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High-elasticity simulations of flows through a two-dimensional (2D) 4 : 1 abrupt
contraction and a 4 : 1 three-dimensional square–square abrupt contraction were
performed with a finite-volume method implementing the log-conformation
formulation, proposed by Fattal & Kupferman (J. Non-Newtonian Fluid Mech., vol.
123, 2004, p. 281) to alleviate the high-Weissenberg-number problem. For the 2D
simulations of Boger fluids, modelled by the Oldroyd-B constitutive equation, local
flow unsteadiness appears at a relatively low Deborah number (De) of 2.5. Predictions
at higher De were possible only with the log-conformation technique and showed
that the periodic unsteadiness grows with De leading to an asymmetric flow with
alternate back-shedding of vorticity from pulsating upstream recirculating eddies. This
is accompanied by a frequency doubling mechanism deteriorating to a chaotic regime
at high De. The log-conformation technique provides solutions of accuracy similar to
the thoroughly tested standard finite-volume method under steady flow conditions and
the onset of a time-dependent solution occurred approximately at the same Deborah
number for both formulations. Nevertheless, for Deborah numbers higher than the
critical Deborah number, and for which the standard iterative technique diverges,
the log-conformation technique continues to provide stable solutions up to quite
(impressively) high Deborah numbers, demonstrating its advantages relative to the
standard methodology. For the 3D contraction, calculations were restricted to steady
flows of Oldroyd-B and Phan-Thien–Tanner (PTT) fluids and very high De were
attained (De ≈ 20 for PTT with ε =0.02 and De ≈ 10 000 for PTT with ε = 0.25), with
prediction of strong vortex enhancement. For the Boger fluid calculations, there was
inversion of the secondary flow at high De, as observed experimentally by Sousa et al.
(J. Non-Newtonian Fluid Mech., vol. 160, 2009, p. 122).
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1. Introduction
Viscoelastic entry flows, and in devices with geometric singularities such as flows

through contractions or contraction/expansions, are important in polymer processing

† Email address for correspondence: mmalves@fe.up.pt
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and in the emerging field of viscoelastic microfluidics, while posing a great challenge
to the numerical methods, especially at high elasticity, as measured by the Weissenberg
(Wi) or Deborah (De) numbers (here the latter will be used). Owing to the geometrical
simplicity and known numerical difficulty, the planar 4 : 1 sudden contraction was
established as a benchmark flow problem in 1987 (Hassager 1988), and gave rise
to several experimental studies in both planar and axisymmetric geometries (e.g.
Cable & Boger 1978a,b, 1979; Chiba, Sakatani & Nakamura 1990; McKinley et al.
1991; Yesilata, Öztekin & Neti 1999). Owens & Phillips (2002), McKinley et al.
(1991) and Boger (1987) presented extensive literature reviews of experiments in this
flow, while reviews on related numerical work can be found in Keunings (1989),
Baaijens (1998), Walters & Webster (2003), Owens & Phillips (2002) and Oliveira &
Pinho (1999). The picture emerging from experiments in two-dimensional (2D) 4 : 1
contractions depends on fluid rheology. For some shear-thinning fluids, there is corner
vortex enhancement following the formation of a lip vortex, which initially grows and
subsequently merges with the corner vortex, whereas for Boger fluids experimental
evidence suggests no vortex enhancement due to elasticity (Nigen & Walters 2002;
Walters, Webster & Tamaddon-Jahromi 2009). For all viscoelastic fluids, the flow
becomes unsteady above a critical Deborah number.

Experiments with Newtonian and Boger fluids in three-dimensional (3D) square–
square contraction flows were reported by Alves, Pinho & Oliveira (2005) and Sousa
et al. (2009), where extensive flow visualizations are presented at the mid-plane of
a 4 : 1 contraction using a streak-line photography technique. These experiments
revealed the formation of a lip vortex at high Deborah numbers for the more
concentrated Boger fluid (aqueous solution of polyacrylamide at 300 p.p.m.) and
related this lip vortex with the increase of the role of shear-induced normal stresses
due to the secondary flow in the cross-section of the rectangular channel. An
interesting fluid dynamics feature caused by elasticity was identified experimentally
in this geometry by Alves, Pinho & Oliveira (2008), in a work which also included
3D numerical simulations using a four-mode Phan-Thien—Tanner (PTT) model
with a Newtonian solvent contribution. Their experimental and numerical results
showed the expected significant vortex growth, measured on longitudinal mid-
planes, and revealed the occurrence of an inversion in the direction of rotation
of the recirculation flow inside the vortices due to elastic effects. When elastic
effects are strong, the fluid particles enter the vortices through the horizontal (or
vertical) planes of symmetry and leave through the diagonal planes, whereas in the
absence of elasticity, the fluid elements enter the vortices through the diagonal
symmetry planes and exit at the horizontal (vertical) mid-planes of symmetry.
A similar finding was reported by Sirakov et al. (2005) in 3D 4 : 1 square-to-
circular cross-section contraction simulations with a finite-element method using
the eXtended Pom–Pom model to analyse the viscoelastic flow of branched LDPE
solutions.

These viscoelastic flows are notoriously difficult to simulate numerically at levels
of elasticity above a critical Deborah number, where the numerical results exhibit
indication of mesh dependency even with refined meshes and usually have a tendency
to diverge. Not surprisingly, at high Deborah numbers the agreement between results
from different numerical methods is harder to achieve than at low Deborah numbers,
and moreover there are important differences between predictions and experiments.
For instance, the majority of numerical studies on entry flows with Boger fluids
have been restricted to the range of parameters in which the size of upstream
vortices is still decreasing and the pressure drop is smaller than the corresponding
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Newtonian pressure drop (Nigen & Walters 2002). These predictions were obtained
using continuum mechanics/macroscale constitutive equations and are in contrast
with experimental results employing constant-viscosity polymer solutions and melts,
which show increased pressure drop and enhanced vortex formation (Cable & Boger
1978a,b; 1979; McKinley et al. 1991; Chiba et al. 1990). The discrepancies are rooted
both on the physics of the constitutive equations and on numerical issues (Owens &
Phillips 2002).

The use of atomistic constitutive equations is extremely expensive and with
today’s resources they are restricted to very simple molecular-sized computational
domains. Some coarse-graining is required to be able to compute macroscopic
flows, and micro–macro numerical methods have been devised to allow calculations
with these mesoscale constitutive equations. These numerical methods, reviewed by
Keunings (2004), are still computationally very expensive and difficult to perform
in complex geometries of engineering interest, especially considering the need
for very refined meshing and time-stepping for accurate viscoelastic predictions.
Hence, the majority of engineering calculations, such as those mentioned initially,
rely on macroscopic constitutive equations, some of which have been derived
using more or less sophisticated closures of the mesoscale models. These derived
closures invariably use decoupling and some form of pre-averaging (Bird, Dotson &
Johnson 1980; Lielens, Keunings & Legat 1999) that remove or change some
rheological characteristics of the original mesoscale models (van Heel, Hulsen &
van den Brule 1998; Zhou & Akhavan 2003). Needless to say, the mesoscale
closures have their own simplifications; hence, they require improvements of their
own.

Using mesoscale modelling, Koppol et al. (2009) predicted the viscoelastic flow in
a 4 : 1 : 4 axisymmetric contraction/expansion and were able to show simultaneously
the correct upstream vortex patterns and qualitatively the growth of the normalized
pressure drop with Deborah number above that for Newtonian fluids, as in
the experiments of Rothstein & McKinley (1999). However, their simulations
with the FENE-P model failed to observe the growth of the pressure drop
above that for Newtonian fluids at high Deborah numbers and the justification
was the inadequacy of the FENE-P model at predicting correctly the transient
extensional viscosity growth along the centreline region, which required at least
a mesoscale approach. So, there is clearly the need for better closures of the
mesoscale models leading to new macroscale constitutive equations for improved
predictions.

In addition to improvements in the physical modelling of the rheological behaviour
of fluids, there is also a need to improve classical computational methods, i.e.
methods applied to macroscale constitutive equations in order to enable engineering
calculations at high Deborah numbers.

In the present work, we explore the dynamics of 2D and 3D contraction flows up to
much higher De than previously attained, and demonstrate a succession of dynamical
transitions, from steady to unsteady flows with lip and corner vortex enhancement,
and from symmetric to asymmetric patterns with alternating vortex pulsation, up to
almost chaotic regime of back-shedding upstream of the contraction plane. We use
the fast Fourier transform (FFT) of velocity signal at a monitoring point to determine
the dominant frequencies, which show a characteristic frequency-doubling regime at
high De. Qualitatively, these results are comparable with the experimental data of
McKinley et al. (1991), who studied viscoelastic vortex dynamics in an axisymmetric
contraction. Finally, the time-average evolution of the vortex size and pressure drop
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from the present simulations reveal, for the first time, that after an initial decreasing
tendency with De, there is an upturn followed by considerable enhancement at higher
elasticity. Thus, the trends of the available experimental results are captured well by
the present simulations, except the rise of pressure drop above the corresponding
Newtonian value.

