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We consider minimization problems involving the Dirichlet integral under an
arbitrary number of volume constraints on the level sets and a generalized boundary
condition. More precisely, given a bounded open domain « » Rn with smooth
boundary, we study the problem of minimizing

R
« jruj2 among all those functions

u 2 H 1 that simultaneously satisfy n-dimensional measure constraints on the level
sets of the kind jfu = li gj = ¬ i , i = 1; : : : ; k, and a generalized boundary condition
u 2 K . Here, K is a closed convex subset of H1 such that K + H1

0 = K ; the invariance
of K under H1

0 provides that the condition u 2 K actually depends only on the trace
of u along @ « .

By a penalization approach, we prove the existence of minimizers and their H�older
continuity, generalizing previous results that are not applicable when a boundary
condition is prescribed.

Finally, in the case of just two volume constraints, we investigate the
¡ -convergence of the above (rescaled) functionals when the total measure of the two
prescribed level sets tends to saturate the whole domain « . It turns out that the
resulting ¡ -limit functional can be split into two distinct parts: the perimeter of the
interface due to the Dirichlet energy that concentrates along the jump, and a
boundary integral term due to the constraint u 2 K . In the particular case where
K = H1 (i.e. when no boundary condition is prescribed), the boundary term vanishes
and we recover a previous result due to Ambrosio et al.

1. Introduction

The paper deals with the following problem, whose motivation can be found in a
model of equilibrium interface between immiscible ®uids (see [4,7] for more details).
Given a domain (connected bounded open set) « » Rn with Lipschitz boundary
and a ­ nite set of pairs of real numbers f(lj ; ¬ j)gk

j = 1 satisfying

l1 < l2 < ¢ ¢ ¢ < lk; ¬ j > 0 and
kX

j = 1

¬ j < j « j; (1.1)

where j« j denotes the Lebesgue measure of « , let ¦ denote the class of all functions
u 2 H1( « ) such that, for every j = 1; : : : ; k, the Lebesgue measure of the level set
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fu = ljg is equal to ¬ j. We consider the problem of ­ nding a function u 2 H1( « )
that minimizes the Dirichlet integral, among all those functions that simultaneously
belong to ¦ and satisfy certain boundary conditions along @« . In fact, we allow
boundary conditions of a rather general form, which can be written as u 2 K ,
where K ³ H1( « ) is a non-empty closed convex set satisfying K + H1

0 ( « ) = K (the
invariance of K with respect to H1

0 provides that the constraint u 2 K is a real
`boundary condition’, since only the trace of u along @« is involved).

In short, the minimization problem we are going to consider reads as follows:

inf

½Z

«

jruj2 dx : u 2 ¦ \ K
¾

;

where ¦ := fu 2 H1( « ) : jfu = ljgj = ¬ j ; j = 1; : : : ; kg
and K ³ H1( « ) is convex, closed and K + H1

0 ( « ) = K .

9
>>>=

>>>;
(M)

We remark that such a setting includes quite a broad range of boundary con-
straints. Here are some particular cases that frequently arise in the applications.

(i) Prescribed values on the boundary. Let S ³ @« be a smooth portion of the
boundary and g 2 H1=2(S). Then K := fu 2 H1( « ) : u = g over Sg.

(ii) Boundary obstacle. Let S be as above and g1; g2 2 H1=2(S) with g1 6 g2.
Then K := fu 2 H1( « ) : g1 6 u 6 g2 over Sg.

(iii) Integral condition on the boundary. In this case,

K :=

½
u 2 H1( « ) :

Z

@«

f(x; u(x)) dHn¡1(x) 6 0

¾
;

where f is a given Borel function such that f (x; ¢) is convex, and Hn¡1 stands
for the (n ¡ 1)-dimensional Hausdor¬ measure.

Note also that even the case without any boundary constraint is modelled by our
setting, if we take K := H1( « ).

Free-boundary problems of the kind (M) have already been considered in the case
of only one volume constraint (i.e. k = 1 in (1.1)). For instance, in [2] and [1], only
the measure of the level set fu = 0g is prescribed, and a non-negative boundary
value is given along @« (or a smooth portion of it). This particular case is related
to the problem of ­ nding a set having minimum Newtonian capacity and prescribed
Lebesgue measure. In [2], existence and Lipschitz continuity of the solutions have
been proved as well as regularity (outside a small singular set) of the free boundary
@fu > 0g, by means of measure-theoretic techniques: however, the global sub-
harmonicity of the minimizers, which cannot be expected in the general case we are
considering, plays an important role in the approach presented in [1,2].

The case with several volume constraints (i.e. k > 2 in (1.1)) was ­ rst consid-
ered in [4], where existence of the minimizers was proved for vector-valued u and
for functionals more general than the Dirichlet integral, but without any boundary
condition (i.e. in the case where K = H1( « )). The existence results from [4], how-
ever, rely on the assumption that the vectors fljgk

j = 1 are extreme point of a convex
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set, which, in the scalar case (i.e. when u is real valued), turns into a severe restric-
tion, since it does not allow one to deal with the case of more than two volume
constraints.

Finally, existence and H�older continuity of the minimizers in the case of an arbi-
trary number of volume constraints were ­ rst proved in [8], when the function u is
real valued. We point out that the techniques adopted in [8] to prove the existence
of solutions cannot be used to solve (M), since the competitor functions therein con-
structed do not preserve the boundary values (hence they may fail to be admissible
functions for (M)).

The main di¯ culty in studying (M) is that, although the functional is coer-
cive and semicontinuous, the class of functions ¦ is not closed in any reasonable
topology. More precisely, on trying to apply the direct method of the calculus of
variations, it is natural to work with the strong topology of L2( « ) in view of the
coercivity of the Dirichlet integral; however, if u ¸ ! u in L2( « ) (or even uni-
formly) as ¸ ! 1, then all we can say about the level sets of u (see [4]) is that
jfu = ljgj > lim sup ¸ jfu ¸ = ljgj , so that u may not belong to ¦ , even if all the
u ¸ do. Therefore, the direct methods provide the existence minimizers only for the
following `relaxed’ problem:

inf

½Z

«

jruj2 dx : u 2 ¦ 0 \ K
¾

;

where ¦ 0 := fu 2 H1( « ) : jfu = ljgj > ¬ j; j = 1; : : : ; kg:

9
>=

>;
(M0)

Note that here ¦ 0 is closed with respect to the strong topology of L2( « ) (see [4]).
If a solution u to (M0) is continuous, then its level sets fu = ljg are disjoint closed
sets (with respect to « ), and one could use some localization technique to show
that, in fact, such a u solves (M) as well (i.e. that u 2 ¦ ). Unfortunately, we have
no a priori information on the continuity of the solutions to (M0), and at this stage
this seems to be a di¯ cult task.

In this paper we show the existence and H�older continuity of solutions to (M),
simultaneously allowing an arbitrary number of volume constraints and a rather
wide range of boundary conditions (see theorem 2.1). In particular, our existence
results generalize those contained in [8] (which can be easily recovered dropping the
boundary condition, i.e. letting K = H1( « )).

This existence result seems to be new even for the case of just one volume con-
straint (i.e. k = 1) plus a Dirichlet boundary condition, since, unlike the existence
result from [2], it is valid without any restriction on the boundary data, except for
the assumption that the constant function u ² l1 should not belong to K (on the
other hand, if this assumption is violated, then (M) has no solution at all, as we
shall see in x 2).

We further show that every solution to (M0) solves (M). Moreover, in theorem 3.1
we characterized (M0) as the relaxation (in the strong topology of L2( « )) of the
original problem (M).

