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SUMMARY
In this paper, the kinematic workspace characteristics of a
crab-like legged vehicle are investigated using a 2-D model.
The alternative kinematic configurations and their corre-
sponding workspace constraints are discussed, and the
vehicle configuration of most interest identified. It is shown
that, for constant vehicle body attitude, only two parameters
affect the kinematic workspace, foot overlap and thigh
length. Analytical methods for calculating the workspace
characteristics are presented and, using these methods, the
effects of the design geometry on the kinematic workspace
are investigated.

KEYWORDS: Kinematic design; Crab-like legged vehicle; 2-D
model.

1. INTRODUCTION
Many CLAWAR (CLimbing And WAlking Robots)
researchers have concentrated on navigation, gait generation
and control, rather than mechanical design. When proto-
types have been developed, it has often been assumed that
the mechanical design principles are known and the
problem is one of applying them. In practice, this is far from
the truth, as the performance of existing prototypes testifies.
The most common design approach is to copy the geometry
of insects and mammals with little or no scientific
justification. Although there has been some very good work
on leg mechanism design,1–5 the relationships between leg
mechanism design and overall machine layout have been
neglected.

In principle, legged vehicle design could be treated as one
large design optimisation problem. However, the sheer
number of parameters and the difficulty of defining a
sensible objective function make this approach impractical.
In previous work, the authors have divided the walking
machine design problem into overall machine design and
leg design.6–8 During overall machine design, the legs are
treated as black-boxes which provide the required ground
reactions at the feet and have the required kinematic
properties. One output of the overall machine design stage is
a leg design specification, which then allows the design of
an appropriate leg mechanism. The disadvantage of this
approach is that it cannot guarantee an optimal design
because of the way in which the two design sub-problems
have been decoupled.

In this paper, the kinematic design of crab-like walkers
and climbers is considered. The design is considered as a
whole with no artificial decoupling of leg geometry and
overall machine geometry. Crab-like machines represent an

important sub-class of multi-legged walkers and climbers.5

Their importance is a result of their high agility, being
particularly well suited to crossing difficult terrains.

Crab-like machines lend themselves to a 2-dimensional
analysis because the body and leg movements are almost
entirely in the saggital (longitudinal) plane. The body and
its supporting legs can be represented by the simple 2-D
model shown in Figure 1; note that the non-supporting legs
are not shown. The foot spread is equal to 2a and the hip
spread is equal to 2ab. The foot overlap (s = a–ab) is defined
as the horizontal distance between the foot and the hip when
the vehicle body is in its reference position (yb = 0). The
thigh and shank lengths are l1 and l2, respectively.

To limit the scope of the study reported here, it was
assumed that the vehicle body remains parallel to the
ground, and that the ground is flat over the region affecting
the vehicle workspace. The kinematic workspace is defined
as the region that is accessible to the body-centre without
changing the supporting legs. This is a function of the
geometry of the legs and the way in which they are
constrained by the ground. It is assumed that there are no
constraints on the range of rotation of the hip and knee
joints. Three workspace characteristics are presented: work-
space area; maximum horizontal stroke; and maximum
vertical stroke. Note that the terms horizontal and vertical
are used for convenience only and refer to movement
tangential to and normal to the support surface respectively.
Because this study considers kinematic effects only, the
orientation of the support surface with respect to the gravity
vector is irrelevant.

To simplify the analysis and to generalise the results, all
of the dimensions are normalised with respect to the overall
leg length. In other words, the overall leg length, l, is taken
to be one (l = l1 + l2 = 1), and all other dimensions are
therefore relative to the overall leg length. This means that
there is only one independent leg geometry parameter, the
thigh length, l1. Also, for the purposes of the reported work,
it will be shown that the body size, ab, does not affect the
kinematic workspace, and that the workspace can be
evaluated for all body sizes by considering the case where
the body-centre and hip-joints are coincident (ab = 0).
Therefore the foot overlap, s, and the thigh length, l1, are the
only independent geometry parameters that influence the
kinematic workspace.