To accomplish this, we use the log-conformation technique within the finite-volume
method (FVM). We first show that this numerical technique allows computations
of viscoelastic 2D and 3D entry flows at very high Deborah numbers, provided the
rheological equations of state are transformed and re-written on the basis of the
matrix-logarithmic of their conformation tensors. This technique, originally proposed
by Fattal & Kupferman (2004) in the context of computational rheology, introduces
a better polynomial interpolation of the stresses when these exhibit an exponential
growth, such as near stagnation points, and has been tested in the recent past
in a number of viscoelastic flow problems and shown to enable computations at
higher Deborah numbers than usual. An additional benefit of the log-conformation
formulation is that it preserves positive-definiteness of the conformation tensor (Kwon
2004, 2006; Hulsen, Fattal & Kupferman 2005; Yoon & Kwon 2005; Coronado et al.
2007; Pan & Hao 2007; Afonso et al. 2009; Kane, Guénette & Fortin 2009), thus
avoiding a kind of Hadamard instability plaguing the numerical simulation once
the flow becomes inherently unstable, which invariably leads to quick divergence of
iterative numerical procedures.

There are a number of works in the literature implementing the log-conformation
formulation in the scope of the finite-difference method (Fattal & Kupferman 2005)
and the finite-element method (FEM; Kwon 2004, 2006; Hulsen et al. 2005; Yoon &
Kwon 2005; Pan & Hao 2007), showing its advantages relative to the classical methods
with a variety of flows and constitutive equations. Others were aimed at formulating
less computer-intensive alternative log-conformation algorithms (Coronado et al.
2007; Kane et al. 2009), but they are not all equivalent. As shown by Kane
et al. (2009), in Coronado et al. (2007) the constitutive equation was rewritten in
terms of the exponential of this logarithm, but the corresponding linearization of
convective term introduced an inconsistency in the variational formulation, which led
to slightly different results and a little less robust method than the original, especially
in structured meshes. The other two variants in Kane et al. (2009) are improvements
over the approach of Coronado et al. (2007) and although cheaper than the original
formulation they are still less robust. Even though these works have shown that it
is possible to achieve a converged solution at high Deborah numbers, they have not
investigated in detail the dynamics of unsteady viscoelastic flows as done here for
sudden contraction flows.

In a previous work (Afonso et al. 2009), the original log-conformation formulation
was implemented in the FVM framework and applied to a benchmark flow problem
without geometrical singularities, namely the creeping viscoelastic flow past a confined
cylinder. Here, we wish to apply that formulation to the contraction flow problem
to be able to predict the rich dynamical transitions that unfold when the elasticity is
sufficiently high and that were observed experimentally and described by McKinley
et al. (1991).

The remainder of this paper is organized as follows. After presenting the governing
equations, the constitutive equations are modified to incorporate the log-conformation
formalism. This is followed by a brief description of the numerical method, then the
geometries and computational meshes used for each flow problem are given and
finally the results of the simulations are presented and discussed.
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2. Governing equations and numerical method
In this section, we provide the set of differential equations that need to be solved,

encompassing the flow and the constitutive equations, explain succinctly how they
are transformed to the log-formulation, and give a short description of the numerical
method, which has been explained in detail in a number of previous papers (e.g.
Oliveira & Pinho 1999; Alves, Oliveira & Pinho 2003a; Afonso et al. 2009).

2.1. Base equations

To simulate steady incompressible flow of viscoelastic fluids, the mass conservation
equation,

∇ · u = 0, (2.1)

and the momentum equation,

ρ
Du
Dt

= −∇p + βη0∇2u +
η0

λ
(1 − β) ∇ · A, (2.2)

need to be solved. The two last terms on the right-hand side of the momentum
equation describe the rheology of the fluid: the Laplacian operator corresponds to
a Newtonian solvent contribution and the divergence of the conformation tensor
(A) is an additive viscoelastic term which follows here either the Oldroyd-B (Oldroyd
1950) or the PTT (Phan-Thien & Tanner 1977; Phan-Thien 1978) model. To complete
the constitutive equation describing the additive term, an evolution equation for the
conformation tensor needs also to be solved:

λ
∇
A = −Y (trA) (A − I) . (2.3a)

In these equations, I represents the unitary tensor, u is the velocity vector, p is

the pressure, λ is the relaxation time of the polymer, and
∇
A represents Oldroyd’s

upper-convected derivative of A, given by

∇
A =

∂A

∂t
+ u · ∇A − A · ∇u − ∇uT · A. (2.3b)

The fluid total extra-stress is the sum of solvent and polymer stress contributions.
The viscosity ratio, β (cf. (2.2)), is defined as the ratio between the Newtonian solvent
viscosity, ηS , and the total zero shear-rate viscosity, η0,

β ≡ ηS

η0

=
ηS

ηS + ηP

, (2.4)

where ηP is the coefficient of viscosity of the polymer.
In its general form, the function Y(trA) for the PTT model is exponential (Phan-

Thien 1978), but in this work we use its linearized form, Y(trA) = 1 + ε(trA − 3)
(Phan-Thien & Tanner 1977), where ε is the extensibility parameter of the PTT
model. When Y(trA) = 1 (i.e. for ε = 0), the Oldroyd-B model is recovered. The non-
unitary form of Y(trA) for the PTT model imparts shear-thinning behaviour to the
shear viscosity and to the first normal-stress difference coefficient of the fluid and
bounds its steady-state extensional viscosity. The constitutive law written in terms of
the conformation tensor A can be explicitly formulated as a function of the polymer
contribution to the extra-stress tensor, τ , with the following relation which is valid
for both models:

τ =
ηP

λ
(A − I). (2.5)
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When the governing equations are written in terms of the fluid extra-stress by
combining (2.3) and (2.5) and writing A explicitly in terms of τ , so that the momentum
equation will have a divergence of the extra-stress term, instead of a divergence of
conformation tensor, we end up with the ‘standard formulation’, described in detail
and extensively validated within the FVM framework in Oliveira & Pinho (1999)
Alves et al. (2003a, b, 2008), Alves, Pinho & Oliveira (2000) and Oliveira, Pinho &
Pinto (1998). This ‘standard formulation’, based on the polymer extra-stress given by
(2.3) and (2.5), will not be followed here except in some comparison test cases in
order to assess the performance of the new log-conformation method.

2.2. The log-conformation representation

As already described, Fattal & Kupferman (2004) proposed a tensor-logarithmic
transformation of the conformation tensor for differential viscoelastic constitutive
equations, which can be applied to a wide variety of constitutive laws. The core
feature of this transformation is the decomposition of the velocity gradient, ∇u, into
a traceless extensional component, E, and a pure rotational component, R. With
this decomposition, the evolution equation (2.3a), can be rewritten as (Fattal &
Kupferman 2004)

∂A

∂t
+ (u · ∇)A − (RA − AR) − 2EA =

Y(trA)

λ
(I − A). (2.6)

In the log-conformation representation, the evolution equation (2.6) is replaced
by an equivalent evolution equation for the logarithm of the conformation tensor,
Θ = log A, benefiting from the fact that A is a symmetric positive definite (SPD)
tensor, and thus can be diagonalized into the form (Fattal & Kupferman 2004)

A = OΛOT, (2.7)

where O is an orthogonal tensor that consists of the eigenvectors of matrix A and
Λ is a diagonal matrix assembled with the corresponding three distinct eigenvalues
of A. The transformation from (2.6) to an equation for Θ is described in detail by
Fattal & Kupferman (2004), and leads to

∂Θ

∂t
+ (u · ∇)Θ − (RΘ − Θ R) − 2E =

Y[tr(eΘ )]

λ
(e−Θ − I). (2.8)

To recover A from Θ, the inverse transformation A = eΘ is used when necessary.
So, instead of solving numerically (2.3), it is the evolution equation for log A (2.8)
that is solved. Then, the inverse transformation is used to calculate the conformation
tensor field prior to solving the momentum and mass conservation equations.

2.3. Overview of the solution method

A complete description of the steps required to adapt our FVM to the log-
conformation procedure and the main modifications to the solution algorithm has
been presented in Afonso et al. (2009). Basically, the method consists of a pressure-
correction algorithm, to ensure mass conservation after solving the momentum
equations, where the divergence of the viscoelastic conformation tensor (the last term
in (2.2)) is treated explicitly and incorporated as a source term while the diffusive term
is treated implicitly. The various sets of equations are solved sequentially (decoupled
method), with the evolution equation for the log-conformation solved first (2.8),
followed by the momentum equation (2.2), and finally a pressure-correction equation.
It is important to emphasize that the advective term in (2.8) was discretized with
two distinct differencing schemes: the first-order accurate upwind-differencing scheme
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(UDS) and the CUBISTA high-resolution scheme (Alves et al. 2003b). The latter
scheme is formally of third-order accuracy and was especially designed for differential
constitutive relations. The UDS scheme is only first-order accurate, but highly stable,
and will only be used in some test cases.

