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The dynamics of coherent structures forming in a turbulent shallow mixing layer (ML)
between two parallel streams advancing in a constant-depth, open channel is investigated
using three-dimensional, time-accurate simulations. The large channel length to flow
depth ratio (L, /H = 400-800) allows characterization of the spatial evolution of shallow
MLs until the mean velocity difference between the two streams becomes less than 3 %
of the initial value at the end of the splitter plate. Away from the ML origin, the dynamics
and coherence of the Kelvin—Helmholtz (KH) billows are affected by the destabilizing
effect of the mean shear between the two streams and by the stabilizing effect of the bed
friction. A linear decay of the entrainment coefficient o with the bed-friction factor, S,
applies only over the region where merging of neighbouring KH billows is still observed
(transition to quasi-equilibrium regime). At larger distances from the origin, where the
billows are severely stretched in the streamwise direction before being destroyed, the rates
of increase of the ML width, §, and centreline shift, /.,, become very small and o is
exponentially decaying with increasing S toward zero (quasi-equilibrium regime). During
the initial stages of the quasi-equilibrium regime where the KH vortices are severely
stretched, the ML assumes an undulatory shape in horizontal planes. New relationships are
proposed to characterize the downstream variation of the non-dimensional ML width and
centreline shift over the transition and quasi-equilibrium regimes. During the transition to
equilibrium regime, the ML boundary on the fast-stream side remains close to vertical,
while that on the slow-stream side becomes strongly tilted. The ML boundary on the
slow-stream side becomes again close to vertical once the quasi-equilibrium regime
is reached. During the transition to the equilibrium regime, the passage of the KH
billows and the generation of streamwise cells of secondary flow generate regions of high
instantaneous bed shear stress, such that the region where the erosive capacity of the
flow peaks does not correspond to the fast stream. The paper also investigates the effects
of flow shallowness and initial velocity ratio between the two streams on the turbulent
kinetic energy inside the ML, the depth-averaged lateral momentum fluxes, the passage
frequency and size of the KH billows and the wavelength and period of the undulatory
motions of the ML during the early stages of the quasi-equilibrium regime.
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1. Introduction

Mixing layers (MLs) are commonly observed in shallow environments such as rivers
and coastal areas. In most cases of practical relevance for environmental and geo-physical
applications, the ML develops over very large streamwise distances compared to the
average flow depth, such that the ML width, §, becomes much larger than the flow
depth, H. Once this happens, bottom friction has an important effect on the dynamics
of the quasi two-dimensional (2-D) coherent structures inside the ML. These eddies start
as billows generated via the Kelvin—Helmholtz (KH) instability by the mean horizontal
shear between the two streams (Corcos & Sherman 1984; Lesieur ef al. 1988; Liu, Lam
& Ghidaoui 2010; Lam, Ghidaoui & Kolyshkin 2016). The growth in the size of these
quasi 2-D eddies and their subsequent loss of coherence strongly influences the spatial
development and structure of the ML at large distances from its origin. These types of
MLs are generally referred as shallow mixing layers. There are many similarities in the way
bottom friction affects the dynamics, stability and eventual destruction of the quasi-2-D
eddies generated in shallow MLs and shallow wakes (Chu, Wu & Khayat 1991; Chen
& Jirka 1997, 1998; Van Prooijen & Uijttewaal 2002; Socolofsky & Jirka 2004; Fu &
Rockwell 2005; Ghidaoui et al. 2006; Rockwell 2008; Chu 2014; Tuna & Rockwell 2014;
Lam et al. 2016).

The simplest type of a shallow ML is the one developing between two parallel streams
of unequal mean velocities (Uyp and Uy at x <0, where x is the streamwise distance
measured along the ML centreline from the end of the splitter plate) in a flat-bed,
rectangular open channel with a smooth bed (figure 1). As opposed to free MLs, where
the domain width is assumed to be infinite and the velocities of the two streams remain
unchanged, in the case of shallow MLs the velocity of the faster stream decays in the
downstream direction while the opposite is true for the slower stream (Chu & Babarutsi
1988; Uijttewaal & Booij 2000). This process continues until the velocities of the two
streams become essentially equal.

Several experimental studies (Chu & Babarutsi 1988; Uijttewaal & Booij 2000) revealed
important differences in the structure and spatial development of turbulent shallow MLs
between parallel streams with respect to the classical case of a deep, or free, ML. In the
latter case, the average size of the KH billows increases with the distance from the ML
origin via vortex pairing and the size of the KH billows is not bounded (Winant & Browand
1974; Moser & Rogers 1993). One consequence is that the growth rate of the ML width is
constant for a free ML (Townsend 1956). In the case of a shallow ML, the growth of these
eddies takes place predominantly in the horizontal directions due to the energy provided
by the mean shear. At the same time, their growth is limited by the additional dissipation
induced by bed friction and by the decreasing mean shear across the ML with increasing x.
The vertical growth of the quasi 2-D eddies is limited by the channel bottom and the free
surface. These are the main reasons why anisotropic effects are more important in shallow
MLs compared to free MLs. Until they lose most of their coherence, the KH billows have
a large capacity to transport mass and momentum, to mix the two streams and to entrain
particulates (e.g. bed sediments); thus, there is interest in understanding their dynamics
and spatial evolution.

The rate of growth of a shallow ML is less than linear once bed-friction effects become
important. The KH billows start losing their coherence as they are severely stretched,
primarily along the streamwise direction, and pairing of neighbouring billows is impeded.
As this happens, the mixing length for momentum exchange is not anymore proportional
to 6. In a simplified way, one can assume that the shallow mixing layer transitions to a
new regime characterized by close to constant ML width (zero growth) and a constant
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FIGURE 1. Sketch of the computational domain showing the presence of KH billows inside the
shallow mixing layer forming between two parallel streams of unequal velocities.

shift of the ML centreline, /., (Uijttewaal & Booij 2000). Recently, Cushman-Roisin
& Constantinescu (2019) showed using shallow water theory that the difference in the
squared velocities in the two streams decays exponentially toward zero while the shift of
the ML centreline decays exponentially toward the limiting (equilibrium) value, so strictly
speaking é and /., are not constant over what is generally referred to as the equilibrium
regime. This is why in this paper, we will refer to the regime where the coherence of the
KH billows is very low, or lost, and the rates of growth of § and /., are very small as
the quasi-equilibrium regime. The regime in which the dynamics of the KH billows starts
being affected significantly by bottom friction but vortex pairing is still observed will be
referred to as the transition (to quasi-equilibrium) regime. Due to the limited length of
the flume or water table used in experiments, previous studies investigated the physics of
shallow MLs mostly over the transition regime (Chu & Babarutsi 1988; Babarutsi & Chu
1998; Uijttewaal & Booij 2000; Van Prooijen & Uijttewaal 2002). This also means that the
theoretical models derived based on these experimental data do not necessarily apply past
the end of the transition regime.

In the present study, we consider the canonical case of a shallow ML generated
between two parallel streams initially separated by a thin vertical plate advancing in a
constant-width, long channel with a smooth bed. The densities of the two streams are
assumed to be the same such that buoyancy effects are not present. We perform fully 3-D,
eddy-resolving numerical simulations that resolve the bottom boundary layer at moderate
channel Reynolds numbers (Re = UyH /v ~ 10*, where U, is the mean velocity in the
two incoming streams, H is the flow depth and v is the molecular viscosity) to study
the dynamics of KH billows from the region where they form to the region where their
coherence is lost and the associated changes in the structure of the ML in the mean and
instantaneous flows.

A main goal of the present paper is to investigate the effect of the flow depth and
initial velocity ratio between the two streams, VR = U,y/U y, on the spatial development
of shallow MLs over the transition and quasi-equilibrium regime. A related goal is to
study the variation of the main variables (e.g. §(x), l.,(x), velocity difference between
the two streams, U,(x) — U,(x)) characterizing the spatial development of the ML over
these two regimes. Finally, the 3-D flow fields are used to characterize in a quantitative
way the vertical non-uniformity of shallow mixing layers, the turbulent kinetic energy, the
lateral momentum fluxes and the distributions of the bed-friction velocity. These aspects of
shallow ML flows were not analysed or received little attention in previous investigations.
However, they are important for many practical geophysical flow applications such as
for understanding hydrodynamics, mixing and transport at concordant river confluences
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between close to parallel streams where buoyancy effects due to different temperatures
and/or sediment loads in the two incoming streams have a negligible effect. Recent
work performed for natural river confluences (e.g. see Cheng & Constantinescu 2018,
2020; Horna-Munoz et al. 2020) have shown that buoyancy effects due unequal density
differences in the incoming streams are negligible for densimetric Froude numbers larger
than 10, where the densimetric Froude number is defined with the mean velocity of the
flow inside the main channel, downstream of the confluence apex, the mean flow depth
inside the main channel and the relative density difference between the two streams.
The present work is directly relevant for cases with negligible buoyancy effects where
the mixing interface resembles a shallow mixing layer and a lateral lock-exchange flow
does not develop downstream of the confluence apex. For natural river confluences,
characterizing how fast the two streams mix, determining the distance from the origin
where the KH billows lose their capacity to erode the bed or the channel banks,
determining the exact position of the ML near the bed and estimating the sediment
entrainment potential of the flow are of great importance. Clarification of aspects related
to the vertical non-uniformity of the flow is also important to understand limitations of
2-D depth-averaged numerical models that are routinely used to simulate shallow flows
containing MLs.

