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Abstract

We show that March’s criterion for the existence of a bounded nonconstant harmonic function on a weak
model (that is, Rn with a rotationally symmetric metric) is also a necessary and sufficient condition for the
solvability of the Dirichlet problem at infinity on a family of metrics that generalise metrics with rotational
symmetry on Rn. When the Dirichlet problem at infinity is not solvable, we prove some quantitative
estimates on how fast a nonconstant harmonic function must grow.
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1. Introduction

March [10] gave a criterion for the transience of a rotationally symmetric Riemannian
manifold, that is, for a metric on Rn of the form

g = dr2 + φ2(r)gSn−1 ,

with φ a smooth function such that φ > 0 for r > 0, φ(0) = 0 and φ′(0) = 1, and where
gSn−1 is the standard round metric on Sn−1; Mg = (Rn, g) is called a weak model. March
proved that Mg supports bounded nonconstant harmonic functions if and only if∫ ∞

1
φn−3(σ)

∫ ∞
σ

φ1−n(τ) dτ dσ < ∞. (1.1)

The behaviour of the Brownian motion on a manifold and the existence of bounded
nontrivial harmonic functions are closely related (see the excellent survey [8]).

We go beyond the result of March and show that for metrics of the form

g = dr2 + φ2(r)gω, (1.2)

where gω is any metric on Sn−1, March’s criterion (1.1) implies the solvability on M of
the Dirichlet problem at infinity. It is important to clarify that g is defined in Rn \ {0}
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and it can only be smoothly extended to the origin when gω = gSn−1 if it is also assumed
that all derivatives of even order vanish at r = 0. Because g might not be smoothly
extendable to the origin, our definition of harmonicity in (Rn, g) has the following
nuance (see also [6, Section 1]): we say that u is harmonic if u ∈ C(Rn) ∩ C2(Rn \ {0}),
and in Rn \ {0}, it satisfies

Δgu = 0, where Δg =
∂2

∂r2 + (n − 1)
φ′

φ

∂

∂r
+

1
φ2Δgω .

Thus, we establish conditions on a class of metrics that generalise the case of weak
models, not necessarily rotationally symmetric, for which the Dirichlet problem at
infinity is solvable and, as a bonus, we give some quantitative results. That is, we shall
prove the following result.

THEOREM 1.1. Let M = (Rn, g), n ≥ 3, with g of the form (1.2).

(i) For any continuous data f ∈ C(Sn−1), if∫ ∞
1
φn−3(σ)

∫ ∞
σ

φ1−n(τ) dτ dσ < ∞,

then the Dirichlet problem at infinity is uniquely solvable on M.
(ii) If there is an η > 0 such that φ′(r) ≥ η outside of a compact subset of M and∫ ∞

1
φn−3(σ)

∫ ∞
σ

φ1−n(τ) dτ dσ = ∞,

then there is a constant c > 0 such that a nonconstant harmonic function
u : Rn −→ R must satisfy

max
r≤R
|u(ω, r)| � exp

(
c
∫ R

1
φn−3(σ)

∫ R

σ

1
φn−1(τ)

dτ dσ
)
. (1.3)

The constant c depends on η and λ1, the first eigenvalue of the Laplacian Δgω
on (Sn−1, gω). (For example, c = λ2

1/(2λ1 + 4) if the radial curvature of the cone
is everywhere nonpositive.) In particular, the Dirichlet problem at infinity is not
solvable in M.

(iii) If φ′(r) ≤ β, for a positive constant β, then any bounded harmonic function must
be constant. In fact, there is a constant l := l(β, λ1, n) > 0 such that a nonconstant
harmonic function u must satisfy

max
r≤R
|u(ω, r)| � rl. (1.4)

Some observations are in place here. The hypotheses of the second part of the
theorem are satisfied whenever outside a compact set of M, φ′ > 0 and the radial
curvature −φ′′/φ is nonpositive, or just when the radial curvature is nonpositive.
Regarding condition (iii), the hypothesis on φ holds as soon as the radial curvature
is nonnegative. In this case (when gω = gSn−1 ), Liouville’s theorem holds, as proved by
Yau for metrics of nonnegative Ricci curvature. However, the reader can readily check
that if φ(r) = 1

2 (r + sin r), the radial curvature has no definite sign, and in this case,
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condition (iii) still applies. A proof of condition (iii) is presented in [4], and we have
included it here because it gives a nice complement to condition (ii).

