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The oscillation of the nonlinear differential equation

(a(t)Φ(x′))′ + b(t)F (x) = 0,

where Φ is an increasing odd homeomorphism, is considered when the weight b is not
summable near infinity. We extend previous results, stated for equations with the
classical p-Laplacian, by obtaining necessary and sufficient conditions of integral type
for the oscillation. The role of the boundedness of Im Φ [Dom Φ] is analysed in detail.
Our results includes the case Φ∗ ◦ F linear near zero or near infinity, where Φ∗ is the
inverse of Φ. Several examples, concerning the curvature or relativity operator,
illustrate our results.

1. Introduction

Consider the second-order nonlinear differential equation

(a(t)Φ(x′))′ + b(t)F (x) = 0, t � T0, (1.1)

where Φ is an increasing odd homeomorphism defined on an open interval (−ρ, ρ),
0 < ρ � ∞, and ImΦ = (−σ, σ), 0 < σ � ∞, F is a continuous non-decreasing
function on R such that F (u)u > 0 for u �= 0, a and b are positive continuous
functions for t � T0 and ∫ ∞

T0

b(t) dt = ∞.

By a solution of (1.1) we mean a differentiable function x on [Tx,∞), Tx � T0,
such that a(·)Φ(x′(·)) is continuously differentiable on [Tx,∞) and satisfies (1.1) on
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[Tx,∞). We shall consider only those solutions x of (1.1) which satisfy

sup{|x(t)| : t � T} > 0 for all T � Tx

and assume that (1.1) possesses such a solution.
As usual, a solution of (1.1) is said to be oscillatory if it has a sequence of zeros

converging to infinity; otherwise, it is said to be non-oscillatory. Equation (1.1) is
said to be oscillatory if any of its solutions are oscillatory.

A prototype of (1.1) is the Emden–Fowler equation

(a(t)Φp(x′(t)))′ + b(t)Φq(x) = 0, p �= q, (1.2)

where Φp is the classical p-Laplacian, i.e. Φp(u) = |u|p−1u, and p is a positive
constant. If ∫ ∞

T0

(
1

a(t)

)1/p

dt = ∞, (1.3)

then (1.2) is oscillatory. When (1.3) does not hold, it is well known (see, for example,
[14, theorem 6.6]) that (1.2) is oscillatory if and only if either

∫ ∞

T0

(
1

a(t)

∫ t

T0

b(s) ds

)1/p

dt = ∞, p > q (1.4)

or ∫ ∞

T0

b(t)
( ∫ ∞

t

(
1

a(s)

)1/p

ds

)q

dt = ∞, p < q. (1.5)

The oscillation of more general equations, such as

(a(t)Φp(x′(t)))′ + b(t)F (x) = 0, (1.6)

has been widely considered in the literature, from different points of view (see, for
example, [1, 3, 5, 10, 11, 14–21, 23, 24] and the references therein). Other results can
be obtained from [6,9, 12,13], in which coupled systems of the form

x′ = A(t)G1(y), y′ = −B(t)G2(x) (1.7)

are considered.
Denote by Φ∗

p the inverse of Φp, i.e. Φ∗
p(u) = Φ1/p(u) = |u|1/p sgn u. Most of the

quoted results give various improvements of conditions (1.4) or (1.5), stated for
(1.2), and often it is assumed, in the case of (1.6), that the function H(u) =
1/Φ∗

p(F (u)) is summable near infinity or near zero. Similarly, for the system (1.7),
the role of H is played by H̃(u) = 1/G1(G2(u)). Observe that for (1.2) these
assumptions are equivalent to conditions q > p or q < p, respectively.

When Φ is not the classical p-Laplacian Φp, the map Φ and its inverse Φ∗ do not
satisfy the homogeneity property

Φ(uv) = Φ(u)Φ(v) (1.8)

(see, for example, [8, proposition 2.1]). Thus, equations involving a general map
Φ cannot be written in the form (1.7) and all the results quoted above cannot be
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applied to studying the oscillation or the asymptotic behaviour of non-oscillatory
solutions of (1.1).