Section 2 describes the numerical method, the boundary conditions and the main
flow and geometrical parameters of the simulations. Section 3 discusses the effects of
varying the flow depth and velocity ratio on the spatial development of the ML in
the mean and the instantaneous flow, turbulence statistics and depth-averaged lateral
momentum fluxes. Sections 4—6 analyse the streamwise variation of the streamwise
velocity profiles, the shift of the ML centreline and the ML width, respectively, over
the transition and quasi-equilibrium regimes. Section 7 discusses the variation of the
entrainment coefficient. Section 8 focuses on the spectral content of the flow which is used
to characterize the evolution of the KH billows in the flow and the undulatory oscillations
of the ML during the initial stages of the quasi-equilibrium regime. Section 9 discusses
the sediment entrainment potential of the flow based on the bed shear stress distributions
in the mean and instantaneous flow fields. Section 10 summarizes the main results and
presents some conclusions.

2. Numerical method and simulations set-up

Simulations were conducted using a 3-D viscous flow solver where turbulence effects
are accounted for via a detached eddy simulation (DES) model. DES is a non-zonal hybrid
Reynolds-averaged Navier—Stokes (RANS) — large eddy simulation (LES) method (e.g.
see Spalart 2009; Rodi, Constantinescu & Stoesser 2013) which uses LES away from the
solid surfaces. The Spalart-Allmaras (SA) one-equation RANS model was used as the base
turbulence model. Near solid boundaries (e.g. channel walls, splitter plate), the distance
to the nearest wall d is used to define the turbulence length scale and the original SA,
one-equation RANS model is recovered. Away from the solid boundaries, the local grid
spacing A is used to calculate the turbulence length scale. In these regions, DES reduces
to a Smagorinsky-like subgrid-scale model that allows the energy cascade down to the
grid size, similar to classical LES. The detached version of the SA DES model was used
to improve the accuracy of the predictions. The model solves a transport equation for the
modified eddy viscosity, v.

A detailed description of the solver and its application to predict shallow flows (e.g.
shallow turbulent wakes past cylinders) can be found in Chang, Constantinescu & Tsai
(2017) and Zeng & Constantinescu (2017). The incompressible Navier—Stokes equations
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are integrated using a fully implicit, fractional-step method in generalized curvilinear
coordinates. An advection—diffusion equation is solved for the non-dimensional
concentration of a passive scalar that is used to visualize the coherent structures inside the
ML (Constantinescu et al. 2016). The convective terms in the momentum equations are
discretized using a blend between the fifth-order-accurate, upwind-biased scheme and the
second-order, central scheme. All the other terms in the momentum and pressure-Poisson
equations are discretized using the second-order, central scheme. The discrete momentum
(predictor step) equations and the transport equations for the scalar concentration and v are
integrated in pseudo-time using the alternate direction implicit approximate factorization
scheme. A double time-stepping algorithm is used to advance the equations in physical
time. No wall functions are used in the present implementation of the SA-based DES
model. The code is parallelized using multiple passing interface. Validation of the code to
predict turbulent flow and mixing in open channels and river confluences is discussed by
Keylock, Constantinescu & Hardy (2012), Constantinescu et al. (2011, 2012, 2016), Koken,
Constantinescu & Blanckaert (2013) and Constantinescu (2014). Additional validation of
the code to predict dispersion of passive scalars is discussed by Chang, Constantinescu &
Park (2007).

The computational domain is shown in figure 1. The channel bed, the sidewalls and the
splitter are modelled as no-slip walls. A convective boundary condition is used at the outlet
to allow the coherent structures to leave the computational domain without introducing
spurious oscillations in the velocity field (Rodi et al. 2013). The free surface is modelled
as a shear-free rigid lid. This is an acceptable approximation given that the Froude number
is less than 0.3 in all simulations. The inlet velocity fields were obtained from preliminary
eddy-resolving simulations of periodic, fully developed, turbulent flow in straight channels
of same cross-section as that of the inlet sections of the two streams. The non-dimensional
concentration of the passive scalar at the tip of the splitter, where the scalar is released,
was C = 100. The normal gradient of C was set to be equal to zero at the free surface and
the other wall boundaries. At the two inlet boundaries, C was set equal to 0. The molecular
Schmidt number was equal to 1.

The characteristic length scale and velocity scale in the non-dimensional simulations
were based on the flow depth (D =67 mm) and (cross-section) mean velocity of the
incoming streams at the end of the splitter plate (x =0), Uy = (U + Us)/2=0.23 ms™!,
in the base case (H =D, VR=U,,/U,y =2.2). The average friction factor of the flow in
the incoming streams was ¢ = 0.0046. The magnitude of the mean bed shear stress in
the incoming streams can be estimated as 7y = O.Spché, where p is the density. This
case approximately corresponded to one of the experimental test cases (U= 1.39U,,
U,p=0.61U,) discussed by Uijttewaal & Booij (2000). The channel width was W =47D
and its length was L, =400D (figure 1). The splitter length was 23D. This allows
investigating the evolution of the ML over close to 25 m (=373D), which is more than
twice the streamwise distance (x < 11 m) over which measurements were reported in the
corresponding experiment and in a preliminary validation simulation performed by Kirkil
& Constantinescu (2008). Two more simulations were run. In the H =D/2, VR =2.2 case,
the flow depth was reduced by a factor of 2, while keeping the mean velocities Uy and U,
the same. For this simulation, ¢; = 0.0052. Comparison of this test case with the base case
allows understanding of the effects of increasing the flow shallowness by reducing the flow
depth, which leads to a stronger stabilization effect on the KH billows and thus to a shorter
distance over which the ML reaches the quasi-equilibrium regime. In the H=D, VR=3
case, the velocity ratio was increased, but the mean velocity, U, was kept constant. For this
simulation, ¢; = 0.0048. This test case allows understanding of the effects of increasing
the initial velocity ratio on the structure and spatial development of a shallow ML.
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The mesh contained approximately 16 million cells with 38 grid points distributed over
the flow depth. The cell size in the wall normal direction was approximately one wall unit
close to the solid boundaries. The mesh was refined near the end of the splitter plate where
the KH eddies are generated.

3. Near-field and far-field behaviour of shallow mixing layers
3.1. Spatial development of the ML and dynamics of KH billows

The distributions of the passive scalar concentration in figure 2 show that the ML is always
pushed toward the low-speed side. As discussed by Cushman-Roisin & Constantinescu
(2019), this effect is due to the gradual equalization of the velocities in the two streams
(i=1 and i =2) and can be easily explained using shallow water theory. The streamwise
gradient of the Bernoulli function, U?/2 + gh + gz, (g is the gravitational acceleration) for
each stream is equal to the friction term, —c;U?. As the flow depth in the two streams can
be considered equal (4, (x) = h,(x)), the bed elevation, z, is constant and U, (x) > U,(x)
at all x locations, one can show that the kinetic energy of the faster stream, and thus its
velocity, U,, decreases monotonically in the streamwise direction, while the opposite is
true for the slower stream. Using continuity, this implies that the ML centreline gradually
shifts toward the low-speed side until U, (x) &~ U,(x).