The study of the Dirichlet problem at infinity has a history of many deep and
beautiful results (see, for instance, [1–3, 5, 11, 12, 14]). In particular, Theorem 1.1
was proved by Hsu [9] in the case where gw = gSn−1 , the standard round metric on the
sphere, for Cartan–Hadamard manifolds. However, it is not clear that his methods,
which are probabilistic in nature, extend to arbitrary metrics on Sn−1, as he uses
the symmetry of the heat kernel in the case of a rotationally invariant metric. Our
proof is elementary and relies on separation of variables, estimating solutions to
a Ricatti equation and some Fourier analysis. We not only generalise Hsu’s result
but also provide an alternative to the probabilistic methods employed by him. Also,
our estimate on the minimal growth of a nonconstant harmonic function (when the
Dirichlet problem at infinity is not solvable) seems to be new.

Following March’s arguments, Theorem 1.1 implies an almost sharp restriction on
the curvature of a Cartan–Hadamard manifold whose metric is of the form (1.2) and
where the Dirichlet problem at infinity is solvable (see [10, Theorem 2]).

COROLLARY 1.2. Let M = (Rn, g) with a metric of the form (1.2), such that φ′ is
eventually nonnegative, and let k(r) = −φ′′/φ(r) be its radial curvature, with k(r) ≤ 0
outside a compact subset of Rn. Let c2 = 1 and cn =

1
2 for n ≥ 3. If k(r) ≤ −c/(r2 log r)

outside a compact set for some c > cn, then the Dirichlet problem at infinity is solvable.
If k(r) ≥ −c/(r2 log r) for some c < cn outside a compact set, then the Dirichlet
problem at infinity is not solvable.

In March’s original result (and in Hsu’s result), it is required that the radial curvature
k(r) is nonpositive: in such a case, φ′ > 0 holds automatically everywhere.

The layout of this paper is as follows. In Section 2, we define what we understand
by solving the Dirichlet problem at infinity; in Section 3, we prove our main result.

2. Preliminaries

To define what we mean by the Dirichlet problem being solvable at infinity, we
represent Rn as a cone over the sphere Sn−1, that is,

R
n ∼ [0,∞) × Sn−1/({0} × Sn−1).

The equivalence class of the origin (the pole) will be denoted by O, that is,

O = {0} × Sn−1/({0} × Sn−1).

We can compactify Rn by defining

Rn = [0,∞] × Sn−1/({0} × Sn−1),

where [0,∞] is a compactification of [0,∞).
We say that the Dirichlet problem on M = (Rn, g) is solvable at infinity for boundary

data f ∈ C(Sn−1
∞ ) if there is a harmonic function u on M, that is, Δgu = 0 on Rn \ {0},

which extends continuously to a function u : Rn −→ R and such that u(∞, ·) = f (·).
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Our definition of solvability at infinity coincides with that of Choi [5] on
Cartan–Hadamard manifolds. Indeed, for a Cartan–Hadamard manifold, the sphere
at infinity given by the Eberlein–O’Neill compactification is obtained by adding at
infinity the equivalence classes of geodesic rays starting at the pole (a point around
which the metric can be written as in (1.2)), where two geodesic rays are equivalent if
lim supt→∞ d(γ1(t), γ2(t)) < ∞, and then endowing this set with the cone topology (see
[5]). If we identify the pole of the manifold with the vertex of the cone (or pole, that
is, the equivalence class of {0} × Sn−1), the set of equivalence classes of geodesics can
be identified with the unit sphere on TpM, where p is a pole of the manifold, which in
turn implies that it can be identified with Sn−1

∞ = {∞} × Sn−1.

3. Proof of the main result

3.1. Proof of part (i). In this section, we will show that

J =
∫ ∞

1
φn−3(σ)

∫ ∞
σ

φ1−n(τ) dτ dσ < ∞

implies the solvability of the Dirichlet problem at infinity. (In Section 3.2, we will
show nonsolvability in the case where J = ∞.)

We will follow the approach implemented in [7], so we use separation of variables
to find solutions to the equation

Δgu = 0 on Rn \ {0},

which extend continuously to Rn and satisfy some given data at infinity. With this
in mind, we let fm,k, k = 0, 1, 2, . . . , km, be eigenfunctions of the mth eigenvalue, λ2

m
(λm ≥ 0, m = 0, 1, 2, . . .), of the Laplacian Δgω on (Sn−1, gω), such that the set { fm,k}m,k
is an orthonormal basis for L2(Sn−1) with respect to the inner product induced by the
metric gω. If ϕm is such that

Δg(ϕm fm,k) = 0,

then ϕm must satisfy the radial Laplacian equation

ϕ′′m + (n − 1)
φ′

φ
ϕ′m −

λ2
m

φ2 ϕm = 0. (3.1)

