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SUMMARY
In SLAM (simultaneous localization and mapping), the topological paradigm provides a more natural
and compact solution that scales better with the size of the environment. Computer vision has always
been regarded as the ideal sensor technology for topological feature extraction and description and
several methods have been proposed in the literature, but they are either time-consuming, require
plenty of different sensors, or are very sensitive to perceptual aliasing, all of which limit their
application scope.

This paper presents a fast-to-compute collection of features extracted from monocular images, and
an adaptive matching procedure for location identification in structured indoor environments inspired
by the natural language processing field. Although only dominant vertical lines, color histograms,
and a reduced number of keypoints are employed in this paper, the matching framework introduced
allows for the incorporation of almost any other type of feature. The results of the experiments
carried out in a home and an office environment suggest that the proposed method could be used for
real-time topological scene recognition even if the environment changes moderately over time. Due
to the combination of complementary features, high precision can be achieved within reasonable
computation time by using weaker but faster descriptors.

KEYWORDS: Computer vision; Mobile robots; Robot localization; SLAM; Topological modeling
of robots.

1. Introduction
The rising interest on metric simultaneous localization and mapping (SLAM) over the past few years
has led to the emergence of a less widespread research trend that has drawn its focus on trying to solve
the SLAM problem through a topological approach.2,10,28,31,34 The topological conception of robotics
has been around for a long time, even though metric maps are undeniably more accurate. However,
on closer examination, there is nothing surprising about it. Apart from providing significant storage
savings, as it results in a more compact representation of space that is more in accordance with the size
of the environment,2 the absence of metric and geometric information, which is replaced by notions
of proximity and order, eliminates dead-reckoning error issues. Moreover, the topological paradigm
has been proven effective for a great deal of situations in Nature, as it is the behavior employed by a
variety of different animal species, including human beings.

Back in 1990, Brooks stated that we do not need to answer the question “Where am I?” in
millimeters and degrees in order to safely move through the environment and cope efficiently with
uncertainty.7 On the contrary, instead of using coordinates to localize, human beings rely on an
abstract notion of distance and, in spite of this, we are still capable of recognizing where we are
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in space.25 By means of vision, which is our primary source of information, we identify relevant
or distinctive aspects of the environment which we use as landmarks for localization. Hence, why
should a robot, equipped with a camera, not be able to do exactly the same?

The very first step in any topological SLAM implementation is to define what is going to be
considered a landmark in the environment and choose the convenient sensing technologies to perceive
them or, conversely, select one or several types of sensors and determine which cues can be extracted
from the data they provide. Surprisingly, although an inappropriate decision at this stage complicates
the subsequent steps of the algorithm, it is often disregarded and makes it even more difficult to
overcome the perceptual aliasing problem (i.e. two totally distinct locations appear identical to the
robot’s sensors), not to mention the added complexity for the already challenging correspondence
problem (i.e. attempt to determine if sensor measurements taken at different times correspond to the
same physical location) in dynamic environments.

According to Stankiewicz and Kalia,29 by using landmarks, three properties are being implicitly
assumed: saliency, persistence, and informativeness. This means that the features should stand out,
that they should still be present when the robot revisits the location, and that they have to provide
enough information about the robot’s position or the behavior it should adopt when perceiving
them.

Unfortunately, it is more than somewhat unlikely to find a single type of cue that combines all of the
previous properties. This could be explained by the fact that the so-called structural landmarks (e.g.
intersections, entrances), which encode geometric properties of the environment, are permanent but
fairly uninformative. By contrast, object landmarks, which are elements independent of the structure,
tend to be unique but temporary like, for instance, a red coat hung among many black coats.29

Most of the developments in topological SLAM in the literature are based on visual techniques
inherited from the object detection world, due to the overwhelming popularity of the successful
keypoint detectors which provide highly distinctive features; thus, SIFT (scale-invariant feature
transform) features19 can be considered a sort of standard in this field, owing to their persistence
and robustness. Angeli et al. 2 adopt standard SIFT features; Sabatta 28 employs persistent color
SIFT features and determines the current location using the Mahalanobis distance to find the best
matches; and Booij et al. 5 build appearance-based maps from SIFT features extracted from unwrapped
panoramas. The latter computes a similarity measure for location recognition as the ratio of the number
of point correspondences that satisfy the epipolar constraints to the lowest number of features found
in the database and query images. In addition, Fraundorfer et al. 11 suggest storing all the captures
acquired in a database while constructing a link graph to keep track of adjacency. Image matching
is then performed by means of MSER (maximally stable extremal regions) features22 described
with SIFT to obtain the closest location. Finally, it is worth mentioning the work by Cummins and
Newman 10, where SURF (speeded-up robust feature) features3 are used for scene recognition using
an offline-built vocabulary tree. Notwithstanding, their high computational burden, especially with
large images, leaves very little time for other tasks like map fusion, motion planning, or obstacle
avoidance, as these techniques were originally designed to run in batch, as opposed to real-time
applications, which is precisely one of the essential requirements of robotics.