2. KINEMATIC CONFIGURATIONS AND
CONSTRAINTS
As explained above, to limit the scope of the study reported
here, it was assumed that the vehicle body remains parallel
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to the ground, and that the ground is flat over the region
affecting the vehicle workspace. Therefore, the attitude of
the vehicle body remains constant, and the body-centre and
hip-joints follow parallel paths. This means that, for a given
value of foot overlap (s = a�ab), the body size, ab, does not
affect the kinematic workspace, and that the workspace can
be evaluated for all body sizes by considering the case
where the body-centre and hip-joints are coincident
(ab = 0).

Referring to Figure 1, there are eight possible vehicle
configurations. Firstly, s (a–ab) can be either positive or
negative. Secondly, in each case, there are four possible
configurations of the legs:

• Leg 1 knee-out – Leg 2 knee-out (A-E-C-D-F-B in
Figure 1)

• Leg 1 knee-out – Leg 2 knee-in (A-E-C-D-F’-B in
Figure 1)

• Leg 1 knee-in – Leg 2 knee-out (A-E’-C-D-F-B in
Figure 1)

• Leg 1 knee-in – Leg 2 knee-in (A-E’-C-D-F’-B in
Figure 1)

From a kinematic workspace point of view, the second and
third configurations are simply mirror images, which
reduces the number of relevant leg configurations to three
(six vehicle configurations). Because, for kinematic pur-
poses, the body size can be considered to be zero (ab = 0),
every configuration where s is negative is equivalent to
another configuration where s is positive. This reduces the
number of relevant vehicle configurations to the three
shown in Figure 2. To visualise the original eight configura-
tions, it is helpful to picture the three cases in Figure 2 with
ab ≠ 0

For each of the three vehicle configurations, Figure 3
shows the workspace boundaries resulting from the geome-
try of the legs and the way in which they are constrained by
the ground. The upper boundary is symmetrical about the z-
axis (located mid way between the two feet) and is a result
of one of the legs reaching its fully extended length. For

example, on the right hand side of the z-axis, the upper
boundary (circle 1) consists of a circle of radius
r1 = l1 + l2 = 1 and centre [�s, 0], and can be expressed as

z1 = [1� (yb + s)2]1/2

When l1 < l2 (l1 < 0.5) the constraints forming the lower
boundary include two circles (circle 2) which are mirror
images of one another about the z-axis, and which are a
result of the thigh being folded back so that the knee angle
is zero. In this case, it is impossible for the hip to move
closer to its corresponding foot. For example, on the right
hand side of the z-axis, circle 2 has a radius r2 = (l2 � l1) and
centre [s, 0], and can be expressed as

z2 = [(r2)2 � (yb �s)2]1/2

The constraints forming the lower boundary also include
another two circles (circle 3) which are a result of the shank
lying on the ground. In this case, it is impossible for the hip
to move closer to the point on the ground where its
corresponding knee lies. For example, on the right hand side
of the z-axis in configuration 1 (Figure 3a), circle 3 has a
radius r3 = l1 and centre [s + l2, 0], and can be expressed as

z3 = [(r3)2 � (yb �s� l2)2]1/2

Note that when s = 0 (a = ab), the workspace constraints for
configurations 1 and 2 converge. In Figure 3, it has been
assumed that the areas between circles that cannot form part
of a continuous horizontal motion are of little or no value.
Therefore, these areas are referred to as waste areas, and are
not included in the useful workspace area.

It is apparent that configuration 2 (Figure 3b), where both
legs are in their knee-in configurations, has no advantage
from a kinematic workspace perspective. Although config-
uration 3 (Figure 3c) may have some advantages in
particular circumstances, in this paper we concentrate on
configuration 1 (Figure 3a) because it is the best configura-
tion if the design is to be optimised for maximum horizontal
stroke and it allows the vehicle’s body to reach the ground.

Fig. 1. 2-D model of a crab-like vehicle (non-supporting legs not shown).
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3. WORKSPACE ANALYSIS
In this section, configuration 1 is analysed in detail and
expressions are developed for the workspace area, A,
maximum horizontal stroke, DY, and maximum vertical
stroke, DZ. As the workspace is symmetrical about the z-
axis, the workspace area can be calculated by integrating the
accessible area to the right of the z-axis and doubling that
value, thus

A = 2 �
yb lim

0

(zb max (yb)�zb min (yb))dyb

where zbmax(yb) and zbmin(yb) are the upper and lower
workspace boundaries, and yblim is the maximum horizontal
displacement and corresponds to the point of intersection
between the lower boundary and circle 1.