The positive definiteness of the conformation tensor is crucial for the well-posedness
of the evolution equation. In this work, the positive definiteness is assessed by checking
if the determinant of A is positive, and the more strict condition that det(A) � 1 is
satisfied (Hulsen et al. 2005). A useful parameter to analyse the numerical results is
the following scalar used to classify the local flow type (Lee et al. 2007):

ξ =
|D| − |Ω |
|D| + |Ω | , (2.9)

where |D| and |Ω | represent the magnitudes of the rate of deformation and vorticity
tensors, respectively,

D = 1
2
[∇u + (∇u)T] Ω = 1

2
[∇u − (∇u)T], (2.10)

which can be calculated as

|D| =

√
1

2
(D : DT) =

√
1

2

∑
i

∑
j

D2
ij |Ω | =

√
1

2
(Ω : ΩT) =

√
1

2

∑
i

∑
j

Ω2
ij .

(2.11)
The flow-type parameter varies from −1, which corresponds to solid-like rotation,

up to 1, for pure extensional flow. Pure shear flow is characterized by ξ = 0.

3. Results
Most simulations were carried out with the log-conformation tensor formulation

(LogT ) described in § 2.2, while a few simulations for comparison purposes used the
standard formulation (St rT ), which has the extra-stress tensor as dependent variable
(i.e. without using the conformation tensor). In both cases, iterative convergence to
steady solution required the L2-norm of the residuals of the equations to be less than
a tolerance of 10−6, when the time-stepping procedure was stopped and convergence
assumed. All steady and unsteady calculations for both formulations were obtained
with the same time-step increment (�t).

In § 3.1, we present results for the viscoelastic flow in the planar 4 : 1 contraction
and in § 3.2 the results for a 4 : 1 square–square 3D abrupt contraction.

3.1. Abrupt 4 : 1 planar contraction

This section is organized in three parts: first, we present a few details about the
computational meshes employed in the simulations and the non-dimensionalization
of the results (§ 3.1.1), then we deal with the low-Deborah-number range of flows
(§ 3.1.2), basically for De � 3 under conditions for which accurate steady results were
obtained in previous studies (Alves et al. 2003a). The purpose is to demonstrate
the correctness of the log-conformation implementation and that this formulation is
able to achieve the same accuracy as the standard formulation, an important aspect
since the accuracy of the log-conformation has often been cast in doubt (Coronado
et al. 2007; Guénette et al. 2008). Finally, in § 3.1.3, we present the most interesting
results, for the high-Deborah-number range, where the standard stress formulation
fails. These new results are predicted with the differential macroscopic Oldroyd-
B model, comprising the unsteady dynamics of the asymmetric vortical structures
formed upstream of the contraction plane and exploring numerically, for the first
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Figure 1. Schematic representation of the 4 : 1 planar contraction geometry.

time, the range of elasticity for which the pressure drop increases and the vortex size
is strongly enhanced. To be able to capture asymmetric flows, the mesh had to map
the complete contraction domain and not just half of it, as it is usual by invoking
symmetry arguments.

3.1.1. Computational meshes

The planar abrupt contraction is sketched in figure 1. In the first set of simulations,
only half of the 2D domain is used in the computations, with symmetry conditions
imposed at the centreline, y = 0. However, in the second set of simulations at high
Deborah numbers, calculations were performed using the complete flow domain,
so that possible symmetry-breaking flows and instabilities could be captured. All
calculations were carried out at zero Reynolds number, Re = ρH2U2/η0 = 0 (creeping
flow), and at varying Deborah numbers, defined as

De =
λU2

H2

, (3.1)

where H2 and U2 represent the half-width of the downstream channel and the
corresponding average velocity (figure 1), respectively. These variables are used as
length and velocity scales, while stresses are normalized as τij /(ηP U2/H2). An inlet
length L1 = 40H2 and an outlet length L2 = 100H2 were used to ensure complete flow
development upstream and downstream of the contraction. At the inlet, the velocity
and stress profiles are prescribed by the analytical solution for the channel flow
of the Oldroyd-B fluid. For the PTT fluid flow and the flow in the square/square
contraction for both fluids, a uniform velocity profile and null shear and normal
stresses were imposed at the entrance. In all cases, these inlet flow conditions
were assumed steady, even when the flow near the contraction plane becomes time-
dependent. This assumption is reasonable, given that a long entry channel was used.
At outlets, vanishing streamwise gradients of velocity and extra-stress/conformation
tensor components are imposed, and pressure is linearly extrapolated from the two
upstream cell-centre values, to be consistent with the Neumann condition assumed
for the pressure-correction equation.

Calculations with the Oldroyd-B model were carried out with three meshes M1,
M2 and M3, whose major characteristics are listed in table 1. Mesh M3C maps the
whole physical domain, but has the characteristics similar to mesh M3, which relies
on symmetry. All computational meshes are orthogonal but non-uniform, and the
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Number of cells Degrees of freedom �xmin/H2; �ymin/H2

M1 5282 31 692 0.020
M2 10 587 63 522 0.014
M3 42 348 254 088 0.0071
M3C 84 696 508 176 0.0071

Table 1. Main characteristics of the 4 : 1 contraction computational meshes.

concentration of cells is higher near the corner of the contraction and the walls (in
such a way that �xmin = �ymin), where the stress/conformation tensor gradients are
expected to be higher. In the earlier investigation of a steady flow in the 4 : 1 planar
contraction of Alves et al. (2003a), which established the benchmark data, mesh
convergence was shown for all relevant quantities, including the extra-stresses, and
especially in the vicinity of the re-entrant corner. The current mesh M3 is identical to
mesh M4 of Alves et al. (2003a) and this earlier work showed this mesh to provide
accurate results.

3.1.2. Low-Deborah-number flows

In this section, we analyse and compare the performance of the standard and the
log-conformation formulations at low-Deborah-number flows, using the Oldroyd-B
model as the constitutive equation and a viscosity ratio of β = 1/9. In this range of
elasticity (De < 3), the flow is expected to be steady, and this study is a standard
benchmark problem serving as a precursor to the unsteady flows in the next section.

Alves et al. (2000) used high-order spatial discretization schemes and fine meshes
to predict accurately the flow of UCM fluids in the 4 : 1 planar contraction, thus
improving on earlier predictions of Oliveira & Pinho (1999). Subsequently, Alves
et al. (2003a) used a new discretization scheme (CUBISTA) and simulated the flow
of an Oldroyd-B fluid, achieving high accuracy and convergence up to De = 2.5
on their finest mesh. Their results in terms of vortex size were not much different
from those previously obtained by Aboubacar & Webster (2001) using a hybrid
finite-volume/finite-element scheme, although some differences were discernible. Later,
high-resolution results obtained by Kim et al. (2005) in the same geometry with an
Oldroyd-B model were also close to those of Alves et al. (2003a), but somewhat below
even for Newtonian fluids. It is surprising that for this particular limiting case of the
Newtonian fluid (De =0), the results of Aboubacar & Webster (2001) and Belblidia,
Keshtiban & Webster (2006) also underpredict the vortex size compared with those
of Alves et al. (2003a). Kim et al. (2005) used a transient numerical algorithm
based on the four-step fractional step method and DEVSS-G/DG with equal-order
linear interpolation functions and also obtained converged solutions up to De = 2.5
with their finest mesh. More recently, the benchmark results of Alves et al. (2003a)
were also confirmed by Belblidia, Keshtiban & Webster (2006), in their steady-state
investigation with the Oldroyd-B model using different stabilization methodologies
embedded within a time-marching incremental pressure-correction formulation.

The results obtained in the present investigation for the corner vortex length
(XR = xR/H2), using the Oldroyd-B model with both St rT and LogT formulations,
are presented in table 2 for all meshes and are plotted in figure 2 for the refined
mesh M3. These results, irrespective of the formulation using the CUBISTA scheme,
are similar to the benchmark data of Alves et al. (2003a) and follow the trends
of the recent data (Aboubacar & Webster 2001; Kim et al. 2005; Belblidia et al.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

84
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2011.84


Dynamics of high-Deborah-number entry flows: a numerical study 281

M1 M2 M3

CUBISTA UDS CUBISTA UDS CUBISTA UDS

De St rT LogT St rT LogT St rT LogT St rT LogT St rT LogT St rT LogT

0.0 1.495 – 1.495 – 1.497 – 1.497 – 1.499 – 1.499 –
0.5 1.456 1.457 1.466 1.477 1.457 1.458 1.466 1.475 1.454 1.454 1.460 1.457
1.0 1.397 1.395 1.453 1.488 1.389 1.387 1.435 1.468 1.379 1.378 1.407 1.428
1.5 1.322 1.315 1.456 1.513 1.308 1.302 1.410 1.466 1.289 1.286 1.339 1.388
2.0 1.238 1.230 1.478 1.552 1.215 1.207 1.404 1.477 1.188 1.185 1.276 1.352
2.5 1.149 1.159 1.512 1.596 1.121 (1.117) 1.414 1.503 1.091 (1.102) 1.221 1.329
3.0 1.071 (1.056) 1.569 1.652 1.026 (1.037) 1.439 1.545 1.008 (1.065) 1.173 1.324

Table 2. Dimensionless length of primary vortex (XR) as a function of the Deborah number,
mesh, differencing scheme and stress formulation (Oldroyd-B model). Values in parentheses
indicate that XR oscillates with harmonic periodicity.

