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We consider the virtual queuing time (vqt, also known as work-in-system, or virtual-
delay) process in an M/G/s queue with impatient customers. We focus on the vqt-based
balking model and relate it to reneging behavior of impatient customers in terms of
the steady-state distribution of the vqt process. We construct a single-server system,
analyze its operating characteristics, and use them to approximate the multiserver sys-
tem. We give both analytical results and numerical examples. We conduct simulation
to assess the accuracy of the approximation.

1. INTRODUCTION

Motivated by analyzing the call center operations, we consider an M/G/s queuing
system with impatient customers. The customers arrive according to a Poisson process
with rate A and request i.i.d. (independent and identically distributed) service times
with a general distribution. There are s > 1 servers in the system available to serve
the customers. All servers are identical and unit-rate; that is, each server is capable of
processing one unit of service requirement per unit time.

An important aspect modeling call centers is the impatience behavior of the cus-
tomers. Two common modes in which customers display their impatience are balking
and reneging. A call-in customer who cannot be helped immediately by a human server
might be told how long a wait he/she faces before an operator is available. Then the
customer might hang up (i.e., balk) or decide to hold. This is the balking behavior:
A customer refuses to enter the queue if the wait is too long. On the other hand,
a customer who is waiting for an operator might hang up (i.e., renege) before getting
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served if the wait in line becomes too long. This is the reneging behavior. Of course,
there can be a combination of the two. It is acknowledged that customers’ impatience
is significant in practice and modeling call centers (cf. Koole and Mandelbaum [10],
Garnett Mandelbaum, and Reiman [5], Whitt [21]).

To incorporate the customers’ impatience in the queuing model, we use a balking
rule corresponding to the balking example given earlier. Before stating the balking
rule, we define the virtual queuing time (vqt) in the system. The vqt at time ¢ in the
system, denoted by W (), is the queuing time (i.e., time spent in the system before
commencing service) that would be experienced if a customer joins the system at
time ¢. The process {W (¢), t > 0} is referred to as the vqt process. The queuing system
with balking based on the vqt works as follows. A customer arriving at time ¢ joins
the system if and only if W(tr—) < b, where b is a fixed nonnegative constant. The
balking customers (i.e., customers who do not join) are lost forever. The entering
customers wait in an infinite-capacity FCEFS (first come—first serve) queue until a
server is available and leave when the service completes. The vqt process governed
by such a vqt-based balking rule is the main focus of this article. Of course, such a
model can also arise as a result of a threshold-type admission control policy.

The vqt process is also known as work-in-system or virtual-delay process, which
isintroduced in Benes$ [1] and Takécs [18]. See Heyman and Sobel [7, pp. 383—-390] for
details. Although the vqt process is introduced in the context of the vqt-based balking
model described earlier, this process also plays an essential role in the analysis of the
models with reneging customers. According to the definition of the vqt, if the system
has customers who eventually will renege without being served, then the service times
for those customers are not included in the vqt. The model with reneging customers
can be analyzed via a closely related vqt-based balking model. Such an idea appears
in Tijms [20, pp. 318-322]. We discuss the connection between balking and reneging
in detail in Section 4.

The reneging version of the model we consider has been studied by Gnedenko
and Kovalenko [6] under the name “systems with limited waiting time.” They consid-
ered exponential service times to obtain a multidimensional Markov process for the
number of busy servers and workload in each server. They derived a system of integro-
differential equations for the limiting joint distribution and give explicit solution. They
gave formulas for the loss probability and average queuing time. They also gave the
limiting distribution of the vqt process. However, as Boots and Tijms [2] noted, the
results in [6] are quite technical and not generally applicable. Instead, they gave an
alternative formula for the loss probability as a function of the tail probability of the
stationary vqt process in a corresponding queue with no impatience. They proved that
their formula is exact in the M/M/s case and can be used as a heuristic for the M/G/s
case. A severe restriction is that the formula is valid only when the traffic intensity is
less than 1, which is not required for the reneging queue to be stable. The method we
use in this article overcomes the preceding drawbacks and can be easily extended to
the general case. Although we are unable to give the joint distribution for the workload
and busy servers, we do not lose much since many common performance measures
can be derived directly from the limiting distribution of the vqt process.
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Even in the absence of the balking behavior, the M/G/s queuing system is noto-
rious for its complexity, which forbids analytical solutions. Analytical results are
available for only a few special cases, whereas a handful of approximations for the
limiting analysis have been proposed in the past decades. In this article, we focus
on system approximations (i.e., approximations that take the results from an exact
analysis of a simpler system as approximations of the true operating characteristics
of the original system). Although the approximate methods vary by motivations and
the techniques that are used, it turns out that all results can be viewed as the so-
called “systems interpolation” (i.e., some mixture of the known analytical results for
a few special cases, such as M/M/s, M/ E}/s, M/D/s, and M/G/00). See Kimura [9] for
details. We cannot find any system approximations of the M/G/s queuing system with
impatient customers in the literature.