The maximum horizontal stroke is given by

DY = 2yblim

The maximum vertical stroke always occurs at yb = 0 and is
given by

DZ = zbmax (0)�zbmin (0)

Although zbmax (yb) is always equal to z1, the expressions for
zbmin(yb) and yblim depend on the way in which circles 1, 2 and
3 intersect with each other and the z-axis, which in turn
depends on the design parameters, s and l1. The flow charts

shown in Figures 4 to 7 determine which of the 13 different
cases applies. The logical conditions contained in those flow
charts require knowledge of the following intersection
points (when they exist):

a) the point of intersection of circles 1 and 2

y12 = (1� ll)ll /s

z12 = [1� (y12 + s)2]1/2

b) the point of intersection of circles 1 and 3

y13 = l2(1 + s)/(2s + l2)

z13 = [1� (y13 + s)2]1/2

c) the point of intersection of circle 1 and the horizontal
line z = r2

y1r2 = �s + 2(l1l2)1/2

z1r2 = r2

d) the point of intersection of circle 3 and the horizontal
line z = r2

y3r2 = s + l2 � [2l1l2 � l2
2]1/2

z3r2 = r2

Fig. 2. Vehicle configurations.
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e) the point of intersection of circle 1 and the horizontal
line z = r3

y1r3 = [l� l1
2]1/2 �s

z1r3 = r3

The 13 different cases that determine the lower workspace
boundary are now described. The logical conditions leading
to each case are explained, and expressions are given for
zbmax(yb), zbmin(yb) and yblim. There are four main cases

corresponding to Figures 4 to 7, which then break down into
13 sub-cases.

3.1 Case 1: no part of circle 2 or circle 3 is within circle 1
(Figure 4)
In this case, no part of circle 2 or circle 3 is within circle 1.
The logical conditions leading to this case are as follows:

either l1 < 0.5 and s ≥ l2

or l1 ≥ 0.5 and s ≥ l1

Fig. 3. Workspace boundaries.
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When the first condition applies, both circle 2 and circle 3
exist, and they are both outside circle 1. When the second
condition applies, circle 2 does not exist, and circle 3 is
outside circle 1.

In this case, the upper boundary, lower boundary and
horizontal limit of the workspace are given by:

zb max = z1

zb min = 0

yb lim = 1�s

3.2 Case 2: part or all of circle 2 is within circle 1 (Figure
5)
In this case, part or all of circle 2 is within circle 1, and
circle 3 is outside circle 1. The logical condition leading to
this case is as follows:

l1 < 0.5 and l1 ≤ s < l2

The three components of this logical condition mean that
circle 2 exists, circle 3 is outside circle 1, and part or all of
circle 2 is within circle 1 respectively. Referring to Figure 5,
this case divides into four sub-cases as follows.

Sub-case 2.1. In this sub-case, circle 2 intersects with the
z-axis (centre-line) and there is a waste area due to circle 2.
The logical condition leading to this sub-case is as follows:

s ≤ r2 and s < y12

In this case, the upper boundary, lower boundary and
horizontal limit of the workspace are given by:

zb max = z1

zb min = � z2

r2

0 ≤ yb ≤ s

s < yb ≤ y1r2

yb lim = y1r2

Sub-case 2.2. In this sub-case, circle 2 intersects with the
z-axis (centre-line) and there is not a waste area due to circle
2. The logical condition leading to this sub-case is as
follows:

s ≤ r2 and s ≥ y12

In this case, the upper boundary, lower boundary and
horizontal limit of the workspace are given by:

zb max = z1

zb min = z2

yb lim = y12

Sub-case 2.3. In this sub-case, circle 2 does not intersect
with the z-axis (centre-line) and there is a waste area due to
circle 2. The logical condition leading to this sub-case is as
follows:

s > r2 and s < y12

In this case, the upper boundary, lower boundary and
horizontal limit of the workspace are given by:

zb max = z1

zb min =

0

z2

r2

0 ≤ yb ≤ s�r2

s�r2 < yb ≤ s
s < yb ≤ y1r2

yb lim = y1r2Fig. 4. Case 1: no part of circle 2 or circle 3 is within circle 1.