Prototypes of cases in which σ < ∞ or ρ < ∞ are the maps ΦC and ΦR, respec-
tively, given by

ΦC(u) =
u√

1 + |u|2
, ΦR(u) =

u√
1 − |u|2

, (1.9)

which arise in the study of the radially symmetric solutions of partial differen-
tial equations with the curvature operator or the relativity operator (see [8] and
references therein for more details).

Equations (1.1) with a general map Φ have been considered in [7, 8] when the
weight b is summable, i.e. b ∈ L1[T0,∞). More precisely, in [8] a classification of all
non-oscillatory solutions is given with respect to the quasi-derivative

x[1](t) = a(t)Φ(x′(t))

and conditions for the existence of all types of non-oscillatory solutions are obtained.
In [7] the case lim inft→∞ a(t) = 0 and σ < ∞ is considered, and oscillatory and
asymptotic behaviour of all non-oscillatory solutions of (1.1) are studied, particu-
larly for the map ΦC.

Motivated by [7, 8], here we continue the study of the oscillation of (1.1) when
the weight b /∈ L1[T0,∞). We obtain for the oscillation necessary and sufficient
conditions of integral type that extend previous results, stated for equations with
the classical p-Laplacian. The ‘necessity’ part is proved by using the Tychonov
fixed point theorem in the Fréchet space of continuous functions in a non-compact
interval. This seems an appropriate choice for our asymptotic problem, because it
permits us to avoid some difficulties related to the compactness test on non-compact
intervals (see, for example, [2, 4] and the references therein).

Observe that, in view of the lack of the homogeneity property (1.8), the case
b /∈ L1[T0,∞) cannot be treated by the change of variable z = x[1], as is possible
for equations (1.2) and (1.6); see, for example, [5, 6]. Our oscillation criteria cover
all possibilities with regards to the growth of the weight a. Moreover, our results
do not require the summability of the function

H(u) =
1

Φ∗(F (u))

near infinity or near zero. Thus, they also cover the case when Φ∗(F (u)) ∼ u near
zero, or near infinity when DomΦ∗ ◦ F = R; see Examples 4.4 and 4.5.

Some interesting applications for equations with the curvature and relativity
operator are also given. A comparison of oscillation criteria with those for the
classical p-Laplacian is given and illustrated by examples.

2. Leighton-type oscillation criteria

Any non-oscillatory solution x of (1.1) satisfies

x(t)x′(t) < 0
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for large t. Indeed, let x be a non-oscillatory solution of (1.1), with x(t) > 0 for
t � t0 � T0. Since x[1] is decreasing for t � t0, if x[1](t) > 0 for t � t0, then x is
increasing for t � t0. Integrating (1.1), we obtain

x[1](t) − x[1](t0) � −F (x(t0))
∫ t

t0

b(s) ds,

which gives a contradiction with the positiveness of x[1] as t → ∞.
Thus, setting x∞ = limt→∞ x(t), we can classify non-oscillatory solutions x of

(1.1) as solutions of class M
−
0 or M

−
� , according to whether x∞ = 0 or x∞ = �x �= 0,

respectively.
Set

Λ =
⋂

t�T0

(0, σa(t)).

If σ = ∞, then Λ = (0,∞). If σ < ∞ and lim inft→∞ a(t) > 0, then Λ is a bounded
non-empty interval. Finally, if σ < ∞ and lim inft→∞ a(t) = 0, then Λ is empty.