To develop a system approximation for the multiserver system with impatient cus-
tomers, we borrow a simple idea used by Lee and Longton [12], Takécs [18, p. 160],
Newell [16, p. 86], Hokstad [8], Nozaki and Ross [17], Tijms [19], and Miyazawa
[14]. In brief, the idea is to treat the s-server system as an M/G/ oo system (or M/G/s—1
loss system) when some servers are idle and as an M/G/1 system when all servers
are busy. Since balking and/or reneging can only happen when all servers are busy,
we can easily extend this idea by introducing customer impatience to the M/G/1
system that approximates the original system during the period when all servers are
busy. Using this idea, we construct a single-server system whose operating charac-
teristics approximates those of the M/G/s queuing system with balking based on vqt.
The approximation is exact when G = M, b = 0, or s = 1. The exact analysis of the
approximate system follows the same line that of as Liu and Kulkarni [13], where the
authors solve the s = 1 case. In the rest of this article, we begin with analyzing the
G = M case in Section 2. In Section 3 we consider general service times and propose
an approximate system. We conclude with numerical results (Sec. 5).

2. THE M/M/s BALKING MODEL

In this section we consider the case in which the service requirement has an exponential
distribution with mean 1 /. The arrival process is Poisson with rate A. This is an M/M/s
FCFS system with balking based on vqt. At the arrival epoch, an arriving customer
joins the queue if and only if he/she observes that the vqt is no more than a fixed
amount b.

Let N(¢) be the number of customers in the system at time ¢. The definition
of W(r) implies that W(¢) = 0 if and only if N(#) < s — 1. If the N = {N(¢),t > 0}
process undergoes a transition from state s — 1 to s at time ¢, then there is a jump in
the W = {W(z),t > 0} process at the same time. This is illustrated in Figure 1, which
shows the sample path of a two-server system. Note that in the sample path shown
there, the customer who arrives at time 75 balks. At time 75 (and T4), the number of
customer in the system increases from one to two. At the same time, the vqt jumps
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FIGURE 1. A sample path of W(¢) and N(¢).

from zero to a positive number. It is clear that the W process finishes a regenerative
cycle from T to Ty. It is easy to see that the size of the jumps are i.i.d. exp(su).

Let I be a generic random variable representing the idle period defined as the
interval of time during which W (¢) = 0. In other words, let ¢, be the service completion
epoch such that N(#;—) = s. Then I = min,.oft : W(# +¢) > 0} or I = min,oft :
N +1) =s}).

THEOREM 1: The expected length of I is given by

1 —Ps
SUps

E() = 2.1)
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where
_ Gy
sV ol /)i

ProOF: Consider a standard M/M/s/s system with arrival rate A and mean service
times 1/u. Obviously, the time between two consecutive periods when the system is
full has the same distribution as /. The expected length of each system-full period is
clearly 1/(sw). From the theory of alternating renewal process (ARP), we get

1/(sp) .
1/Gsp) +E() ~— 77

where p; is the probability that the M/M/s/s system is full (cf. [11]). The identity in
the theorem follows. |

s

Consider the regenerative cycle from 7 to T4 as shown in Figure 1. The cycle
consists of a busy period (where W (¢) > 0) and an idle period (where W(¢) = 0). Itis
easy to see that the evolution of the W process during the busy period is stochastically
identical to that in a single-server balking system (cf. [13]) with an arrival rate of
A and i.i.d. exp(su) service times. This observation motivates the following single-
server system with i.i.d. exp(su) service times. Let W(t) be the vqt and N (1) be the
number of customers at time ¢ in this system. The same balking rule applies; that is, a
customer arriving at time ¢ enters iff W (f) < b. Customers arrive as a Poisson process
with arrival rate A (7) depending on N(¢) as follows:

> |y ifN@®=0
A = {A otherwise,

where y is defined as 1/E(I).
Denote the limiting cumulative distribution functions (c.d.f.) of the W process
and W process as follows:

F(x) = lim Pr{W (1) =<}, x=0;

F(x) = lim Pr{W () < x}, x>0.