Finally, in x 4, we study the ¡ -convergence of our problems (suitably rescaled) in
the case of only two volume constraints, say jfu = 0gj = ¬ ¸ and jfu = 1gj = ­ ¸ , and
a boundary condition u 2 K as above, when ¬ ¸ ! ¬ and ­ ¸ ! ­ , with ¬ + ­ = j « j
(this means that a minimizer of the limit problem is forced to be the characteristic
function 1E of a set E » « , satisfying the measure constraint jEj = ­ ).
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In [4], it was proved that, in the case of no boundary condition (i.e. when
K = H1( « )), then the ¡ -limit energy of an admissible con­ guration u = 1E

(with jE j = ­ ) is given by P (E; « )2, i.e. the square of the perimeter of the set
E in « . Roughly speaking, this means that the volume energy of a sequence of
minimizers u̧ , converging to 1E in L2( « ), tends to concentrate as surface energy
along the boundary of E in « . In our case, that is, when a boundary condition
u ¸ 2 K is forced to hold, we can prove (theorem 4.1) that an additional term
appears in the limit energy. More precisely, if u = 1E is an admissible con­ guration
for the ¡ -limit problem (i.e. 1E 2 BV ( « ) and jEj = ­ ), then the energy of u is
given by µ

P (E; « ) + inf
g 2 K

Z

@«

jg ¡ 1E j dHn¡1

¶2

:

In the above formula, both g and 1E restricted to @« are to be meant in the sense
of the trace (of a Sobolev and of a BV function, respectively), and hence they are
regarded as elements of L1(@« ; Hn¡1). The presence of the boundary integral term
(in addition to the perimeter term already found in [4]) is due to the boundary
condition u̧ 2 K . We observe that if K ³ H1( « ) is regarded as a convex subset
of L1(@« ; Hn¡1) by means of the trace operator, then the limit energy can be
rewritten as

(P (E; « ) + dist(1E ; K ))2;

where the distance is computed in the metric of L1(@« ; Hn¡1). We ­ nally remark
that the ¡ -convergence result of [4] can be obtained as a particular case of theo-
rem 4.1, letting K = H1( « ). Indeed, in this case, the `distance’ term in the above
expression vanishes, since the traces along @« of H1 functions are a dense subspace
of L1(@« ; Hn¡1).

2. Existence and regularity of solutions

Before stating the existence result, let us observe that there is just one case where
problem (M) has no solution. This is the case of only one volume constraint
(i.e. k = 1 in (1.1)), when the set K contains the constant function u ² l1. Indeed,
in this case, we ­ x a compact set K » « such that jKj = ¬ 1 and we let, for " > 0,

u" := l1 + " dist(x; K [ @« ):

It is clear that u" 2 K \ ¦ and
Z

«

jru"j2 dx = "2(j « j ¡ ¬ 1);

by well-known properties of the distance function. Since " > 0 is arbitrary, we see
that the in­ mum in (M) is zero, which can be attained only by constant functions.
On the other hand, constant functions are not admissible since ¬ 1 < j « j according
to (1.1), hence (M) has no solution in this case.

In all the other cases, we can claim the existence of solutions to (M).

Theorem 2.1. Let « » Rn be an open bounded connected set with Lipschitz bound-
ary. Fix an integer k > 1 and let ¬ j , lj satisfy (1.1). Assume K is a closed convex
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subset of H1( « ) satisfying K + H1
0 ( « ) = K . Moreover, if k = 1, we further assume

that the constant function u ² l1 does not belong to K . Then problem (M) has a
solution. Furthermore, every minimizer u of (M) is locally H�older continuous in « ,
for every exponent ³ 2 (0; 1). More precisely, the continuity estimate

ju(x) ¡ u(y)j 6 CK jx ¡ yj log
CK

jx ¡ yj 8x; y 2 K (2.1)

holds for every compact set K » « , where CK is a constant depending on K.

Remark 2.2. We remark that the continuity estimate (2.1) implies that u is
(locally) H�older continuous for every exponent ³ 2 (0; 1). In fact, we were not
able to prove that the minimizers of (M) are locally Lipschitz continuous. The local
Lipschitz continuity has so far been established only in the case of one prescribed
level [2] and for the case of two prescribed levels, but without any boundary con-
straint, in [8].

In order to prove theorem 2.1, we rely on a technique that develops the one
used in [8] for the problem without boundary constraints. We consider an auxiliary
penalized functional depending on a parameter ¶ > 0, de­ ned by

F ¶ (u) :=

Z

«

jruj2 dx + P ¶ (u); (2.2)

where

P ¶ (u) := ¶

kX

j = 1

( ¬ j ¡ jfu = ljgj ) + (2.3)

and x + := maxfx; 0g. We will show that for each ¶ > 0 the functional F ¶ attains
a minimum over the set of functions u 2 H1( « ) that satisfy u 2 K , and that every
minimizers is H�older continuous. Next we will show that for su¯ ciently large ¶ , the
minimizers of F¶ are minimizers of (M) as well, thus proving our claim.

We call F ¶ the `penalized functional’, whereas P ¶ (u) will be called the `penaliza-
tion’ of u. We observe that, according to (2.3), a level set fu = lig is penalized if
(and only if) its measure is less than the prescribed value ¬ i.

We remark for further use that there exists a constant · > 0 independent of ¶
such that

inf
u 2 K

F ¶ (u) 6 · : (2.4)

To see this, note that

inf
u 2 K

F¶ (u) 6 inf
u 2 K \ ¦

F ¶ (u) = inf
u 2 K \ ¦

Z

«

jruj2 dx;

since P ¶ (u) = 0 whenever u 2 ¦ . Therefore, it is enough to let

· := inf

Z

«

jruj2 dx;

where the in­ mum is over u 2 ¦ \ K , to obtain (2.4).
Finally, we observe that, under our assumptions on K and ¦ , it is easy to check

that ¦ \ K is never empty (recall that K + H1
0 ( « ) = K ).
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Proposition 2.3. Under the assumptions of theorem 2.1, suppose that ¶ >
maxj(2 · + 2)=¬ j. Then the functional F¶ admits a minimum over H1( « ) \ K .
If u minimizes F ¶ , then it is a continuous function satisfying (2.1). Finally, the
level sets of u satisfy

1
2 ¬ j 6 jfu = ljgj 6 ¬ j; j = 1; : : : ; k; (2.5)

while the Euler-type equation
Z

«

ru ¢ r(Áf (u)) dx = 0 (2.6)

holds for all Á 2 W 1; 1
0 ( « ) and for all Lipschitz continuous f : R ! R satisfying

f (lj) = 0 for every j = 1; : : : ; k.

Proof.

Step 1. We prove the existence of a minimizer to F¶ . Let u ¸ 2 K be a minimizing
sequence for F ¶ . Using (2.4), we can assume that

sup
¸

µ
¶ ( ¬ 1 ¡ jfu̧ = l1gj ) +

Z

«

jru̧ j2
¶

6 sup
¸

F ¶ (u ¸ ) 6 · + 1:

Then fr u ¸ g are bounded in L2( « ) and, due to the assumption on ¶ , one has
u ¸ = l1 on a set of measure not less than 1

2 ¬ 1.
From a well-known Poincaŕe-type inequality applied to u ¸ ¡ l1 (see [9, theo-

rem 4.4.2]), we obtain that also fu ¸ g is bounded in L2( « ). Hence, passing to a
subsequence (not relabelled), there exists u 2 H1( « ) such that u̧ ! u weakly in
H1( « ), strongly in L2( « ) and pointwise almost everywhere. Furthermore, u 2 K ,
since K is convex and strongly closed (hence weakly closed) in H1( « ). Then u is
a minimum for F ¶ over K , since this functional is lower semicontinuous (note that
the penalization P¶ is lower semicontinuous, since it is the sum of non-increasing
functions of the measures of some level sets).

Step 2. Now we show the validity of (2.5), for any minimizer u of F¶ over K .
Indeed, we have, from (2.4),

¶ ( ¬ j ¡ jfu = ljgj ) 6 P ¶ (u) 6 F ¶ (u) 6 · < · + 1; j = 1; : : : ; k;

which proves the ­ rst inequality in (2.5).
The second inequality in (2.5) is achieved immediately once one shows the con-

tinuity of the minimizer. In fact, suppose that u is continuous while this inequal-
ity is not true, i.e. jEjj > ¬ j for some j, where Ej := fu = ljg. We note ­ rst
that jEjj < j« j. Indeed, if k > 1, then the ­ rst inequality in (2.5) implies that
jfu = ligj > 0 for every i, in particular for some i 6= j. On the other hand, if k = 1
and jEj j = j « j, then u ² l1 on « , thus violating that u 2 K (recall the assumptions
of theorem 2.1, when k = 1). Now observe that Ej is closed in « in view of the
continuity of u. We can choose a point x0 2 « \ @Ej such that jB(x0; r) \ Ej j > 0
for all su¯ ciently small r > 0 (the existence of such x0 follows from elementary
measure-theoretic arguments). In particular, since u(x0) = lj and u is continuous,
there is r > 0 such that Br := B(x0; r) » « and

0 < jBr \ Ejj < jBrj 6 jEj j ¡ ¬ j and jBr \ fu = ligj = 0; i 6= j: (2.7)
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Then, if v 2 H1( « ) is harmonic in Br and coincides with u outside Br, we have
jfv = ljgj > jEj j ¡ jBrj > ¬ j, while jfv = ligj = jfu = ligj when i 6= j. Then
P ¶ (v) = P ¶ (u), whereas

Z

«

jrvj2 dx <

Z

«

jruj2 dx;

since u is not harmonic inside Br , by virtue of (2.7) (note that a non-constant
function harmonic in a ball has every level set of null measure, due to analiticity),
thus violating the minimality of u. This proves that jfu = ljgj 6 ¬ j , provided u is
continuous.