In studying the asymptotic properties of (1.1) when Λ is non-empty, i.e. when
either of the assumptions

σ < ∞ and lim inf
t→∞

a(t) > 0,

σ = ∞

}
(2.1)

are satisfied, an important role is played by the integral

Iλ =
∫ ∞

T0

Φ∗
(

λ

a(t)

)
dt,

where λ ∈ Λ (see [8]). Observe that, in view of (2.1), Iλ is well defined.
Concerning the convergence of Iλ when (2.1) holds, the possible cases are as

follows:

(C1) Iλ = ∞ for any λ ∈ Λ;

(C2) there exist λ1, λ2 ∈ Λ, 0 < λ1 < λ2, such that Iλ1 < ∞, Iλ2 = ∞;

(C3) Iλ < ∞ for any λ ∈ Λ.

Obviously, if Φ∗ satisfies the homogeneity property (1.8), then the convergence
of Iλ does not depend on the parameter λ, i.e. the case (C2) cannot occur for (1.6).
Examples satisfying (C2) have been given in [8, examples 2.2 and 2.3]; in both cases
σ < ∞ and ρ < ∞.

The following result can be considered as an extension of the Leighton oscillation
criterion stated for the linear case in [22, theorem 2.24].

Theorem 2.1. Equation (1.1) is oscillatory if any of the following conditions are
satisfied:

(i) lim inft→∞ a(t) = 0 and σ < ∞;

(ii) lim inft→∞ a(t) > 0, σ < ∞ and (C1) holds;

(iii) σ = ∞ and (C1) holds.
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Proof. By contradiction, let x be a non-oscillatory solution of (1.1), x(t) > 0 for
t � t0 � T0. Thus, x(t)x′(t) < 0 for large t, i.e. x[1] becomes negative at some
t1 � t0. Since x[1] is decreasing on [t0,∞), we have

Φ(x′(t)) � x[1](t1)
1

a(t)
. (2.2)

If (i) is verified, we obtain a contradiction with the boundedness of Φ as t → ∞. If
(ii) or (iii) is verified, from (2.2) we obtain

x(t) < x(t1) −
∫ t

t1

Φ∗
(

|x[1](t1)|
a(s)

)
ds,

which contradicts the boundedness of x as t → ∞.

The following example illustrates theorem 2.1.

Example 2.2. Consider the differential equation

( 1
2

√
4 + cos2 tΦC(x′))′ + x = 0, (2.3)

where ΦC is given in (1.9). A direct calculation shows that x(t) = (sin t)/2 is a
solution of (2.3). Moreover, Λ = (0, 1) and (C1) holds. Thus, by theorem 2.1, any
solution of (2.3) is oscillatory.

3. The case (C2)

When (C2) holds, a necessary and sufficient condition for the oscillation of (1.1) is
given by the following.

Theorem 3.1. Assume (2.1) and (C2) hold. Equation (1.1) is oscillatory if and
only if

Kλ =
∫ ∞

T0

b(t)F
( ∫ ∞

t

Φ∗
(

λ

a(s)

)
ds

)
dt = ∞ (3.1)

for any λ ∈ Λ such that Iλ < ∞.

The necessary part of theorem 3.1 is given by the following existence result, which
can also be applied when (C3) occurs.

Theorem 3.2. Assume (2.1) holds. If there exists λ ∈ Λ such that Iλ < ∞ and
Kλ < ∞, then (1.1) has solutions x in the class M

−
0 .

Proof. Let λ ∈ Λ and choose t0 � T0 large so that∫ ∞

t0

b(t)F
( ∫ ∞

t

Φ∗
(

λ

a(s)

)
ds

)
dt <

λ

2
. (3.2)

In the Fréchet space C[t0,∞) of all continuous functions on [t0,∞), endowed with
the topology of uniform convergence on compact subintervals of [t0,∞), consider
the set Ω given by

Ω =
{

u ∈ C[t0,∞) : 0 � u(t) �
∫ ∞

t

Φ∗
(

λ

a(s)

)
ds

}
.
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Define in Ω the operator Γ as follows:

Γ (u)(t) =
∫ ∞

t

Φ∗
(

1
a(s)

(
λ

2
−

∫ ∞

s

b(r)F (u(r)) dr

))
ds.

