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Abstract

Stochastic instabilities are studied considering the motion of one particle in a very high intensity wave perturbed by one
or two low intensity traveling waves. Resonances are identified and conditions for resonance overlap are studied. PIC
code simulation results confirm the stochastic heating.
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1. INTRODUCTION

A large number of issues remain open in the study of
laser-matter interaction at very high intensities. Recently,
particle-in-cell ~PIC! code simulations results have shown
that the irradiation of very high intensity lasers on clustered
matter leads to a very efficient heating of electrons ~Tajima
et al., 2001!. They show that chaos seems to be the origin of
the strong laser coupling with clusters. More recently, it was
confirmed in PIC code simulations, in the case of two
counter-propagating laser pulses, that stochastic heating can
lead to an efficient acceleration of electrons ~Sheng et al.,
2002, 2004!. Therefore, the issue that we will address is the
stability of electron motion in the fields of several waves.
We study this motion in a high intensity plane wave, per-
turbed by one or two electromagnetic plane waves. The
solution of Hamilton-Jacobin equation is used to identify
resonances. The Chirikov ~1979! criterion is applied to two
resonances corresponding to two symmetric perturbing waves.
Above the Chirikov threshold, and for electron trajectories
with their initial conditions in the overlapping region, sto-
chastic heating is evidenced by computing single particle
energies.

Finally, PIC code simulations results obtained with the
code CALDER ~Lefebvre et al., 2003; Pommier & Lefebvre,
2003! are presented in order to validate the theoretical
model, for experimentally relevant parameters.

2. DYNAMICS OF A CHARGED PARTICLE IN
ONE OR SEVERAL LINEARLY POLARIZED
TRAVELING ELECTROMAGNETIC WAVES

2.1. Dynamics of one particle in one wave
propagating in vacuum

2.1.1. Hamiltonian formulation of the problem,
integrability of the system

Let us consider a charged particle in an electromagnetic
plane wave propagating along the z direction ~the wave
vector k0 is parallel to the z direction!. The following
four-potential is chosen:

@F, A# � @0, ~E0 0v0 !cos~v0 t � k0 z! [ex # ,

where E0, v0, and k0 are constants.
When time t is treated as a parameter entirely distinct

from the spatial coordinates, the relativistic Hamiltonian of
a particle in the wave is

H0 � ��Px �
eE0

v0

cos~v0 t � k0 z!� 2

c2

� Py
2 c2 � Pz

2 c2 � m2c4�102

, ~1!

where �e, m, and Pi~i � x, y, z! are, respectively, the
particle’s charge, its rest mass, and its canonical momentum
components. This system has three degrees of freedom. We
next introduce the following dimensionless variables and
parameter

Address correspondence and reprint requests to: A. Bourdier, Départe-
ment de Physique Théorique et Appliquée, Commissariat à l’Energie
Atomique, BP12, 91680 Bruyères-le-Châtel, France. E-mail: alain.bourdier@
cea.fr

*This paper was presented at the 28th ECLIM conference in Rome, Italy.

Laser and Particle Beams ~2005!, 23, 297–302. Printed in the USA.
Copyright © 2005 Cambridge University Press 0263-0346005 $16.00
DOI: 10.10170S026303460505041X

297

https://doi.org/10.1017/S026303460505041X Published online by Cambridge University Press

https://doi.org/10.1017/S026303460505041X


[z � k0 z, ZPx, y, z �
Px, y, z

mc
, [t � v0 t, ZH � g�

H

mc2 , a �
eE0

mcv0

, ~2!

and perform the canonical transformation, ~ [z, ZPz!r ~z, ZPz!,
given by the type-2 generating function: F2~ [z, ZPz!� ZPz~ [z �
[t !. This canonical transformation keeps ZPz unchanged and
yields: z� [z� [t. The new Hamiltonian expressed in terms of
the new conjugate variables, is: ZH0 � @~ ZPx � acosz!2 � ZPy

2 �
ZPz
2 � 1#102 � ZPz ~Lichtenberg & Liebermann, 1983!. This

Hamiltonian, ZPx and ZPy are three constants of motion, which
are independent and in involution. As a consequence, the
system is completely integrable ~Lichtenberg & Liebermann,
1983!.

2.1.2. Integration of the Hamilton-Jacobin equation
When using the proper time of the particle to parameter-

ize the motion in the extended phase space, the Hamiltonian
of the charged particle in the wave reads ~Jackson, 1975!:
H0 � ~102!mc2g2 � ~102m!~P � eA!2 � ~102!mc2. When
the dimensionless variables and parameter ~Eq. 2! are used
again, the normalized Hamiltonian is: ZH0 � ~102!g2 �
~102!~ ZP � a!2 �102. A normalized proper time: [t�v0t is
also introduced.