Let
F(0) =c, F(0) =¢.
Let
Fo) = d’;(x), Foo =29 o,
x dx

be the probability distribution functions (p.d.f.s).
Notice that for a single-server system, the vqt is equal to the workload of the
system. The steady-state distribution of the W process has been extensively studied.
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We apply the same method used in Liu and Kulkarni [13] and the results in Theorem
2 and 3, omitting the proofs. Theorem 2 gives the balance equation and normalizing
equation satisfied by f(x). Theorem 3 gives the expression of f (x) explicitly by solving
the equations.

THEOREM 2: The equilibrium p.d.f. f (x) of the W process satisfies
~ /\h ~
ﬂﬂ:x/ Fu)e™ M= dy 4 Gy e 1, (2.2a)
0
00 ~
/‘f@ﬂk+5=l, (2.2b)
0
where x A b = min(x, b).
Let p = X /s be the traffic intensity.

THEOREM 3: The equilibrium p.d.f. of the W process is

~ Cye UMY 0 < x < b
fx) = {f/ i

2.3
cyetbe™sm ifx > b, 2.3)

where

1 o A -
[ LIS S WU A
S — A (s — A)si 2.4)

A
— ifp=1
A+y+ryb

E:

The following theorem gives the limiting distribution of the W process via the
single-server system we construct.

THEOREM 4: The W process and W process have same limiting distribution; that is,
F(x)=F(x), x>0.

PRrOOF: Let B(r) = 1itW(r) > Oand B(r) = 0if W(t) =0.ThenB = {B(t),1 = 0}is
an ARP. Define B(¢) associated with W (¢) in the same fashion; then B = {B(¢), ¢ > 0}
is also an ARP. Since the expected up and down times in the B process and the B
process are the same, we get

lim Pr{B(t) = i} = lim Pr{B(t) = i}, i=0,1.
t—00 1—00
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It is easy to see that the sample paths of the W process and the W process over the
busy periods are stochastically identical. Hence, we get

lim Pr{W (1) < x|B(r) = 1} = lim Pr(W(r) < x|B(1) = 1}.
Now,
F(x) = lim Pr(W () < x)
= lim Pr{W(1) < x|B(r) = 1}Pr(B(1) = 1} + lim Pr(B(r) = 0}
= lim Pr{W(t) < x|B(r) = 1} Pr{B(t) = 1} + lim Pr{B(t) = 0}

= lim Pr{W () < x}
11— 00

F(x).
This proves the theorem. n

Other performance measures of interest in the M/M/s balking system are com-
puted directly based on the above results. Let » be the probability that a customer
balks or the balking rate. Then

ef(suf)»)b

r= /oof(x)dx =cy——.
b Su

Define the queuing time of any arriving customer to be the time from the arrival epoch
to the service starting epoch if he/she joins and zero if he/she balks. Let w be the
long-run average queuing time for all customers. Then

eyl = (s — A)beGr=mb _ g=(su—2)b]

b
= o (SM — )\,)2
w /0 xf (x) dx ey b

2

ifp#1

It is clear that the long-run average queuing time or the expected queuing time for the
entering customers is w' = w/(1 — r). It can be verified by straightforward algebra
that the results given in this section are consistent with the corresponding ones in [6]
and [2].! However, unlike in [2], we do not need to assume that p < 1, and our results
are more explicit than those in [6].

3. THE M/G/s BALKING MODEL

In this section we extend the M/M/s balking model in Section 2 to an M/G/s balking
model. All settings for the M/M/s balking model are unchanged except that we assume
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the service times are i.i.d. with a general distribution with mean 1/ and complemen-
tary c.d.f. G(x). We use the subscript G in our notations for the general service time
case. The definitions correspond to those for the exponential case and are omitted. In
order to follow the analysis in Section 2, we need E(/;) and the distribution of the
size of the jumps in the W process.