The effect of increasing the flow shallowness is to reduce the ML width and the
distance over which the ML centreline in the mean flow becomes close to parallel to the
streamwise direction. Despite the fact that the initial shear is the same in the H =D and
H=D/2, VR=2.2 cases, bed friction has a larger influence on limiting the growth of
the quasi-2-D ML eddies. Pairing of the KH billows is observed until x~ 40D (=80H)
in the H=D/2, VR=2.2 case (figure 2b), compared to x =150-160D (= 150-160H)
in the base case (figure 2a). As pairing of KH billows stops, these quasi-2-D eddies,
whose width and length are much larger than the flow depth, rotate less and less around
their axes as they are advected downstream. The longitudinal stretching of the cores of
these eddies increases and the ML assumes an undulatory shape over the initial stages of
the quasi-equilibrium regime. Such a shape was also observed in the experiments (e.g.
test case T5) of Chu & Babarutsi (1988). Figure 3 illustrates the effect of longitudinal
stretching on the shape of the KH billows for the base case. The region containing higher
concentration fluid around x/D =250 that corresponds to the core of a quasi-2-D eddy
is subject to severe longitudinal stretching. As a result, these eddies gradually lose their
coherence. Due to the absence of vortex pairing, the rate of increase of the ML width
reduces significantly. The ML undulations are present until the end of the computational
domain in the H=D, VR=2.2 case and their wavelength is about (55-60)D. In the
shallower (H =D/2, VR =2.2) case, the wavelength of the oscillations is close to 4 =24D
(=48H) in the region of highest amplitude. In both cases, the ratio between the wavelength
and the locally averaged width of the ML (see § 6) is close to 7.5. The amplitude of the
undulations reduces gradually such that the boundaries of the ML become fairly parallel
to the streamwise direction around x = 250D (= 500H). For x > 250D, no undulations are
observed and the ML width is close to constant. The ML is basically a region containing
smaller-scale, energetic eddies generated by the stretching and break-up of the cores of
the quasi-2-D eddies. In this region (x >250D), the ML is in the later stages of the
quasi-equilibrium regime.

Van Prooijen & Uijttewaal (2002) conducted linear-stability analyses for two
experimental cases (Uijttewaal & Booij 2000) and proposed three different regimes in
the evolution of the coherent structures. The first case is very similar to the base case
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FIGURE 2. Scalar concentration in the mean and instantaneous flow and non-dimensional
turbulent kinetic energy, k/ U?, near the free surface. (@) H=D, VR=2.2 case; (b) H=D/2,
VR =2.2 case; (c) H=D, VR =3.0 case. The dotted line visualizes the ML centreline near the
free surface. The non-dimensional concentration of the scalar introduced at the end of the splitter
plate is C' =100 but because of strong dilution near the end of the splitter plate much lower
maximum values of C are used in the legend to visualize the mixing layer and its coherent
structures in the three cases.
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FIGURE 3. ML structure near the free surface in the region where the ML assumes an
undulatory shape. The ML is visualized using non-dimensional scalar concentration contours
in an instantaneous flow field.

in the present paper. For this case, they predicted the growth mode of the dominant
mode (wavenumber associated with the maximum energy density representing the largest
coherent structures) becomes equal to zero at x~9.8m (x/D = 146), which is fairly
close to the streamwise location where pairing of the quasi-2-D KH billows ceases in
the corresponding simulation (x/D = 150-160). Moreover, their prediction of the length
scale of the most unstable mode in the region where the higher-amplitude undulations
of the ML are observed in the simulation (3.8 m=157D at x~ 180D ~ 12 m) is close to
the wavelength of the ML undulations (1= 55-60D) in the region corresponding to the
early stages of the quasi-equilibrium regime. These results suggest a link between the first
linear-stability regime characterized by a positive growth rate of the dominant mode and
the transition regime and also between the second linear-stability regime where the growth
rate of the dominant mode is negative while some other modes still have positive growth
rates and the early stages of the quasi-equilibrium regime. In the latter regime, the flow
is still not stable and the main instability takes the form of undulations on the ML with a
wavelength that is roughly equal to 7-8 times the ML width.

The effect of increasing the velocity ratio in the H = D simulations (figure 2a,c) is to
generate a faster growth of the ML width and to increase the streamwise distance at which
merging of the quasi-2-D eddies stops (e.g. from 160D for VR =2.2 to 180D for VR =3).
In both cases, the KH billows acquire rapidly an ellipsoidal shape. The width of the largest
billows is about 10D for VR =2.2 and 14D for VR = 3.0. The larger size of the KH billows
at a given x location in the H = D, VR = 3.0 case is expected because the rate of growth of
the KH instabilities is proportional to the mean shear across the ML, which increases with
VR. The same is true for the rate of entrained fluid into the ML which controls the growth
of the ML thickness. Larger quasi-2-D eddies will also be able to travel a longer distance
before their coherence is destroyed and the ML reaches the quasi-equilibrium regime. For
x> 250D, the ML starts interacting with the left bank in the H = D, VR = 3.0 simulation.
This is why results for this case will be generally analysed only for x/D < 250.

Another important features of shallow MLs is that the width of the ML is larger near
the free surface compared to near the bed over most of the transition regime (figure 4).
Although close to the ML origin the interfaces between the ML and the two streams are
close to vertical, the interface on the slow-stream side starts tilting during the initial stages
of the transition regime. The tilt is the largest around the location where the merging of
the quasi-2-D eddies stops. Meanwhile, the tilt of the interface on the high-speed side
remains small at all locations. In the base case, the maximum difference between the ML
width near the bed and near the free surface is close to 2.5H (x/D ~ 160, figure 4a) based
on the scalar concentration fields, while in the shallower case the maximum difference
is only approximately 0.8H (x/D =30-40, figure 4b). As the quasi-2-D eddies start
losing their coherence, the tilt reduces (e.g. to less than 0.3H at x/D =373 in the base
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FIGURE 4. Non-dimensional scalar concentration in the mean flow in several cross-sections.
(a) x/D =164 and x/D =373 for the H=D, VR=2.2 case; (b) x/D =30 and x/D = 164 for the
H=D/2, VR=2.2 case. The high-speed stream is situated on the left side of each panel. The
non-dimensional concentration of the scalar introduced at the end of the splitter plate is C = 100.

case, figure 4a). In the H=D/2, VR =2.2 case, the two interfaces become again vertical
and the concentration is uniformly distributed over the flow depth for x > 300D.

3.2. Turbulent kinetic energy

The afore-described dynamics of the KH-billows during the transition regime has direct
consequences on the degree of turbulent kinetic energy (TKE) amplification inside the
ML. Similar to a free ML, the main contributors to the TKE are the large-scale eddies.
A decrease in their size and/or coherence has a direct effect on the TKE, as seen by
comparing the position and size of the high-turbulence regions in figure 2. The length
and area of this region decrease with decreasing flow depth and velocity ratio. The peak
non-dimensional TKE, k/U3, occurs within the region where vortex pairing takes place
(e.g. x/D~80 for the H=D, VR=2.2 case, x/D ~?20 for the H=D/2, VR=2.2 case
and x/D ~ 100D for the H= D, VR =3.0 case). Over the region where vortex pairing is
observed, the main transfer of energy is from the smaller toward the larger eddies (inverse
energy cascade) and the turbulence has a strong 2-D character inside the ML.

In all cases, the peak TKE at a certain streamwise location is situated on the high-speed
side of the ML centreline, although it gets closer to the centreline as the flow shallowness
increases. Most probably this is related to the presence of a transverse flow component
that affects the advection of the elliptical cores of the KH billows. As will be discussed
latter, this effect occurs in a region where both the curvature of the ML and the vertical
non-uniformity of the flow are important. Downstream of the region where vortex pairing
stops, the TKE levels are still much larger inside the ML compared to the neighbouring
flow regions. Even in the H=D/2, VR=2.2 case, the peak TKE value inside the ML
is approximately two times larger than the peak levels in the faster stream at the same
streamwise location during the later stages of the quasi-equilibrium regime (x/D > 300).

3.3. Analysis of the components of the total, depth-averaged, lateral momentum flux

Some components of the total depth-averaged momentum flux may be important
contributors to the streamwise momentum balance besides the bed-friction term (Rhoads
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& Sukhodolov 2008). Analysis of the dominant terms in this equation can reveal the main
mechanism generating secondary (transverse) flow that is responsible for the redistribution
of the streamwise momentum inside the ML and around it. The bed-friction term
is generally the only term considered in simplified models of shallow MLs between
parallel streams. Modelling of the other important terms in the depth-averaged streamwise
momentum equation is required for development of accurate 2-D, depth-averaged models
of shallow flows. In turn, this requires quantitative information on the spatial distribution
of these terms in canonical configurations.

