\delta \in \mathbb{R}$ with $c_N \delta \geq 0$ and $|c_N| \geq |\delta|$, such that

$$|c_N + \delta| \ge \sum_{j=1}^{N-1} |c_j + \delta - c_N|,$$

then all zeros of $P_N(x)$ are on the unit circle.

THEOREM 2.5 [3]. Let *n* and *g* be positive integers. Let *p* be a prime and let $q = p^n$. Suppose that $f(t) \in \mathbb{Z}[t]$ is monic with $\deg(f) = 2g$ and that a_g is the coefficient of t^g .

[3]

L. Jones

If all zeros of f(t) have modulus $q^{1/2}$ and $gcd(a_g, p) = 1$, then f(t) is the characteristic polynomial $f_{\mathcal{A}}(t)$ of an ordinary abelian variety \mathcal{A} of dimension g over k.

By the Honda-Tate theorem, we have the following result.

THEOREM 2.6 [11, 12]. Let \mathcal{A} be an ordinary abelian variety of dimension g over k, and let $f_{\mathcal{A}}(t)$ be the characteristic polynomial of \mathcal{A} . Then \mathcal{A} is simple if and only if $f_{\mathcal{A}}(t)$ is irreducible.

The following theorem gives an easy test for determining whether a simple ordinary abelian variety \mathcal{A} of dimension 2 over *k* is absolutely simple.

THEOREM 2.7 [12, 15]. Let \mathcal{A} be a simple ordinary abelian variety of dimension 2 over k with characteristic polynomial $f_{\mathcal{A}}(t) = t^4 + a_1t^3 + a_2t^2 + a_1qt + q^2$. Then \mathcal{A} is absolutely simple if and only if $a_1^2 \notin \{0, q + a_2, 2a_2, 3a_2 - 3q\}$.

PROPOSITION 2.8 [12, Lemma 5]. Let θ be an algebraic number with minimal polynomial $f \in \mathbb{Q}[x]$, and suppose that d is a positive integer such that the field $\mathbb{Q}(\theta^d)$ is a proper subfield of $\mathbb{Q}(\theta)$ and such that $\mathbb{Q}(\theta^z) = \mathbb{Q}(\theta)$ for all positive integers z < d. Then either $f \in \mathbb{Q}[x^d]$ or there is a primitive dth root of unity ζ_d such that $\mathbb{Q}(\theta) = \mathbb{Q}(\theta^d, \zeta_d)$.

The following theorem addresses when a simple ordinary abelian variety \mathcal{A} of arbitrary dimension over k is absolutely simple.

THEOREM 2.9 [12]. Let \mathcal{A} be a simple ordinary abelian variety over k with characteristic polynomial $f_{\mathcal{A}}(t)$. Suppose that $f_{\mathcal{A}}(\theta) = 0$. Then \mathcal{A} is absolutely simple if and only if $\mathbb{Q}(\theta) = \mathbb{Q}(\theta^d)$ for all integers d > 0.

3. Proof of Theorem 1.2

We first prove that f(t) is a q-polynomial. To accomplish this task, it is enough to show that all zeros of f(t) have modulus $q^{1/2}$, since it is obvious that f(t) has the form (1.1). Let $a_g := mr + 1$. Since

$$\left\lfloor \frac{g-1}{\rho^{b-1}} \right\rfloor = \frac{g}{\rho^{b-1}} - 1 = \frac{\rho - 3}{2}$$

we have from (1.3) that

$$f(t) = t^{2g} + a_g t^g + q^g + \sum_{u=1}^{(\rho-3)/2} (t^{2g-u\rho^{b-1}} + q^{g-u\rho^{b-1}} t^{u\rho^{b-1}}).$$