An alternative approach has its origin in an article by Lamon et al.,15 where they coined the term
fingerprint of places to refer to a circular list of complementary simple features (color patches and
vertical edges), obtained from omnidirectional images, whose order matches their relative position
around the robot. This idea led to the publication of a series of papers that further developed the
concept of fingerprint. Of special relevance is that of Tapus and Siegwart31 where, thanks to the
information provided by two 180◦ laser range scanners, corners and empty areas are additionally
detected. They employ a modified version of the global alignment algorithm23—used to compare
DNA (deoxyribonucleic acid) sequences—capable of dealing with uncertainty to obtain a matching
probability of the features. Unfortunately, this approach requires expensive sensors and gathers such
a huge amount of information at each location that makes it highly difficult to handle.

More recently, Liu et al.17 proposed a much simpler fingerprint procedure, exclusively based on
panoramic images, which extracts vertical edges under the belief that the prevailing lines naturally
segment a structured environment into meaningful areas, and encode the distance among those lines
and the mean U-V chrominance of the defined regions—in a LUV color space—in a lightweight
descriptor called FACT, which was later granted with statistical meaning and renamed DP-FACT.18

Although using the U-V chrominance is an interesting option due to the fact that the difference

https://doi.org/10.1017/S0263574714001076 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714001076


Matching monocular lightweight features using n-gram techniques 1837

between colors can be computed applying the Euclidean distance, the average approach always has
the risk that two completely different regions result in a very similar value.

Finally, it is worth mentioning the work by Ulrich and Nourbakhsh,33 where a global image
matching is performed on the basis of computing histograms in the red–green–blue (RGB) and hue–
saturation–lightness (HSL) color spaces on omnidirectional images, and comparing them using the
Jeffrey divergence. Localization is then carried out following a unanimous voting scheme.

It is important to emphasize that the vast majority of the aforementioned methods require an
omnidirectional camera. This is easily explained by the fact that omnidirectional cameras are the
only ones which guarantee rotational invariance (i.e. no matter what orientation a robot has in a
given location, the image captured is always the same). This is a very desirable property but has
the main disadvantage that, conversely to other types of cameras like stereo, this sensor alone is
not appropriate for navigation as the distance to obstacles cannot be estimated. Furthermore, all the
methods presented above have either one or several of the following drawbacks. They require plenty
of different, and often costly, sensors, are sensitive to perceptual aliasing, or are computationally
expensive to an extent that makes it fairly difficult to use them for real-time applications.

Bearing these shortcomings in mind, this paper proposes a lightweight vision-only monocular
feature extraction procedure based on the notion of fingerprint and a matching algorithm adapted
from the natural language processing (NLP) world, aimed at topological navigation—or, in general,
at topological SLAM—for structured indoor environments. The usage of monocular images allows
this method to be applied to any type of robot, as opposed to omnidirectional cameras that require
a more complicated installation. Moreover, it is compatible with stereo and, therefore, permits to
perform obstacle avoidance with a single camera.

The rest of the paper is structured as follows. First, Section 2 details the necessary steps to extract
the proposed collection of landmarks, followed by an explanation of the matching technique employed
to find correspondences between fingerprints in Section 3. Subsequently, Section 4 comments on the
results obtained for different image sets and finally, the most relevant conclusions are drawn in
Section 5.

2. Proposed Fingerprint
A monocular camera has been chosen as the unique sensor to extract a collection of complementary
features to derive a fingerprint. First, the image is segmented into different regions of interest (ROIs)
by extracting structural vertical lines. As a consequence, the subsequent features can be computed
in parallel in each of the resulting subimages and moreover, they are granted with spatial meaning
(i.e. they become ordered) without the need for complex calculations.