To conclude the proof of the second inequality of (2.5), we will show the conti-
nuity of minimizer by proving (2.1). This is achieved by comparison with harmonic
functions, as follows. Let Br be an open ball such that ·Br » « , and let vr be the
harmonic function on Br that coincides with u on @Br. Replacing u with vr inside
Br, the Dirichlet integral on « decreases by

Z

Br

jruj2 dx ¡
Z

Br

jrvrj2 dx =

Z

Br

jr(u ¡ vr)j2 dx:

On the other hand, since this variation a¬ects the values of u only inside Br, the
penalization cannot increase more than ¶ jBr j, hence we obtain

Z

Br

jr(u ¡ vr)j2 dx 6 ¶ !nrn;

where !n stands for the Lebesgue measure of the unit ball in Rn, since u is a mini-
mizer. Then (2.1) follows from the arbitrariness of Br , reasoning as in theorem 2.1
of [3].

Step 3. Finally we prove (2.6). Let Á and f be as in proposition 2.3. Letting
u" := u + "Áf (u) for " 2 R, one observes that u" ¡ u 2 H1

0 ( « ), hence u" 2 K .
Moreover, since f (lj) = 0, we have

fu = ljg» f u" = ljg; j = 1; : : : ; k;

hence P¶ (u") 6 P ¶ (u). Therefore, since u minimizes F ¶ , we have
Z

«

jruj2 dx 6
Z

«

jru"j2 dx

for every " 2 R, from which (2.6) easily follows.

The following statement, combined with proposition 2.3, will be the crucial step
in the proof of theorem 2.1.

Proposition 2.4. There exists a positive number ·¶ > 0, depending only on « ,
f ¬ jg and h, where

h :=

(
minjflj + 1 ¡ ljg; k > 1;

1; k = 1;

such that whenever ¶ > ·¶ and u 2 H1( « ) minimizes F ¶ over K , then u 2 ¦ .
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The proof will be obtained by contradiction and will require several technical
constructions.

Proof. Choose a connected smooth open set « 0 satisfying ·« 0 » « ,

j « n « 0j 6 1
4
¬ j and j « 0j > ¬ j; j = 1; : : : ; k; (2.8)

and a function Á 2 W 1;1
0 ( « ) such that 0 6 Á 6 1 and Á = 1 in « 0 (observe

that « 0 and Á can be chosen independently of ¶ ). From now on, we say that some
quantity is universal if it does not depend on ¶ .

We can suppose that ¶ satis­ es the assumption of proposition 2.3. Let u be a
minimizer of F ¶ over K , and assume that u 62 ¦ . In view of (2.5), this means that

1
2 ¬ i 6 jfu = ligj < ¬ i (2.9)

(note the last strict inequality) for some i 2 f1; : : : ; kg. We will show that this
assumption leads to a universal upper bound for ¶ , thus proving our claim.

Step 1. Observe that, without loss of generality, we may assume li = 0 (it su¯ ces
to replace K by K ¡ li, lj by lj ¡ li and u by u ¡ li). From (2.8) and (2.9), we deduce
that

j « 0 \ fu = 0gj > 1
4
¬ i and j« 0 \ fu 6= 0gj > j « 0j ¡ ¬ i > 0: (2.10)

For ¯ > 0, de­ ne the sets

§ +
¯ := fj uj > ¯ g; § ¡

¯ := f0 < juj < ¯ g; D ¯ := « 0 \ § ¡
¯ :

We will show the existence of universal constants C2, C3 > 0 such that, for all
su¯ ciently small ¯ > 0, there holds

¶ jD ¯ j 6 C2 ¯ ; (2.11)

and

jD ¯ j > ¯ =C3: (2.12)

Hence, combining the two above estimates one obtains ¶ 6 C4 for some universal
constant C4, concluding our proof. It remains to establish (2.11) and (2.12), which
we will do in the following steps.

Step 2. We prove the estimate (2.11), showing the existence of functions w ¯ 2
H1

0 ( « ) such that the inequalities

¶ jD ¯ j 6
Z

«

jrw̄ j2 dx (2.13)

and
Z

«

jrw ¯ j2 dx 6 C2 ¯ (2.14)

hold for all su¯ ciently small ¯ > 0. Since

lim
¯ #0

jD ¯ j = 0 and lim
¯ #0

j « 0 \ § +
¯ j = j« 0 \ fu 6= 0gj ;
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by (2.9) and (2.10), we can ­ nd ¯ (depending on u) such that 0 < ¯ < 1
2
h and

jfu = 0gj + jD ¯ j < ¬ i and j « 0 \ § +
¯ j > 1

2
(j « 0j ¡ ¬ i): (2.15)

We ­ x ¯ with the above properties and we de­ ne the piecewise a¯ ne function

f̄ (t) =

8
>><

>>:

¡ t if jtj < ¯ ;

sign(t) ¯
jtj ¡ h

h ¡ ¯
if ¯ 6 jtj < h;

0 if jtj > h:

Let us de­ ne w ¯ (x) := Á(x)f̄ (u(x)) and observe that, in view of (2.6), one has
Z

«

ru ¢ rw ¯ dx = 0: (2.16)

Note that u + w ¯ 2 K , since u 2 K , w ¯ 2 H1
0 ( « ) and K + H1

0 = K by assumption.
Since u minimizes F ¶ over K , one has

P ¶ (u) ¡ P¶ (u + w̄ ) 6
Z

«

jr(u + w ¯ )j2 ¡ jruj2 dx =

Z

«

jrw ¯ j2 dx; (2.17)

where (2.16) has been used. From the de­ nition of w̄ and D ¯ , it immediately
follows that

D ¯ t fu = 0g» f u + w̄ = 0g; fu = ljg» f u + w ¯ = ljg when j 6= i; (2.18)

where t denotes disjoint union. Therefore, using the relationship

jfu + w̄ = 0gj > jfu = 0gj + jD ¯ j

and (2.15), one obtains

P ¶ (u) ¡ P ¶ (u + w ¯ ) > ¶ (( ¬ i ¡ jfu = lgj ) + ¡ ( ¬ i ¡ jfu + w ¯ = lgj ) + )

> ¶ (( ¬ i ¡ jfu = 0gj ) ¡ ( ¬ i ¡ jfu = 0gj ¡ jD ¯ j) + )

= ¶ jD ¯ j:

Then (2.13) follows on combining (2.17) with the last inequality.
To prove (2.14), observe that

jrw̄ j2 6 2f̄ (u)2jrÁj2 + 2Á2f 0
¯ (u)2jruj2:

Since jf ¯ j 6 ¯ , Á2 6 Á 6 1 and ¯ < 1
2 h, using (2.4) we ­ nd

Z

«

jrw̄ j2 dx 6 ¯ 2Cã + 2

Z

§ ¡
¯

Á2jruj2 dx +
2 ¯ 2

(h ¡ ¯ )2

Z

§
+
¯

Á2jruj2 dx

6 ¯ 2Cã + 2

Z

§ ¡
¯

Ájruj2 dx +
8̄ 2

h2
· ;

hence (2.14) follows from Z

§ ¡
¯

Ájruj2 dx 6 C1 ¯ (2.19)
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for some universal constant C1 > 0. To prove (2.19), observe that (2.16) can be
written as

Z

§ ¡
¯

Ájruj2 dx =

Z

«

f ¯ (u)ru ¢ rÁ dx +
¯

h ¡ ¯

Z

§ +
¯

Ájruj2 dx; (2.20)

because ru = 0 a.e. on fu = 0g. Since jf̄ j 6 ¯ , ¯ < 1
2
h and 0 6 Á 6 1, from (2.20),

using (2.4) and the H�older inequality, we deduce
Z

§ ¡
¯

Ájruj2 dx 6 ¯
p

· Cã +
¯

h ¡ ¯

Z

§
+
¯

jruj2 6 ¯
p

· Cã + ¯
2·

h
;

which proves (2.19).