From (3.2) we have

λ

2
−

∫ ∞

s

b(r)F (u(r)) dr � λ

2
−

∫ ∞

t0

b(r)F (u(r)) dr

� λ

2
−

∫ ∞

t0

b(r)F
( ∫ ∞

r

Φ∗
(

λ

a(σ)

)
dσ

)
dr

> 0. (3.3)

Thus,

0 � Γ (u)(t) �
∫ ∞

t

Φ∗
(

λ

2
1

a(s)

)
ds

and so Γ (Ω) ⊂ Ω. Let us show that Γ (Ω) is relatively compact, i.e. Γ (Ω) consists
of functions equibounded and equicontinuous on every compact interval of [t0,∞).
Because Γ (Ω) ⊂ Ω, the equiboundedness follows. Moreover, in view of the above
estimates, we have, for any u ∈ Ω,∣∣∣∣ d

dt
Γ (u)(t)

∣∣∣∣ � Φ∗
(

λ

a(t)

)
,

which yields the equicontinuity of the elements in Γ (Ω). Now we prove the conti-
nuity of Γ in Ω. Let {un}, n ∈ N, be a sequence in Ω that uniformly converges on
every compact interval of [t0,∞) to ū ∈ Ω. Because Γ (Ω) is relatively compact,
the sequence {Γ (un)} admits a subsequence {Γ (unj

)} converging, in the topology
of C[t0,∞), to z̄u ∈ Γ (Ω). Since

|Γ (unj )(t)| �
∫ ∞

t

Φ∗
(

λ

a(s)

)
ds,

from the Lebesgue dominated convergence theorem, the sequence {Γ (unj )(t)} con-
verges pointwise to Γ (ū)(t). In view of the uniqueness of the limit, Γ (ū) = z̄u is the
only cluster point of the compact sequence {Γ (un)}, i.e. the continuity of Γ in the
topology of C[t0,∞). Hence, by the Tychonov fixed point theorem, the operator Γ
has a fixed point x, which, clearly, is a solution of (1.1). Moreover, in view of (3.3),
we have

x[1](t) = −λ

2
+

∫ ∞

t

b(r)F (x(r)) dr < 0,

i.e. x is a non-trivial solution and belongs to M
−
0 .

Proof of theorem 3.1. Necessity: the assertion follows from theorem 3.2.

Sufficiency: let x be a non-oscillatory solution of (1.1) such that x(t) > 0, x′(t) < 0
for t � t0 � T0. Let λ̃ ∈ Λ be such that Iλ̃ = ∞. If x ∈ M

−
� , integrating (1.1), we

obtain

x[1](t) � x[1](t0) − F (x∞)
∫ t

t0

b(s) ds,
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where x∞ = limt→∞ x(t). Thus, limt→∞ x[1](t) = −∞. Choose T � t0 large so that
x[1](T ) < −λ̃. Since x[1] is decreasing for t � t0, we obtain, for t � T ,

x′(t) < −Φ∗
(

λ̃

a(t)

)
.

Integrating this inequality as t → ∞, we get a contradiction with the positiveness
of x.

Let us show that M
−
0 = ∅. By contradiction, assume x ∈ M

−
0 . Since x[1] is negative

decreasing for t � t0, we have x[1](t) � x[1](t0). Thus, setting λ0 = −x[1](t0), we
have

x(t) �
∫ ∞

t

Φ∗
(

λ0

a(s)

)
ds (3.4)

and so Iλ0 < ∞. Moreover, λ0 ∈ Λ. Indeed, if λ0 /∈ Λ, we get sup Λ � λ0, and
so, because (C2) holds, there exists λ2 < λ0, λ2 ∈ Λ, such that Iλ2 = ∞, which
contradicts Iλ0 < ∞. Hence, in view of (3.4), we have

−(x[1](t))′ = b(t)F (x(t)) � b(t)F
( ∫ ∞

t

Φ∗
(

λ0

a(s)

)
ds

)
.