To compute E(/;), we consider a standard M/G/s/s system with arrival rate A and
mean service time 1/u. At each departure epoch of a customer who leaves behind
s — 1 customers in the system, the remaining service time in the busy servers might
not have the same joint distribution as that of the M/G/s system with balking. Ignoring
this fact, we use the expected length of the time between two consecutive periods when
the M/G/s/s system is full as an approximation of E(/;). We know that, in equilibrium,
an arriving customer to the M/G/s/s system with s — 1 busy servers sees the remaining
service times in the busy servers as having an i.i.d. distribution with complementary
c.d.f. G.(x), which is the associated complementary equilibrium distribution of G(x)
defined by

oo
G.(x) = [,L/ G(u) du.
Then the length of the period during which the M/G/s/s system is full is
min{Rly R29 ) Rsfla S}a

where {R;,i = 1,2,...,s — 1} are i.i.d. random variables with complementary c.d.f.
G, (x). Notice that

dGe(x) = —nG(x) dx;
then the expected length of this period is

o 1
/ G ()G dx = —. 3.1
0 S
Using the same method in the proof of Theorem 1, we get that the expected

duration of the interval during which the M/G/s/s system is not full is given by

1 —Ds
Sups

3.2)

This is the same as in the M/M/s/s system. We use this expression as an approximation
for E(Ig).

The distribution of the size of the jumps is more complicated in the system with
general service times. Suppose the kth jump in the W process occurs at time Tj. Let
Ji be the size of this jump. Unfortunately, {J;,i = 1,2,...} are neither independent
nor identically distributed in general and this makes the model intractable. In the next
paragraph, we explain the source of this intractability and it can be skipped in first
reading without affecting the flow of the material.

The jump size J; in the Wi process at time T is the minimum of this cus-
tomer’s service time and the remaining service times of all other customers in
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service at time Ty + Wg(T;) (when this customer begins the service). Thus, the
distribution of the jump sizes are not even identical in general. Equivalently, let
us regard the M/G/s system as s parallel single-server queues that operate as fol-
lows. Denote the workload at time ¢ in the ith queue as W;(¢), i = 1,2,...,s, and let
W'(t) = (W{(2), Wy(¢),..., Wi(t)) (ct. [3]). Every entering customer is routed to the
queue with the least workload. Then

W (t) = min{W] (1), Wy (0), ..., W.(D)}. (3.3)

Suppose the customer who arrives at time 7} with service time S is routed to the ith
server, which has the least workload; then

Jo = We(Ti+) — We(T—)
= min{W[(Tx—),. ... W/ (Ti=) + 8. ... .W(Ti=)} — W/(T—).  (34)

Clearly, the distribution of J; is determined by the distribution of W’'(7}) and the
distribution of S. The dependence of J; and W'(T}) causes great complexity in the
analysis of the model and makes it intractable.

As an approximation, we assume that {J; : W(T;—) > 0} are i.i.d., with J being
the generic jump size, and {J; : W(T;—) = 0} are i.i.d., with J being the correspond-
ing generic jump size. One principle of choosing the distribution for J and J is to
preserve the traffic intensity [i.e., p = A/(su)]; that is, keep the mean of J and J to
be 1/(sp). We assume E(J) = E(J) = 1/(sw) in the rest of this article. We consider
two possibilities. The first choice is S = S/s. It is easy to see that E(S) = 1/(su) in
this case. The second choice is § = min{R;,R;,...,R,_1,S}. This is motivated by
the renewal-theoretic result that in steady state, the remaining services times in the
busy servers are independent random variables with common complementary c.d.f. G,
(cf. [18, p. 161]). From (3.2), we see that E(S) =1/(sw).