Step 3. Now we prove (2.12). For this purpose, let At := fj uj < tg\ « 0 for t 2 (0; ¯ )
and small ¯ , as in the previous step. Since

fu = 0g\ « 0 ³ At and § +
¯ \ « 0 ³ « 0 n At for every t 2 (0; ¯ );

it is clear that the ­ rst inequality in (2.10) and the second one in (2.15) provide
universal lower bounds for the Lebesgue measure of At and « 0 n At, respectively.
Then, from the isoperimetric inequality relative to « 0, we obtain a universal lower
bound for the perimeter of At in « 0, namely

1

C
6 Hn¡1(@At \ « 0) 6 Hn¡1(fj uj = tg\ « 0) for t 2 (0; ¯ );

the latter inequality following from the continuity of u, where C > 0 is a universal
constant. Integrating the last inequality with respect to t over (0; ¯ ) and using the
coarea formula, we obtain

¯

C
6

Z ¯

0

Hn¡1(fj uj = tg\ « 0) dt

=

Z

D̄

jruj dx

=

Z

D̄

p
Ájruj dx

6 jD ¯ j1=2

µZ

D̄

Ájruj2 dx

¶1=2

6 jD ¯ j1=2

µZ

§ ¡
¯

Ájruj2 dx

¶1=2

:

Then squaring and using (2.19) we obtain (2.12).

Proof of theorem 2.1. Choose ¶ > ·¶ , where ·¶ is given by proposition 2.4, and con-
sider a minimizer u of F¶ over K (whose existence follows from proposition 2.3).
From proposition 2.4, we know that u 2 ¦ , i.e. u satis­ es the volume constraints
of problem (M). Note that this implies P¶ (u) = 0, hence

F ¶ (u) =

Z

«

jruj2 dx:
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Therefore, if v is any function in K \ ¦ , we have

Z

«

jruj2 dx = F ¶ (u) 6 F ¶ (v) =

Z

«

jrvj2 dx + P ¶ (v) =

Z

«

jrvj2 dx;

since, in particular, v 2 ¦ , hence P¶ (v) = 0. Since v 2 K \ ¦ is arbitrary, we see
that u is a solution to (M), and the continuity of u follows from proposition 2.3.
Finally, it is easy to check that any other solution to (M ) is a fortiori a minimizer of
F ¶ over K , hence the continuity of any solution to (M) (as claimed in theorem 2.1)
follows from proposition 2.3 as well.

The following corollary relating the minima for the problems (M) and (M0) is
now almost immediate.

Corollary 2.5. Under the same assumptions as in theorem 2.1, the relaxed prob-
lem (M0) has a solution. Moreover, every solution of (M0) solves (M) as well, and,
in particular, it is locally H�older continuous.

Proof. The existence of solutions to (M0) easily follows from the direct methods of
the calculus of variations. If u0 solves (M0), then P ¶ (u0) = 0 (since, in particular,
u0 2 ¦ 0). On the other hand, due to proposition 2.4, any minimizer u of F ¶ over K
satis­ es u 2 ¦ » ¦ 0 and P ¶ (u) = 0, provided ¶ > ·¶ . By the minimality of u0, we
have Z

«

jru0j2 dx 6
Z

«

jruj2 dx;

i.e. u0 also minimizes F ¶ over K for large ¶ , therefore it also solves (M) and it is
locally H�older continuous.

3. Relaxation

So far we have referred to (M0) as to the `relaxed’ problem (this terminology was
also used in [4] for the same problem with no boundary condition). In fact, it turns
out that (M0) is exacly the relaxation of (M) in the strong topology of L2( « ).
Namely, consider the functionals F and F 0 de­ ned over L2( « ) by

F (u) :=

8
<

:

Z

«

jruj2 dx; u 2 K \ ¦ ;

+1; otherwise

and

F 0(u) :=

8
<

:

Z

«

jruj2 dx; u 2 K \ ¦ 0;

+1; otherwise:

The following assertion is valid.

Theorem 3.1. F 0 is the relaxation of F in the strong topology of L2( « ).
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Proof. Clearly, whenever fu̧ g» K \ ¦ is such that u ¸ ! u in L2( « ), then u 2 ¦ 0.
Furthermore, we may assume that, up to choosing a subsequence (not relabelled),

sup
¸

Z

«

jru ¸ j2 dx < +1:

Hence, again up to a subsequence, we may assume that u ¸ * u weakly in H1( « ),
and therefore u 2 K , since K is closed and convex. Then F 0(u) 6 lim inf ¸ F (u ¸ )
follows from the lower semicontinuity of the Dirichlet integral.

It remains now to prove that, given u 2 L2( « ), one can ­ nd a sequence fu ¸ g» K
satisfying u ¸ ! u and F 0(u) = lim ¸ F (u ¸ ). Clearly, we can suppose that u 2 K \ ¦ 0,
and that u 62 ¦ . Consider all j such that jfu = ljgj > ¬ j, ­ nd for each such j a
compact set Kj » fu = ljg satisfying jKj j = ¬ j , and let K denote the union of
these compact sets. Set ’(x) := dist(x; K [ @« ). Clearly, ’ 2 H1

0 ( « ). Now ­ x a
¯ > 0 such that ¯ < minjfj lj + 1 ¡ lj jg, and de­ ne for " > 0 the function

u"(x) := (1 ¡ ’(x))u(x) + ’(x)f"(u(x));

where

f"(y) :=

8
>>>><

>>>>:

lj ¡ ¯ +
" + ¯

¯
(y ¡ lj + ¯ ); lj ¡ ¯ 6 y < lj ; jfu = ljgj > ¬ j ;

lj + " +
¯ ¡ "

¯
(y ¡ lj); lj 6 y < lj + ¯ ; jfu = ljgj > ¬ j ;

y; otherwise:

It is easy to see that u" 2 K for all " > 0 and u" ! u in H1( « ) as " ! 0.
Note that whenever jfu = ljgj = ¬ j , one has fu" = ljg = fu = ljg. How-
ever, if jfu = ljgj > ¬ j, then Kj = fu = ljg\ f ’ = 0g» f u" = ljg. Furthermore,
jfu" = ljgn Kjj 6= 0 may hold only for at most countably many values of " 2 (0; ¯ ).
In fact, the sets fu" = ljgn Kj = fu" = ljg\ f ’ 6= 0g are pairwise disjoint for all
" 2 (0; ¯ ), since, for these values of ", the function f" is injective. Now we are
able to conclude the proof by choosing f"̧ g » (0; ¯ ) to satisfy "̧ ! 0 and
jfu" ¸ = ljgn Kjj = 0 for each ¸ . Indeed, letting u ¸ := u"̧ 2 K \ ¦ provides the
desired sequence.

4. Asymptotics and ¡ -convergence

In this section we consider the variational convergence of problem (M) in the case
of only two volume constraints, i.e. when k = 2. By translating and scaling, without
loss of generality, we may assume that l1 = 0 and l2 = 1.

More precisely, we are interested in the behaviour of the solutions to the problems

inf

½Z

«

jruj2 dx : u 2 K ; jfu = 0gj = ¬ ¸ ; jfu = 1gj = ­ ¸

¾
(M ¸ )

for positive values of ¬ ¸ and ­ ¸ , satisfying ¬ ¸ + ­ ¸ < j « j, when ¸ ! 1, assuming
¬ ¸ ! ¬ and ­ ¸ ! ­ with ¬ ; ­ > 0 and ¬ + ­ = j« j. We ­ nd out that, at least
when « is smooth, the solutions to the problems (M ¸ ), up to a subsequence, tend
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in L2( « ) to that of the minimization problem

inf

½µ
inf
g 2 K

Z

@«

jg ¡ 1E j dHn¡1 + P (E; « )

¶2

: E » « ; jEj = ­

¾
; (M 1 )

where P (E; « ) denotes the perimeter of a Caccioppoli set E relative to « (see [9]).
Also, the minimum values of the properly rescaled functionals of the problems (M ¸ )
tend to that of (M 1 ). To be more precise, the following result holds (we refer the
reader to [5] for more details on ¡ -convergence).