X
X

X
X

De

XR

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.8

1.0

1.2

1.4

1.6

StrT (CUBISTA)
LogT (CUBISTA)
StrT (UDS)
LogT (UDS)
Alves, Oliveira & Pinho (2003a)
Aboubacar & Webster (2001)
Kim et al (2005)
Belblidia, Keshtiban & Webster (2006)

X

Figure 2. (Colour online available at journals.cambridge.org/FLM) Dimensionless length of
the primary vortex (XR = xR/H2) as a function of the Deborah number in mesh M3 (the
Oldroyd-B model). Comparison of two differencing schemes (UDS and CUBISTA) and results
from various sources. The results of St rT and LogT methodologies were obtained with mesh
M3.

2006), with the length of the corner vortex decreasing with elasticity up to De ≈ 3.
We have then a quantitative confirmation that the log-conformation offers accuracy
similar to the standard formulation, for steady-state solutions, provided the CUBISTA
scheme is used in the discretization of the convective term. Figure 2 also illustrates
the detrimental effect in accuracy brought about by the highly diffusive UDS, in
spite of allowing steady (but inaccurate) converged simulations to be obtained up
to higher Deborah numbers (De = 5.0 on mesh M3). It is important to mention at
this point that the LogT formulation, but not the St rT formulation, predicts an
elastic instability, manifested as an unsteady behaviour at De ≈ 2.5. This unsteadiness
is captured with the CUBISTA scheme and a mesh that still relies on computations
with flow symmetry imposed at the centre plane. To indicate unsteady flow, the values
of XR in parentheses in table 2 represent the time-averaged value of XR along the
cycle of such harmonic oscillation. Note that Aboubacar & Webster (2001) have also
reported the onset of time oscillations at De ≈ 2.5 when using their finest mesh.
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M1  M2  (a) 

(b) 

M3  

ΨR = 1.839  ΨR = 1.223  ΨR = 0.561 

ΨR = 0.576   ΨR = 0.505  ΨR = 0.236  

ΨR = 1.902    ΨR = 1.263   ΨR = 0.572  

ΨR = 0.592   ΨR = 0.563  ΨR = 0.240  

UDS UDS UDS 

UDS UDS UDS 

CUBISTA CUBISTA CUBISTA

CUBISTACUBISTA CUBISTA

Figure 3. Coupled effect of mesh refinement and differencing scheme on the streamline
patterns at De = 2.5 for the Oldroyd-B model: (a) St rT and (b) LogT . Note the streamline
spacing �ψ = 0.2 × 10−3 inside the recirculations; ΨR multiplied by 103.

Figure 3 shows the coupled effect of the mesh refinement and differencing scheme
on the streamline patterns at De = 2.5, for both formulations. At this Deborah
number, simulations with the CUBISTA scheme on meshes M2 and M3 present
the unsteady features just mentioned. All simulations with LogT result in higher
values of the dimensionless intensity of recirculation, ΨR , than the St rT simulations,
but those differences decrease with mesh refinement. The dimensionless intensity of
the recirculation is defined as ΨR = (ψmax − ψinl )/ψinl = Ψmax − 1, where Ψmax is the
streamfunction value at the centre of the vortex and ψinl is the inlet value at the
upper wall (assuming ψ = 0 at the symmetry axis), which corresponds to the inlet
flow rate per unit depth in half of the inlet boundary. The lip vortices in all LogT
simulations are larger than those calculated with St rT , but as refinement of the mesh
increases both formulations are converging towards the benchmark steady solution
(Alves et al. 2003a).

Figure 4 displays streamlines and contour maps of the flow classification parameter
ξ for increasing values of the Deborah number, based on predictions with both
LogT and St rT formulations, on the finest mesh M3. As the Deborah number
was raised, the salient corner vortex decreased in size and strength, while the lip
vortex grew in intensity, with these lip vortices appearing at around De ≈ 1.5 for
both formulations. The comparison of figure 4 essentially confirms that no major
differences exist between predictions with the St rT and LogT formulations at low-
Deborah-number flows. However, a careful examination of the data in figure 4 reveals
that at De ≈ 2, the simulations with the St rT formulation violate the minimum
stability criteria, with the occurrence of negative values of det(A), while for the LogT
simulations the minimum value of det(A) remains positive and greater than unity
as it should (Hulsen et al. 2005). This constitutes a major advantage of the LogT
formulation in high-Deborah-number simulations, because negative values of det(A),
besides being physically incorrect, rapidly lead to numerical divergence of iterative
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ξ   parameter 

det(A)min≈1

det(A)min=
–7.45

det(A)min≈1

det(A)min=
–8.64

1 

2 

3 4 

ξ  parameter 

(a)

1.0
0.8
0.6
0.4
0.2
0

–0.2
–0.4
–0.6
–0.8
–1.0

1.0
0.8
0.6
0.4
0.2
0

–0.2
–0.4
–0.6
–0.8
–1.0

(b)

De = 0.5

det(A)min≈1

De = 0.5

det(A)min≈1

De = 1.0

det(A)min≈1

De = 1.5

det(A)min≈1

De = 2.0

det(A)min≈1

De = 2.5

De = 2.0 De = 2.5

De = 1.0

det(A)min≈1

De = 1.5

Figure 4. (Colour online) Flow patterns (top half) and maps of flow-type parameter (bottom
half) as predicted on mesh M3 (Oldroyd-B model). (a) St rT and (b) LogT . The values of
det(A)min are indicated beside each map.

methods, following an Hadamard kind of instability, a situation eventually occurring
with the St rT formulation but not with the LogT formulation.

In the flow-type contour maps presented in figure 4, the three limiting types of
flows are clearly identified: the region of plane shear flow, where ξ ≈ 0 as indicated by
point 3, in the vicinity of the walls especially in the smaller channel and elsewhere in
the contraction zone; extensional flow (ξ → 1, point 4) just upstream of the contraction
plane and near the corner; and nearly rigid-body rotation flow, in two demarked zones

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

84
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2011.84


284 A. M. Afonso, P. J. Oliveira, F. T. Pinho and M. A. Alves

120(a)

(b)

100

80

60

40

20

0

–1

–4

0

0.5

1.0

1.5

2.0

2.5

–2 0 2 4 6 8

0 1

De = 0.5

De = 0.5

De = 2.5

De = 2.5

N
1/

(η
pU

2/
H

2)
N

1/
(η

pU
2/

H
2)

Time-dependent

StrT
LogT

x/H2

StrT
LogT

2 3

Figure 5. Distribution of the axial first normal-stress differences near the downstream duct
wall at (a) y/H2 = 0.9965 and (b) along the centreline, calculated for increasing De (0.5, 1, 1.5,
2 and 2.5) on mesh M3 with LogT and St rT formulations (Oldroyd-B model).

of rotation (ξ → −1; points 1 and 2). As De increases, the location and relative sizes
of these zones evolve (irrespective of formulation): the size of the rotational region
near the re-entrant corner increases; extensional flow in the corner decreases, and in
the contraction entrance the region of extensional flow increases.

Figure 5 presents the longitudinal distribution of the first normal-stress difference
along the centreline and near the downstream channel wall, predicted on mesh
M3 with the CUBISTA high-resolution scheme. As expected, there are no visible
differences between the two formulations along the symmetry axis for the range
of De at which the flow remains steady. This is especially clear for the profiles
near the wall (at y/H2 = 0.9965) and in the vicinity of the salient corner where
stresses grow intensively. However, significant discrepancies in the first normal-stress
difference, N1, arise near the downstream duct wall at De ≈ 2.5, which are related
to the intensification of the flow unsteadiness predicted with the log-conformation
method at high Deborah numbers, as discussed in the next section. In such unsteady
cases, the profiles shown correspond to a given instant of the oscillating cycle.
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3.1.3. Nonlinear dynamics at high-Deborah-number flows

Time-dependent behaviour in the 4 : 1 abrupt contraction flow, associated with a
pure elastic instability, has been observed in many experimental works (e.g. Boger
1987; Chiba et al. 1990; McKinley et al. 1991) and some numerical investigations
(Aboubacar & Webster 2001; Oliveira 2001). Oliveira (2001) reported velocity
oscillations in his computations of creeping flow with the PTT and Giesekus models
at high Deborah numbers (De ≈ 5) using half the physical domain. In a numerical
study of planar contraction flow with the Oldroyd-B model, El Hadj & Tanguy
(1990) and Fortin & Esselaoui (1987) compared the solutions obtained using meshes
mapping half and the full geometries, and reported the existence of multiple-solution
families and the existence of an oscillatory flow in the contraction region at high-
Deborah-number flows. Their simulations with the full contraction domain yielded
stable as well as periodic solutions, with the frequency of the oscillations being
roughly inversely proportional to the square root of the relaxation time.