It is proved in [7] that we may assume ϕ0 = 1 and that ϕm for m > 0 has the form

ϕm(r) = rlα(r),

where l = 1
2 (−(n − 2) +

√
(n − 2)2 + 4λ2

m) > 0 satisfies the indicial equation

l(l − 1) + (n − 1)l − λ2
m = 0

and α is a smooth function. Also, it is shown that ϕm can be chosen so that it is
nondecreasing and thus, ϕm ≥ 0. Therefore, as argued in [7], to show solvability of
the Dirichlet problem at infinity, it suffices to show that the ϕm are bounded.
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Indeed, let us sketch why this is so (for details, we refer the reader to [7]). Once
we have proved that the ϕm are bounded, we may without loss of generality assume
that 0 ≤ ϕm ≤ 1 and that limr→∞ ϕm(r) = 1. Given f ∈ C(Sn−1

∞ ), we can expand it in a
Fourier series,

f (ω) =
∑
m,k

cm,k fm,k(ω).

If f is smooth, a theorem of Peetre [13] guarantees that this series converges absolutely
and uniformly to f (not just in L2(Sn−1) as it always does). Thus, a harmonic function
solving the Dirichlet problem at infinity with boundary data f is given by

u(r,ω) =
∑

m

ϕm(r)
∑

k

cm,k fm,k(ω).

We call u a harmonic extension of f. If f is just continuous, an approximation argument
using smooth functions gives the existence of a harmonic extension for f. Uniqueness
follows from the maximum principle (see [7]).

In the case of f ∈ L2, again, as proved in [7], the boundedness of ϕm implies
solvability. All we are left to do to show solvability is the boundedness of the ϕm,
which we do next. (Uniqueness, in the case of continuous f, follows from the maximum
principle.)

LEMMA 3.1. Given a solution ϕm to the radial Laplacian (3.1), there are constants
A, B > 0 such that the bound

ϕm(s) ≤ B exp
( ∫ s

1

λ2
m

φn−1(τ)

(
A +
∫ τ

1
φn−3(σ) dσ

)
dτ
)

holds for all s ≥ 1.

PROOF. Write

ϕm(s) = B exp
( ∫ s

1

λ2
m

φn−1(τ)
xm(τ) dτ

)
(3.2)

for s ≥ 1, with B = ϕm(1) and xm(t) a smooth function. From the equation satisfied by
ϕm, we arrive at an equation for xm, that is,

x′m(s) +
λ2

m

φn−1(s)
x2

m(s) = φn−3(s), (3.3)

which leads to the inequality

x′m(s) ≤ φn−3(s).

This yields the estimate

xm(s) ≤ A +
∫ s

1
φn−3(σ) dσ

for an appropriately chosen constant A > 0, and the lemma follows. �
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From Lemma 3.1, it follows that if∫ ∞
1

1
φn−1(τ)

dτ +
∫ ∞

1

1
φn−1(τ)

∫ τ
1
φn−3(σ) dσ dτ < ∞,

then ϕm is bounded. The second integral can be rewritten as∫ ∞
1
φn−3(σ)

∫ ∞
σ

φ1−n(τ) dτ dσ.

Since the inner integral must converge for almost all τ, the convergence of the second
integral implies the convergence of the integral∫ ∞

1

1
φn−1(τ)

dτ.

So we see that ∫ ∞
1
φn−3(σ)

∫ ∞
τ

φ1−n(τ) dτ dσ < ∞

implies that ϕm is bounded, which, by the results in [7], gives the solvability of the
Dirichlet problem at infinity.

3.2. Proof of part (ii). Next, we show that if

J =
∫ ∞

1
φn−3(σ)

∫ ∞
σ

φ1−n(τ) dτ dσ = ∞

and there is an η > 0 such that φ′(r) ≥ η outside of a compact set, then the Dirichlet
problem at infinity is not solvable. The idea is to bound ϕm from below, and then use
Plancherel’s theorem to obtain estimate (1.3).

Let us estimate ϕm. Again, we write ϕm as in (3.2) for s ≥ 1 and xm a smooth
function. We should make an important observation. Since the ϕm are nondecreasing
(by the arguments in [7]), it follows that xm(t) ≥ 0. This fact will be used below. Since
xm satisfies (3.3), for any s ≥ 1, we must have either

x′m(s) > 1
4φ

n−3(s) (3.4)

or

λ2
m

φn−1(s)
x2

m(s) >
1
4
φn−3(s). (3.5)

By hypothesis, there are η > 0 and r0 > 0 such that φ′(r) ≥ η for r ≥ r0 (in the case
of a Cartan–Hadamard manifold, we can take η = 1). Without loss of generality,
we will assume that r0 = 1. We shall prove that these two conditions imply that for
η = min{1, η},

xm(t) ≥ η

2λm + 4

∫ t

1
φn−3(s) ds. (3.6)
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Let

I = {q ≥ 1 : (3.6) holds for t ∈ [1, q]}.