Theorem 4.1. Let « » Rn be a connected bounded open set with C2 boundary and
let f¬ ¸ g, f­ ¸ g be two sequences of positive number satisfying

¬ ¸ + ­ ¸ < j« j 8̧ ; lim
¸ ! 1

¬ ¸ = ¬ > 0; lim
¸ ! 1

­ ¸ = ­ > 0; ¬ + ­ = j « j:

Let K ³ H1( « ) be a closed convex set satisfying K + H1
0 ( « ) = K , and consider the

sequence of functionals fF̧ g de¯ned over L2( « ) by

F̧ (u) :=

8
<

:
m ¸

Z

«

jruj2 dx if u 2 K ; jfu = 0gj = ¬ ¸ and jfu = 1gj = ­ ¸ ;

+1 otherwise;

where m ¸ := j« j ¡ ¬ ¸ ¡ ­ ¸ is a scale factor. Then the functionals fF ¸ g ¡ -converge
(with respect to the strong topology of L2( « )) to the functional F de¯ned over L2( « )
by

F (u) :=

8
>>><

>>>:

µ
inf
g 2 K

Z

@«

jg ¡ 1E j dHn¡1 + P (E; « )

¶2

if u = 1E 2 BV ( « ) for some E » « satisfying jEj = ­ ;

+ 1 otherwise:

The proof of this theorem relies on several lemmas, which are stated and proved
later on in this section.

Proof. We have to show that G+ (u) 6 F (u) 6 G¡(u), where G + and G¡ denote,
respectively, the upper and lower ¡ -limit of F̧ (see [5]).

Step 1. We ­ rst show F (u) 6 G¡(u), that is, u ¸ ! u in L2( « ) implies
F (u) 6 lim inf ¸ F̧ (u ¸ ). Clearly, we can suppose that F ¸ (u̧ ) < +1 for every ¸ and
that lim inf ¸ F ¸ (u ¸ ) < +1, which implies jfu̧ = 0gj = ¬ ¸ and jfu ¸ = 1gj = ­ ¸ ,
hence

jfu = 0gj > lim sup jfu̧ = 0gj = ¬ ; jfu = 1gj > lim sup jfu ¸ = 1gj = ­ :

Since ¬ + ­ = j « j, this means u = 1E for some measurable E » « with jEj = ­ .
Then, using the H�older inequality, we obtain

lim inf
¸

p
F ¸ (u̧ ) = lim inf

¸
m1=2

¸

µZ

«

jru ¸ j2 dx

¶1=2

> lim inf
¸

Z

« nfu2 f0;1gg
jru̧ j dx

= lim inf
¸

jDu̧ j( « ): (4.1)

https://doi.org/10.1017/S0308210500001724 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500001724


450 E. Stepanov and P. Tilli

Since the ­ rst term is ­ nite and u ¸ ! u = 1E in L2( « ) (hence in L1), this means
that u = 1E 2 BV ( « ), i.e. jDuj( « ) = P (E; « ) is ­ nite. Therefore, combining (4.1)
with lemma 4.2 below, we have

lim inf
¸

p
F ¸ (u ¸ ) > P (E; « ) + lim inf

¸

Z

@«

ju ¸ ¡ 1E j dHn¡1

> P (E; « ) + inf
g 2 K

Z

@«

jg ¡ 1E j dHn¡1

=
p

F (u);

where in the last inequality we used u ¸ 2 K . Hence, squaring, we prove our claim.

Step 2. Now we prove G + (u) 6 F (u) for arbitrary u 2 L2( « ). It is obviously
enough to suppose u = 1E for some Caccioppoli set E » « satisfying jEj = ­
(otherwise F (u) = +1 and the claim is trivial). According to lemma 4.3 from [4],
one can ­ nd a sequence of bounded open sets fDmg in Rn, each having smooth
boundary, and such that, letting Em := Dm \ « , one has jEmj = ­ and also

1Em ! 1E in L2( « ) and Hn¡1(@Dm \ ·« ) ! P (E; « ) as m ! 1: (4.2)

We claim that, due to the above conditions, we have

Hn¡1(@Dm \ @« ) ! 0 and 1Em ! 1E in L1(@« ; Hn¡1) as m ! 1: (4.3)

Indeed, since Hn¡1 restricted to @Dm is a Borel measure, we have

Hn¡1(@Dm \ ·« ) = Hn¡1(@Dm \ « ) + Hn¡1(@Dm \ @« )

= P (Em; « ) + Hn¡1(@Dm \ @« ):

Taking the lim inf of both sides and using (4.2), we obtain

P (E; « ) = lim inf
m

(P (Em; « ) + Hn¡1(@Dm \ @« ))

> lim inf
m

P (Em; « ) + lim inf
m

Hn¡1(@Dm \ @« )

> P (E; « ) + lim inf
m

Hn¡1(@Dm \ @« );

which yields the ­ rst half of (4.3), since the last inequalities remain true if we
consider an arbitrary subsequence fDmj g. Finally, the second half of (4.3) follows
from theorem 2.11 in [6].

Recalling that G + is a fortiori lower semicontinuous and applying lemma 4.3
below (with Em and Dm in place of E and D) to estimate G+ (1Em ), we obtain

G+ (1E) 6 lim inf
m

G + (1Em )

6 lim inf
m

µ
(1 + ")

³

Z

@«

® dHn¡1

Z

@«

jg ¡ 1Em j2
® ¡ "

dHn¡1

+ C(1 + (Hn¡1(@Dm \ ·« ))2)Hn¡1(@Dm \ @« )

+
1

1 ¡ ³
(Hn¡1(Dm \ ·« ))2

¶
;
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where "; ³ 2 (0; 1) and g 2 K , ® 2 C1(@« ) are arbitrary, provided that min@« ® > ".
Now, recalling (4.3), we see that the last lim inf is in fact a limit, and the last
estimate simpli­ es to

G + (1E) 6 (1 + ")

³

Z

@«

® dHn¡1

Z

@«

jg ¡ 1E j2

® ¡ "
dHn¡1 +

1

1 ¡ ³
P (E; « )2: (4.4)

Since this estimate holds for arbitrary smooth positive ® > ", one can, in particular,
choose ® = 2" + ® j in (4.4), where f ® jg are positive and converge to jg ¡ 1E j (g 2 K
being ­ xed for the moment) both in L1(@« ; Hn¡1) and Hn¡1 a.e. on @« . Taking
­ rst the limit as j ! 1 (using dominated convergence), and then letting " # 0, one
obtains

G + (1E) 6 1

³

µZ

@«

jg ¡ 1E j dHn¡1

¶2

+
1

1 ¡ ³
P (E; « )2:

Now, since also ³ 2 (0; 1) is arbitrary, one can choose the value of ³ that minimizes
the right-hand side, thus obtaining

G+ (1E) 6
µZ

@«

jg ¡ 1E j dHn¡1 + P (E; « )

¶2

:

Finally, the arbitrariness of g 2 K allows one to take the in­ mum of the right-hand
side over g 2 K , which yields G + (1E) 6 F (1E).

In the above proof we used the following lemmas.

Lemma 4.2. Let « ³ Rn be an open bounded set with C2 boundary. If fu̧ g »
BV ( « ) and u ¸ ! u in L1( « ), then

lim inf
¸

jDu ¸ j( « ) > jDuj( « ) + lim inf
¸

Z

@«

ju ¸ ¡ uj dHn¡1: (4.5)

Proof. Consider the signed distance function

d(x) := dist(x; Rn n « ) ¡ dist(x; « ):

For small t > 0, let ¡ t denote the manifold fd « = tg, and let « t » « denote the
open set f0 < d « < tg. It is well known (see [6]) that, for some small "0 > 0,
the function d is as smooth as the boundary of « (C2 in our case) in the domain
f¡ "0 6 d 6 "0g. If 0 < s < "0 and f is smooth enough (say W 1;1( « )), the
divergence theorem applied to the vector ­ eld frd yields

Z

¡ 0

f dHn¡1 =

Z

¡ s

f dHn¡1 ¡
Z

« s

(rf ¢ rd + f¢d) dx:

Therefore, if 0 < s 6 t < "0, we have
Z

¡ 0

f dHn¡1 6
Z

¡ s

jf j dHn¡1 +

Z

« t

jrf j dx + C

Z

« t

jf j dx;

where C > 0 depends on « . Integrating the above inequality with respect to s over
(0; t) and dividing by t, we obtain

Z

¡ 0

f dHn¡1 6
µ

C +
1

t

¶ Z

« t

jf j dx +

Z

« t

jrf j dx:
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Then if f 2 BV ( « t), by a density argument (see [6, remark 2.12]), we have

Z

¡ 0

f dHn¡1 6
µ

C +
1

t

¶ Z

« t

jf j dx + jDf j( « t):

In particular, choosing f = ju̧ ¡ uj, we obtain

Z

¡ 0

ju̧ ¡ uj dHn¡1 6
µ

C +
1

t

¶ Z

« t

ju ¸ ¡ uj dx + jDu ¸ j( « t) + jDuj( « t):

Let E be the set of those t 2 (0; "0) such that jDu̧ j( ¡ t) = 0 for every ¸ 2 N. It is
well known that (0; "0)nE is at most countable, in particular, E contains arbitrarily
small t > 0. If we choose such t 2 E, adding jDu̧ j( « n « t) to both sides of the last
inequality we obtain

jDu ¸ j( « n « t)+

Z

¡ 0

ju ¸ ¡ uj dHn¡1 6
µ

C+
1

t

¶ Z

« t

ju ¸ ¡ uj dx+jDu ¸ j( « )+jDuj( « t):

Taking the lim inf of both sides as ¸ ! 1 and recalling that u ¸ ! u in L1( « ), we
obtain

jDuj( « n « t) + lim inf
¸

Z

¡ 0

ju ¸ ¡ uj dHn¡1

6 lim inf
¸

jDu ¸ j( « n « t) + lim inf
¸

Z

¡ 0

ju ¸ ¡ uj dHn¡1

6 lim inf
¸

µ
jDu̧ j( « n « t) +

Z

¡ 0

ju ¸ ¡ uj dHn¡1

¶

6 jDuj( « t) + lim inf
¸

jDu ¸ j( « )

for every ­ xed t 2 E. Finally, taking the limit as E 3 t ! 0, we obtain (4.5), since
« t # ;.