Fig. 5. Case 2: part or all of circle 2 is within circle 1.
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Sub-case 2.4. In this sub-case, circle 2 does not intersect
with the z-axis (centre-line) and there is not a waste area due
to circle 2. The logical condition leading to this sub-case is
as follows:

s > r2 and s ≥ y12

In this case, the upper boundary, lower boundary and
horizontal limit of the workspace are given by:

zb max = z1

zb min =
0

z2

0 ≤ yb ≤ s�r2

s�r2 < yb ≤ y12

yb lim = y12

3.3 Case 3: part or all of circle 3 is within circle 1 (Figure
6)
In this case, circle 2 does not exist, and part or all of circle
3 is within circle 1. The logical condition leading to this
case is as follows:

l1 ≥ 0.5 and s < l1

Referring to Figure 6, this case divides into four sub-cases
as follows.

Sub-case 3.1. In this sub-case, circle 3 intersects with the
z-axis (centre-line) and there is a waste area due to circle 3.
The logical condition leading to this sub-case is as follows:

s ≤ �r2 and s + l2 < y13

In this case, the upper boundary, lower boundary and
horizontal limit of the workspace are given by:

zb max = z1

zb min =
z3

r3

0 ≤ yb ≤ s + l2

s + l2 < yb ≤ y1r3

yb lim = y1r3

Sub-case 3.2 In this sub-case, circle 3 intersects with the z-
axis (centre-line) and there is not a waste area due to circle

3. The logical condition leading to this sub-case is as
follows:

s ≤ �r2 and s + l2 ≥ y13

In this case, the upper boundary, lower boundary and
horizontal limit of the workspace are given by:

zb max = z1

zb min = z3

yb lim = y13

Sub-case 3.3. In this sub-case, circle 3 does not intersect
with the z-axis (centre-line) and there is a waste area due to
circle 3. The logical condition leading to this sub-case is as
follows:

s > �r2 and s + l2 < y13

In this case, the upper boundary, lower boundary and
horizontal limit of the workspace are given by:

zb max = z1

zb min =

0

z3

r3

0 ≤ yb ≤ s + r2

s + r2 < yb ≤ s + l2

s + l2 < yb ≤ y1r3

yb lim = y1r3

Sub-case 3.4. In this sub-case, circle 3 does not intersect
with the z-axis (centre-line) and there is not a waste area due
to circle 3. The logical condition leading to this sub-case is
as follows:

s > �r2 and s + l2 ≥ y13

In this case, the upper boundary, lower boundary and
horizontal limit of the workspace are given by:

zb max = z1

zb min =
0

z3

0 ≤ yb ≤ s + r2

s + r2 < yb ≤ y13

yb lim = y13

Fig. 6. Case 3: part or all of circle 3 is within circle 1.
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3.4 Case 4: circle 2 and part or all of circle 3 are within
circle 1 (Figure 7)
In this case, circle 2 is entirely within circle 1, and part or
all of circle 3 is within circle 1. The logical condition
leading to this case is as follows:

l1 < 0.5 and s < l1

The first component of the logical condition means that
circle 2 exists, and the second component means that part or
all of circle 3 is within circle 1. Referring to Figure 7, this
case divides into six sub-cases, two of which correspond to
sub-cases 2.1 and 2.3 above.

Sub-case 4.1. In this sub-case, circle 3 is lower than circle
2 when yb ≤ yb lim, therefore circle 3 has no effect on the
workspace. Also, circle 2 intersects with the z-axis (centre-
line). Two logical conditions lead to this case, they are as
follows:

If s + l2 < y13

then r3 ≤ r2 and s ≤ r2

else z13 ≤ r2 and s ≤ r2

In the first case, the centre of circle 3 is nearer the origin
than the point of intersection between circles 1 and 3 (there
is a waste area due to circle 3). Therefore, the radius of
circle 3 must be less than the radius of circle 2. In the
second case, the point of intersection between circles 1 and
3 is nearer the origin than the centre of circle 3 (there is no
waste area due to circle 3). Therefore, the point of
intersection between circles 1 and 3 must be lower than
circle 2.