The main components of the total, depth-averaged lateral momentum flux are the lateral
flux by the mean flow (U)(V)/U?2, the dispersive flux due to differential advection over
the vertical direction [(UV) — (U)(V)]/U} and the turbulent flux (w'v')/UZ, where U
and V are the time-averaged streamwise and spanwise velocity components, #' and v’
are the turbulent velocity fluctuations in the streamwise and transverse directions and
( ) represents a depth-averaged variable. The distributions of these components are shown
in figure 5 for the three cases. Given that this is a flow where the main velocity component
is the streamwise velocity, the magnitudes of the lateral flux by the mean flow and of
the lateral dispersive flux correlate with the spanwise velocity magnitude. In all cases,
the peak (V) values are observed on the high-speed side of the ML centreline, around the
region where its lateral shift is the most rapid. The peak value increases with increasing VR
and decreasing flow depth. For example, the maximum spanwise velocity is approximately
0.05U, in the H=D, VR=2.2 case, 0.07U, in the H =D, VR =13.0 case and 0.08U, in
the H=D/2, VR=2.2 case.

The distributions of the lateral flux by the mean flow are qualitatively similar in the
three simulations, with the region of high magnitude values situated almost entirely on
the high-speed side of the flow with respect to the ML centreline. For the dispersive flux,
the region of maximum amplification is situated primarily on the high-speed side of the
ML centreline in the region where the ML curvature is significant. In all simulations, the
dispersive flux is approximately one order of magnitude lower than the lateral flux by the
mean flow. The main effect of decreasing the flow depth is to increase the width and length
of the region of high magnitude of the lateral flux by the mean flow. While this is also true
for the width of the region of high dispersive flux, its length decays with decreasing flow
depth, consistent with the shortening of the region where the ML width is different near
the bed and near the free surface, which is an indicator of strong vertical non-uniformity
of the flow.

In the shallowest case, the turbulent flux is fairly small everywhere except for the thin
region close to the ML centreline where KH billows are present (x/D < 130). Even inside
this region, the turbulent flux is more than one magnitude lower that the dispersive flux.
Both the increase in the flow depth and the increase in the velocity ratio act toward
increasing the size of the region of high values of the turbulent flux. In fact, in the H =D
simulations, the position and size of the region of high turbulent flux are comparable to the
one of high dispersion flux, although the turbulent fluxes are roughly 60 %—70 % smaller
than the dispersive fluxes.

Overall, these results show that the mean flow plays a much larger role than turbulence
in lateral momentum transport associated with the spatial development of a shallow ML
between parallel streams. The dispersive fluxes are typically of the order of 5 %—10 % of
the total lateral momentum flux in the region where the curvature of the ML is significant
and thus can play an important role in the redistribution of the streamwise momentum
with increasing distance from the ML origin and in the generation of secondary flow.
In fact, analysis of the mean flow fields in the H =D simulations shows that weak
streamwise-oriented cells of secondary flow are present inside the high curvature part of
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FIGURE 5. Distribution of depth-averaged lateral momentum fluxes. (a) H =D, VR=2.2 case;
(b) H=D/2, VR=2.2 case; (c) H=D, VR =3.0 case. The frames show the lateral momentum
flux by the mean flow, (U)(V)/ U(Z), the dispersive lateral momentum flux [(UV) — (U)(V)]/ U%
and the turbulent lateral momentum flux (W) / U%. The dotted line visualizes the ML centreline
near the free surface.
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the ML, where also the vertical flow non-uniformity is the largest (e.g. for 10 < x/D < 120
in the base case). Moreover, the fact that the sum of the lateral flux by the mean flow and
of the dispersive flux shows large magnitudes mostly over the fast-stream side of the ML
centreline is in agreement with measurements performed in the field by Sukhodolov et al.
(2010) for a shallow ML developing between parallel streams in a natural river channel. It
also supports their finding that the streamwise gradient of the total lateral momentum
flux needs to be retained in 1-D shallow water models only in the depth-averaged
streamwise momentum equation for the fast stream, where this term is comparable to the
friction-generated fluxes of momentum.

4. Mean streamwise velocity profiles

As the ML is pushed toward the low-speed side (figure 2), the velocity of the fast
stream, U,(x), decreases while that of the slow stream, U;(x), increases with downstream
distance. For fixed a fixed z/H, the location of the ML centreline is chosen as that where
u(x,y) = U(x) = (Ui(x) + Uy(x))/2. Figures 2(a) and 2(b) show that the rate of increase
of the shift of the ML centreline is larger in the H=D/2, VR=2.2 case, at least for
x/D < 100. This suggests that the velocity equalization process becomes faster as the
flow shallowness increases. Simulation results show that the non-dimensional velocity
difference AU* = AU/AUy = (Uy(x) — Uy (x))/(Uyy — Uyp) decays much faster with
the downstream distance in the H = D/2, VR = 2.2 case compared to the H =D, VR=2.2
case. For example, at x/D =150, AU* =~ 0.65 in the base case and AU* =~ 0.25 in the
shallower case.

Using shallow water theory and some simplifying assumptions (low Froude number,
negligible mixing between the two streams, negligible transverse slope of the free surface)
Cushman-Roisin & Constantinescu (2019) have shown that the length scale that controls
the equalization of the mean velocities in the two streams takes place over a distance of
the order of several times the length scale x* = c¢;x/H which incorporates the effect of
bottom friction via the mean friction coefficient, ¢;. Moreover, the difference between
the square of the mean velocity in the two streams (U; — U)* = (U3 — U}) /(U3, — U3,
should be equal to . Figure 6(a) shows that the three simulations predict very similar
variations of (U3 — U?)* with x*. The agreement between the numerical predictions and
the theoretical model of Cushman-Roisin & Constantinescu (2019) is quite good away
from the ML origin. Having some larger errors close to the ML origin is somewhat
expected as x* becomes the physically relevant length scale only after bed friction starts
having a significant effect on the development of the ML. Moreover, the ML has a non-zero
width at x =0 due to the boundary layers on the two sides of the splitter plate. The best
agreement is observed for the H=D/2, VR =2.2 case for which the relative difference
between the velocity of the two streams is less than 2% of the initial difference at
the end of the computational domain (x/D = 373). Interestingly, the e also provides
a fairly good fit to the non-dimensional velocity difference, AU* (figure 6b), although
the agreement is slightly less good than that observed for (U3 — U7)*. This is simply
because the centreline velocity Ux) = (U;(x) + Uy (x)) /2 varies little in the downstream
direction. Using this additional assumption, Van Prooijen & Uijttewaal (2002) have already
shown that AU* = e,

The non-dimensional mean streamwise velocity profiles in the transverse direction are
compared in figure 7 to the self-similar (error function) solution for a free ML and to the
experimental measurements of Uijttewaal & Booij (2000) at several streamwise locations
(0.05 m<x<11.0 m, z/D=z/H =0.85). All variables are defined based on their values


https://doi.org/10.1017/jfm.2020.638

https://doi.org/10.1017/jfm.2020.638 Published online by Cambridge University Press

Near- and far-field structure of shallow mixing layers 904 A21-13

(a) 1.0
0.9 e z/D=085(H=D, VR=2.2)
0.8

0.7 g
= 06 a m z/D=0.85(H=D, VR=3)

A z/(D/2)=0.85 (H=D/2, VR=2.2)

0.5
0.4
0.3
0.2
0.1

(U3 -U

0

(b) 10

0 0.5 1.0 1.5 2.0 25 3.0 35 4.0

x*

FIGURE 6. Non-dimensional velocity difference between the two streams in a horizontal plane
situated close to the free surface (z/H = 0.85). (a) (U% - U%)* vs. x*; (b) AU* vs. x*. The solid
line shows the theoretical solution (U% - U%)* =e ™ and AU* = e,

in the z/D =0.85 plane, so their dependence on z is omitted in the definitions bellow.
The ML centreline is defined as the transverse location where the streamwise velocity
gradient, du(x, y)/dy, is the largest. The transverse shift of the ML centreline is /., (x) and
the splitter is located at y = 0. At each streamwise location, the lateral coordinate, y — /.,
is scaled with the ML width, which is defined as §(x) = (U, — U;)/(0u/90Y)nax-

Overall, the numerically predicted profiles of (u(x, y) — U,(x))/(U>(x) — U;(x)) show
close agreement with the self-similar error-function solution and good agreement with
the experimental data at all locations, especially if one considers the scatter in the
experimental measurements. The transverse velocity gradient over the central part of the
ML is slightly larger for the profiles located at 30 < x/D < 112 compared to the one in the
error-function solution. As opposed to the experimental data, there is very little scatter
of the predicted velocity profiles on the high-speed side of the ML ((y —[.,)/6 < —0.7)
for x/D > 10. Past the end of the transition regime, the velocity profiles at x/D = 164 and
x/D =299 are very close to the error-function solution. Although not included in figure 7,
it is relevant to mention that the non-dimensional velocity profiles for the shallower
(H=D/2, VR=2.2) case are even closer to the error-function solution and show less
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FIGURE 7. Comparison of non-dimensional mean streamwise velocity profiles,
(u—Uy)/(Uy—Uy), predicted by DES (solid lines, 0.05 m <x <20 m, z/H =0.85) with
the experimental data of Uijttewaal & Booij (2000) (solid circles, x < 11 m, z/H =0.85). The
velocity profiles are plotted versus the non-dimensional lateral distance, (y — l.y)/8. The dashed
red line represents the error-function curve corresponding to the self-similar solution for a free
ML.

scatter near the edges of the ML for x/D > 30. So, past the end of the transition regime, the
non-dimensional velocity distribution across a shallow ML is very close to that expected
in a free ML.