Lemma 4.3. Under the assumptions of theorem 4.1, let E := D\ « , where D » Rn

is an open bounded set with smooth boundary, and suppose that jEj = ­ . Choose
two numbers "; ³ 2 (0; 1) and any two functions, g 2 K and ® 2 C1(@« ), satisfying
min@« ® > ". Then

G + (1E) 6 (1 + ")

³

Z

@«

® dHn¡1

Z

@«

jg ¡ 1E j2
® ¡ "

dHn¡1

+ C(1 + (Hn¡1(@D \ ·« ))2)Hn¡1(@D \ @« )

+
1

1 ¡ ³
(Hn¡1(D \ ·« ))2 (4.6)

for some positive constant C = C( « ; ® ; "; ³ ), where G + is the upper ¡ -limit (in the
L2( « ) topology) of the sequence of functionals fF̧ g.

The rest of this section is devoted to the proof of lemma 4.3, which consists of
three main steps. It also relies on some lemmas, which are stated and proved at the
end of this section (except for lemma 4.4, which is proved in the appendix).

https://doi.org/10.1017/S0308210500001724 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500001724


The Dirichlet problem with volume constraints 453

Proof of lemma 4.3.

Step 1. Recall that, due to the smoothness of @« , there is a tubular neighbourhood
A0 ¼ @« di¬eomorphic to @« £ ( ¡ ¯ 0; ¯ 0) for some small ¯ 0 > 0 by means of the
di¬eomorphism

(y; t) 2 @« £ ( ¡ ¯ 0; ¯ 0) 7! x := y + t·n(y) 2 A0;

x 2 A0 7! (p(x); d « (x)) 2 @« £ ( ¡ ¯ 0; ¯ 0);

where ·n(y) is the inward normal at the point y 2 @« , d « is the signed distance
function (positive in « ),

d« (x) :=

(
dist(x; @ « ); x 2 « ;

¡ dist(x; @ « ); x 62 « ;

and p : A0 ! @« is the projection onto the boundary given by

p(x) := x ¡ d« (x)rd « (x):

Note also that ·n(p(x)) = rd« (x) for all x 2 A0.
Now let the functions g, ® and the numbers ³ , " be as in the statement of

lemma 4.3. Letting ® m ax := max@« ® , consider the family of annuli

T ¯ := fx 2 « : 0 < d « (x) < ¯ ® (p(x))g for 0 < ¯ < ¯ 0=® m ax;

so that T ¯ » A0. It is clear that jT ¯ j # 0 as ¯ # 0, and, moreover, the function
¯ 7! jT ¯ j is continuous and strictly increasing in a neighbourhood of 0+ . Since
m ¸ ! 0 by assumption, there exists a sequence of positive numbers ¯ ¸ ! 0 such
that

jT ¯ ¸
j = ³ m ¸ for large ¸ : (4.7)

Note that the above relation de­ nes ¯ ¸ uniquely, at least for ¸ large enough. We
­ x such a sequence f ¯ ¸ g and we de­ ne the regions

A ¸ := fx 2 « : 0 < d « (x) < ¯ ¸ "g;

B ¸ := fx 2 « : ¯ ¸ " < d « (x) < ¯ ¸ ® (p(x))g;

D ¸ := « n (A ¸ t ·B̧ ):

Note that j@B ¸ j = 0, since ® is smooth, hence

T ¯ ¸ = A ¸ t B̧ and « = T ¯ ¸ t D ¸ (up to null measure sets): (4.8)

Consider the maps q¡
¸ : A0 ! ·B̧ \ ·D ¸ and q +

¸ : A0 ! ·B̧ \ ·A ¸ de­ ned by

q¡
¸ (x) := p(x) + ¯ ¸ ® (p(x))rd « (x);

q +
¸ (x) := p(x) + "¯ ¸ rd « (x):

Due to the smoothness of d« and ® , for large ¸ , we have

kDp(x)k + kDq¡
¸ (x)k + kDq +

¸ (x)k 6 C = C( « ; ® ); (4.9)
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where k ¢ k denotes some matrix norm. We will construct a sequence of functions
fu ¸ g» H1( « ) satisfying u = g on @« (hence u ¸ 2 K , in view of K + H1

0 ( « ) = K ),

jfu ¸ = 0gj = ¬ ¸ ; jfu ¸ = 1gj = ­ ¸ ; (4.10)

and such that u̧ ! 1E in L2( « ),

lim sup
¸

m ¸

Z

T ¯ ¸

jru ¸ j2 dx 6 1 + "

³

Z

@«

® dHn¡1

Z

@«

jg ¡ 1E j2

( ® ¡ ")
dHn¡1

+ C(1 + (Hn¡1(@D \ ·« ))2)Hn¡1(@D \ @« ) (4.11)

for some positive constant C = C( « ; ® ; "; ³ ), and also

lim sup
¸

(1 ¡ ³ )m ¸

Z

Ḑ

jru̧ j2 dx 6 (Hn¡1(D \ ·« ))2: (4.12)

Then (4.6) will follow, from the de­ nition of G + , on combining (4.11) and (4.12).

Step 2. Now we construct the functions u̧ over D ¸ , and we prove (4.12). Recall
that E = D \ « , with D » Rn open, bounded and smooth, and jE j = ­ . Let dD

stand for the signed distance function from the boundary @D, negative in D,

dD(x) :=

(
¡ dist(x; @D); x 2 D;

dist(x; @D); x 62 D:

Due to the smoothness of @D, there exists ¼ > 0 such that dD is smooth in the
open set fj dDj < ¼ g. Since m ¸ ! 0 and D ¸ " « , for ¸ large enough, we have

jfx 2 D ¸ : jdD(x)j < ¼ gj > jD ¸ j ¡ ¬ ¸ ¡ ­ ¸ = (1 ¡ ³ )m ¸ ; (4.13)

the last equality being a consequence of (4.8) and (4.7). Hence there exist numbers
¶ ¸ ; · ¸ 2 ( ¡ ¼ ; ¼ ) such that ¶ ¸ < · ¸ and

jfx 2 D ¸ : dD(x) 6 ¶ ¸ gj = ­ ¸ ; jfx 2 D ¸ : dD(x) > · ¸ gj = ¬ ¸ ; (4.14)

which, combined with (4.13), imply

(1 ¡ ³ )m ¸ = jfx 2 D ¸ : ¶ ¸ < dD(x) < · ¸ gj : (4.15)

The relationship

w̧ (x) :=

8
>><

>>:

1; dD(x) 6 ¶ ¸ ;
· ¸ ¡ dD(x)

· ¸ ¡ ¶ ¸
; ¶ ¸ < dD(x) < · ¸ ;

0; dD(x) > · ¸ ;

de­ nes w̧ 2 Lip(Rn), such that jrw̧ j equals 1=( · · ¡ ¶ ¸ ) over fx 2 D ¸ : ¶ ¸ <
dD(x) < · ¸ g and vanishes elsewhere. We de­ ne u̧ (x) := w̧ (x) for x 2 D ¸ . To
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show (4.12), we estimate using the co-area formula and recalling (4.15),

(1 ¡ ³ )m ¸

Z

Ḑ

jru ¸ j2 dx = (1 ¡ ³ )m ¸

Z

fx 2 Ḑ :¶ ¸ <dD (x)<· ¸ g
jrw ¸ j2 dx

=
(1 ¡ ³ )m ¸

( · ¸ ¡ ¶ ¸ )2
jfx 2 D ¸ : ¶ ¸ < dD(x) < · ¸ gj

=

µ
1

· ¸ ¡ ¶ ¸

Z · ¸

¶ ¸

Hn¡1(fdD = tg\ D ¸ ) dt

¶2

6
µ

1

· ¸ ¡ ¶ ¸

Z · ¸

¶ ¸

Hn¡1(fdD = tg\ « ) dt

¶2

: (4.16)

It is easy to see that ¶ ¸ ; · ¸ ! 0 as ¸ ! 1, hence, reasoning as in [4], it su¯ ces to
observe that

lim sup
t! 0+

Hn¡1(fdD = tg\ « ) dt 6 Hn¡1(@D \ ·« ); (4.17)

to conclude that (4.12) is valid. Note that (4.15), (4.16) and (4.17) also imply

lim sup
¸

(1 ¡ ³ )m ¸

· ¸ ¡ ¶ ¸
6 Hn¡1(@D \ ·« );

which, combined with (4.28) of lemma 4.4, yields

lim sup
¸

¯ ¸

· ¸ ¡ ¶ ¸
6 C( ® ; ³ )Hn¡1(@D \ ·« ): (4.18)

This estimate will be used in the next step of the proof.