Analogous to the exponential case, we consider the W process of the following
single-server system. Customers arrive according to a Poisson process with arrival
rate i(t) depending on 1\7(; (t) as follows:

i) = y ifNG(t? =0
A otherwise,
where y is defined to be sup,/(1 — p;), which is the approximation for 1/E(/;). Let
Gj(x) and Gj(x) be the complementary c.d.f.’s of J and J, respectively. Service times
of the customers who enter a nonempty system are i.i.d. with common complemen-
tary c.d.f. Gj(x). Service times of the customers who enter an empty system are i.i.d.
with common complementary c.d.f. Gj(x). A customer arriving at time ¢ enters iff
Wg(t) < b. We use the expression in (3.2) as an approximation of E(/s). We approx-
imate the distributions of {J/;} by J and J. Moreover, the conditions for Theorem 4 do
not hold in general. Therefore, the vqt process of the single-server model we construct
approximates that of the M/G/s balking model [i.e., Fg(x) ~ F, ¢(x),x > 0].Itis worth
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noting that the approximation is exact in the following three cases: (1) The service
times are exponential; (2) the balking threshold b is zero (when the system reduces to
an M/G/s/s system); J = S; (3) s = 1.

The following theorem is the general service time version of Theorem 2. It

distinguishes the two appearances of the jump size distribution in the balance equation.

THEOREM 5: The steady-state p.d.f. fG(x) of the W, process satisfies
- XAb
fe(x) = ?»/ feW)Gj(x — u) du + cgy Gj(x), (3.52)
0

oo
/ Je()dx +cg =1, (3.5b)
0
where x A b = min(x, b).
Notice that the first term on the right-hand side of (3.5a) is just the convolution

of fg(x) and G;(x) multiplied by A, when x A b is replaced by x. Let fi(x) be the
solution to

X
fid) =1 / AWG(x —wydu+Gj(x),  x=0. (3.6)
0
Let
b
Hx) =4 / )Gy (x — u) du + Gj(x), x>b. 3.7
0
The solution to (3.5a and 3.5b) is given in the following theorem.

THEOREM 6: The solution to (3.5) is

~ C x) ifx<b
Fot) = |V (3.8)

covf(x) ifx =D,

where
b [e9) -1
g = |:y/ fix) dx + ]// fH(x)dx + 1] . 3.9
0 b

ProOF: The solution is easy to verify by substitution. |

From the above theorem, it is clear that a possible procedure to obtain fG (x) is
to find fi(x) first, then compute f>(x) by using (3.7). By the normalizing equation
(3.5b), after computing the integral we are able to compute ¢g. This completes the
computation of fG (x). Obviously, one main step is to solve (3.6) for f; (x). One method
is to use the Laplace transform (LT).
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Let G;(s) and G-J’f(é) be the LT of G;(x) and Gj(x), respectively; that is,
oo
@@=/eﬂ@mm
0

G;(§) = / Ooe—“G;(x) dx.
0

From (3.6), we get the LT of f; (x) (assuming its existence):

G5()

(3.10)

To continue our procedure, we need the inverse LT of f;"(£). A closed-form inversion
is possible if fi*(£) is rational.

We can instantly obtain two interesting results from the above analysis when
b — 0 and b — oo. The first case is b — 0. In this case, the system reduces to a
normal M/G/s/s model. Our approximation is exact if / = §. From Theorem 5, as
b— 0,

fo@) = EyGi(x), x>0,

¢ —> 1 —p;.

Next, we compute wg, the long-run average queuing time for all customers and cg,
as b — oo. The LT is convenient in this case. Using

Aﬁ®ﬂ=ﬁ©,

Gi(0) =E(J),  G;(0) =E(),

o= - Yo ®
dé& o
Theorem 6, and (3.10), we get

- 1—p
—_—, A1
e (3.11)

1 — p)E(J?) + pE(J?

5o s V10 = PEC?) + pEI)] 312)

20=p)(v+1-p)

where v =y /(sp) = ps/(1 = ps).

When b — o0, the Wg; process becomes the vqt process in a normal M/G/s system
and rg — 0. For several nonexponential distributions (e.g., Erlang-k) of service time,
the exact table of E(W¢) (and other performance measures) is available and can be
compared with E(W;) to assess the accuracy of our approximation.
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Depending on the expression of the service time distribution and the choice of
the distributions of J and J, the solution to (3.5a and 3. Sb) can be obtained, in most
cases, by numerical methods. We have two options for J or J, namely S = S/s and
S= min{R{,R>,...,R,_1,S}. Let

Gi(x) = Pr{S > x} = G(sx),
o 1
Gi(§) = fo e Gy dx = ~G"(&/5).
Gi(x) = Pr{§ > x} = G (0)G(x),

Gi(6) = / ) e Gy(x) dx = —— / " e H G W dIG ),
0 mJo

where G*(§) is the LT for G(x). The expressions of Gg(x) and G;(S) are very easy
to obtained once G(x) and G* (&) are specified. However, it is hard to compute G (x)
and G;f, (&). Computing GE (&) is hard even for phase-type (except exponential) service
times. Since all jumps caused by the customers who see s — 1 busy servers upon arrival
areii.d. as S, we introduce the complexity with the hope of improving accuracy. In the
following subsections, we consider two possibilities in choosing J and J and define
Approximation I and Approximation II correspondingly.?