It is clear that 1 ∈ I since

xm(1) ≥ η

2λm + 4

∫ 1

1
φn−3(s) ds = 0.

Define t0 = sup I and let us show that t0 = ∞. To this end, assume that t0 < ∞. By
continuity, it is clear that t0 ∈ I. To reach a contradiction, we will show that for ρ > 0
small enough, [t0, t0 + ρ) ⊂ I.

First, we estimate

φn−2(t) = φn−2(1) + (n − 3)
∫ t

1
φn−3(s)φ′(s) ds ≥ η

∫ t

1
φn−3(s) ds.

Let ρ > 0 be small enough so that either (3.4) or (3.5) holds. If (3.4) holds, then we
can estimate xm(t) for t ∈ [t0, t0 + ρ) by

xm(t) ≥ xm(t0) +
1
4

∫ t

t0
φn−3(s) ds ≥ η

2λm + 4

∫ t

1
φn−3(s) ds.

If (3.5) holds (here, we use the observation made above that xm ≥ 0), then

xm(t) ≥ 1
2λm + 4

φn−2(t) ≥ n − 2
2λm + 4

∫ t

1
φn−3(s)φ′(s) ds ≥ η

2λm + 4

∫ t

1
φn−3(s) ds,

and, hence, (3.6) holds up to t < t0 + ρ, and t0, if finite, cannot be the supremum of I.
Thus, we have proved that (3.6) holds, and then we can estimate

ϕm(s) ≥ exp
( λ2

mη

2λm + 4

∫ s

1

1
φn−1(τ)

∫ τ
1
φn−3(σ) dσ dτ

)

= exp
( λ2

mη

2λm + 4

∫ s

1
φn−3(σ)

∫ s

σ

1
φn−1(τ)

dτ dσ
)

≥ exp
( λ2

1η

2λ1 + 4

∫ s

1
φn−3(σ)

∫ s

σ

1
φn−1(τ)

dτ dσ
)
.

This estimate shows that ϕm(s)→ ∞ as s→ ∞ for m � 0, under the assumption that
J = ∞. Using this, we will show that the Dirichlet problem at infinity cannot be solved.
In fact, we shall show that any bounded harmonic function must be constant. So, let
u : Rn −→ R be a harmonic function. For R > 0 arbitrary, we let BR be the ball of
radius R centred at the origin and

uR(ω) = u|∂BR .

Since uR is smooth, we can expand it as the Fourier series

uR(ω) =
∑

m

∑
k

cm,k,R fm,k(ω),
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where fm,k is an eigenfunction of the eigenvalue λ2
m of the Laplacian Δω of Sn−1. From

now on, we shall assume that { fm,k} is an orthonormal basis for L2(Sn−1).
The harmonic extension of uR to BR, and thus, by uniqueness, u on BR (see

[7, Theorem 3]), is given by

u(r,ω) =
∑

m

ϕm(r)
ϕm(R)

∑
k

cm,k,R fm,k(ω). (3.7)

Indeed, the proof is exactly the same as that given in [7] for the Dirichlet problem
at infinity. First, we must show that the sum converges in the L2-sense for every
r ≤ R. Here, we need the fact that the ϕm can be chosen to be nonnegative and
nondecreasing: that this can be done is shown in [7]. Therefore, 0 ≤ ϕm(r)/ϕm(R) ≤ 1
for 0 ≤ r ≤ R and, from having convergence at R, our assertion follows. Next, we must
show that the boundary condition at ∂MR is met as r → R, and for this, we also ask
the reader to consult [7]. From now on, we shall assume, without loss of generality,
that c0,0 = 0.

Thus far, we have shown that in MR, u can be written as given in (3.7). We shall
prove that u can be represented, in the whole of M, as

∑
m

ϕm(r)
ϕm(1)

∑
k

cm,k,1 fm,k(ω), (3.8)

where ∑
m,k

cm,k,1 fm,k(ω)

is the Fourier expansion of u restricted to ∂M1. First, observe that by taking R = 1 in
(3.7), we obtain (3.8). Now consider (3.7) at any fixed R > 1, evaluate at r = 1 and
then compare with (3.8) when evaluated at r = 1. By uniqueness,

cm,k,R =
ϕm(R)
ϕm(1)

cm,k,1.