Any type of feature can be computed in these ROIs, but we propose a combination of color
histograms and keypoints. These features compensate for each other’s drawbacks as histograms
operate on a global basis—or semi-global, given that they are computed in subimages—whereas
keypoints are local. For instance, keypoints have trouble with homogeneous regions that can be
told apart using color information. This fingerprint has been coined VPACK (Visually Perceivable
Adjacent Color histograms and Keypoints). The details regarding the feature extraction process are
put forward below.

2.1. Vertical lines for segmentation
Just like Liu et al., 17 we support the hypothesis that vertical lines naturally divide structured
environments into informatively distinct regions. Realize, however, that this assertion turns out to be
valid only if the focal plane of the camera is perfectly parallel to the planes containing the vertical
lines. For structured indoor environments this happens to be generally true as the floor is normally
perpendicular to building walls.

With a view to taking advantage of this segmentation property, dominant lines are first extracted
from the image. The initial step is to compute the second-order derivative of the Sobel operator over
the x direction to enhance the vertical responses of the image. Afterwards, in order to compensate
for slight deviations of the camera from the perpendicular plane a three by one dilation is performed
(Fig. 1a). This allows to rejoin accidentally cut vertical edges due to horizontal displacement. Some
authors like Liu et al.17 may argue that after this step it is necessary to apply a median filter to
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Fig. 1. During line extraction, the input color image is converted to grayscale in order to apply the second-order
Sobel operator over the x direction. A dilation operation is then performed to enhance vertical responses (a),
followed by a morphological opening to identify relatively long line segments (b). Subsequently, a normalized
histogram of the edge responses is computed and the values lower than a given threshold are filtered out (c).
Finally, non-maximum suppression is applied to preserve the strongest response over a fixed neighborhood. The
extracted vertical lines are drawn on the input image for illustrative purposes in (d).

remove the additional noise introduced. However, on closer examination one realizes that this step is
dispensable at the sight of the subsequent operations.

A vertical morphological opening (i.e. an erosion followed by a dilation) is then carried out to join
together small segments that are vertically aligned and, at the same time, remove weak responses,
which have been defined as those segments shorter than an experimentally adjusted threshold length
(Fig. 1b). Given that lines are being used as a segmentation characteristic of the environment, the
recommended threshold is rather high, around 1/5 of the image height, with the aim of capturing
structural lines, like wall corners or furniture edges, while staying immune to noise coming from less
permanent sources such as, for instance, books on a shelf. Furthermore, this operation disposes of the
noise added in the previous step.

Afterwards, a normalized graph of the overall vertical response of each pixel column is computed
(Fig. 1c). The objective is twofold: to reduce the dimensionality of the problem and to identify the
predominant vertical lines. Instead of filtering out those values lower than the mean plus a standard
deviation, as suggested by Tapus,30 the values higher than five times the mean are preserved. The
output happens to be almost identical in the typical cases. However, the threshold proposed overcomes
a minor pitfall the mean plus standard deviation approach presents. Imagine a rare case where an
image does not contain any outstanding vertical lines. Therefore, all the values are bound to be close
to the mean and the standard deviation is expected to be low. Consequently, any noisy value that
departs marginally from this threshold would be classified as a line. By contrast, with the proposed
method no vertical edges would be identified.
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(a) (b)

Fig. 2. Hue–saturation–lightness or HSL (a); and hue–chroma–lightness or HCL (b) color spaces. Source: Figure
created using the ShapeGrid macro by Michael Horvath. 12

Notice that this last stage is completely different from applying a more restrictive condition to the
opening operator. In fact, it is a way of preventing the removal of partially occluded structural lines.
Let’s consider someone resting his hand against a door frame. If the opening threshold were larger,
the two segments in which the frame is divided will be probably suppressed. By contrast, with the
proposed solution, they would end up counting for the same vertical response.

Finally, a non-maximum suppression (NMS) algorithm is applied to establish a minimum
separation between lines (Fig. 1d). As the objective of the extracted lines is not directly to serve
as visual cues but to divide the image into different regions to permit a more local computation of
features, it seems clear that these regions must possess a minimum width (e.g. 5% of the image width).
To this end, an adapted version of the efficient one-dimensional (1D) (2n + 1) neighborhood NMS
algorithm developed by Neubeck and van Gool24 is applied. The modification introduced makes the
algorithm consider maxima close to image edges.