3.1. Approximationl: J =] =S

The equilibrium distribution of the W process is approximated by the solution to the
following system of equations:

b
fo(x) = A / feW)Gs(x — u) du + coy Gy (x), (3.13a)
0
/ Oofc(x) dx + &g = L. (3.13b)
0

When b — oo, this approximation becomes a classical M/G/s system approxi-
mation, which appears in [12]. It tells us that the system behaves as an M/G/s/s system
when the vqt is zero. For vqt greater than zero, the system behaves like a busy M/G/1
system with service time S/s. See [6, 16—18] for details. Equation (3.12) becomes

yE(S?)
282(L—p)(v+1—p)

VN{/G—>

The most general case where an explicit closed-form solution to (3.13) is available
is the phase-type service time. This is because S is PH(«, sM) if S is PH(«a, M). The
results in [13] can be easily adapted to the case we consider here. See [13] for details.
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3.2. Approximationll: J =S, J = S

The equilibrium distribution of the W process is approximated by the solution to the
following system of equations:

xAb
fo(x) = A /0 fo)Gs(x — u) du + &6y Gs(x), (3.14a)

o0
/ fo@)dx + &g = 1, (3.14b)
0
When b — o0, (3.12) becomes

_ 2 2
e — y[(1 — p)E(S?) + pE(S )]. (3.15)
20=p)v+1-0p)

For phase-type service times, neither E(S’2) nor the solution to (3.14a and 3.14b)
can be obtained analytically. We use numerical methods. Particularly, we use quadra-
ture method in solving (3.14), where numerically solving the Volterra integral equation
(VIE) of the second kind plays a key role (note that the balance equation becomes
a VIE of the second kind if x A b is replaced by x). Meanwhile, numerically solving
VIE of the second kind alone is a deserving topic in applied mathematics (cf. [4,15]%).
Of course, the numerical method used in solving (3.14a and 3.14b) can also be used
to solve Equation (3.13).

4. CONNECTION BETWEEN BALKING AND RENEGING

In this section we address the connection between the vqt-based balking model and the
reneging model. Suppose the ith incoming customer has service time S; and impatience
time B;. In the balking model, the customer leaves immediately in he/she sees the vqt
is more than B;. In the reneging model, the customer joins the queue and waits for
service. If the service does not start before the impatience time B;, the customer
leaves. Let U; be the interarrival times. Then the triplets {(U;, S;, B;), i > 1} determine
the same vqt process in both balking and reneging models, since the entering of a
customer who eventually renege does not cause a jump in the vqt process. From this
observation, one can further consider the model that incorporates a mixture of balking
and reneging as well.

The balking model and the reneging model do differ in the number of customers
and workload in the system. The reneging behavior results in a greater number of
customers and greater workload in the system than balking behavior. It is possible to
derive the relationship between the performance measures of the reneging model and
the vqt-equivalent balking model. For example, suppose the arrival is PP(A). Let B be
a generic random variable for i.i.d. impatience times. Let ng and np be the long-run
average number of customers in the reneging model and the vqt-equivalent balking
model, respectively. Let wg and wp be the long-run average workload in the reneging
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model and the vqt-equivalent balking model, respectively. Then, by PASTA, it can be

shown that
ng = ng + p,AE(B)
and
wg = wg + p,AE(B)E(S),
where

pr = lim Pr{W;(¢) > B}
—0o0

is the fraction of balking customers. From the economic point of view, the balking
rule saves system resources (waiting room, buffers, etc.). For the reneging rule, the
reneging customers spend time waiting in the queue but do not get the desired service
in the end.

It is clear that the balking interpretation is advantageous in analytical study. For
example, the previous sections actually solve the corresponding problems for the
reneging model with deterministic threshold, which is more difficult to analyze if we
start from the reneging interpretation. On the other hand, we notice that the reneging
interpretation is advantageous in simulation.