Thus

$$F(t) := f(q^{1/2}t) = q^{g}t^{2g} + q^{g/2}a_{g}t^{g} + q^{g} + \sum_{u=1}^{(\rho-3)/2} q^{(2g-u\rho^{b-1})/2}(t^{2g-u\rho^{b-1}} + t^{u\rho^{b-1}})$$

is reciprocal. Let

$$S = |c_N + \delta| - \sum_{j=1}^{N-1} |c_j + \delta - c_N|,$$

where N = 2g, $c_N = \delta = q^g$ and c_j is the coefficient of t^j in F(t), for j = 1, 2, ..., N - 1. Then, using the fact that

$$a_g \le 2q^{\rho^{b-1/2}}(q^{\rho^{b-1/2}}-1)$$

we have

$$\begin{split} S &= 2q^g - 2(q^{(2g-\rho^{b-1})/2} + q^{(2g-2\rho^{b-1})/2} + \dots + q^{(2g-((\rho-3)/2)\rho^{b-1})/2}) - a_g q^{g/2} \\ &= 2q^g - 2q^{(2g-((\rho-3)/2)\rho^{b-1})/2} ((q^{\rho^{b-1}/2})^{(\rho-5)/2} + \dots + q^{\rho^{b-1}/2} + 1) - a_g q^{g/2} \\ &= 2q^g - 2q^{(2g-((\rho-3)/2)\rho^{b-1})/2} \frac{(q^{\rho^{b-1}/2})^{(\rho-3)/2} - 1}{q^{\rho^{b-1}/2} - 1} - a_g q^{g/2} \\ &\geq 2q^g - 2q^{(2g-((\rho-3)/2)\rho^{b-1})/2} \frac{(q^{\rho^{b-1}/2})^{(\rho-3)/2} - 1}{q^{\rho^{b-1}/2} - 1} - 2q^{\rho^{b-1}/2} (q^{\rho^{b-1}/2} - 1)q^{g/2} \\ &= \frac{2q^{(2g+\rho^{b-1})/2} - 4q^g - 2q^{(g+3\rho^{b-1})/2} + 4q^{(g+2\rho^{b-1})/2}}{q^{\rho^{b-1}/2} - 1} \\ &= \frac{2q^{(g+2\rho^{b-1})/2} (q^{(g-2\rho^{b-1})/2} - 1)(q^{\rho^{b-1}/2} - 2)}{q^{\rho^{b-1}/2} - 1} \\ &\geq 0, \end{split}$$

since $g \ge 2\rho^{b-1}$ and $q \ge 4$. Hence, from Theorem 2.4, all zeros of F(t) are on the unit circle, and consequently, all zeros of f(t) have modulus $q^{1/2}$.

We now show that f(t) is a Weil polynomial. In particular, we prove that $f(t) = f_{\mathcal{A}}(t)$ for a simple ordinary abelian variety of dimension g over k. Observe that $gcd(a_g, p) =$ 1 since $m \not\equiv -1/r \pmod{p}$, and so we deduce from Theorem 2.5 that $f(t) = f_{\mathcal{A}}(t)$, where \mathcal{A} is an ordinary abelian variety of dimension g over k. Since r is a primitive root modulo ρ^2 and $f_{\mathcal{A}}(t) \equiv \Phi_{\rho^b}(t) \pmod{r}$, it follows from Corollary 2.2 that $f_{\mathcal{A}}(t)$ is irreducible over \mathbb{Q} . Therefore, since \mathcal{A} is ordinary, we conclude that \mathcal{A} is simple by Theorem 2.6.

For part (1), suppose that b = 1 and g is prime. Since all zeros of $f_{\mathcal{A}}(t)$ have modulus $q^{1/2}$, the only possible real zeros of $f_{\mathcal{A}}(t)$ are $\pm q^{1/2}$. Clearly, $q^{1/2}$ is not a zero since $f_{\mathcal{A}}(q^{1/2}) > 0$. If $f_{\mathcal{A}}(-q^{1/2}) = 0$, then the zero $-q^{1/2}$ has even multiplicity since $\deg(f_{\mathcal{A}}) \equiv 0 \pmod{2}$, which contradicts the fact that $f_{\mathcal{A}}(t)$ is separable. Thus, $f_{\mathcal{A}}(t)$ has no real zeros. It follows that $\mathbb{Q}(\theta^d)$ is a CM-field for every integer $d \ge 1$. By way of contradiction, assume that d is the smallest positive integer such that $\mathbb{Q}(\theta^d)$ is a proper subfield of $\mathbb{Q}(\theta)$. Let K be the maximal real subfield of $\mathbb{Q}(\theta^d)$, so that $[\mathbb{Q}(\theta^d) : K] = 2$. Thus, since g is prime, it follows that $K = \mathbb{Q}$ and