Before concluding this section, it is important to remark the main assets and limitations this type
of feature presents. On the side of the advantages, apart from the fact that in structured environments
lines are present almost everywhere (e.g. corners, door frames, shelves. . . ), one should not forget to
mention rotational invariance. Assuming the aforesaid conditions required to extract vertical lines
are met, no matter the orientation the robot has, vertical lines always appear the same, exception made
of occlusions as, under certain viewpoints, lines disappear behind other objects. Another drawback
derives from the definition of the segmentation lines. Remember that a minimum distance between
lines is forced in order to obtain relevant information in each of the intervals. Hence, as the robot
moves closer to a group of lines, their distance in the image increases and additional vertical edges
are bound to be identified.

2.2. Color histograms
It is undeniable that color is a very informative visual source of information. However, capturing
color with a camera is more challenging than it seems at first sight because it is very sensitive to
illumination changes. For this reason, a color space like hue–saturation–value (HSV) or HSL which
is supposed to split the color (hue) from the brightness information appears to be a reasonable starting
point for color extraction.15,32,33 Between the two aforementioned color spaces, HSL has been chosen
over HSV because it is symmetrical to lightness and darkness.4

In spite of the color component being separated from saturation and lightness in the HSL color
space, these components should not be overlooked in color extraction as hue is meaningless if colors
are too bright, dark, or desaturated—they appear to be white, black, or gray, respectively—and can
consequently lead to misclassification if they are not taken into account. Following this reasoning,
color can be separated into chromatic and achromatic regions depending on the saturation and
luminance components. Tseng and Chang32 put forward different thresholds to define the achromatic
area. Very dark and bright pixels are filtered out using only lightness to discriminate, whereas
saturation is also used for mid-range intensity values. However, the values proposed have been
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proven excessively restrictive and the fact that the color information is richer near the mid-plane of
the HSL cylinder, as shown in Fig. 2a, forces to apply different saturation thresholds depending on
the value of the lightness channel.

An alternative and more intuitive approach is to employ the hue–chroma–lightness (HCL) bicone
model instead (Fig. 2b), where the saturation component is replaced by a combination of lightness
and saturation known as chroma. In this case, it is sufficient to remove the central cylinder (using
the chroma channel) to tell the color information apart. The pixels whose chroma values are lower or
equal to 12.5% are classified as gray.

Moving to the actual algorithm, for each of the ROIs defined by the vertical lines extracted in
Section 2.1, chromatic pixels are first identified, using the chroma threshold proposed above, with the
aim of building eight-bin hue histograms as, according to Tapus30, eight distinct values are enough
to encode colorimetric information. Nonetheless, building histograms directly, adding up the pixels
that correspond to each bin, has an important drawback. It would not be uncommon to find locations
where many pixels lie along the border between two adjacent bins and that in two consecutive images
those pixels fall into different bins, giving rise to completely dissimilar histograms.

In order to address this issue, a fuzzy voting scheme with triangular membership functions, inspired
by the one proposed in Lamon et al., 15 has been implemented. Rather than counting for a single bin,
each pixel belongs to two histogram columns simultaneously, in an inversely proportional manner to
its distance to both bin centers. Realize that as the hue component is circular, the histogram ends are
contiguous. To perform this computation, a histogram with a large number of bins is obtained first.
Then, the membership degrees are calculated on this histogram.

However, there exist locations where white, gray, black are the prevailing colors, and therefore the
hue component is not sufficiently meaningful. For this reason, the pixels from the achromatic region
are used to obtain a five-bin histogram to accommodate different tones of gray following a procedure
that is analogous to the one applied to the chromatic area except for the fact that low and high values
are not mixed when performing the voting. If due to the illumination conditions of the environment
the images are prone to over- or under-exposure, the apexes of the HCL bicone can be removed in
order to mitigate this issue. The trade-off for this decision is that pure black and white would no
longer be identified.

Finally, both the color and grayscale histograms are stacked together and then normalized to obtain
a single 13-bin histogram.