5. NUMERICAL RESULTS

In this section we illustrate our numerical results. We consider the M/PH/s model with
vqt-dependent balking and three different service time distributions:

1. Exponential (exp): u = 1(t = 1,62 =1);
2. 5-Erlang (erlang): u = 5(t = 1,0% = 0.2);

3. Hyperexponential (hyper): ) =4, =2,u3 =1,u4 =0.8,us =0.5,
o =---=a;5;=02(t =1,0%=1.75).

All of them have mean service time of 1. The variances are different, with 5-Erlang the
smallest and hyperexponential the largest. We assume the balking threshold b = 2. For
each of the three service time distributions, we use s € {3, 10, 100} and compute the
long-run average queuing time for all served customers (w’) and fraction of rejected
customers (r) for different values of p € [0.1, 1.2] by using (1) Approximation I (using
analytic formulas for the solution to (3.13a and 3.13b)), (2) Approximation II (using
numerical method to solve (3.14a and 3.14b)), and (3) simulation methods. Notice that
for exponential service time distribution, both Approximation I and Approximation II
are exact. This gives us a method to verify the accuracy of simulation that turned out
to be satisfactory in our experiments.

Figure 2 shows the long-run average queuing time for all served customers as a
function of p. The w’ values for exponential service times are exact. Others are from
simulation. It can be seen that for almost all given values of p, there is an ordering of the
queuing times for different service times according the order of the variances, either
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A Average Queuing Time for All Served Customers: b=2

0.8

0.6

c——exp
— — —erlang
— hyper
I 1 }

0 0.2 0.4 0.6 0.8 1 1.2 14 P

FIGURE 2. Long-run average queuing time for all served customers.

Whyper > Wexp > Werlang O Whyper < Wexp < Werlang- 1D OTder reverses as p increases
beyond a critical region. Intuitively, the value w’ should converge to b =2 as p
approaches infinity. This trend is best illustrated by the set of curves for s = 100.
The more the servers, the faster these curves approach b. Moreover, as s increases,
the queuing time becomes more sensitive around the point p = 1 and the overall
difference of the queuing time between these service time distributions diminishes.
Figure 3 is the same as Figure 2 except that it shows the fraction of rejected
customers. We have similar observations as those for w'. Notice that for all given p,
Thyper > Texp > Terlang- The order reversion we observe from Figure 2 does not happen
here. In addition, the fraction of rejected customers is almost linear in p when p > 1.
We also checked the accuracy of the approximations based on the relative error
of w'. We verified the fact that as p increases, Approximation I and Approximation
1T become closer since the coefficient ¢gy in (3.5a) approaches zero. We observed
that both approximations have satisfactory accuracy over a wide rage of parame-
ters, with no more than 20% deviation from the simulation (with 99% confidence
intervals of width less than 1% of the estimate value), and the worse cases (error
> £5%) occur where exact w’ is small. Overall, Approximation II is more accurate
than Approximation I, and the error of the former is less sensitive to p. However, the
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A Rejection Rate: b=2
0.25
02r
0151 s=3 s=10 s=100

0.1F
0.05
C——exp
— — —erlang
— hyper
0 L — . - = + ‘ ¢ T >
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FIGURE 3. Fraction of rejected customers.

advantage is balanced by the fact that Approximation II needs numerical methods
to solve (3.14a and 3.14b). Both approximations are, of course, far quicker than the
simulation.

6. CONCLUSIONS

In this article we have obtained exact analytical results for the limiting behavior
of an M/M/s system with vqt-dependent balking. These results also yield analytical
results for the corresponding reneging case, which is more complicated if studied as
areneging system. Using these results, we have proposed two approximations for the
M/G/s system with vqt-dependent balking. We have done extensive numerical and
simulation experiments to conclude that Approximation I is easier to compute than
Approximation II, but Approximation II is more accurate than Approximation I over
a wide parameter space.

Notes

1. The formula for p(()T) in [2] consists of a term with inverted sign, which we believe is a typographical

error.
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2. The approximation obtained by using J = J = $ is omitted since it is seen to be inferior according

to the results of our numerical experiments.

3. We thank the anonymous referee who brought into our attention a fast and reliable method to solve

VIE of the second kind developed in the [4].
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