$$[\mathbb{Q}(\theta):\mathbb{Q}(\theta^d)] = g. \tag{3.1}$$

L. Jones

Since $f_A \notin \mathbb{Q}[x^d]$, we conclude from Proposition 2.8 that $\mathbb{Q}(\theta) = \mathbb{Q}(\theta^d, \zeta_d)$ for some primitive *d*th root of unity ζ_d . Hence,

$$[\mathbb{Q}(\theta) : \mathbb{Q}(\theta^d)] = \phi(d). \tag{3.2}$$

Combining (3.1) and (3.2), we see that $\phi(d) = g$. Consequently, g = 2. In this case we have from (1.2) that

$$f_{\mathcal{A}}(t) = t^4 + t^3 + (mr+1)t^2 + qt + q^2,$$

where $a_1 = 1$ and $a_2 = mr + 1$. Thus, it is easy to check from Theorem 2.7 that \mathcal{A} is absolutely simple, and hence $\mathbb{Q}(\theta^d) = \mathbb{Q}(\theta)$ by Theorem 2.9. This contradiction proves (1).

Finally, to establish (2), suppose that $f_{\mathcal{A}}(\beta) = 0$. Since b > 1, it follows from (1.2) and the irreducibility of $f_{\mathcal{A}}(t)$ that the minimal polynomial of $\beta^{\rho^{b-1}}$ has degree $\rho - 1$. Hence, $\mathbb{Q}(\beta^{\rho^{b-1}}) \neq \mathbb{Q}(\beta)$, and \mathcal{A} is not absolutely simple by Theorem 2.9.

4. Examples

We give two examples to illustrate Theorem 1.2. The first example, with b = 1, gives the characteristic polynomial of an absolutely simple ordinary abelian variety \mathcal{A} of dimension 3 over \mathbb{F}_{11^2} . The second example, with b = 3, gives the characteristic polynomial of an ordinary abelian variety \mathcal{A} of dimension 50 over \mathbb{F}_7 , which is simple but not absolutely simple.

EXAMPLE 4.1. Let b = 1 and $\rho = 7$, so that g = 3 is prime. Since $\operatorname{ord}_{49}(5) = 42 = \phi(49)$, we see that r = 5 is a prime primitive root modulo ρ^2 . Let n = 2 and p = 11. Then $q = 11^2 \equiv 1 \pmod{5}$. Finally, we choose m = 1, noting that

$$m \not\equiv -1/r \equiv -1/5 \equiv 2 \pmod{11}.$$

Thus, mr + 1 = 6. Since $\rho^{b-1} = 1$, we have $a_i = 1$ for $j \in \{1, 2\}$ in (1.3). Therefore,

$$f_{\mathcal{A}}(t) = t^{6} + 6t^{3} + (11^{2})^{3} + \sum_{j=1}^{2} (t^{6-j} + (11^{2})^{3-j}t^{j})$$

= $t^{6} + t^{5} + t^{4} + 6t^{3} + 11^{2}t^{2} + (11^{2})^{2}t + (11^{2})^{3}$
= $t^{6} + t^{5} + t^{4} + 6t^{3} + 121t^{2} + 14641t + 1771561.$

EXAMPLE 4.2. Let b = 3 and $\rho = 5$, so that $g = \rho^2(\rho - 1)/2 = 50$. Since $\operatorname{ord}_{25}(2) = 20 = \phi(25)$, we see that r = 2 is a prime primitive root modulo ρ^2 . Let n = 1 and p = 7. Then $q = 7 \equiv 1 \pmod{2}$. Finally, we choose m = 9, noting that

$$m \equiv 2 \not\equiv 3 \equiv -1/2 \equiv -1/r \pmod{7}.$$

Thus, mr + 1 = 19. Since $\rho^{b-1} = 25$, it follows that $a_j = 1$ for j = 25 and $a_j = 0$ for $j \in \{1, 2, ..., 49\} \setminus \{25\}$ in (1.3). Therefore,

$$f_{\mathcal{A}}(t) = t^{100} + t^{75} + 19t^{50} + 7^{25}t^{25} + 7^{50}.$$

396

Acknowledgement

The author thanks the anonymous referee for helpful comments.