2.3. Keypoints
Provided that keypoints (i.e. points in an image that stand out from its surroundings with respect
to some particular property like brightness) have been proven effective for rather difficult object
recognition tasks, it seems appropriate to include this type of visual cue in the fingerprint. There
exist many different alternatives and the choice of the keypoint detector and descriptor depends
on many factors like the type of environment, the computing power available, and the size of
the images analyzed, among others. In Section 4 the performance of the method is analyzed for
three qualitatively distinct algorithms: SIFT,19 which is robust but slow; Star features—a variant
of CenSurE1—described with upright SURF,3 which are faster but less robust; and ORB (Oriented
FAST and Rotated BRIEF)26 that is much faster due to the fact that it employs a less distinctive
binary descriptor.

In any case, no matter which type of keypoints is chosen, no more than 100 robust keypoints,
distributed among the different ROIs, are extracted in total. These keypoints are obtained by iteratively
adjusting the response threshold. However, if for whatever reason more points are still present after a
reduced number of iterations, they are all preserved. Realize that this is a totally opposite approach to
that of the image recognition field, where several hundreds or even thousands of features are extracted
from each image in order to be able to perform matching with relatively low uncertainty.

2.4. Final descriptor
To sum up, the resulting fingerprint (Fig. 3) consists of two sorted sets of n + 1 elements, where n

is the number of structural vertical lines identified in the image. One set contains 13-bin histograms
(eight bins represent color and five model grayscale values) whereas the elements of the other are
collections of keypoints extracted from each of the subimages defined by the vertical lines.
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Fig. 3. Final descriptor extracted. From each of the regions defined by structural vertical lines, keypoints and
color histograms (which include both chromatic and achromatic pixels) are obtained.

3. N-gram Matching
Once the features of an image have been extracted and described, they have to be compared with
those previously gathered in order to evaluate their similarity and decide on the current location.
This section introduces a matching procedure based on N-grams, with a view to taking adjacency
between features into account. The term N-gram is employed in NLP to refer to a subsequence of N
consecutive elements (i.e. letters or words) within a larger sequence.13 However, this concept can be
easily extended to different contexts. In this paper, each of the subimages defined by the structural
vertical lines extracted in Section 2.1 is considered a “letter.” As usual in NLP, only N-grams of up
to three items are evaluated. When N is equal to one, they are called “unigrams”; for N equal to two,
“bigrams;” and three-element grams are referred to as “trigrams.”

3.1. From features to N-grams
In order to be able to apply the N-gram framework, corresponding “letters” between the query and
the reference images must be first identified. To begin with, individual keypoints and histograms are
matched.

The similarity between two histograms is determined using the normalized version (i.e. the range of
possible values is scaled to the [0, 1] interval) of the commonly used Hellinger distance (1)8,16, which
has been chosen because it satisfies the metric axioms (i.e. non-negativity, reflexivity, symmetry, and
triangle inequality).9 It is important to point out that this metric is sometimes confused in the literature
with the Bhattacharyya distance because both make use of the Bhattacharyya coefficient (2)—also
known as Hellinger affinity—which is nothing more than the sum of the geometric means of each
i-bin pair. The actual Bhattacharyya distance is similar but violates the triangle inequality property.14

For every histogram in the reference image R, only the best match in the query image Q is kept given
that its normalized Hellinger distance is no larger than 0.3. This threshold has been experimentally
adjusted.

dH (Q, R) =
√

1 − ρ (Q, R), (1)

ρ (Q, R) =
N∑

i=1

√
Qi · Ri , where

N∑

i=1

Qi =
N∑

i=1

Ri = 1. (2)

By contrast, the best match for each query keypoint is retrieved from the keypoints of all the
reference images using the Euclidean distance, which is the one generally used in the literature for
these types of features, except for the case of binary descriptors (like the ones in ORB), where the
Hamming distance is employed instead.

Once individual corresponding features have been identified, the matching score between “letters”
can be computed as follows. Remember that each “letter” is represented by a single histogram and
several keypoints. For histograms, the matching score is calculated as 1 − dH (Q, R), whereas for
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Fig. 4. Example of the N-gram counts computation. The image depicts a query and a reference fingerprint. Lines
and arrows indicate corresponding histograms and keypoints. The matching score for individual subimages is
one minus the Hellinger distance for histograms and the number of matched keypoints over the total number
of keypoints in the reference subimage. Three unigrams, two bigrams, and one trigram have been matched for
both type of features.