However, then it follows that (3.8) represents u for any R ≥ 1 and, as this representation
is already valid for R < 1, our claim is proved.

Now, we can use Plancherel’s theorem to compute

‖u‖2L2(∂BR) =
∑

m

(
ϕm(R)
ϕm(1)

)2∑
k

|cm,k,1|2φn−1(R).

If we assume that u(ω, R) = O(1), then

∑
m

(
ϕm(R)
ϕm(1)

)2∑
k

|cm,k,1|2φn−1(R) = O(1)φn−1(R),
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[9] March’s criterion for transience 9

that is, ∑
m

(
ϕm(R)
ϕm(1)

)2∑
k

|cm,k,1|2 = O(1),

which contradicts the fact that ϕm(R)→ ∞ as R→ ∞.
Next, we derive the estimate (1.3). We have

max
r≤R
|u(r,ω)|2 = max

r=R
|u(r,ω)|2 (by the maximum principle)

≥
∑

m

(
ϕm(R)
ϕm(1)

)2∑
k

|cm,k,1|2

� exp
( 2λ2

1η

2λ1 + 4

∫ s

1
φn−3(σ)

∫ s

σ

1
φn−1(τ)

dτ dσ
)

and the estimate follows.

3.3. Proof of part (iii). Assume that for all r > 0, φ′(r) ≤ β, for a positive constant
β. Again, write ϕm as in (3.2) for s ≥ 1 and xm(t) a smooth function. Let

ηm =
1
2

(
− β(n − 2)

λm
+

√
β2(n − 2)2

λ2
m

+ 4
)
.

Since xm satisfies (3.3), at any given s, either

λ2
m

φn−1(s)
x2

m(s) > η2
mφ

n−3(s),

that is (since xm ≥ 0),

xm(s) ≥ ηm

λm
φn−2, (3.9)

or

x′m(s) > (1 − η2
m)φn−3(s). (3.10)

Our choice of ηm guarantees

1 − η2
m

β(n − 2)
=
ηm

λm
.

We shall show the following. Assume that at time t = t0, we have the estimate

xm(t) ≥
1 − η2

m

β(n − 2)
φn−2(t). (3.11)

Then, there is an ε > 0 such that the same estimate is valid on (t0, t0 + ε). To do so,
choose ε > 0 such that either (3.9) or (3.10) is valid. In the first case, (3.11) follows
immediately. In the second case, we estimate xm(τ) as follows. For τ ∈ (t0, t0 + ε),
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xm(τ) = xm(t0) +
∫ τ

t0
φn−3(s) ds

≥ xm(t0) + (1 − η2
m)
∫ τ

t0
φn−3(s)

φ′(s)
β

ds

= xm(t0) +
1 − η2

m

β(n − 2)
(φn−2(τ) − φn−2(t0))

≥
1 − η2

m

β(n − 2)
φn−2(τ).

By continuity, the estimate (3.11) holds on a closed set and this set is nonempty
since the estimate is satisfied when t = 0 (again, we are using xm ≥ 0 and φ(0) = 0).
Therefore, the estimate holds for all t ∈ [0,∞) and we obtain

xm(t) ≥ ηm

λm
φn−2(t).

Thus, we can take

ηm =
1
2
λ2

m

β(n − 2)

[√
1 +

4λ2
m

β2(n − 2)2 − 1
]

and hence,

xm(t) ≥ amφ
n−2(t),

where

am =
1
2
λm

β(n − 2)

[√
1 +

4λ2
m

β2(n − 2)2 − 1
]
.

This shows that

ϕm(r) � exp
(
am

∫ r

1

1
φ(s)

ds
)

and, since the am form an increasing sequence, we have the estimate

ϕm(r) � exp
(
a1

∫ r

1

1
φ(s)

ds
)
.

From Plancherel’s theorem, as we reasoned above, if u is bounded and if∫ ∞
1

1
φ(s)

ds = ∞,
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[11] March’s criterion for transience 11

then u must be constant. However, if φ′(r) ≤ β, then φ ≤ βr. Consequently, the integral
above is divergent and Liouville’s theorem holds in this case. Again, an argument using
Plancherel’s theorem shows that any nonconstant harmonic u function must satisfy

max
r≤R
|u(ω, r)| � exp

(
a1

∫ r

1

1
φ(s)

ds
)
≥ ra1/β,

which proves (1.4).
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