References

- [1] D. Burton, *Elementary Number Theory*, 7th edition (McGraw-Hill, New York, 2011).
- [2] P. Deligne, 'La conjecture de Weil. I', Inst. Hautes Études Sci. Publ. Math. 43 (1974), 273–307.
- [3] S. A. DiPippo and E. W. Howe, 'Real polynomials with all roots on the unit circle and abelian varieties over finite fields', J. Number Theory 73(2) (1998), 426–450.
- [4] B. Dwork, 'On the rationality of the zeta function of an algebraic variety', *Amer. J. Math.* **82** (1960), 631–648.
- [5] A. Grothendieck, 'Formule de Lefschetz et rationalité des fonctions L', Séminaire Bourbaki, 9, Exp. No. 279 (Société Mathématique de France, Paris, 1995), 41–55.
- [6] W. J. Guerrier, 'The factorization of the cyclotomic polynomials mod p', Amer. Math. Monthly 75 (1968) 46.
- [7] S. Haloui, 'The characteristic polynomials of abelian varieties of dimensions 3 over finite fields', J. Number Theory 130(12) (2010), 2745–2752.
- [8] S. Haloui and V. Singh, 'The characteristic polynomials of abelian varieties of dimension 4 over finite fields', *Arithmetic, Geometry, Cryptography and Coding Theory*, Contemporary Mathematics, 574 (American Mathematical Society, Providence, RI, 2012), 59–68.
- [9] R. Hartshorne, *Algebraic Geometry*, Graduate Texts in Mathematics, 52 (Springer-Verlag, New York, 1977).
- [10] T. Honda, 'Isogeny classes of abelian varieties over finite fields', J. Math. Soc. Japan 20 (1968), 83–95.
- [11] E. W. Howe, 'Principally polarized ordinary abelian varieties over finite fields', *Trans. Amer. Math. Soc.* 347 (1995), 2361–2401.
- [12] E. W. Howe and H. J. Zhu, 'On the existence of absolutely simple abelian varieties of a given dimension over an arbitrary field', J. Number Theory 92(1) (2002), 139–163.
- [13] P. Lakatos and L. Losonczi, 'Circular interlacing with reciprocal polynomials', *Math. Inequal. Appl.* 10(4) (2007), 761–769.
- [14] D. H. Lehmer, 'Quasi-cyclotomic polynomials', Amer. Math. Monthly 39(7) (1932), 383–389.
- [15] D. Maisner and E. Nart, 'Abelian surfaces over finite fields as Jacobians', with an appendix by Everett W. Howe, *Experiment. Math.* 11(3) (2002), 321–337.
- [16] H. Rück, 'Abelian surfaces and Jacobian varieties over finite fields', *Compositio Math.* 76(3) (1990), 351–366.
- [17] V. Singh, G. McGuire and A. Zaytsev, 'Classification of characteristic polynomials of simple supersingular abelian varieties over finite fields', *Funct. Approx. Comment. Math.* 51(2) (2014), 415–436.
- [18] J. Tate, 'Endomorphisms of abelian varieties over finite fields', *Invent. Math.* 2 (1966) 134–144.
- [19] W. C. Waterhouse, 'Abelian varieties over finite fields', Ann. Sci. École Norm. Sup. (4) 2 (1969), 521–560.
- [20] W. C. Waterhouse and J. S. Milne, 'Abelian varieties over finite fields', Proc. Sympos. Pure Math. 20 (1971), 53–64.
- [21] A. Weil, 'Numbers of solutions of equations in finite fields', Bull. Amer. Math. Soc. 55 (1949), 497–508

LENNY JONES, Professor Emeritus of Mathematics, Department of Mathematics, Shippensburg University, Shippensburg, PA 17257, USA e-mail: lkjone@ship.edu