Naive Bayes 

with 

Laplace Smoothing
Bigram counts

Unigram counts

Trigram counts

Unigram model

Bigram model

Trigram model

Inverse

entropy

Final model

Fig. 5. Matching procedure. The unigram, bigram, and trigram counts are employed to build three discrete
probability distributions for the current location using Naive Bayes with Laplace smoothing. These distributions
are then combined using inverse entropy, which gives more weight to the one that has more information (i.e. is
more confident about its prediction) to obtain the probabilities of being in each encoded location.

keypoints it is the ratio between the number of keypoints matched and the total number of keypoints
in the reference “letter.”

Finally, the number of unigrams, bigrams, and trigrams that have been matched are computed for
each type of feature separately (i.e. three N-gram counts for histograms and three for keypoints are
obtained). This implies looking for N consecutive subimages both in the query and representative
images that correspond to each other. Two subimages are considered to match if they have at least
one feature in common. N-gram counts are then computed as the sum of the average matching scores
of its “letters.” See Fig. 4 for an example.

3.2. Matching algorithm
With the identified N-grams, unigram, bigram, and trigram models are built separately for color
histograms and keypoints. The process, which is analogous for both types of features, is explained
below (Fig. 5).

For each of the N-gram models, the probability of being at a previously visited location is estimated
employing a naive Bayes approach with Laplace smoothing27—to avoid having zero probabilities.
Let n ∈ {1, . . . , N} be the different models, Lk denote one of the K encoded locations, and O stand
for the features in the query image. The probability of being at location Lk given O for N-gram model
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n can be therefore computed as

Pn (Lk|O) = xn,k + αn
∑K

k=1
xn,k + αn · K

, ∀n, (3)

where xn,k is the number of grams of size n that have been matched in Lk (i.e. unigram, bigram,
and trigram counts obtained in Section 3.1) and αn > 0 is the smoothing parameter, which can
be regarded as a measure of the confidence in the observations; the more observations, the less
it affects the probability. If an add-one smoothing is chosen (i.e. αn = 1), one assumes that every
seen or unseen event occurred once more than it did in the training data and, as a consequence,
it moves a lot of probability mass from seen to unseen events. In practice, much lower values are
used, mainly to prevent having zero probabilities. For this particular application, αn = 0.01 ∀n was
selected. Nonetheless, the value of αn need not necessarily be the same for low- and high-order
models (e.g. unigram and trigram models respectively).

After this process, there are three different discrete probability distributions for the current location
(i.e. for unigram, bigram, and trigram models) that have to be combined somehow. Two distinct
approaches exist in NLP: interpolation and backoff. The main difference between them is that the
former considers all models whereas the latter relies solely on the most complex (trigrams in this
case) and only “backs off” to lower-order N-grams if there is no evidence in the higher-order model
(i.e. no trigrams have been observed).13 For the particular task of scene recognition, backoff is too
optimistic as, contrary to NLP, observations are noisy and one cannot blindly trust the most complex
model. For this reason, an interpolation approach has been chosen.

The problem that arises is how to determine the weighting coefficients of each of the models in
the absence of training data to adjust them. The solution that has been adopted is to estimate the
coefficients every time using inverse entropy.21 The aim is to assign larger weights to those models
that are more confident about the current location. The entropy Hn of a probability distribution is
defined as

Hn =
K∑

k=1

−Pn (Lk|O) · log (Pn (Lk|O)) , ∀n. (4)

The weight ωn for each model can then be computed with the following expression:

ωn =
1

Hn∑N
n=1

1
Hn

, ∀n. (5)

The resulting probability distribution is calculated as

P (Lk|O) =
N∑

n=1

ωn · Pn (Lk|O) , ∀k. (6)

This interpolation procedure based on inverse entropy helps to deal with those situations where
high-order N-grams do not exist. For instance, if no trigrams are found for any reference image
either because the query image is not similar enough or because the reference images do not have
at least three ROIs, the resulting trigram model will be a discrete uniform distribution. As it is the
maximum entropy probability distribution, its weight will be small compared to other lower-order
models, provided that they have enough information.

The aforementioned algorithm is computed twice in order to obtain two different probability
distributions, one according to the color histograms and another to the keypoints. These features
can be assumed to be independent, as histograms are global features—or semi-global in this case—
while keypoints are local, so both models are simply multiplied and normalized to compute the final
probabilities. As a result, if both distributions agree on the current location, they reinforce each other
and provide a significantly higher matching probability.
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Sample reference images of the room for two people (a), the corridor (b), and the kitchen (c) extracted from
the Dumbo night 1 dataset with the identified vertical lines and Star keypoints superimposed. The corresponding
color histograms (d)–(f) extracted from each image are presented underneath. In each of the histograms, the
first eight bins represent the color components, whereas the last five are grayscale values.