Because circle 3 has no effect on the workspace, this sub-
case is the same as sub-case 2.1, and therefore the upper
boundary, lower boundary and horizontal limit of the
workspace are given by the equations for sub-case 2.1.

Sub-case 4.2. In this sub-case, circle 3 is lower than circle
2 when yb ≤ yb lim, therefore circle 3 has no effect on the
workspace. Also, circle 2 does not intersect with the z-axis
(centre-line). Two logical conditions lead to this case, they
are as follows:

If s + l2 < y13

then r3 ≤ r2 and s > r2

else z13 ≤ r2 and s > r2

Fig. 7. Case 4: circle 2 and part or all of circle 3 are within circle 1.
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In the first case, the centre of circle 3 is nearer the origin
than the point of intersection between circles 1 and 3 (there
is a waste area due to circle 3). Therefore, the radius of
circle 3 must be less than the radius of circle 2. In the
second case, the point of intersection between circles 1 and
3 is nearer the origin than the centre of circle 3 (there is no
waste area due to circle 3). Therefore, the point of
intersection between circles 1 and 3 must be lower than
circle 2.

Because circle 3 has no effect on the workspace, this sub-
case is the same as sub-case 2.3, and therefore the upper
boundary, lower boundary and horizontal limit of the
workspace are given by the equations for sub-case 2.3.

Sub-case 4.3. In this sub-case, there is a waste area due to
circle 3, circle 3 is higher than circle 2, and circle 2
intersects with the z-axis. The logical condition leading to
this case is as follows:

s + l2 < y13 and r3 > r2 and s ≤ r2

In this case, the upper boundary, lower boundary and
horizontal limit of the workspace are given by:

zb max = z1

zb min =

z2

r2

z3

r3

0 ≤ yb ≤ s
s < yb ≤ y3r2

y3r2 < yb ≤ s + l2

s + l2 < yb ≤ y1r3

yb lim = y1r3

Sub-case 4.4. In this sub-case, there is a waste area due to
circle 3, circle 3 is higher than circle 2, and circle 2 does not
intersect with the z-axis. The logical condition leading to
this case is as follows:

s + l2 < y13 and r3 > r2 and s > r2

In this case, the upper boundary, lower boundary and
horizontal limit of the workspace are given by:

zb max = z1

0 0 ≤ yb ≤ s�r2

z2 s�r2 < yb ≤ s
zb min = r2 s < yb ≤ y3r2

z3 y3r2 < yb ≤ s + l2

r3 s + l2 < yb ≤ y1r3

yb lim = y1r3

Sub-case 4.5. In this sub-case, there is not a waste area due
to circle 3, circle 3 is higher than circle 2, and circle 2
intersects with the z-axis. The logical condition leading to
this case is as follows:

s + l2 ≥ y13 and z13 > r2 and s≤r2

In this case, the upper boundary, lower boundary and
horizontal limit of the workspace are given by:

zb max = z1

zb min =

z2

r2

z3

0 ≤ yb ≤ s
s < yb ≤ y3r2

y3r2 < yb ≤ y13

yb lim = y13

Sub-case 4.6. In this sub-case, there is not a waste area due
to circle 3, circle 3 is higher than circle 2, and circle 2 does
not intersect with the z-axis. The logical condition leading
to this case is as follows:

s + l2 ≥ y13 and z13 > r2 and s > r2

In this case, the upper boundary, lower boundary and
horizontal limit of the workspace are given by:

zb max = z1

zb min =

0

z2

r2

z3

0 ≤ yb ≤ s�r2

s�r2 < yb ≤ s
s < yb ≤ y3r2

y3r2 < yb ≤ y13

yb lim = y13

4. THE INFLUENCE OF THE DESIGN
PARAMETERS (s AND l1) ON KINEMATIC
WORKSPACE
The analysis presented in the previous section has been
incorporated in a MATLAB program which was subse-
quently used to produce the design maps presented in
Figures 8 to 10. As already explained, because the attitude
of the vehicle body remains constant, the kinematic
workspace is a function of the foot overlap (s = a–ab) and
thigh length (l1) only. Various features of the curves
presented can be explained by consideration of the geome-
try of Figures 1 to 3.