Although the electron motion is not restricted to the plane
of polarization of the wave ~the y degree of freedom is
assumed to be excited!, we look for a set of actions ~P4, P00, E!
and angles ~u,w,f!, instead of the configuration ~r, t !, and
momentum, ~P,�g! in the ~ [x, [z, [t, ZPx , ZPz,�g! phase space.
This comes out to say that we seek a canonical transforma-
tion ~ [x, [z, [t, ZPx , ZPz,�g!r ~u,w,f, P00, P4, E !, such that the
new moments are constants of motion. Following Landau
and Lifshitz ~1975!, the following type-2 generating func-
tion is obtained ~Rax, 1992!

ZF2~P4 , P00 , E, [x, [z, [t ! � P00 [z � P4 [x � E [t

�
P4 a

P00� E
sin~ [t � [z!

�
a2

8P00� 8E
sin 2~ [t � [z!. ~3!

The Hamiltonian in terms of the action variables is:

EH0~P00 , P4 , ZPy , E ! � �~102!~M 2 � P00
2 � P4

2 � ZPy
2 � E 2 !,

where M 2 � 1 � a 202 ~Rax, 1992!. As EH0 � 0, the energy
momentum dispersion relation is given by the following

expression: E~P4, ZPy, P00, a!�!M 2 � P4
2 � ZPy

2 � P00
2 .

The solution of Hamilton-Jacobin equation is

u � �P4 [t, [y � � ZPy [t,w� �P00 [t,f� E [t. ~4!

This solution is necessary to predict resonances when a
perturbing mode is considered.

2.2. Dynamics of a charged particle in two or three
linearly polarized traveling waves

In this section, the stability of a charged particle in two or
three linearly polarized waves is studied. One of the waves
is assumed to have an ultra-high intensity. The second and
third perturbing wave can represent other laser beams.

When the two waves propagate in the same direction and
have the same phase velocity ~V �v00k0 �v10k1!, one still
has P̂z � � XZH0 XZz � ~10V ! dH0dt. Thus, C � H � VPz, is a
first integral of the system, and consequently, the problem is
integrable. When, v00k0 � v10k1, we have shown numeri-
cally that trajectories can become chaotic. When the direc-
tions of propagation of the two waves are different, the
problem is not integrable. Chaotic trajectories were also
evidenced in this case.

In this article, we focus on the case of waves propagating
in different directions and assume that the second and third
waves are perturbing transverse electromagnetic waves.

2.2.1. The perturbing waves have their electric fields
perpendicular to the polarization plane of the high
intensity wave

Let us consider a transverse perturbation polarized per-
pendicularly to the plane of polarization of the high inten-
sity wave. The wave vector of the perturbing mode with
vector potential A1 is assumed to be at some angle a with
respect to the wave vector of the high intensity wave, one
has:

A1 � A1 ey sin~v1 t � k100 z � k14 x!.

In the extended phase space, when using the proper time
of the particle to parameterize the motion, the Hamiltonian
of the particle can be put in the following form ~Jackson,
1975; Rax, 1992!

H �
1

2
mc2g2 �

1

2m
~P � eA � eA1!

2 �
1

2
mc2, ~5!

or, neglecting terms in A1
2:

H � H0 � H1 � H0 �
1

m
~P � eA!{eA1, ~6!

where H0 is the Hamiltonian of the system when the pertur-
bation, H1, is neglected. We know that this problem is
integrable. We chose: A � ~E00v0!cos~v0 t � k0 z! [ex .

The dimensionless variable [x � k0 x is added to the
dimensionless variables and parameter defined by equations
~2!. They are used to normalize the equations of motion. A
normalized vector potential for the perturbation A1, a1 �
eA10mc � eE10mcv1, and a normalized proper time, [t �
v0t, are also introduced. The normalized Hamiltonian is
given by: ZH � ZH0 � ZH1 � ZH0 � Pya1, the normalized
perturbing vector potential is: a1 � a1ey sin~ Jv1 [t � Dk100 [z �
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Dk14 [x!, with Jv1 �v10v0, Dk100� k1000k0 and Dk14� k140k0. We
have assumed that ZPy a1 �� a1

2, which means that we con-
sider that ZPy � 1 and a1 �� 1.

First, the phase, k� Jv1 [t � Dk10 [z � Zk14 [x, is expressed in
terms of the coordinates defined by the transformation gen-
erated by ~4!. We have: k � k ' � d sin z � b sin 2z, with:
k '� � Jv1f� Dk100w� Dk14u, b� a2~ Dk100� Jv1!08~P00� E !2

and d� aP4~ Dk100� Jv1!0~P00� E !2 � a Dk40~P00� E !. Then,
one obtains

EH~P00 , P4 , ZPy , E,u,w,f!