To sum up, all the steps taken to perform feature extraction and matching are succinctly put forward
in Algorithm 1.

4. Experimental Results and Discussion
The proposed fingerprint and matching procedure, programmed in C++ using the OpenCV library,6

has been tested in two different environments: an office and a house. The former corresponds to
the publicly available KTH-IDOL2 database.20 The image set chosen was that captured in night
illumination conditions with the PowerBot Dumbo robot, whose camera is mounted 36 cm above
the floor. The robot was manually driven through the environment to acquire 309 × 240 images at
5 fps. By contrast, the home environment dataset was custom-made as, to our knowledge, there are no
house image datasets that use monocular vision and guarantee that the camera’s focal plane parallel
to the building walls available online. The camera was installed at a height of approximately 30 cm
and 640 × 480 images were acquired at 1 fps with a remotely controlled robot.

In both experiments, the environment was first modeled by selecting a few representative images
from each of the different locations. For instance, if the robot was intended to explore a room,
four or five captures that cover more or less 360◦ were picked. These captures were taken from
different datasets than those used for testing. For every query frame, only the best representative from
each location is employed to compute the final probabilities.

As mentioned in Section 2.3, SIFT,19 Star features1 described with upright SURF,3 and ORB26

have been tested and compared as keypoint detectors and descriptors for the VPACK.
In the KTH-IDOL2 dataset, there exist four different image collections for night illumination

conditions. They will be referred to as Dumbo night 1 to 4 from now on. The four datasets are
different from each other because there are people walking around and objects being used and
moved. From Dumbo night 1, 22 reference images were selected to model the five locations present
in the environment: printer area, corridor, room for two people, room for one person, and kitchen.
Some sample images are shown in Fig. 6. Dumbo night 2 and 3 were used for testing. The Dumbo
night 2 dataset consists of 952 images and was acquired the same day as Dumbo night 1, whereas
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Algorithm 1: Fingerprint generation and N-gram matching procedure.

foreach query image do

Fingerprint generation (section 2)
Identify structural vertical lines to split the capture in subimages (Section 2.1).

1: Compute the 2nd order Sobel operator over the x direction.
2: Perform a 3 by 1 morphological dilation.
3: Apply a vertical morphological opening of size 1/5 of the image height.
4: Sum each column and compute a normalized graph of the vertical response.
5: Filter out those values lower than 5 times the mean.
6: Apply a NMS algorithm to ensure a minimum separation between lines

(e.g. 5% of the image width).
foreach subimage do

Compute a 13-bin histogram that encodes color and grayscale information (Section 2.2).
1: Using the HCL bicone model, classify pixels as chromatic (chroma > 12.5%) or

achromatic (chroma ≤ 12.5%).
2: Build a 8-bin color histogram and a 5-bin grayscale histogram using a fuzzy

voting scheme.
3: Stack both histograms together and normalize.

Extract and describe a reduced amount of robust keypoints (Section 2.3).
end

N-gram matching (section 3)
for histograms and keypoints independently do

Obtain matching N-grams in the reference images used to represent different locations
(Section 3.1).
if histograms then

foreach representative image do
1: For every histogram in the representative image, find the best match in the

query image using the Hellinger distance (1). Keep only those that satisfy
dH (Q, R) ≤ 0.3.

2: Compute the score for each match as 1 − dH (Q, R).
end

else if keypoints then
1: Find the best match for each keypoint in the query image among the keypoints of

all representative images using the Euclidean distance (or the Hamming distance
for binary descriptors). A threshold on the distance can be optionally applied.

2: Compute the matching score for each reference subimage as
# matched keypoints

# keypoints in the reference subimage
end

3: Compute N-gram counts for each location xn,k using the matching scores (Fig. 4).
Build N-gram models using naive Bayes with Laplace smoothing from the N-gram
counts (3).
⇒ Output: N histogram and N keypoint models (for unigrams, bigrams, and trigrams if
N = 3).

Employ inverse entropy to combine the N-gram models.
1: Compute the entropy of every N-gram model (4).
2: Calculate the weighting factor of each model using inverse entropy (5) .
3: Obtain the weighted sum of the three models (6).