5. Mixing layer shift

The plots of /., /H vs. x/H for z/D = 0.85 in figure 8(a) confirm the trends observed in
figure 2 showing that the effect of decreasing the flow depth or increasing VR is to increase
l.y. When non-dimensionalized with the flow depth, /., increases much more rapidly in the
shallower case. Meanwhile, the base case predictions of /., /H are in good agreement with
the values inferred from the experimental data for x/D < 160. Close to the origin, the
increase of /., with x is close to linear for all cases. However, the rate of increase of /., /H
decreases significantly after the end of the transition regime. This is the most evident for
the H=D/2, VR =2.2 case, where the rate of growth of /.,/H is very small during the
later stages of the quasi-equilibrium regime (x/H > 600).

Uijttewaal & Booij (2000) found that for cases with different flow depths but
approximately the same VR, [., is mainly a function of x*. Given that VR is not the
same in all our simulations, a better way to non-dimensionalize the centreline shift is

l’cy =1.,/D(AU0)/ U(0)). The width of the channel, W, is a more relevant length scale,
but given that W/D was kept constant in all simulations, using D instead of W does not
change the analysis. The plots in figure 8(b) show that the downstream variation of /|
is fairly similar in the three cases. The main reason for this is that AU* = AU/AU, is
mainly a function of x* (figure 6b). If mixing between the two streams is neglected and
the flow depth in the two streams is assumed to be the same, then the widths of the two
streams, W, and W», and thus /., = (W, — W)/2, are basically a function of AU at any
given streamwise location (Cushman-Roisin & Constantinescu 2019). So, the flow depth
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is expected to have a fairly small influence on [, (x*) except indirectly as x* ~1/cy and ¢;
is a function of the channel Reynolds number that is proportional to H.

A physically more correct way to non-dimensionalize the centreline shift is to include
the local values of the velocity in the two streams. This leads to defining a new
non-dimensional centreline shift, ljy = l.,/D(AU(x)/U(x)). This way, the mean shear
acting on the ML at a given streamwise location enters the non-dimensionalization of
lcy. As for large x*, the velocity difference AU decays asymptotically to zero (§4), [, is
expected to increase with increasing x*. This is confirmed by results in figure 8(c) that
show [;, vs. x* in log-log scale. Several regions over which ljfy’vx*ﬂ can be identified.
Close to the origin of the ML, a first region with 8 =1 is present. Starting at the end of
the transition regime (x*~ 0.7 for H=D, VR=2.2 case, x*~ 0.9 for H=D, VR=3.0
case and x*~ 0.4 for H=D/2, VR=2.2 case), a second region with 8 =5/3 is present
in all three simulations. This region basically corresponds to the early stages of the
quasi-equilibrium regime when the ML assumes an undulatory shape. Finally, after all
the large eddies lost their coherence and the boundaries of the ML are close to vertical
in the instantaneous flow fields (e.g. for x > 250D or x* > 2.5 for the H=D/2, VR=2.2
case), a region with 8 = 3 is observed up to x* =4.

6. Mixing layer width

The reduction in the rate of growth of § with the streamwise distance is only partially
explained by the reduction in the mean shear across the ML, which is proportional to
AU(x). The extra dissipation due to the no-slip boundary condition at the channel bed
also contributes to decay of the coherence of the KH billows and thus to a reduction of
8(x) with respect to a free mixing layer. The streamwise variation of §(x) near the free
surface (z/D = 0.85) is shown in figure 9(a). For the base case, the agreement with the
experimental results of Ujjttewaal & Booij (2000) is very good over the whole region
where experimental data are available (x/H < 160). The decrease in § with decreasing
flow depth is due to the increased effect of the bed friction on the dynamics of the KH
billows. In the H=D/2, VR=2.2 case, the ML continues to grow at a much reduced
rate during the later stages of the quasi-equilibrium regime (x > 400H or x > 200D) and
approaches a constant value by the end of the domain.

As already discussed in § 3.1 based on the mean scalar concentration fields, the ML
width close to the free surface is larger than near the bed over part of the ML. Comparison
of the plots of §(x) = (U, — U;)/(0u/0dy).ax near the free surface (z/D = 0.85) and near
the bed (z/D = 0.35) for the base case (figure 9a) shows that these differences develop
once bed friction starts affecting the dynamics of the KH billows and peak at the end of
the transition regime where the difference is about 1.2H, which corresponds to more than
10 % of the depth-averaged ML width. Then, the difference between the ML width near
the free surface and near the bed decreases monotonically in the downstream direction,
such that the ML width in the mean flow is close to constant over the flow depth at the
start of the quasi-equilibrium regime. Data for the H = D/2, VR =2.2 case confirm that
the ML width does not vary with the distance from the bed during the quasi-equilibrium
regime. At the end of the transition regime (x = 40D = 80H), the difference between §(x)
near the bed and bear the free surface is less than 2 % of the depth-averaged ML width.

Using the local velocity in the two streams and the flow depth, one can define a
non-dimensional ML width 6*(x) = ¢/6/H(AU(x)/U(x)). A similar variable, § = §*/2
was already introduced by Alavian & Chu (1985) and is referred to as the bed-friction
number. It characterizes the stabilizing influence of the bottom friction on the development
of the ML. Note that §* increases in the downstream direction due to the increase in
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FIGURE 9. Mixing layer width near the free surface (z/H=0.85). (a) 6/H vs. x/H,;
(b) 8% = cr8§/H(AU(x)/U(x)) vs. x* in linear scale; (c) 8* vs. x* in log-log scale. Also
shown in (a) are the experimental results of Uijttewaal & Booij (2000). The two lines in
(c) show best fit, power-law curves for x* < 1.5 and x* > 2. The solid lines in (a) show
ML width predictions using the equation proposed by Van Prooijen & Uijttewaal (2002),
8(x/H)/H = a(AU(O)/U(O))(l/Cf)(l —e ") + 8(0)/H. The horizontal dotted lines in (a)
show the equilibrium values (x, x*— 00) predicted by the same equation.
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8 and the decrease in AU with increasing x or x* (figures 60 and 9a). When plotted
against x*, the §* curves for the three cases are very close to each other (figure 9b0).
Moreover, if §*(x*) is plotted in log—log scale (figure 9c¢), one can identify two power-law
regions up to x* =4. The first one corresponds to the transition and initial stages of the
quasi-equilibrium regime and is characterized by a linear increase of §* with x*. This is
formally similar to what is observed for a free shear layer for which AU(x) and U(x)
are constant. Moreover, the predicted rate of increase d§*/dx* = 0.09 is within the range
expected for a free mixing layer. After the end of the initial stages of the quasi-equilibrium
regime, a region with 6* ~ x* (or using some simplifying assumptions § ~ xFe ™) is
present. This does not mean that the ML width growth faster. Figure 9(a) clearly shows that
the increase of the ML width with x is very small for x/H > 400 or x* > 2. The presence
of regions where §* ~ x*' with n > 0 simply means that the rate of growth of § does not
decay as e which is a good approximation to describe the streamwise decay of AU (x*)
over the whole length of the shallow ML (figure 6b). In the H =D/2, VR =2.2 case, the
8* ~ x* region lasts until & approaches zero (e.g. o < 0.003 for x* > 3) and the mixing
layer width reaches a close to constant value.