Integrating this inequality, since Kλ0 = ∞, we obtain limt→∞ x[1](t) = −∞. So,
reasoning as above, the assertion follows.

Remark 3.3. If F is not increasing, theorem 3.2 continues to hold if we replace
in (3.1) the function F with the function G given by

G(u) = max{F (v) : 0 � v � u}.

The details are left to the reader.

From the proof of theorem 3.1 we get the following.

Corollary 3.4. Assume (2.1) and (C2) hold. Then any non-oscillatory solution
of (1.1) tends to zero. Moreover, such solutions exist if and only if Kλ < ∞ for
some λ ∈ Λ such that Iλ < ∞.

4. The case (C3)

In this section we study oscillation of (1.1) in the case (C3), i.e. when Iλ < ∞ for
any λ ∈ Λ.

In this case, theorem 3.1 can fail, as the following example shows.

Example 4.1. Consider the following equation:

(
t
√

1 + t4ΦC(x′)
)′ +

√
t

t + 1

√
|x| sgn x = 0, t � 1, (4.1)

where ΦC is the function given by (1.9). A standard calculation shows that x(t) =
(t + 1)/t is a non-oscillatory solution of (4.1). Moreover, Λ = (0,

√
2) and Iλ < ∞,

Kλ = ∞ for any λ ∈ Λ.

Our main result is the following.
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Theorem 4.2. Assume (2.1) and (C3) hold. If, for any λ ∈ Λ sufficiently small
and any T > T0,∫ ∞

T

Φ∗
(

1
a(t)

∫ t

T

b(s)F
( ∫ ∞

s

Φ∗
(

λ

a(σ)

)
dσ

)
ds

)
dt = ∞, (4.2)

then (1.1) is oscillatory.

To prove theorem 4.2, the following auxiliary result is needed.

Lemma 4.3. Assume (2.1). If M
−
� �= ∅, then there exist µ > 0 and T � T0 such

that

Jµ =
∫ ∞

T

Φ∗
(

µ

a(t)

∫ t

T

b(s) ds

)
dt < ∞. (4.3)

Proof. Let x be a solution of (1.1) in the class M
−
� and let x(t) > 0, x′(t) < 0 for

t � t0 � T0 and x∞ = limt→∞ x(t). Integrating (1.1), we have

x[1](t) = x[1](t0) −
∫ t

t0

b(s)F (x(s)) ds � −F (x∞)
∫ t

t0

b(s) ds

or

x(t) − x(t0) � −
∫ t

t0

Φ∗
(

F (x∞)
a(r)

∫ r

t0

b(s) ds

)
dr,

which gives the assertion.

Proof of theorem 4.2. Let x be a non-oscillatory solution of (1.1). First, suppose
x ∈ M

−
0 , and, without loss of generality, assume x(t) > 0, x′(t) < 0 for t � t0.

Integrating (1.1), we obtain

x′(t) � −Φ∗
(

1
a(t)

∫ t

t0

b(s)F (x(s)) ds

)
. (4.4)

Setting λ0 sufficiently small such that λ0 � |x[1](t0)|, λ0 ∈ Λ, because x[1] is decreas-
ing for t � t0 and limt→∞ x(t) = 0, we obtain

x′(t) � −Φ∗
(

λ0

a(t)

)
.

Thus, from (4.4) we get

x′(t) � −Φ∗
(

1
a(t)

∫ t

t0

b(s)F
( ∫ ∞

s

Φ∗
(

λ0

a(σ)

)
dσ

)
ds

)
.

Integrating this inequality on [t0,∞), we get a contradiction with (4.2).
Now, let x ∈ M

−
� . By virtue of lemma 4.3, there exist µ > 0 and T � T0 such

that ∫ ∞

T

Φ∗
(

µ

a(t)

∫ t

T

b(s) ds

)
dt < ∞.