⇒ Output: One histogram and one keypoint model.
end
Multiply the histogram and keypoint probability distributions to obtain the final probabilities.

end
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Table I. Results for Dumbo night 2 and 3 datasets for VPACK descriptor with different
types of keypoints and thresholds. Both the number of images that are above the threshold

and the percentage of correctly classified images are shown.

Dumbo night 2 Dumbo night 3

Threshold Images Precision Threshold Images Precision

SIFT 0.7 538 93.87% SIFT 0.7 492 86.18%
0.8 435 96.55% 0.8 332 93.98%
0.9 327 99.08% 0.9 197 97.93%

Star 0.7 452 89.82% Star 0.7 416 79.09%
0.8 326 93.56% 0.8 271 86.35%
0.9 206 97.09% 0.9 145 93.79%

ORB 0.7 429 86.01% ORB 0.7 373 79.09%
0.8 345 93.04% 0.8 235 86.38%
0.9 239 97.91% 0.9 139 93.84%
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Fig. 7. Comparison of the predicted and the ground-truth location with a threshold of 0.8 using SIFT (a), Star
features described with upright SURF (b), and ORB (c).

Dumbo night 3, which contains 1034 images, was recorded four months later. As a consequence,
there are noticeable differences between the latter and the reference images.

Table I presents the correctly classified instances for each of type of keypoint with different
probability thresholds. This means that a prediction is considered valid if its probability is higher
than this value. According to these results, it seems clear that the method performs well for all types
of keypoints and that it is robust to changes that may occur in the environment over time, although
SIFT is slightly ahead and helps to identify more images within the sequence.

A detailed analysis of the predictions obtained for Dumbo night 2 with a threshold of 0.8 is shown
in Fig. 7. The sequence of visited places can be distinguished no matter which keypoint descriptor is
used. The robot starts in the printer area, moves into the corridor, explores the room for two people,
goes back to the corridor, enters the room for a single person, returns to the corridor, goes into the
kitchen and ends in the printer area after going through the corridor briefly. Realize that most of the
errors occur near the transition areas which are difficult to encode correctly. The other mistakes could
be explained by the fact that the representative images do not cover the environment perfectly. They
could be easily removed using a median filter.

For the home environment test, 12 images were used to represent six locations: kitchen, entrance
hall, living room, terrace, grass area, and pergola. The results for the test dataset, which contains
372 captures, are shown in Table II. In this case, the precision exhibited is even better than in the
KTH-IDOL2 dataset. This may be due to the fact that, conversely to an office, where all walls tend to
be of the same color, and rooms are normally similar to each other, a house is much more distinctive.

Overall, the performance using SIFT seems to be somewhat better, but its main drawback is
its high computational burden. The tests presented above were carried out on a second-generation
Intel i5TM CPU at 1.6 GHz. The average computation times are presented in Table III. If there is not
much computational power available, either Star or ORB are fairly good alternatives to make VPACK
lighter.
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Table II. Classification results for the
home environment dataset with different

probability thresholds.

Home environment

Threshold Images Precision

SIFT 0.7 308 97.40%
0.8 290 98.62%
0.9 255 99.61%

Star 0.7 291 94.16%
0.8 267 95.51%
0.9 271 98.62%

ORB 0.7 287 94.77%
0.8 264 96.21%
0.9 209 99.52%

Table III. Average computation times for both datasets.

Computation times

Office Home

SIFT 399 ms 792 ms
Star 174 ms 217 ms
ORB 70 ms 134 ms

5. Conclusion and Future Work
The new vision-only monocular VPACK fingerprint based on vertical lines, color histograms, and
keypoints, along with the N-gram-based matching procedure presented in this paper have been proven
effective for topological scene recognition in structured indoor environments. In addition, they are
fairly robust to small changes that may occur over time and the combination of complementary
features permits to employ weaker and faster descriptors in order to keep computing times under
control without compromising precision. Even though it has been designed for and tested with
monocular images, this method should be applicable to unwrapped panoramas too. Moreover, speed
could be significantly improved if the algorithm is parallelized by taking advantage of the fact that
vertical lines split the image into independent regions.

This method could be a starting point for the implementation a full topological SLAM system.
To this end, an automatic node selection procedure should be developed in the first place. A way to
determine when a new node is necessary could be to apply a change-point detection algorithm to
VPACK features.
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