� � 2
1�~M 2 � P00

2 � P4
2 � ZPy

2 � E 2 !

� ZPy a1(
n, m

Jn~d!Jm~b!sin@k ' � ~n � 2m!z# . ~7!

The generalized Bessel function which is usually defined as
CN ~d,b! � (j��`

j��` JN�2j ~d!Jj ~b! is introduced ~Nikishov
& Ritus, 1964!. Letting N � ~n � 2m!, one obtains the
Hamiltonian expressed as a sum of harmonic interactions

EH~P00 , P4 , ZPy , E,u,w,f!

� � 2
1�~M 2 � P00

2 � P4
2 � ZPy

2 � E 2 !

� a1 ZPy(
N

VN sin@ Dk100w� Dk14u� Jv1f� N~w� f!# , ~8!

with VN ~d,b! � ~�1!NC�N ~d,b!. When the zero-order
solution ~4! is plugged in the argument of the perturbation
sines, the stationary phase condition leads to the following
resonance condition ~Rax, 1992!

Dk100P00� Dk14P4� Jv1 E � N~E � P00 ! � 0. ~9!

This resonance condition when restricted to the energy
surface equation given by the following expression:

E~P4, ZPy, P00!�!M 2 � P4
2 � ZPy

2 � P00
2 gives P4 versus P00.

We have plotted these resonances in the case when ZPy � 0
in ~9!. Considering that ZPy � 0 comes out to assuming a

higher value of a, Ia, given by Ia �!a2 � 2 ZPy
2. When ZPy � 0,

a �1, Jv1 �1, Dk100�!202, Dk1� �6!202, and N � �1, �2,
�3, Figure 1 shows P4 versus P00 when the resonance
condition is satisfied, for a�p04 and a� 3p04. The solid
lines are obtained when assuming that the perturbation is
such that Dk14 � !202. The dashed lines correspond to the
situation when Dk14� �!202. Figure 1 shows that the lines
are quite far from each other when considering one perturb-
ing wave only. One can conclude that a second perturbing
wave is necessary so that many resonances overlap. As a
consequence, two perturbing waves were considered in
order to define conditions when efficient stochastic heating
takes place. We consider that the two wave-vectors of the
perturbation are symmetric with respect to the direction of
propagation of the very intense wave.

The whole numerical results obtained show that the res-
onance overlap seems to be easier ~as the resonances get
closer to each other! when a and Jv1 go to higher values.

In order to calculate the width of the Nth resonance,
following Rax ~1992!, a resonant torus ~P00c, P4c, Ec! veri-
fying the resonance condition Eq. ~9! for a certain value of N
is isolated. The following new variables are introduced next:

J � ~P00� P00c !0~ Dk100� N !� ~P4� P4c !0 Dk14

� ~E � Ec !0~ Jv1 � N !

and

c � Dk100w� Dk14u� Jv1f� N~w� f!.

Fig. 1. Resonances in the ~P00, P4! plane, a � 1, 6 Dk1006 � 6 Dk146 �!202,
Jv1 � 1. ~a!: a�p04, ~b!: a� 3p04.
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Then, the perturbed motion is described by a one-dimensional
oscillator. The half-width of this resonance is given by:

DJ � 2Ma16 ZPy 6 6Vn 606 Dk14
2 � ~ Dk100� Jv1!~ Dk100� Jv1 � 2N !6

~Lichtenberg & Liebermann, 1983!. Consequently, the half-
width in terms of the action variables is given by DP00 �
~ Dk100 � N !DJ and DP4 � Dk14DJ. Then, the sum of the
half-widths of the two resonances N and N ' , corresponding
to modes with wave vectors Dk4 and � Dk4, can be calculated.
The following quantities: DPN4�DPN '4 and DPN00�DPN '00

can be estimated in order to apply Chirikov criterion.
Let us consider now, the overlap of resonances N � �1

corresponding to the two modes with wave vector compo-
nents Dk14 and � Dk14 when Jv1 �1. The quantities V�1, k4 and
V�1,�k4 are evaluated by using the following Taylor expan-
sion relevant for small d and b ~Rax, 1992; Ritus, 1985!:
C1~d,b!�d02 �db04 �d 3016. In the situations considered
here, the results obtained when using this expansion are in
good agreement with those obtained through a numerical
evaluation of the series representation of this generalized
Bessel function. The Chirikov ~1979! criterion is satisfied
for two resonances when their unperturbed separatices touch
or overlap. In this case, a trajectory is no longer locked
within one of the resonance, and it can pass from one
resonance to the other. In other words the Chirikov thresh-
old is reached when DP�14�DP�14

' and is DP�100�DP�100
'

are larger than the distance between the two resonances in
term of P4 and P00, respectively. The values of the quantities
and which are used in our numerical estimates verify the
resonance condition ~9!.