We now report the most interesting results of the work, related to the dynamical
aspects of the vortex motion and unsteady flow patterns formed upstream of the
contraction plane at high De. As far as we are aware, such flow features have not
been reported in previous studies based on numerical simulations and it is the ability
of the log-conformation approach to enhance numerical stability while maintaining
the positive definiteness of A that makes these predictions possible. So, in order to
obtain further insight into the fluid dynamics of the flow, and in particular its inherent
unsteadiness, a new set of simulations was performed using the mesh mapping of the
full physical domain (M3C).

Convergent and steady results were obtained up to De =2 and 2.5 for the LogT
and St rT formulations, respectively. For De = 2.5, the flow became unsteady with the
LogT formulation, while the simulations with St rT formulation diverged at De = 3.
Simulations with LogT were not carried out beyond De = 100, due to computational
time limitations and also due to insufficient inlet length L1 to ensure complete
flow development and corner vortex extension. In these unsteady simulations, the
number of time steps per relaxation time is of the order of 5 000 and 25 000, at
low- and high Deborah numbers, respectively. Because of numerical simplicity and
high stability, a first-order implicit Euler scheme for the time integration was used.
We are aware that even though small times steps were used, time accuracy needs
to be further investigated in the future, preferably using second-order time schemes.
Nevertheless, the accuracy of the simulations is high, at least for the lower-De cases
where unsteady flow is observed. To illustrate this statement, we present in figure 6 the
time evolution of the dimensionless vortex size as a function of time for De =3, using
the typical time step of δt/λ= 1/7500, and another case with a time step smaller by
one order of magnitude (δt/λ= 1/75 000). Assuming a first-order discretization error
(in time), the time-integration error is expected to be reduced by a factor of 10, but
as shown in figure 6, the differences between both simulations are barely noticeable,
thus demonstrating the good accuracy of the numerical simulations using the typical
time-step size.

The results obtained for the time-averaged corner vortex length (XR), using the
Oldroyd-B model with both St rT and LogT formulations and for mesh M3C, are
presented in table 3 and plotted in figure 7 for the LogT formulation. A non-
monotonic evolution is observed, with a minimum value of XR attained at De ≈ 4.5
and then more than doubling at De = 20 relative to the Newtonian value. The error
bars in figure 7 indicate the amplitude of the XR oscillations. A similar non-monotonic
behaviour was recently reported by Howell (2009), using a continuation algorithm for
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t/λ
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�t/λ = 1/7500
�t/λ = 1/75 000

1.008

1.006

1.004
XR

1.002

1.000

0.998

Figure 6. (Colour online) Time evolution of the vortex length predicted in mesh M3C for an
Oldroyd-B fluid at De = 3 (β = 1/9) using different time-step values. For the lower time step,
the symbols represented are only a small fraction of the computed values.

De
0 5 10 15 20

1

2

3

4
Averaged XR

XR

Figure 7. Time-averaged dimensionless length of the primary vortex (XR = xR/H2) as a
function of the Deborah number obtained with mesh M3C. Error bars represent the amplitude
of the oscillations.

the discontinuous Galerkin finite-element approximation of the viscoelastic fluid flow
in a 4 : 1 abrupt contraction. Their measured quantity was the solution norm, and
for their refined mesh (�xmin = 0.125 and �ymin = 0.03125), they obtained a minimum
value at De ≈ 5.7. Otherwise, all other works we are aware of were confined to the
range De � 5 and therefore the minimum and the upturning portions of the XR versus
De variation could not be anticipated.

Concerning the dynamics of the viscoelastic fluid, a variety of different flow regimes
could be observed from our predictions while increasing the Deborah number. At
low Deborah numbers (De < 1.0), the corner vortex decreases in size, and the fluid
behaves as a highly viscous Newtonian fluid flowing through an abrupt contraction,
with the fluid in the upstream duct converging and accelerating directly towards the
downstream duct (steady-flow regime). At Delip ≈ 1.5, a very weak elastic lip vortex
can be observed at the edge of the re-entrant corner, as previously depicted in figure 4.
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De St rT LogT

0.5 1.454 1.454
1.0 1.380 1.378
1.5 1.290 1.287
2.0 1.191 1.191
2.5 1.086 (1.093)
3.0 – (1.002)
3.5 – (0.931)
4 – (0.887)
5 – (0.962)
6 – (1.342)
7 – (1.732)
8 – (2.012)
9 – (2.210)

10 – (2.367)
15 – (2.915)
20 – (3.383)

Table 3. Dimensionless length of the primary vortex (XR) obtained with mesh M3C using the
CUBISTA scheme. Values in parentheses represent the time-averaged value of XR along the
cycle of oscillation.

This lip vortex increases in size as De is further increased, while the length of the
corner vortex still decreases. Up to this point, the two vortices remain separated and
their flow features are steady up to Deosc ≈ 2.5, when weak oscillations are detected
near the re-entrant corner.

Dynamical flow features in the next figures will be shown with help
of instantaneous streamline plots and velocity history traces at a specific
position, namely at the first internal node near the re-entrant corner at XL =
�xmin/2H2 and YL =(H2 – �ymin/2)/H2 (cf. figure 1). Improved understanding
of the dynamic processes described below can be gained from observation of
supplementary movies available at journals.cambridge.org/flm (also available at
http://www.fe.up.pt/∼mmalves/jfm2011/index.htm).

Figure 8(a) presents an instantaneous plot of the flow pattern at De =3.0, where
the lip vortex is noticeable. At this Deborah number, the amplitude of the oscillations
is still quite small as reported in figure 9(a), showing a time trace of the dimensionless
axial velocity component (uL/U2) predicted next to the re-entrant corner at the
monitoring location mentioned above. The corresponding FFT is also represented
in figure 9(a) and we observe a dimensionless frequency spectrum with combined
features of sub-harmonic period-doubling (with frequencies of half of the fundamental
frequency, λf1) as well as some harmonic frequencies (the peak at 2λf1). To summarize,
for 2.5 � De � 4.5, a regime of flow unsteadiness with periodicity sets in with lip vortex
growth (unsteady periodic or lip vortex growth regime).

As the Deborah number is further increased, the elastic lip vortex increases in size
(lip vortex growth regime), eventually reaching the corner vortex region, and merging
with it in a fairly complex dynamic process. The beginning of this merging-growth
regime occurs at Demerg ≈ 4.5, corresponding to the minimum value of XR shown in
figure 7. It is characterized by a complex interaction between very weakly pulsating
lip and corner vortices, which tend to approach and separate. The variation of the
corner vortex size is given by the error bars in figure 7. In this process, there is
a mechanism of stress release whereby the first normal-stress difference, N1, near
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Figure 8. (a–h) Illustration of the unsteady flow patterns at high Deborah numbers (mesh
M3C and the CUBISTA scheme).

the downstream duct wall also varies between a maximum value, when the two
vortices are more separated, and a minimum when the vortices are closer. The shape
of the boundary engulfing the two vortices is concave and there is also a top–
bottom asymmetry, which is weak as seen in the instantaneous streamline plots of
figure 8(b) for De = 5.0, showing the formation of the large concave elastic vortex. As
a consequence of the loss of symmetry, the vortices become dissimilar in size and the
longer vortex can appear on either wall. At this Deborah number, the dimensionless
axial velocity component (uL/U2) oscillations are stronger, and higher harmonics
of the dimensionless oscillation frequency (2λf1, 3λf1) appear in the corresponding
frequency spectrum presented in figure 9(b). Sub-harmonic period-doubling features
(with λf2 ≈ λf1/2) are still observed and a very small indication of quasi-periodicity
emerges as a small peak of energy that can be identified as a linear combination of
λf1 and λf2 (i.e. m1λf1 + m2λf2, with m1 and m2 integers).

For higher Deborah numbers, the dynamics and shape of the flow patterns change,
exhibiting only a single large corner vortex with a convex boundary shape for
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Figure 9. Velocity trace at point (x = �xmin/2; y = H2 − �ymin/2) and the FFT spectrum for
(a) De =3.0, (b) De = 5.0, (c) De = 10, (d ) De = 13, (e) De =20 and (f ) De =100.