Step 3. We now extend the functions u ¸ to the sets T ¯ ¸ as to satisfy the boundary
condition, proving (4.11) and (4.10). We abbreviate ^® (x) := ® (p(x)) ¡ " and de­ ne

u ¸ (x) :=

8
<

:

~g(x); x 2 A ¸ ;

~g(q +
¸ (x)) +

d(x) ¡ "¯ ¸

¯ ¸ ^® (x)
(w ¸ (q¡

¸ (x)) ¡ ~g(q +
¸ (x))); x 2 B ¸ ;

(4.19)

where ~g 2 H1( « ) is the (unique) function satisfying ¢~g = 0 in « and ~g = g over @« .
Recalling that, by de­ nition, u ¸ = w̧ over D ¸ , we see that u ¸ 2 H1( « ) \ W 1; 1

loc ( « )
and that u ¸ = g on @« .

In order to prove (4.11), we now estimate the Dirichlet integral of u ¸ on T ¯ ¸ . First
we note that, since r~g 2 L2( « ) and A ¸ # ;, it is enough to estimate the Dirichlet
integral of u̧ over B̧ . It is a matter of calculus to see that for a.e. x 2 B̧ ,

ru ¸ (x) = (1 ¡ ½ (x))r~g(q +
¸ (x))Dq +

¸ (x) + ½ (x)rw ¸ (q¡
¸ (x))Dq¡

¸ (x)

+ (w̧ (q¡
¸ (x)) ¡ ~g(q +

¸ (x)))

µ
rd « (x)

¯ ¸ ^® (x)
¡ ½ (x)

^® (x)
r® (p(x)

¶
Dp(x));

where, for brevity, we have set

½ (x) :=
d « (x) ¡ "¯ ¸

¯ ¸ ^® (x)
; x 2 B̧ :
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Recalling (4.9) and noting that j ½ (x)j, jrd« j and jw̧ j are all majorized by 1, we
obtain, for some C = C( « ; ® ; "),

jru ¸ (x)j 6 Cjr~g(q +
¸ (x))j + C jrw̧ (q¡

¸ (x))j

+
jw̧ (q¡

¸ (x)) ¡ ~g(q +
¸ (x))j

¯ ¸ ^® (x)
+ C(1 + j~g(q +

¸ (x))j):

Let u := 1E on ·« (in the sense of the trace along @« ). Using the estimate

jw ¸ (q¡
¸ (x)) ¡ ~g(q +

¸ (x))j
6 ju(p(x)) ¡ g(p(x))j + jg(p(x)) ¡ ~g(q +

¸ (x))j + jw ¸ (q¡
¸ (x)) ¡ u(p(x))j

and the inequality 2ab 6 "a2 + b2=", we easily obtain

jru ¸ (x)j2 6 (1 + ")
ju(p(x)) ¡ g(p(x))j2

¯ 2
¸ ^® (x)

2

+ C

µ
jrw̧ (q¡

¸ (x))j2 +
jw̧ (q¡

¸ (x)) ¡ u(p(x))j2
¯ 2

¸

¶

+ C(1 + jr~g(q +
¸ (x))j2 + j~g(q +

¸ (x))j2) + C
jg(p(x)) ¡ ~g(q +

¸ (x))j2
¯ 2

¸

(4.20)

for some other C = C( « ; ® ; "). It remains to estimate the integral (multiplied
by m ¸ ) of each of the above terms over B ¸ , as ¸ ! 1. The integral of the last two
terms tends to zero in view of lemma 4.5 (note that 1 + jr~gj2 + j~gj2 is subharmonic).
Let us consider the second term. Fix » > 0, let V » ¼ @D be an open set such that
dist(Rn n V » ; @D) = » and then choose ¸ large enough such that

¯ ¸ ® m ax < 1
2 » ; max(j ¶ ¸ j; j· ¸ j) < 1

2 » : (4.21)

Now suppose that x 2 B ¸ but x 62 V » . We claim that

dist(q¡
¸ (x); @D) > 1

2
» ; dist(p(x); @D) > 1

2
» : (4.22)

To see this, it su¯ ces to observe that

» 6 dist(x; @D) 6 dist(x; q¡
¸ (x)) + dist(q¡

¸ (x); @D) 6 ¯ ¸ ® m ax + dist(q¡
¸ (x); @D);

and to recall (4.21), while the proof for p(x) is similar. Recalling the de­ nition of
w ¸ , from (4.21) and (4.22) we obtain

rw̧ (q¡
¸ (x)) = 0 if ¸ is large and x 2 B ¸ n V » : (4.23)

Moreover, from (4.21), we have w ¸ (q¡
¸ (x)) = u(q¡

¸ (x)) and since (4.21), (4.22) imply
B » =2(p(x))\@D = ;, we obtain that u is constant (either 0 or 1) on Bh=2(p(x)) \ « .
Since q¡

¸ (x) 2 Bh=2(p(x)), from the de­ nition of trace for a BV function, we obtain
that u(p(x)) = u(q¡

¸ (x)), and hence one has

w ¸ (q¡
¸ (x)) = u(p(x)) if ¸ is large and x 2 B ¸ n V » : (4.24)
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Combining now (4.23) and (4.24), we obtain for large ¸ the estimate

m ¸

Z

B̧

µ
jrw ¸ (q¡

¸ (x))j2 +
jw ¸ (q¡

¸ (x)) ¡ u(p(x))j2

¯ 2
¸

¶
dx

6 m ¸

¯ 2
¸

Z

B̧

( ¯ 2
¸ jrw ¸ (q¡

¸ (x))j2 + jw ¸ (q¡
¸ (x)) ¡ u(p(x))j2)1V» (x) dx

6 m ¸

¯ 2
¸

µ
¯ 2

¸

j¶ ¸ ¡ · ¸ j2 + 1

¶ Z

B̧

1V» (x) dx:

Therefore, in view of (4.28), (4.18) and (4.29), we have

lim sup
¸

m ¸

Z

B̧

µ
jrw ¸ (q¡

¸ (x))j2 +
jw̧ (q¡

¸ (x)) ¡ u(p(x))j2

¯ 2
¸ ^® (x)

2

¶
dx

6 C( « ; ® ; "; ³ )(1 + (Hn¡1(@D \ ·« ))2)Hn¡1(@« \ ·V » ): (4.25)

Since » > 0 was arbitrary, letting V » # @D, we obtain

lim sup
¸

m ¸

Z

B̧

µ
jrw ¸ (q¡

¸ (x))j2 +
jw̧ (q¡

¸ (x)) ¡ u(p(x))j2

¯ 2
¸ ^® (x)

2

¶
dx

6 C( « ; ® ; "; ³ )(1 + (Hn¡1(@D \ ·« ))2)Hn¡1(@« \ @D);

which accounts for the last term in (4.11). Finally, the ­ rst term in (4.11) comes
from the integral of the ­ rst summand in (4.20). Indeed, using (4.27) and (4.28) of
lemma 4.4, we get

lim sup
¸

m ¸

Z

B̧

µ
ju(p(x)) ¡ g(p(x))j2

¯ 2
¸ ^® (x)2

¶
dx

=
1

³

µZ

@«

® dHn¡1

¶ Z

@«

ju ¡ gj2

( ® ¡ ")
dHn¡1; (4.26)

and hence (4.11) is completely proved.
Now we prove equations (4.10). Observe that (4.14) implies jfu ¸ = 0g\ D ¸ j = ¬ ¸

and jfu̧ = 1g\ D ¸ j = ­ ¸ ; therefore, if jfu ¸ = 0g\ T ¯ ¸ j = jfu ¸ = 1g\ T ¯ ¸ j = 0,
then (4.10) is satis­ ed. If this is not the case, then we can replace u ¸ with
u ¸ + " ¸ dist(¢; Rn n T ¯ ¸ ) for some suitable sequence "̧ # 0, in order to remove this
pathology (the details are left to the reader).