Let t � t0 � T . Thus, we obtain, for any t0 � T ,∫ ∞

t0

Φ∗
(

µ

a(t)

∫ t

t0

b(s) ds

)
dt < ∞. (4.5)
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Let λ be sufficiently small and λ ∈ Λ. Since Iλ < ∞, we can choose t0 large so that,
for s � t0,

F

( ∫ ∞

s

Φ∗
(

λ

a(σ)

)
dσ

)
� µ.

Thus,

Φ∗
(

1
a(t)

∫ t

t0

b(s)F
( ∫ ∞

s

Φ∗
(

λ

a(σ)

)
dσ

)
ds

)
� Φ∗

(
µ

a(t)

∫ t

t0

b(s) ds

)
,

and from (4.5) we obtain a contradiction with (4.2).

The following example illustrates theorem 4.2.

Example 4.4. The following equation,

(a(t)ΦR(x′))′ + b(t)x = 0, t � π, (4.6)

where ΦR is given by (1.9) and

a(t) =
√

t4 − (t cos t − sin t)2 and b(t) = t2,

has the oscillatory solution

x(t) =
sin t

t
.

Let us show that, by theorem 4.2, all solutions of (4.6) are oscillatory.
Since σ = ∞, we have Λ = (0,∞). Thus, we get for λ ∈ Λ and for large t

λ

t5/2 � Φ∗
R

(
λ

a(t)

)
� λ

t3/2 . (4.7)

Hence, Iλ < ∞ for λ ∈ Λ, i.e. (C3) occurs. Moreover, from (4.7) we have

b(s)
∫ ∞

s

Φ∗
R

(
λ

a(σ)

)
dσ � 2λ

3
s1/2.

Then, we obtain, for any large T ,∫ ∞

T

Φ∗
R

(
1

a(t)

∫ t

T

b(s)
∫ ∞

s

Φ∗
R

(
λ

a(σ)

)
dσ ds

)
dt �

∫ ∞

T

Φ∗
R

(
4λ

9
t3/2 − T 3/2

a(t)

)
dt.

By a direct computation we obtain

Φ∗
R

(
4λ

9
t3/2 − T 3/2

a(t)

)
� 4λ

9
t3/2 − T 3/2√

t4 + (4λ/9)2(t3 − T 3)
.

Since
t3/2 − T 3/2√

t4 + (4λ/9)2(t3 − T 3)
∼ 1√

t
as t → ∞,

the condition (4.2) is satisfied and theorem 4.2 yields the oscillation of (4.6).

Observe that for (4.6) we have Φ∗
R(F (u)) ∼ u as u → 0. With a minor change,

we can produce an example in which Φ∗ ◦ F is linear for any u ∈ R.
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Example 4.5. The following equation:

(a(t)ΦC(x′))′ + b(t)ΦC(x) = 0, t � π, (4.8)

where ΦC is given by (1.9) and

a(t) =
√

t4 + (t cos t − sin t)2 and b(t) = t
√

t2 + sin2 t,

has the oscillatory solution

x(t) =
sin t

t
.

Let us show that by theorem 4.2 all solutions of (4.6) are oscillatory.
Since mint�π a(t) = π

√
1 + π2, we have Λ = (0, π

√
1 + π2). As in example 4.4,

we get Iλ < ∞ for λ ∈ Λ, i.e. (C3) occurs. Moreover, since, for t � π,

(t cos t − sin t)2 � (1 + t)2,

we obtain, for large t,

Φ∗
C

(
λ

a(t)

)
=

λ√
a2(t) − λ2

� λ√
t4 + (1 + t)2

� λ√
2(1 + t)2

.

Thus, we have, for large s,

b(s)ΦC

( ∫ ∞

s

Φ∗
C

(
λ

a(σ)

)
dσ

)
� b(s)ΦC

(
λ√

2(1 + s)

)
� λs2

2(1 + s)
� λ

4
s.