Decc � 8, as presented in the still image of figure 8(c) pertaining to De = 10. This
convex curvature of the vortex boundary is accompanied by divergent flow streamlines
upstream of the abrupt contraction, a typical phenomenon usually observed in high-
De contraction flows (Alves & Poole 2007). Simultaneously, the vortex increases in
size and the unsteady flow behaviour becomes more noticeable. The top–bottom
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asymmetry continues to exist with the longer vortex alternating from the bottom to
the top wall and vice versa, as observed at lower De. Although the variation in XR

is not very large, as measured by the error bars in figure 7, the process is clearly
more complex, exhibiting a wider range of characteristic frequencies as observed in
figure 9(c), which plots the fundamental dimensionless frequencies of the oscillations
of the axial velocity at the edge of the re-entrant corner. Again, quasi-periodic
oscillations are evident, with dimensionless frequency peaks identified as multiple
linear combinations of λf1 and λf2.

Further increasing the Deborah number after the elastic vortex enhancement
(De3rd � 12), a new kind of time-dependent instability arises, particularly near the
re-entrant corner of the contraction, with the appearance of a third vortex inside
the larger corner vortices. This kind of elastic instability is often encountered in
experimental studies, as the jetting instability upstream of a 4 : 1 : 4 axisymmetric
contraction–expansion (Rothstein & McKinley 2001), the bent-elbow shape streak
lines close to the re-entrant corner of a 12:1 square–square contraction (Sousa et al.
2009) and the local instability associated with the formation and decay of a dip of
the vortex boundary at the lip corner of a 4 : 1 circular contraction (Chiba et al.
2004). This is clearly shown by the instantaneous flow pattern obtained at De = 13
in figure 8(d). The amplitude of the oscillations is equivalent to that reported at
De = 10, while the corresponding dimensionless fundamental frequencies have grown,
as presented in the frequency spectrum of figure 9(d).

By increasing even more the elasticity of the fluid (Debs � 15), there is an
intensification of the third vortex, and the time-dependent nature of the flow undergoes
a new transition into the so-called third vortex growth and back-shedding regime. The
flow has large corner vortices, which have different sizes, and hence the flow is
asymmetric as well as periodic. Inside the existing shorter vortex, a new lip vortex is
periodically generated in the vicinity of the re-entrant corner. This inner lip vortex
grows first very quickly inside the original vortex, eventually forcing it to elongate. As
this elongation takes place, the inner lip vortex decreases in size and vanishes when the
enveloping outer vortex reaches its maximum length. Simultaneously, the large vortex
at the opposite wall decreases in size. This is shown in the instantaneous flow pattern
obtained at De = 20 in figure 8(e). The dimensionless amplitude of the oscillations is
now stronger and the top–bottom asymmetry is very clear and stronger than at lower
De. As shown in the frequency spectrum presented in figure 9(e), the corresponding
dimensionless fundamental frequencies are now smaller than at lower De, no longer
sharply defined but exhibiting a broader range of frequencies (broad-based peak) and
there are still higher harmonics of the oscillation frequency, 2f1.

As the Deborah number goes well beyond a value of 20, elastic effects become
even more dramatic, and the inner lip vortex that we saw developing inside the large
corner vortex at lower De is now stronger and forces a detachment of the vorticity,
which is shed in the upstream flow direction (back-shedding). This back-shedding
of vorticity is sketched at three different times in the instantaneous flow patterns
in figure 8(f–h) for De = 100. The corresponding oscillations of the dimensionless
velocity have large amplitudes, as presented in figure 9(f) together with the FFT
plot showing the predominant broad-based back-shedding frequency. Although at
this Deborah number, the ratio between the time step employed in the simulations
and the relaxation time is 1/25 000, the spatial and temporal resolutions may not be
sufficient for the same level of accuracy as before (in fact, mesh M3C was shown to
be well suited at small De, cf. figures 2 and 6 and table 2); therefore, these results
at high De should be regarded as qualitative, meaning that these data are not of
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Figure 10. (Colour online) (a) Dominant frequencies and (b) velocity amplitude at point
(x = �xmin/2; y = H2 − �ymin/2) as a function of the Deborah number obtained with mesh

M3C. Lines in the frequency graph are λfi = a
√

De, with a =0.053, 0.158 and 0.237. Line in
the amplitude graph represents the fitting to identify the critical Deborah number for the Hopf
bifurcation to unsteady flow (|δuL| ∝

√
De − Deosc).

benchmark quality. In addition, accurate results in the back-shedding regime require
the use of longer computational domains upstream of the contraction (and possibly
downstream) than was the case here. Finally, as for other flows with a sequence
of transitions (for instance, inertial transitions in the Newtonian fluid flow around
a cylinder, Williamson 1996; or elastic transitions in Taylor–Couette flow, Shaqfeh
1996), it is expected that at some stage, the flow becomes three-dimensional, thus
requiring expensive full 3D time-dependent computations.

Variations of the dominant frequencies and velocity amplitudes traced at the
monitoring location XL close to the corner are presented in figure 10 as a function
of Deborah number. The vertical lines refer to tentative values of characteristic
Deborah numbers marking the onset of the various flow regimes described in the
precedent discussion. The full thick line in figure 10(a) represents the functional
dependence λfi = a

√
De with a = 0.158, giving the dimensional frequency as inversely

proportional to the square root of relaxation time (Fortin & Esselaoui 1987; El Hadj &
Tanguy 1990) and the lower and upper dashed lines correspond to λfi = a

√
De/3 and

λfi =3a
√

De/2, respectively. The predicted frequencies, with the dominant frequencies
represented with solid symbols and the other frequencies with open symbols, agree
with λfi = 0.158

√
De at small and intermediate Deborah numbers (De � 3 and

5 � De � 11), but fall below this line at higher Deborah numbers (De � 20), where
the predicted data tend to agree better with the correlation of the lower dashed line,
λfi = a

√
De/3. In the region 11 <De < 20, the data agree with the upper line, and we
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Figure 11. (Colour online) Time-averaged Couette correction as a function of the Deborah
number calculated in mesh M3C. Error bars represent the amplitude of the oscillations.

note that the beginning of the back-shedding regime (Debs ≈ 15) is characterized by
a period of oscillation roughly equal to the fluid relaxation time, i.e. the product of
Strouhal and Deborah numbers is unity (St De = (tflowfi)(λ/tflow ) = λfi ≈ 1), which is

in agreement with λfi = 3a
√

De/2. In the amplitude graph (figure 10b), the solid line
represents the fit to identify the critical Deborah number for the Hopf bifurcation to
unsteady flow (|δuL| ∝

√
De − Deosc).

To quantify the energy losses in the flow of the Oldroyd-B fluid through the abrupt
contraction, we evaluated the variation of the Couette correction coefficient (Ccorr )
with De. The Couette correction is the normalized pressure drop between the inlet and
the outlet after discounting for the fully developed pressure drop along the channels
(i.e. it represents a dimensionless extra pressure drop due to flow redevelopment at
the entrance of the smaller channel), and is calculated as

Ccorr =
�p − �pFD

2τw

, (3.2)

where �p is the pressure difference between the inlet and the outlet, �pFD is the
pressure drop required to drive fully developed flow in the inlet and outlet straight
channels, as in the absence of the abrupt planar contraction, and τw is the downstream
wall shear stress under fully developed flow conditions. In figure 11, we plot Ccorr

on the basis of the time-averaged pressure differences, but error bars accounting for
the dynamic process are included. In the literature, there are only data for the steady
flow regime (mainly for De � 3) and the present predictions agree with those of Alves
et al. (2003a) and Aboubacar & Webster (2001) in the low-De range, but differ from
the experiments of Nigen & Walters (2002). The plot shows that the energy losses
for the Oldroyd-B fluid evolve non-monotonically with De, with an increase in Ccorr

occurring for De > 20, as seen in earlier numerical studies for the PTT fluid (Alves
et al. 2003a). It is interesting to note, by comparing figures 7 and 11, that the pressure
drop is still decreasing when the vortex sizes are already growing, showing that both
quantities are not directly related.

In their experiments in a 4 : 1 planar contraction, Nigen & Walters (2002) did not
observe any vortex enhancement, and the pressure drop was seen to vary linearly
with the flow rate as in the case of a Newtonian fluid with the same shear viscosity.
This indicates that their Couette correction is relatively small (it was not quantified in
their work). In contrast, in the present numerical simulations, the Couette correction
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Figure 12. (a) Schematic representation of the 3D square–square 4 : 1 contraction geometry
and (b) detailed view near the contraction plane for mesh M56.

achieves a minimum value of about −12, thus indicating a significant reduction of
pressure drop, and further increase of De leads to an increase of Ccorr . The difference
between the experimental results of Nigen & Walters (2002) and the present numerical
simulations can be due to the fact that the Boger fluid used in their experiments has
a much stronger contribution of the solvent viscosity (solvent viscosity ratio of 0.95,
estimated graphically from their flow curve, against our ratio of 1/9).