Finally, we have to prove that u ¸ ! 1E in L2( « ). From the way we have de­ ned
D ¸ , we see that if we choose a compact set K » « , then we have K » D ¸ for ¸
large enough. Then, from the way we have de­ ned u ¸ over D ¸ , it is immediate to
check that u ¸ ! 1E in L2

loc( « ), and convergence in L2( « ) follows from the uniform
bound

ju ¸ j 6 jw̧ j + j~gj 6 1 + j~gj in « ;

which is an immediate consequence of our construction.

Lemma 4.4. For every non-negative Borel function h : @« ! R, one has

lim
¸

1

¯ ¸

Z

B̧

h(p(x)) dx =

Z

@«

h(x)( ® (x) ¡ ") dHn¡1(x): (4.27)
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Moreover,

lim
¸

m ¸

¯ ¸
=

1

³

Z

@«

® (x) dHn¡1(x); (4.28)

and, for every open set V » Rn, one has

lim sup
¸

1

¯ ¸

Z

B̧

1V (x) dx 6 C( ® )Hn¡1(@« \ ·V ): (4.29)

The proof is given in the appendix.

Lemma 4.5. Let f 2 L1( « ) be non-negative and subharmonic. Then

lim
¸ ! 1

Z

B̧

f (q +
¸ (x)) dx = 0:

Moreover, if ~g 2 H1( « ) and g is its trace on @« , then

lim
¸

m ¸

¯ 2
¸

Z

B̧

jg(p(x)) ¡ ~g(q +
¸ (x))j2 dx = 0:

Proof. For every x 2 B̧ , the ball Bx;¸ of radius "¯ ¸ and centre q +
¸ (x) is contained

in « . Since f is subharmonic, we have

f(q +
¸ (x)) 6 C

( ¯ ¸ )n

Z

Bx;¸

f (z) dz

for some C = C("; n) > 0. If Ŗ := fx : 0 < d« (x) < 2̄ ¸ ® m axg is the annulus of
width 2 ¯ ¸ ® m ax, then B ¸ ³ Ŗ and Bx;¸ » Ŗ , hence

Z

R ¸

f (q +
¸ (x)) dx 6 C

( ¯ ¸ )n

Z

R ¸

µZ

R ¸

f (z)1Bx;¸ (z) dz

¶
dx;

which, by Fubini’s theorem, is equal to

C

( ¯ ¸ )n

Z

R ¸

f (z)

µZ

R ¸

1Bx;¸ (z) dx

¶
dz:

Since the inner integral is O(( ¯ ¸ )n) uniformly with respect to z 2 R ¸ , we conclude
the proof observing that R ¸ # ; and recalling that f 2 L1( « ).

Concerning the second claim of the lemma, since, by (4.28), m ¸ =¯ ¸ is bounded
and B̧ » R ¸ , it su¯ ces to prove

lim
¸

1

¯ ¸

Z

R ¸

jg(p(x)) ¡ ~g(q +
¸ (x))j2 dx = 0:

Recalling the de­ nition of q +
¸ , we see that the last equation is immediate (from the

de­ nition of trace of a W 1;2 function) when « is a half-space and ~g has compact
support. Since @« is smooth, the general case can easily be obtained by means of
a partition of unity, using arguments similar to those in ch. 2 of [6]. The details are
left to the reader.
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5. Concluding remarks

Note that theorem 4.1 covers, as a particular case, the ¡ -convergence result from [4]
for the case with no prescribed boundary condition. Namely, in this case we have
K = H1( « ) and hence F (1E) = P (E; « )2.

Another relevant particular case is given by the classical Dirichlet boundary con-
dition u = g 2 H1=2(@« ), i.e.

K = fu 2 H1( « ) : u = g over @« g:

In this case, the ¡ -limit is given by

F (1E) =

µZ

@«

jg ¡ 1E j dHn¡1 + P (E; « )

¶2

:

Finally, we remark that the proof of theorem 4.1 can be easily modi­ ed (in fact,
reduced) to handle the easier case of exactly one volume constraint. Namely, we
have the following result.

Corollary 5.1. Let « and K be as in theorem 4.1, and let f ¬ ¸ g be a sequence
of numbers satisfying 0 < ¬ ¸ < j « j and lim̧ ! 1 ¬ ¸ = j« j. Then the sequence of
functionals fF ¸ g de¯ned over L2( « ) by

F̧ (u) :=

8
<

:
(j« j ¡ ¬ ¸ )

Z

«

jruj2 dx if u 2 K and jfu = 0gj = ¬ ¸ ;

+1 otherwise;

¡ -converge (with respect to the strong topology of L2( « )) to the functional F de¯ned
over L2( « ) by

F (u) :=

8
><

>:

µ
inf
g 2 K

Z

@«

jgj dHn¡1

¶2

if u = 0 a.e. in « ;

+1 otherwise:

Appendix A.

Proof of lemma 4.4. To prove (4.27), consider the annuli

R ¸ := fx : 0 < d« (x) < ¯ ¸ g

and the di¬eomorphisms

ª ¸ : x 2 R ¸ 7! p(x) + ("¯ ¸ + d(x)( ® (p(x)) ¡ "))rd(x) 2 B̧ :

Computing the derivative, from (4.9), we obtain

Dª ¸ (x) = I + ( ® (p(x)) ¡ 1 ¡ ")rd « (x) « rd « (x) + O( ¯ ¸ );

where O( ¯ ¸ ) is uniform with respect to x 2 B ¸ . Observing that rd « (x) « rd« (x)
is a rank-one matrix with the non-trivial eigenvalue equal to one, we conclude that
the Jacobian of ª ¸ satis­ es

j det Dª (x)j = ® (p(x)) ¡ " + O( ¯ ¸ ):
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Observing further that p ¯ ª ¸ = p on R ¸ , using the change of variable x = ª (z), we
­ nd

lim
¸

1

¯ ¸

Z

B̧

h(p(x)) dx = lim
¸

1

¯ ¸

Z

R ¸

h(p(z))( ® (p(z)) ¡ ") dz

which, by the co-area formula, equals

lim
¸

1

¯ ¸

Z ¯ ¸

0

µZ

¡ t

h(p(z)

¶
( ® (p(z)) ¡ ") dHn¡1(z)) dt;

where ¡ t is the manifold fz : d« (z) = tg (note that ¡ 0 = @« ). Since x 7! z =
x + trd « (x) is a di¬eomorphism of ¡ 0 onto ¡ t, the tangential Jacobian of which is
equal to 1 + O(t), changing variable we ­ nd, for t 2 (0; ¯ ¸ ),

Z

¡ t

h(p(z))( ® (p(z)) ¡ ") dHn¡1(z) = O(t) +

Z

¡ 0

h(x)( ® (x) ¡ ") dHn¡1(x);

from which the claim easily follows. The proof of (4.28) is similar (recalling that
m ¸ = jT ¯ ¸ j=³ ), and the details are left to the reader.

It remains to prove (4.29). Letting Ŗ := f0 < d « (x) < ¯ ¸ ® m axg, we obtain, by
the co-area formula,

1

¯ ¸

Z

B̧

1V (x) dx 6 1

¯ ¸

Z

R ¸

1V (x) dx =
1

¯ ¸

Z ¯ ¸ ® max

0

µZ

¡ t

1V (x) dHn¡1

¶
dt:

On the other hand, we have, for t 2 (0; ¯ ¸ ® m ax),
Z

¡ t

1V (x) dHn¡1 = O(t) +

Z

¡ 0

1V (x + trd « (x)) dHn¡1;

whence, by Fatou’s lemma (note that our functions are bounded above),

lim sup
t! 0+

Z

¡ t

1V (x) dHn¡1 6
Z

¡ 0

lim sup
t! 0+

1V (x + trd« (x)) dHn¡1

6
Z

¡ 0

1 ·V (x) dHn¡1

= Hn¡1(@« \ ·V );

from which our claim easily follows.
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