Hence,

1
a(t)

∫ t

T

b(s)ΦC

( ∫ ∞

s

Φ∗
C

(
λ

a(σ)

)
dσ

)
ds � λ(t2 − T 2)

8
√

t4 + (t cos t − sin t)2
.

Since Φ∗
C(u) � u for any u ∈ (0, 1), choosing λ sufficiently small, λ ∈ Λ, we get that

the condition (4.2) is satisfied. Thus, theorem 4.2 yields the oscillation of (4.8).

For the half-linear equation

(a(t)Φp(x′(t)))′ + µb(t)Φp(x) = 0, µ > 0, (4.9)

theorem 4.2 reads as follows.

Corollary 4.6. If ∫ ∞

T0

1
a1/p(t)

dt < ∞

and ∫ ∞

T0

(
1

a(t)

∫ t

T0

b(s)
( ∫ ∞

s

1
a1/p(σ)

dσ

)p

ds

)1/p

dt = ∞, (4.10)

then (4.9) is oscillatory for any µ > 0.

Remark 4.7. A necessary and sufficient criterion for the oscillation of (4.9) for
any µ > 0 (the so-called strong oscillation of (4.9)) can be obtained from [11, the-
orem 4.2]. A detailed discussion and some existing results for half-linear equations
are given in the last section.
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When (C2) holds, M
−
� = ∅. Nevertheless, when (C3) holds, (1.1) can admit

solutions x in the class M
−
� , as the following result shows.

Theorem 4.8. Assume (2.1) and (C3) hold. Equation (1.1) has solutions in the
class M

−
� if and only if (4.3) holds for some µ > 0 and T � T0.

Proof. Necessity: this follows from lemma 4.3.

Sufficiency: fix L > 0 such that

0 < F (2L) � µ (4.11)

and choose t0 � T large so that∫ ∞

t0

Φ∗
(

µ

a(t)

∫ t

t0

b(s) ds

)
dt < L. (4.12)

Consider in the Fréchet space C[t0,∞) the set Ω given by

Ω = {u ∈ C[t0,∞) : L � u(t) � 2L}.

Define in Ω the operator Γ as follows:

Γ (u)(t) = L +
∫ ∞

t

Φ∗
(

1
a(s)

( ∫ s

t0

b(r)F (u(r)) dr

))
ds.

Clearly, Γ (u)(t) � L. Moreover, from (4.11) and (4.12) we get

Γ (u)(t) � L +
∫ ∞

t0

Φ∗
(

F (2L)
a(s)

( ∫ s

t0

b(r) dr

))
ds � 2L

and so Γ (Ω) ⊂ Ω. Using an argument similar to the one given in the proof of
theorem 3.2, with minor changes, we get that Γ (Ω) is relatively compact and Γ
is continuous on Ω. Then, by the Tychonov fixed point theorem, the assertion
follows.

Remark 4.9. Theorem 4.8 continues to hold even if the function F is not increas-
ing. Minor changes are needed in the proof.

From theorem 4.8 we get the following result.

Corollary 4.10. Assume (2.1) holds. If

lim inf
t→∞

1
a(t)

∫ t

T0

b(s) ds > 0, (4.13)

then M
−
� = ∅.

Proof. Assume (2.1). Thus, the assertion follows from theorem 2.1 or corollary 3.4,
according to the case (C1), or (C2) holds. If the case (C3) occurs, assume, by
contradiction, M

−
� �= ∅. From theorem 4.8 we have for some µ > 0 and T � T0

lim inf
t→∞

Φ∗
(

µ

a(t)

∫ t

T

b(s) ds

)
= 0,

which gives a contradiction with (4.13). Finally, if (2.1) is not satisfied, the assertion
follows from theorem 2.1.
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5. Concluding remarks

5.1. Non-oscillatory decaying-to-zero solutions

When (C2) occurs, corollary 3.4 gives a necessary and sufficient condition for the
existence of decaying to zero solutions. When (C3) occurs, a sufficient condition is
given by theorem 3.2.