7. Entrainment coefficient

To describe in a more quantitative way the effects of the bottom friction on the spatial
development of a shallow ML, an entrainment coefficient « is defined (Chu & Babarutsi
1988; Uijttewaal & Booij 2000):

1 dé N U(x) dé(x)

o= —— (7.1)
AU dt  AUx) dx

Its variation can be related to that of the bed-friction number, S, which accounts for the
effect of flow shallowness on the evolution of the ML. In the empirical relation proposed
by Chu & Babarutsi (1988), a linear decay of o with § was assumed in between the origin
of the ML and the location where the ML transitions to an equilibrium regime where the
ML width is constant (e.g. « = 0):

a =oy(l =S/S.), (7.2)

where « is the entrainment coefficient at the ML origin and S, in the definition given by
Chu & Babarutsi (1988) is the critical value of S corresponding to the transition to the
equilibrium (zero-growth) regime (o = 0 based on (7.2)) when production and dissipation
of kinetic energy are in equilibrium. Uijttewaal & Booij (2000) interpreted the bed-friction
number as a measure of the ratio between the dissipation and production of the kinetic
energy of the large ML eddies, where the dissipation is driven by bed friction acting on
the quasi-2-D eddies while production is driven by the transverse mean shear across the
ML. Experiments and stability analysis suggest 0.06 < S, <0.12 (Alavian & Chu 1985;
Chu & Babarutsi 1988; Chu et al. 1991; Chen & Jirka 1998; Uijttewaal & Booij 2000).
More recently, Van Prooijen & Uijttewaal (2002) showed that S, is not a useful number
to characterize the large-scale motion because the dominant mode inside the mixing
layer starts decaying (e.g. largest coherent structures are losing energy) well before the
position where the most unstable mode starts decaying, meaning S = S.. Given that any
shallow ML is expected to behave like a free mixing layer close to its origin, one expects
9~ 0.085 — 0.1 (e.g. see Townsend 1956; Pope 2000).

The availability of data on &(x) over the quasi-equilibrium regime in the H =D/2,
VR =2.2 case allows us to gain a more complete picture of the dependence of o with
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FIGURE 10. Entrainment coefficient, «, as a function of x* (a) and the bed-friction number S
(b,c) near the free surface (z/H =0.85) for the H=D/2, VR =2.2 case. Also shown in (d) are
the estimations of « vs. S based on the experimental results of Uijttewaal & Booij (2000) for
x < 11 m and based on simulation results for the H =D and H = D/2 cases. The dashed lines
in (b) show best fit curves, a ~ e VS with y =14.7 for § < 0.15 and y = 3.3 for S > 0.15. These
curves are visualized as straight lines in log—linear scale in (c). The solid straight lines in (b,d)
correspond to the initial quasi-linear decay of « with S.

x* and § in the far field of a shallow ML. Results in figures 10(a) and 10(b) show that «
and S decay monotonically and approach zero in the far field, consistent with the observed
tendency of §/H in figure 9(a) to approach a zero rate of growth for x/H > 400 (x* =~ 2).
The decay of o with x* is also consistent with the observed effects of the bottom friction
that first induces a decay in the rate of growth of the quasi-2-D ML eddies compared to
those forming in a free shear layer, then impedes vortex pairing and induces the gradual
loss of coherence of these eddies such that the ML region is depleted of large-scale eddies
past the early stages of the quasi-equilibrium regime. Even for the base case, simulation
results show a monotonic decay of o with the distance from the origin of the ML such that
o ~ 0.01 < o by the end of the computational domain (x/D = 400). Predictions of §(x)
using the equation proposed by Van Prooijen & Uijttewaal (2002) were also included in
figure 10(a). The model accounts for the exponential decay of AU* with x* and assumes
the entrainment coefficient to be constant and equal to the value for a free shear layer (e.g.
a =0.085). In the H =D, VR=2.2 case, the model successfully predicts §(x) over the
transition regime (x < 160H = 10.7 m) but overpredicts §(x) at larger x/H. The model’s
predictions are also very accurate in the H=D/2 VR=2.2 case up to the end of the
transition regime (x = 80H) but then start to slowly diverge from the numerical results.
Obviously, the predictive capabilities of the model can be improved if a more realistic
variation is adopted for the entrainment coefficient. Rather than assuming it to be a
constant (e.g. « = 0.085 or @ =), one can propose o = & (x*) or & =« (§) based on the
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predicted variations of these variables in figures 10(a) and 10(b). In particular, numerical
results show a faster monotonic decay of o with x* and S over the transition and early
stages of the quasi-equilibrium regime and a slower monotonic decay of « with x* and §
over the later stages of the quasi-equilibrium regime where o < 0.005.

Figure 10(b) shows that the decay of « with § for the H=D/2, VR=2.2 case is not
linear except for small values of S and the rate of decay of @ with S decreases suddenly
for S > 0.15. Figure 9(b) shows that S~ 0.15 (e.g. 6" ~ 0.3) when x*=22, in other words
at the location downstream of which the ML is not subject to undulations in horizontal
planes. When plotting the data from figure 10(b) in in log-linear scale, one can see that
the variation of o with S is close to exponential for both S < 0.15 and S > 0.15 (figure 10c¢).
Over the transition and early stages of the quasi-equilibrium regime where the ML assumes
an undulatory shape o = 0.07e~'*75, while during the later stages of the quasi-equilibrium
regime a = 0.0066e 35, These two curves also are represented in figure 10(b) and fit quite
well the numerical data over the whole channel length. In the limit of S going to zero, the
exponential decay function reduces to o =0.07*(1 — 14.75) =0.07(1 — §/0.068) giving
oo =0.07 and S. = 0.068. This linear best fit curve is also plotted in figure 10(b).

Figure 10(d) shows that for all cases the decay of « with § is close to linear for small
values of S, although the values of oy and S. may vary. For the base case, the linear
best fit to the simulation data gives oy =0.115 and S.=0.065. These values are fairly
close to the ones inferred from the corresponding experiment, «g =0.11 and S, = 0.08.
For the H =D, VR =3.0 case, the linear decay region is characterized by oy =0.12 and
S, =0.095 and is observed until the location where the ML starts interacting with the
lateral wall of the channel. Chu & Babarutsi (1988) determined S. = 0.09 based on their
experiments. Simulation data in figure 10 show that the maximum value of S up to which
a linear decay of o with S can be assumed is S~ 0.04 (6* =~ 0.08) inthe H=D, VR=2.2
case and §~0.025 (6* &~ 0.05) in the H=D/2, VR=2.2 case. These two values of §
correspond to x*~ 0.7 and x*~0.25, respectively. The two x* values are very close to
the ones corresponding to the end of the transition regime in the two cases (x*~ (.7
and x*~0.4). So, the linear empirical relationship of Chu & Babarutsi (1988) is valid
in between the ML origin and the end of the region where the main mechanism for the
growth of the ML is pairing of the KH billows. However, an exponential decay law allows
characterizing the variation of o with S way beyond the location where vortex pairing
ends, basically until the region where the KH billows are destroyed.

8. Dynamics of the Kelvin-Helmholtz billows and large-scale undulatory motions
8.1. Velocity power spectra

Power spectra of the spanwise velocity fluctuations are analysed in the z/H =0.85
plane at points situated close to the ML centreline. In the base case (figure 11a) the
peak of the power density occurs at f=0.38 Hz (f is the frequency) for x=2m
(x/D=30) and at f=0.09 Hz for x=11m (x/D=164). As the transition regime ends
at x/D =~ 160, each peak corresponds to the passage frequency of the KH billows at that
location. These values are in good agreement with those measured in the corresponding
experiment (f =0.35 Hz and f =0.1 Hz). The streamwise decay in the peak frequency
values over the transition regime is related to vortex pairing. Animations show that,
on average, one to two vortex merging events take place as the KH billows travel
between these two streamwise locations. After the quasi-equilibrium regime starts, the
peak frequency remains approximately constant f~0.06 Hz (e.g. see power spectra at
x/D =299 and x/D = 373). This frequency is associated with the undulatory motions of
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FIGURE 11. Power spectra of the spanwise velocity fluctuations at points situated close to the
centreline of the ML and the free surface (z/H =0.85). (a) H=D, VR=2.2 case; (b) H=D/2,
VR =2.2 case; (c) H=D, VR=3.0 case.

the ML (figures 2a and 3) that are observed until the end of the computational domain in
the base case.

Another feature of the velocity power spectra in figure 11(a) is the presence of a —3
energy decay subrange on the high frequency side of the peak frequency. Measured
velocity spectra in the experiment of Uijttewaal & Booij (2000) show a similar behaviour
for x/D < 165. A —3 subrange was also present in the velocity spectra measured by
Vowinckel, Schnauder & Sukhodolov (2007) in a shallow ML forming at a natural river
confluence between two nearly parallel streams. As vortex pairing stops and the quasi-2-D
eddies start losing their coherence, the —3 subrange is still present for some distance.
The presence of a —3 subrange indicates that the large eddies are quasi-two-dimensional
(Batchelor 1969). The broader —3 energy decay subrange observed at x/D = 299 indicates
increased dissipation of the quasi-2-D eddies as they lose their coherence (Vorobieff,
Rivera & Ecke 1999). The decrease in the energy associated with the f=0.06 Hz
frequency between x/D =299 and x/D =375 is consistent with the decrease in the
amplitude of the mixing layer oscillations is the downstream direction.