3.2. Square–square 3D abrupt contraction

3.2.1. Flow geometry and computational meshes

The flow geometry is illustrated in figure 12(a). In this case, the full domain is
used in all the simulations in order to be able to capture elastic flow asymmetries
or instabilities that may arise. Inlet and outlet lengths are the same as used for the
2D problem, L1 = 40H2 and L2 = 100H2, which are long enough for complete flow
development upstream and downstream of the contraction, as will be demonstrated.
However, a difference relative to the 2D problem is that now, at the entrance of the
inlet duct, a uniform velocity profile is imposed. At the exit, boundary conditions
used were similar to those in the planar contraction flow.

Calculations with the Oldroyd-B and PTT models were carried out at a vanishing
Reynolds number Re = ρH2U2/η =0 (creeping flow) and varying Deborah numbers
(again, De = λU2/H2), using the two meshes M40 and M56, characterized in table 4.
The mesh data in table 4 include the total number of control volumes in the meshes
(NC), the number of degrees of freedom (DOF) and the minimum sizes near the
re-entrant corners. Meshes M40 and M56 have 40 and 56 cells, respectively, in
both transverse directions at the upstream channel. A zoomed view of mesh M56
near the contraction plane is depicted in figure 12(b). Another difference with the
previous problem is that only steady-state results are reported here, and any sign of
unsteadiness detected in the calculations will serve to identify the critical Deborah
number. We restrict our analysis to steady flows due to the large CPU times that
would be required for accurate unsteady flow calculations using viscoelastic models
in a 3D geometry.
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Number of cells Degrees of freedom �xmin/H2 �ymin/H2 �zmin/H2

M40 51 000 510 000 0.104 0.100 0.100
M56 312 816 3 128 160 0.051 0.054 0.054

Table 4. Computational meshes used for the 4 : 1 3D square/square contraction flow.

Theoretical

y/H1 or z/H1

u/U

u/U1

u/U2

Inlet duct
Outlet duct

–1.0
0

0.5

1.0

1.5

2.0

–0.5 0 0.5 1.0

Figure 13. (Colour online) Theoretical and numerical axial velocity profiles along the
transverse directions for the Oldroyd-B model at De = 4.8 (mesh M56) under fully developed
flow conditions in the upstream and downstream square ducts.

In the next sections, we present qualitative (flow patterns on the symmetry planes
and 3D streak lines) and quantitative results (vortex size measured along the
diagonal plane and the central plane, distribution of the normalized first normal-
stress difference along the centreline and downstream channel wall, stability criteria).
In §§ 3.2.1 and 3.2.2, we present results obtained for the Oldroyd-B model and the
PTT fluid, respectively.

3.2.2. Oldroyd-B model

In this section, we analyse the results obtained with the Oldroyd-B model having
a viscosity ratio of β = 0.59. This viscosity ratio is used in benchmark studies and,
in addition, it is close to the value of 0.568 pertaining to the Boger fluid used in the
experiments by Sousa et al. (2009). The next section on the PTT model also considers
the case with ε = 0.02 and β = 1/9, which for comparison purposes is close to the
Oldroyd-B model for β =1/9. We start by comparing, in figure 13, the theoretical
and the numerical axial velocity profiles for fully developed flow at the inlet and
outlet square channels. These predictions are for both St rT and LogT formulations
at a Deborah number of 4.8, taken in the mid-symmetry planes as a function of
the transverse direction coordinates, y and z. The theoretical and numerical profiles
match at this Deborah number, indicating that the assumed inlet and outlet lengths (L1

and L2) of the computational meshes are sufficient for complete flow development
upstream before the flow reaches the contraction plane, and flow redevelopment
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Figure 14. (Colour online) Dimensionless vortex length measured along the diagonal
(XDR = xDR/H1) and horizontal/vertical (XHR = xHR/H1) planes as a function of the Deborah
number obtained with M40 and M56 for the Oldroyd-B model with β =0.59.

downstream of the contraction. The theoretical velocity profile was calculated using
the analytical solution for a Newtonian fluid in a square channel (White 1991), which
is also applicable for constant-viscosity viscoelastic fluids (Boger fluids) such as those
described by the Oldroyd-B model.

Results for the normalized vortex lengths measured along the diagonal
(XDR = xDR/H1) and horizontal/vertical (XHR = xHR/H1) planes, for both the St rT
and LogT formulations, are presented in figure 14. These data are now scaled
with the upstream channel half-width, for consistency with previous works (Alves
et al. 2005, 2008; Sousa et al. 2009), and were predicted on meshes M40 and M56,
with two different interpolating schemes for the convective terms in the constitutive
equation (UDS and CUBISTA). Again, numerical diffusion introduced by the upwind
scheme allows much higher De to be reached, at the expense of a loss in accuracy
indicated by the significant tendency to overpredict the vortex size. Steady solutions
having similar accuracy were obtained up to De ≈ 4.8 with both formulations, when
the finest mesh and the CUBISTA scheme are employed. For these conditions, the
simulations with the St rT formulation diverged at De ≈ 5, while the simulations with
the LogT formulation continue to converge up to De ≈ 22, with noticeable unsteady
behaviour, particularly for De � 20. The normalized vortex lengths measured along
the diagonal and the horizontal/vertical planes increase significantly with Deborah
number (cf. figure 14), and there is close agreement between results calculated using
the two formulations. On the coarse mesh M40, the critical Deborah number for the
onset of time-dependent flow rose to De ≈ 6.4 and De ≈ 28 for the St rT and LogT
formulations, respectively, rising even further to De ≈ 6.9 and De ≈ 48 when using the
UDS scheme with the St rT and LogT formulations, respectively. This is, once again,
an unambiguous demonstration of the stabilizing effect of the numerical diffusion
inherent to the upwind scheme (Alves et al. 2000, 2003a), which is, unfortunately,
accompanied by a significant loss of accuracy, as observed from the St rT results,
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Figure 15. (Colour online) Flow patterns and 3D flow-type parameter (ξ ) predicted for
the Oldroyd-B model (β = 0.59) on mesh M56: (top half) StrT and (bottom half) LogT .
(a) Mid-symmetry plane (y =0 or z = 0) and (b) diagonal plane (z = ±y).

with both XDR and XHR deviating significantly from the accurate predictions obtained
on a finer mesh with the CUBISTA scheme. Even though figure 14 shows that for
this particular flow, UDS in conjunction with the LogT formulation provides results
closer to those obtained with both a precise interpolation (CUBISTA) scheme and the
finest mesh M56 (especially for XHR , cf. figure 14), showing that this formulation is not
so sensitive with respect to the interpolation scheme as is the standard formulation,
we cannot conclude that the LogT formulation is more accurate than the St rT
methodology, or otherwise. Indeed, a different trend was observed in the planar
contraction flow (cf. figure 2).

Figure 15 shows maps of stream-trace patterns taken in the mid-symmetry plane
(y =0 or z = 0) and the diagonal plane (z = ±y) with both formulations (for each
case, the top half shows St rT and the bottom half shows LogT predictions) up to
the critical Deborah number for the St rT formulation. These predictions were based
on mesh M56 and the CUBISTA scheme.
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Figure 16. Axial first-normal stress difference along a line close and parallel to the downstream
duct wall on the mid-plane for the Oldroyd-B model (β = 0.59) on mesh M56 and using the
CUBISTA scheme. Comparison of the results from the two formulations.

The flow patterns displayed in figure 15 predicted with the two formulations are
similar at each De, except for a slight difference observed at De ≈ 4.8, when a small
‘lip vortex’ near the re-entrant corner in the horizontal plane becomes visible in the
predictions with the St rT formulation. The minimum value of the stability criterion,
det(A), is approximately equal to unity for all simulations; therefore, no problems
of the lack of numerical convergence and stability occurred in these simulations.
Regarding the flow type, figure 15 shows a contour plot of ξ , demonstrating that the
flow in the central part of the geometry is essentially of extensional nature, except
near the walls where the expected shear flow is observed. However, in contrast to
the 2D case, we do not observe the small regions of solid-body rotation near the
re-entrant and salient corners, presumably because of the extra shear introduced by
the secondary flow along the third coordinate, which is typical in this geometry, as
discussed below. When increasing the Deborah number, there is an important increase
in the extensional nature of the flow in the recirculation zone, visible in both the
diagonal and lateral symmetry planes. At De = 4.8, we see the first instances of some
differences between predictions by the St rT and LogT formulations, especially in
the diagonal symmetry plane where the lengths of the vortices become noticeably
different. These differences are better seen in figure 16, which plots the streamwise
variation of the normalized first normal-stress difference (N1) close to the downstream
channel wall as predicted by the St rT and LogT formulations.