The following example shows that conditions in theorem 3.2 are not necessary
for having M

−
0 �= ∅.

Example 5.1. Consider the half-linear equation

(t4/3|x′|1/3 sgn x′)′ + 3

√
81
256 |x|1/3 sgn x = 0, t � 1. (5.1)

For (5.1) we have Kλ = ∞, Iλ < ∞ for any λ > 0, and so theorem 3.2 cannot be
applied. Nevertheless,

x(t) = 27
64 t−3/4

is a solution of (5.1) in the class M
−
0 .

Hence, it is an open problem to find better conditions for having M
−
0 �= ∅ also in

case (C3).

5.2. Necessary conditions for oscillation

When (C3) holds, theorem 4.2 gives a sufficient condition for oscillation of (1.1).
Observe that, if (C3) holds, then (4.2) implies that Kλ = ∞ for λ ∈ Λ and Jµ = ∞
for µ > 0. Nevertheless, the conditions

Jµ = Kλ = ∞ (5.2)

cannot be sufficient for the oscillation of (1.1), as the following example illustrates.

Example 5.2. Consider the linear equation

(8t2x′)′ + x = 0, t � 1. (5.3)

Thus, Kλ = Jµ = ∞ for any λ > 0, µ > 0 and T � 1. Setting y(t) = 8t2x′(t), from
(5.3) we obtain the Euler equation

y′′ + 1
8 t−2y = 0. (5.4)

Since (5.4) is not oscillatory (see, for example, [22, theorem 2.1]), (5.3) is also not
oscillatory.

On the other hand, for the Emden–Fowler equation (1.2), conditions (5.2) become
(1.4) and (1.5), respectively, which, as claimed, are necessary and sufficient for the
oscillation of (1.2). So, it is natural to ask under which additional assumptions
conditions (5.2) also become sufficient for the oscillation of (1.1) when (2.1) is
satisfied and (C3) holds.
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5.3. Oscillation of half-linear equations

From [11, theorem 4.2], using the transformation y(t) = x[1](t), it is easy to show
that (4.9) oscillates for any µ > 0 if and only if

lim sup
t→∞

( ∫ t

T

b(s) ds

)( ∫ ∞

t

1
a1/p(s)

ds

)p

= ∞. (5.5)

Observe that in the linear case, i.e. for p = 1, (5.5) is the Hille–Nehari condition [22,
theorem 2.9]. Thus, corollary 4.6 can be considered as a complement of Hille–Nehari-
type oscillation criteria. It seems to be interesting also in view of a Hille–Wintner-
type comparison theorem for a pair of half-linear equations.

Consider the half-linear equation

(a(t)Φp(x′(t)))′ + µB(t)Φp(x) = 0, (5.6)

where B is a positive continuous function for t � T0 such that B /∈ L1[T0,∞). If∫ t

T0

b(s)
( ∫ ∞

s

1
a1/p(σ)

dσ

)p

ds �
∫ t

T0

B(s)
( ∫ ∞

s

1
a1/p(σ)

dσ

)p

ds

for large t and (4.10) holds, then (5.6) is oscillatory for any µ > 0. This result com-
plements a Hille-Wintner-type comparison theorem in [23, theorem 5]. Moreover,
via the transformation y(t) = x[1](t), the above result can also be formulated for
half-linear equations of type (4.9) when the weight a1/p is not summable on [T0,∞)
(see, for example, [10, theorem 2] and [20, theorem 4.1]). Finally, other results in
this direction can be found in [19, theorem 1.1], in which a perturbed Euler-type
equation is considered. In this case, corollary 4.6 cannot be applied because the
equation in [19] is not oscillatory for any positive value of the parameter.
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