In the H=D/2, VR=2.2 case (figure 11b), the last pairing event takes place around
x/D =30, which explains the presence of two peaks in the power density at f =0.58 Hz
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and f =0.27 Hz. The KH billows did not lose their coherence by x/D =90 where a first
peak is present at f =0.27 Hz. The second peak at f~ 0.11 Hz corresponds to the start of
the undulatory motions of the ML. By x/D = 164, the coherence of the KH billows is lost
and the peak (f =0.11 Hz) corresponds to that of the undulatory motions. The undulatory
oscillations practically disappear for x/D > 250 in the instantaneous flow fields (figure 2b).
Consistent with this, the energy of the undulatory motions decays by close to one decade
between x/D =223 and x/D =299. A main difference with the base case is that the —3
subrange is replaced by a —4.3 subrange. Although the frequency of the ML undulations
increases with decreasing flow depth, the corresponding Strouhal number is close in both
cases (St=fH/U,=0.015—0.016).

Comparison of figures 11(a) and 11(c) shows that increasing VR while keeping the
flow depth constant has only a mild influence on the dominant frequencies observed
in the velocity power spectra during the transition regime and the early stages of the
quasi-equilibrium regime. The passage frequency of the KH billows increases by about
10 % while that of the ML undulations decreases by 10 %—15 %.

8.2. Autocorrelation function of the spanwise velocity fluctuations

The autocorrelation function of the spanwise (v) velocity fluctuations is defined as:

(V'(ty) - V' (tg + AD))
(0 (1)) (v” (19 + AD)"

where the brackets ( ) denote averaging over all values of the time 7y and At is the time
difference. The autocorrelation function is plotted in figure 12 for three points situated
along the ML centreline at x/D = 30, 164 and 299 (x=2, 11 and 20 m) in the z/H = 0.85
plane. At all locations, R,, is characterized by large-scale oscillations. The time interval
between the origin, where R,,(0) = 1, and the first maximum of R,, can be interpreted as
the passage time of the largest eddies at that location.

For the base case, the overall level of agreement with the autocorrelation function
estimated from the experiment (x/D =30, 164) is reasonable. For x/D =30, the first
minimum in the R,, curve is reached after 1200 ms (x/D = 30) and 5000 ms (x/D = 164)
in the simulation and after 1400 ms (x/D = 30) and 4500 ms (x/D = 164) in the experiment
(figure 12a). The predicted passage time of the KH billows at x/D =30 and 164 is
approximately 2500 ms and 9700 ms, respectively. These values are consistent with the
peak frequencies in the velocity spectra in figure 11(a). Assuming the average velocity
of the coherent structures is U(x), one can estimate the average streamwise size of the
KH billows, or, more precisely the average distance between the centres of two successive
billows. This estimated length is approximately 8.2D at x/D = 36 and 31.3D at x/D = 164.
At these two locations, 6 =2.7D and 8.8D respectively (figure 9a). Assuming that the
spanwise size of the KH billows is close to the ML width, this means that the KH
billows are not circular but rather ellipsoidal and their aspect ratio increases as one
moves downstream (e.g. from approximately 3 at x/D =30 to 3.5 at x/D=164). As
vortex pairing ceases around x/D = 164 and the KH billows are stretched mostly along
the streamwise direction, the aspect ratio increases rapidly to become close to 5.8 at
x/D=223. At x/D =299, the first maximum in the autocorrelation function occurs after
17 300 ms, which corresponds to a frequency f = 0.057 Hz, very close to the one associated
with the ML undulations in the velocity power spectra (f~0.06 in figure 11a). The
estimated wavelength of the ML undulations is A = 63D =63H at x=299D and A = 65D
at x=374D. The ratio 1/§ is close to 6.8 for x/D > 299. Qualitatively, the R,, curves in

Ruv(At) = (81)
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FIGURE 12. Autocorrelation function of the spanwise velocity fluctuations, Ry,. (a) x/D =36
and x/D=164; (b) x/D=299. The autocorrelation function is evaluated close to the ML
centreline and the free surface (z/H =0.85). Also plotted in (@) is the autocorrelation function
for the base case from the experiment of Uijttewaal & Booij (2000). The vertical lines denote
the location of the first maximum of R,, in the H =D, VR =2.2 case (solid lines) and H =D/2,
VR = 2.2 case (dashed lines).

the H =D, VR =3 case and the dynamics of the KH billows is similar to that predicted in
the base case. The shape factor of the KH billows during the transition regime is close to
3.7, while 1/6 ~ 7 during the early stages of the quasi-equilibrium regime.

In the H=D/2, VR=2.2 case, the time of passage of the KH billows at x/D = 30,
where vortex pairing is still observed, is approximately 1900 ms, which is approximately
21 % smaller than the value predicted for the base case (2400 ms) at the same location.
As for the base case, the shape of the autocorrelation function changes dramatically
once the ML transitions to the early stages of the quasi-equilibrium regime. The
small attenuation of the amplitude of the R,, oscillations at x/D =164 means that
the undulatory motions are strongly correlated. The decay in the amplitude of the R,,
oscillations at x/D =299 is consistent with the observed decay in the amplitude of the
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undulatory motions. These motions are hardly detectable in the concentration contours
for x/D > 250 (figure 2b). The first peak of R,, occurs after 8000 ms at x/D = 164 and
after 8500 ms at x/D =299, confirming that the wavelength of these undulatory motions
varies little (1~ 31D =62H) as they gradually disappear during the later stages of the
quasi-equilibrium regime. Over the region where the undulations are detected in the
autocorrelation function, the ratio 4/ is close to 8.5.

9. Bed shear stress

Consistent with the streamwise decay of the velocity difference between the two streams,
the mean bed shear stress, 7/7; (7o is the mean bed shear in the two incoming streams),
follows a similar evolution, as illustrated in figure 13 for the base case. Although the ML is
a region where the 7 /7, values are in between those predicted beneath the fast stream and
the slow stream, this does not automatically mean that, in the case of a loose bed, most of
the sediment is going to be entrained by the fast stream. Cheng, Koken & Constantinescu
(2018) have shown that the presence of large-scale coherent structures near the bed can
result in a significant amplification of the flux of entrained sediment provided that the time
of passage of these eddies over a certain location is sufficiently large to result in sediment
entrainment. This is because the entrainment flux is a nonlinear function of the difference
between the local bed shear stress and the critical value for sediment entrainment. For
flows in which large-scale coherent structures are present near the bed, one should analyse
the sediment entrainment capacity of the flow based on the instantaneous bed shear stress
distributions, 7, rather than the mean bed shear stress, 7. Figure 13(a) illustrates the
differences between the distributions of 7 /1, and /71, for the base case. Several elongated
regions of high bed shear stress are present in the instantaneous fields inside and close to
the ML. Inside these regions, 7/1; is comparable to 7 /7y beneath the fast stream in the
incoming channel.

One way to approximate the effect of the bed shear stress amplification induced by
the coherent structures and near-bed turbulent fluctuations is to consider the root mean
square of the bed shear stress fluctuations. Several investigations have shown that using
7 + Ct,,,s with a value of the empirical constant C around 1 as an effective bed shear stress
in sediment entrainment formulas results in more accurate predictions of the sediment
entrainment capacity of the flow (Sumer er al. 2003; Kraft, Wang & Oberlack 2011;
Cheng et al. 2018). For the shallow ML flows investigated here, the main types of coherent
structures interacting with the channel bed are KH billows and streamwise oriented cells
of secondary flow developing inside the ML or close to its boundaries in the instantaneous
flow fields. These eddies control the position and shape of the regions of high 7,,/7o.
For example, in the base case the peak t,,:/Tovalues are approximately 0.2-0.25 and
such large values are observed until x/D = 120, which proves that coherent structures can
significantly enhance the capacity of the flow to entrain sediment. The region of high
T,ms/ To approximately corresponds to the ML position near the bed until x/D = 50. Over
this region, the passage of the KH billows controls the large-scale temporal variations
of t. Downstream of this location, most of the region of high t,,,/7 is situated on the
high-speed side of the ML centreline. Although the cores of the KH billows can still
induce a noticeable increase in the instantaneous bed shear stress until x/D =~ 150, most of
the amplification of t,,,s/ 7y in this region is due to streamwise-oriented cells of secondary
flow.