The 3D nature of the open recirculations for Newtonian and viscoelastic flows
through square–square abrupt contractions was previously reported and analysed by
Alves et al. (2008), where a good agreement with experiments was also shown. As
commented in the Introduction, they also reported a flow inversion due to elastic
effects in the 3D 4 : 1 square–square contraction using shear-thinning fluids. Sirakov
et al. (2005) commented upon a similar flow inversion in their 3D simulations of a
square-to-circular cross-section contraction flow. This fluid dynamical inversion was
also observed experimentally by Sousa et al. (2009) using Boger fluids, thus confirming
that the effect is due to elasticity and not to the shear-thinning nature of the fluid.

To corroborate the flow visualizations of Sousa et al. (2009), in this work we present
the first numerical evidence that the fluid dynamical inversion for Boger fluids can
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Figure 17. (Colour online) Flow patterns and 3D flow-type maps (ξ ) predicted at high
Deborah numbers with the Oldroyd-B model (β = 0.59) on mesh M56. (a) Mid-symmetry
plane (y =0 or z = 0) and (b) diagonal plane (z = ±y).

be predicted with the Oldroyd-B model. Figure 17 shows streamline plots and the
corresponding flow-type classification maps (ξ ) calculated in the symmetry planes for
the flow of Oldroyd-B fluids at De � 7.5, predicted on mesh M56 and with the LogT
formulation. For the Newtonian case (cf. figure 15 for De = 0) and low De, the fluid
particles departing from the top corner of the diagonal plane (z = ±y, figure 17b) enter
the recirculation in the diagonal plane, rotate towards its centre and then flow towards
the horizontal/vertical plane vortex (y =0 or z = 0, figure 17a), where they rotate back
from the eye of the recirculation to the outside before exiting the contraction near the
re-entrant corner. At high Deborah numbers (e.g. De = 15 or 20 in figure 17), the flow
direction inside the recirculation inverts, and the fluid particles enter the recirculating
region at the mid-plane vortex (y = 0 or z = 0, figure 17a), winding through its eye
and drifting from here to the diagonal vortex (z = ±y, figure 17b), where they unwind
to exit the contraction. That is, we now have the behaviour exactly opposite of that
seen at low De, as far as the secondary flow in the recirculation region is concerned.
Regarding the flow-type classification contours, also plotted in figure 17, increasing
the Deborah number leads to a significant increase in the extensional nature of the
flow in the central part of the geometry as well as inside the recirculation zone, in
both the mid- (y = 0 or z = 0) and diagonal symmetry planes (z = ±y). At the highest
Deborah numbers, there is also an enhancement of the Moffatt recirculation (Moffatt
1964) at the salient corner of the contraction particularly noticeable at the diagonal
mid plane.
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3.2.3. PTT model

In this section, we analyse the results obtained with the PTT model having a
viscosity ratio of β = 1/9. The PTT model is shear-thinning in viscosity and in the
first normal-stress coefficient, in contrast to the Oldroyd-B model used in the previous
sections. The extensional viscosity is bounded due to the non-zero value of the
new parameter ε appearing in the stress coefficient function, since the steady-state
extensional viscosity is inversely proportional to ε, at low ε values. If this extensional
parameter is set to 0, then Y(Akk) = 1 and the Oldroyd-B constitutive equation is
recovered. In this work, we perform computations for ε = 0.02 and ε = 0.25, typical
of dilute and concentrated polymer solutions, respectively.

Results for the vortex length along the diagonal (XDR) and horizontal/vertical (XHR)
symmetry planes for both the St rT and LogT formulations are presented in figure 18.
These predictions were obtained on meshes M40 and M56 with the CUBISTA high-
resolution scheme for the two extensibility parameters, ε =0.25 and ε = 0.02. For the
lower value of ε (ε = 0.02), the simulations with the St rT formulation diverged at
De ≈ 2 and De ≈ 4 with meshes M56 and M40, respectively. Note that when ε → 0,

the PTT model reduces to the Oldroyd-B model and, as remarked before, a probable
cause for divergence is the loss of positive definiteness of the conformation tensor.
For the LogT formulation with ε = 0.02, the value of det(A)min was always positive,
as per design of the LogT methodology, showing no sign of the loss of evolution up
to De ≈ 20 and De ≈ 30 with meshes M56 and M40, respectively (cf. figure 18a). Such
significant increase in the critical Deborah number for steady flow by almost an order
of magnitude clearly shows the advantage of using the LogT formulation in a flow
problem possessing geometrical singularities. At the higher value of ε (ε = 0.25), the
superiority of the LogT formulation shows even more clearly with no signs of loss
of evolution or divergence up to De ≈ 10 000, while for the St rT formulation, loss
of evolution occurs at De ≈ 90 and De ≈ 60 with meshes M40 and M56, respectively,
as shown in figure 18(b). We further note that the two formulations provide similar
results up to the point at which the standard stress formulation is unable to provide
an adequate numerical solution.

Figure 19 presents the flow patterns and contours of the flow-type classification
parameter (ξ ) predicted with the PTT model (ε = 0.25) on mesh M56 with the LogT
formulation. For this shear-thinning fluid, both the vortex lengths along the diagonal
(XDR) and the horizontal/vertical (XHR) symmetry planes increase up to De ≈ 100,
and then the value remains almost constant, as shown in figure 18(b). As for the
Oldroyd-B fluid, increasing the Deborah number also leads to a significant increase in
the extensional nature of the flow in the central part of the geometry and also in the
recirculation zones in both symmetry planes (y = 0 or z = 0 in figure 19a and z = ±y in
figure 19b). Looking more carefully at the flow patterns in the diagonal plane (z = ±y

in figure 19b) at large De (De � 100), we see the growth of a second recirculation
at the salient edge of the contraction, which could explain the stabilization of the
length of the main vortex. As for the Oldroyd-B fluid, the elasticity-driven inversion
of the secondary flow is clearly apparent for higher Deborah numbers (De � 100), as
previously reported by Alves et al. (2008).

4. Conclusions
High-elasticity simulations of 2D and 3D entry flows are reported, and were possible

due to the use of the log-conformation formulation technique of Fattal & Kupferman
(2004) in combination with a high-resolution finite-volume method.
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Figure 18. (Colour online) Dimensionless vortex length measured along the diagonal
(XDR = xDR/H1) and horizontal/vertical (XHR = xHR/H1) planes as a function of the Deborah
number obtained with meshes M40 and M56. The PTT model with β = 1/9 and (a) ε = 0.02 and
(b) ε = 0.25.

For the 2D 4 : 1 abrupt contraction flow of an Oldroyd-B fluid, which has a constant
shear viscosity as in real Boger fluids, the flow becomes unstable at a relatively low
critical De of about 2.5, which is of the same order as attained in most previous
works. On increasing De, the flow exhibits local unsteadiness which tends to grow
as elasticity is further increased, eventually leading to an asymmetric flow regime
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Figure 19. (Colour online) Flow patterns and 3D flow-type maps (ξ ) predicted with the
PTT model (β = 1/9, ε = 0.25) on mesh M56. (a) Mid-symmetry plane (y = 0 or z =0) and
(b) diagonal plane (z = ±y).

with alternate back-shedding of vorticity from the two pulsating recirculating eddies
formed on the top and bottom walls of the upstream channel. Dominant frequencies
were determined via FFT of velocity signals, showing a tendency for a frequency-
doubling mechanism at high De, eventually leading to a chaotic regime. Average
vortex size and overall pressure drop were computed from the time evolution of the
predicted data and show the typical upturn shape seen in experimental data and in
the recent multiscale simulations of Koppol et al. (2009) in a 4 : 1 : 4 axisymmetric
contraction/expansion, with an initial steep decrease followed by strong enhancement
when plotted against De. However, the doubling of the excess pressure drop above
the Newtonian value was not predicted with the present Oldroyd-B simulations,
presumably because of its physical limitations regarding the transient extensional
viscosity behaviour.

For the 4 : 1 square–square 3D abrupt contraction, simulations were carried out
both with the Oldroyd-B and the PTT models, but they were restricted to steady
flows. Very high Deborah numbers were attained (De ≈ 20 for the PTT model with
ε = 0.02 and De ≈ 10 000 for the PTT model with ε = 0.25), with prediction of strong
vortex enhancement and inversion of the sense of rotation of fluid particles inside
the vortices, previously observed experimentally with Boger fluids, but not reported
numerically with constant-viscosity model fluids.

These high-Deborah-number calculations could only be performed with the log-
conformation technique, whereas the standard stress formulation systematically
diverged beyond a critical low De. When both methods converge to a steady
solution, the use of the log-conformation technique provides results of global and local

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

84
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2011.84


302 A. M. Afonso, P. J. Oliveira, F. T. Pinho and M. A. Alves

quantities, such as eddy size and stress profiles that cannot be distinguished visually
from those of the standard approach when refined meshes and accurate discretization
schemes are used. Thus, these computations show quite well that at least in the scope
of the finite-volume procedure, the log-conformation formulation is superior to the
standard approach that uses the extra-stress tensor as dependent variable.
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