The extreme cases where l1 = 0 and l1 = 1 can be
understood by consideration of Figure 1. In both cases the
leg becomes a single link connecting the hip to the foot and
the machine reduces to the equivalent of a 4-bar chain.
Therefore, the workspace collapses onto a single line (the
coupler-curve), and hence the workspace area, maximum
horizontal stroke, and maximum vertical stroke are all
zero.

It is also clear that increasing foot overlap, s, reduces the
useful workspace in all three respects. This is because the
vehicle workspace consists of the intersection of the two
workspaces allowed by each leg acting alone. When s = 0,
with the exception of the two circles caused by the shanks
lying on the ground (circle 3), the workspace constraints
due to the two legs coincide. Therefore the reduction in
workspace as a result of having two legs rather than one is
at a minimum. As s is increased, the constraints due to the
two legs diverge and the useful workspace reduces.

The straight-line segments in Figures 8b and 9b coincide
with Case 1 (see section 3.1), where no part of circle 2 or
circle 3 is within circle 1, and hence l1 has no effect on
workspace area or maximum horizontal stroke. The straight-
line segments in Figure 10b correspond to the cases where
neither circle 2 nor circle 3 intersect with the centre-line (z-
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axis). In this case, the maximum vertical stroke is
constrained only by the ground and circle 1, and hence, l1

has no effect on maximum vertical stroke.
The greatest maximum horizontal stroke occurs when

s = 0 (already explained) and l1 = 1/3. This corresponds to
the case where, for s = 0, r2 = r3. Because the height of the
maximum horizontal stroke is equal to max (r2, r3), this
logical condition means that the maximum horizontal stroke
occurs at the lowest position possible. The greatest
maximum vertical stroke occurs when s = 0 (already
explained) and l1 = 0.5. This corresponds to the case where,

for s = 0, neither circle 2 nor circle 3 intersect with the
centre-line (z-axis) and therefore the maximum vertical
stroke is constrained only by the ground and circle 1.
Although an explicit reason is less apparent, it is not
surprising that the maximum workspace area occurs when
s = 0 and l1 = 0.38, a value which lies between 0.333 and
0.5.

5. CONCLUSIONS
In this paper, the kinematic workspace characteristics of a
crab-like legged vehicle have been investigated using the

Fig. 8. Workspace area A vs. l1 and s.
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2-D model described by Figure 1. The alternative kinematic
configurations and their corresponding workspace con-
straints have been discussed, and the vehicle configuration
of most interest identified (both legs in their knee-out
configurations). It has been shown that, for constant vehicle
body attitude, only two parameters affect the kinematic
workspace, foot overlap, s, and thigh length, l1. Analytical
methods for calculating the workspace characteristics of the
chosen configuration were then presented. Using these
methods, the effects of the design geometry on the
kinematic workspace have been investigated (Figures 8 to
10).

From a purely kinematic point of view the foot overlap, s,
should be zero (ab = a). However, previous work7 has shown
that a large foot overlap (ab << a) can reduce the installed
joint torques required and, hence, the machine weight. So
long as the foot overlap is constant, the foot spread, a, does
not affect the kinematic workspace, however, it obviously
has a direct effect on the machine’s stability (resistance to
tipping over).

For workspace area and maximum horizontal stroke,
there are distinct optimum values of thigh length (l1) when
s < ~0.5. When s > ~ 0.5, there is a range of values of thigh
length which optimise area or maximum horizontal stroke
(see the straight-line segments in Figures 8b and 9b). For
maximum vertical stroke and s = 0, the optimum thigh
length is l1 = 0.5, however, at all other values of s, there is
a range of values of thigh length which optimise maximum
vertical stroke (see the straight-line segments in Figure
10b). Thigh length will also affect the installed knee torque
and, hence, the machine weight.8

Although joint angles have not been presented, in practice
certain types of joint actuator may have rotation range
limitations. Once a promising design has been identified
from the data provided (Figures 8 to 10), it is a simple
matter to calculate the hip-joint and knee-joint angles for
particular paths through the workspace and then if necessary
to reappraise the design geometry.

In conclusion, although the results presented indicate the
effects of machine geometry on kinematic workspace, the

Fig. 9. Maximum horizontal stroke DY vs. l1 and s.
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design process must also take account of the effects of
geometry on machine weight and stability.6–8
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