Though these cells form on both sides of the ML centreline (e.g. see 7/1, distributions
forthe H =D, VR=2.2 and H=D, VR =3 cases in figure 13), the cells on the high-speed
side induce the largest t values. Each cell pushes higher-streamwise-velocity fluid closer
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FIGURE 13. Distribution of the normalized bed shear stress. (a) T/79, mean flow H =D,
VR=2.2 case; (b) root mean square of the bed shear stress fluctuations, t""/t9, H=2D,
VR =2.2 case; (¢) T/710, instantaneous flow, H = D, VR =2.2 case; (d) t /70, instantaneous flow,
H=D/2, VR=2.2 case; (e) T/19, instantaneous flow, H =D, VR=3.0 case. Also shown in
(f) is the instantaneous streamwise velocity distribution, u/Up, and 2-D streamline patterns in
the x/D = 122 cross-section for the H =D, VR =3.0 case. The dotted line visualizes the ML
centreline near the free surface. The black and blue arrows point toward patches of large bed
shear stress induced by the KH billows and by streamwise cells of secondary flow, respectively.
The x/D = 122 cross-section shown in ( f) cuts through the elongated streak of high 7/t situated
between x/D=—1 and x/D =0.3 in (e). The streamwise cell of secondary flow pushes high
velocity fluid toward the bed, which induces the formation of a region of high t /7.
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to the bed on the side where the vertical velocity induced by the cell is oriented toward
the bed. As a result, the bed shear stress increases above its value in the mean flow. Given
that 7 /7, is larger on the high-speed side, so is 7/75. Comparison of the distributions
of 7/19 in figures 13(a) and 13(c) shows that the effect of increasing VR is to generate
larger streaks of high bed shear stress. Such streaks are observed until x/D =200 in the
H =D, VR=3.0 case. Figure 13(c) also shows the streamwise velocity distribution and
2-D streamlines patterns in the x/D = 122 cross-section cutting through one of the largest
elongated streaks of high 7/7,. The streak is induced by the cell whose axis is situated at
y/D = —1.5. The region where fluid with higher streamwise velocity is advected toward
the bed, —1 <y/D <0, corresponds to the streak of high 7 /1.

The effect of reducing the flow depth from H = D (figure 13a) to H = D/2 (figure 13b)
is a weakening of the capacity of the KH billows to induce regions of high 7/75. Such
regions are observed only for x/D <40 in the H=D/2, VR=2.2 case. However, the
most important difference with the H =D simulations is the absence of regions of high
bed-friction velocity amplification due to the formation of streamwise cells of secondary
flow. Even if such cells sometimes form in the instantaneous flow fields, they are very weak
and their effect on the redistribution of the streamwise momentum in the cross-section
is relatively low compared to the deeper (H = D) cases. So for very shallow conditions,
coherent structures contribute relatively little to the increase of the sediment entrainment
capacity of the flow (the peak values of t,,,/ty are close to 0.02) and the instantaneous
bed shear stress decays fairly monotonically from the high-speed side of the channel to
its low-speed side. Consistent with the decrease in the mean velocity difference between
the two streams to less than 4 % for x/D > 300, the distribution of the bed shear stress in
figure 13(b) is fairly uniform close to the downstream end of the channel.

10. Summary and conclusions

The large length of the channel in the numerical simulations allowed us to analyse
the physics of shallow mixing layers forming between parallel streams past the transition
regime which was the focus of previous experimental studies. In the shallower H=D/2,
VR =2.2 case, the channel was sufficiently long to allow studying the evolution of a ML
until the difference between the mean velocities of the two streams becomes very small
(AU/AU, < 0.03).

Over the transition regime, where the dynamics of the KH billows is strongly affected by
bed friction but merging between neighbouring billows is still taking place, the numerical
model predictions of the non-dimensional streamwise velocity profiles across the ML,
the frequency of passage and aspect ratio of the KH billows, the ML centreline shift and
the ML width were in good agreement with data available from experiments. Simulation
results showed that the ML increases its vertical non-uniformity during the transition
regime. This generates strong dispersive lateral momentum fluxes and secondary flow.
The boundary of the ML on the slow-stream side becomes tilted with respect to the
vertical, such that the ML width near the free surface is larger than near the bed. The
largest difference is observed at the end of the transition regime. In the base case, this
difference attains 15 % of the average ML width. The degree of vertical non-uniformity of
the flow decreases with increasing flow shallowness. As expected, the largest values of the
TKE are induced in the regions where the KH billows are the most coherent. Moreover,
the passage of the KH billows and the generation of streamwise cells of secondary flow in
the region where the ML is in the transition regime induce regions of high instantaneous
bed shear stress especially on the fast-stream side of the ML centreline. For the deeper
(H = D) cases, simulation results show that the erosive capacity of the flow will peak
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inside the ML or in its immediate vicinity rather than beneath the faster stream. There
erosion mechanisms are responsible for the formation of the confluence scour hole at low
angle natural river confluences.

During the early stages of the quasi-equilibrium regime, the stabilizing effect of bottom
friction becomes dominant compared to the destabilizing effect of the mean shear across
the ML. The KH, quasi-2-D billows lose their capacity to rotate around their axes and
undergo severe stretching in the streamwise direction. Their stretching and gradual loss
of coherence is accompanied by a change in the structure of the ML that assumes
an undulatory shape and a reduction in the degree of vertical non-uniformity of the
ML. In the later stages of the quasi-equilibrium regime, after the quasi-2-D billows
lost their coherence, the amplitude of the undulatory motions is very small, the ML
boundaries become vertical, and the lateral momentum fluxes by the mean flow and
the dispersive lateral momentum fluxes are negligible. Moreover, the transverse profiles
of the non-dimensional mean streamwise velocity approaches the error-function profile
corresponding to the theoretical solution for a free ML. Although the frequency, f,
and wavelength, A, of the undulatory motions are a function of the flow depth, H, the
corresponding Strouhal number is close to constant (St=fH/U,=0.015—0.016). The
effect of increasing the velocity ratio, VR, is to increase A and to decrease f. The ratio 1/
varies between 7 and 8.5, with the larger values observed in the shallower case.

For all cases, the predicted non-dimensional difference of the square velocities in the
two streams is fairly independent of VR and H when represented as a function of the
length scale x* = c¢;x /H which incorporates the effect of bottom friction. Consistent with
the theoretical model of Cushman-Roisin & Constantinescu (2019), away from the ML
origin, the decay is close to e for all cases. Moreover, in a good approximation, the
non-dimensional velocity difference, AU/AUy ~ e ", a result that can be predicted if
one assumes U(x) is constant (see also Van Prooijen & Uijttewaal 2002). This result is
the main reason why the lateral shift of the ML centreline is not a strong function of

the flow depth and VR when non-dimensionalized with AU(0)/ U(0) and a (constant)
length scale that is not proportional to the flow depth H. When both the ML width
and the centreline shift are non-dimensionalized with the local velocities in the two
streams (8* = ¢8/H(AU(x)/U(x)), I, = l.,/D(AU(x)/U(x)), several regions can be
identified. In particular, simulation results show that §* = 0.09x* over the transition and
early stages of the quasi-equilibrium regime and /7 ~x* over the transition regime. These
linear relationships are formally similar to those observed in a free ML but they apply way
after bed-friction effects on the evolution of the shallow ML become important.

Consistent with the gradual loss in the coherence of the quasi-2-D KH billows and
thus of the capacity of the ML to entrain surrounding fluid, simulation results show that
the entrainment coefficient o decays monotonically with increasing x* and increasing
bed-friction number S. In the H =D/2, VR =2.2 case, @ ~ 0 (a < 0.003) for x* > 3 which
means that the ML basically reaches the zero-growth regime. The decay of o with §
is exponential (o ~e~7%), but the value of y is smaller for S > 0.15, corresponding to
the later stages of the quasi-linear regime. During the transition regime, the linear decay
relationship assumed by the empirical model of Chu & Babarutsi (1988) corresponds to
the tangent to the exponential decay function at S =0.

Simulation results also show that approximating the effect of dispersion fluxes in 2-D
depth-averaged numerical models of flows containing shallow MLs is even more important
than modelling the turbulent fluxes. Numerical data from fully 3-D, eddy-resolving
simulations can be used to test some of the modelling hypotheses in analytical models that
need to account in an approximate way for the effects of lateral fluxes on the streamwise
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momentum (e.g. Rhoads & Sukhodolov 2008; Sukhodolov, Schnauder & Uijttewaal 2010)
and to better understand how mean flow and turbulence affect lateral momentum transfer.
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