When assuming that Jv1 � 3, the resonance overlap seems
to be easier to achieve. Then, the most dangerous resonance
is N ��3. In order to calculate the resonance half-widths of
each resonance, the generalized Bessel function, C3~d,b!,
is estimated through its series representation.

When a � 2, a1 � 0.2, ZPy � 1 and a� p03, considering
P00� 0.4 and P4�60.231, we are well above the Chirikov
threshold for the resonance N � �3. Figure 2 shows the
evolution of the energy of one particle in the case when it
interacts with the three modes and in the case when all the
intensity is in one mode. This figure shows that there is
stochastic heating for realistic laser parameters.

2.2.2. The perturbing waves have their electric fields
in the polarization plane of the high intensity wave

The normalized vector potential is assumed to be

[a1 � a1 cos a sin~ Jv1 [t � Dk100 [z � Dk14 [x!ex

� a1 sin a sin~ Jv1 [t � Dk100 [z � Dk14 [x!ez . ~10!

The perturbing Hamiltonian is still approximated by: ZH1 �
~ ZP � [a!{ [a1.

The same calculations as in the previous chapter were
performed. The same resonance condition was obtained

~Eq. 9!. Stochastic heating was also evidenced considering
one particle only.

2.2.3. PIC code simulation results
PIC code simulations were performed in order to confirm

stochastic heating. As we used the CALDER code in its
two-dimension version, only the case when the electric
fields of the perturbation are in the plane of polarization of
the high intensity wave was considered ~Lefebvre et al.,
2003; Pommier & Lefebvre, 2003!. The simulation box is
9.55 � 15.9 mm2 with homogeneous plasma. Laser param-
eters typical of current terawatt facilities were considered to
study the influence of the angle Ja. The wavelength is l0 �
1 mm, the length of the pulse is Dt � 0.3 ps, and the
maximum intensity is: I � 5.53 � 1018 W0cm2. The initial
plasma temperature was assumed to be 1 keV.

First, stochastic heating was evidenced considering the
energy carried by all the waves is the same in all cases. The
case when the plasma interacts with three waves was com-
pared to the one when it interacts with one wave only. Both
electron temperature and total kinetic energy are higher in
the cases with three waves ~Fig. 3a!. As the ponderomotive
force is almost the same in the two situations, one can
conclude that this is due to stochastic heating. The effect of
stochastic heating will appear more clearly when consider-
ing two counter-propagating long pulses.

Figure 3a and 3b show that stochastic heating grows with
a and the plasma density. As a consequence, the best way to
obtain efficient stochastic heating is to consider two counter-
propagating waves. To study this specific problem, one-
dimensional ~1D! simulations were achieved. The laser
pulses are two stepwise 1.59 ps long pulses with the same
frequency. The plasma occupies a 100 mm region, the laser
wave length is 1mm and the maximum intensity for the high
intensity wave is I �1.24 �1019 W0cm2 ~a � 3!, and for the

Fig. 2. Normalized energy of the charged particle versus time. ZPy �1, Jv1 �
3, a � p03. ~a! a � 2, a1 � 0.2, ~b! the total intensity is in one wave:
a � 2.176, a1� 0.
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low intensity wave I1 �1.38 �1016 W0cm2 ~a1 � 0.1!. The
initial temperature of the plasma is still 1 keV. The energy
carried by all the waves was kept constant. The case when
the plasma interacts with three waves is compared to the one
when it interacts with one wave only ~Fig. 4!. The difference
between the one wave case and the two wave’s case shows
that stochastic heating can be very important when consid-
ering a high intensity long pulse. These results show that
stochastic heating can be predicted with a plane wave approach.

3. CONCLUSIONS

The dynamics of a charged particle in a high intensity
linearly polarized traveling wave ~above 1018 W0cm2! was
investigated within the framework of a Hamiltonian analysis.

The stability of a charged particle in the fields of several
waves was explored. A high intensity plane wave was per-
turbed by one or two electromagnetic plane waves. The
solution of Hamilton-Jacobin equation was used to identify
resonances. The Chirikov criterion was applied to two res-
onances corresponding to two symmetric perturbing waves.
Stochastic heating was evidenced considering single trajec-
tories and computing the energy of the charged particle. PIC
code simulations were performed to confirm the occurrence
of stochastic heating.
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