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Kelvin–Helmholtz (KH) instability plays a significant role in transport and mixing in
various media such as hydrodynamic fluids, plasmas, geophysical flows and astrophysical
situations. In this paper, we numerically explore this instability for a two-dimensional
strongly coupled dusty plasma medium with rotational shear flows. We study this medium
using a generalized hydrodynamic fluid model which treats it as a viscoelastic fluid. We
consider the specific cases of rotating vorticity with abrupt radial profiles of rotation.
In particular, single-circulation and multi-circulation vorticity shell profiles have been
chosen. We observe the KH vortices at each circular interface between two relative
rotating flows along with a pair of ingoing and outgoing wavefronts of transverse shear
waves. Our studies show that due to the interplay between KH vortices and shear waves
in the strongly coupled medium, the mixing and transport behaviour are much better
than those of standard inviscid hydrodynamic fluids. In the interest of substantiating the
mixing and transport behaviour, the generalized hydrodynamic fluid model is extended to
include Lagrangian tracer particles. The numerical dispersion of these tracer particles
in a flow provides an estimate of the diffusion in such a medium. We present the
preliminary observations of tracer distribution (cluster formation) and diffusion (mean
square displacement) across the medium.
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1. Introduction

The Kelvin–Helmholtz (KH) instability has been ubiquitously observed in
hydrodynamic fluids (Drazin 1970; Chandrasekhar 1981), plasmas (Horton, Tajima &
Kamimura 1987), geophysical flows (van Haren & Gostiaux 2010) and astrophysical
situations (Foullon et al. 2011). This instability occurs in the form of vortices at the
interface between two flows due to either velocity shear or having sufficient relative
velocity. The interactions between these KH vortices govern the transport processes like
mixing and diffusion (Smyth & Moum 2012). The main objectives of this study are
to explore the formation and evolution of KH vortices of a rotating dusty plasma and
quantifying the mixing they generate using tracer particles simulation. The formation
and evolution of these vortices depend on the shear and nature of the medium (here the
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viscoelasticity of the system). The KH instability for dust flows has also been investigated
theoretically (d’Angelo & Song 1990; Rawat & Rao 1993; Banerjee, Janaki & Chakrabarti
2012; Pandey, Vladimirov & Samarian 2012; Tiwari et al. 2014b; Dolai, Prajapati &
Chhajlani 2016; Prajapati & Boro 2021) and numerically (Ashwin & Ganesh 2010; Tiwari
et al. 2012b,a, 2014a) as well as experimentally (Luo, D’Angelo & Merlino 2001) for
planar sheared flows. Rotating vortex flows have been studied considerably (Klindworth
et al. 2000; Konopka et al. 2000; Schablinski et al. 2014; Choudhary et al. 2020),
but to our knowledge, no prior studies have explicitly examined the KH instability for
such flows, except Dharodi, Kumar Tiwari & Das (2014) and Dharodi (2020). Dharodi
et al. (2014) numerically studied smooth rotating flows to avoid KH destabilization and
also considered single-circulation sharp rotating flows where KH instability arises in
a homogeneous medium. Dharodi (2020) explored sharp rotating sheared flows in a
heterogeneous medium, where heterogeneity of the medium results in spiral density arms
around the vortex along with KH destabilization, unlike the homogeneous medium which
favours KH destabilization only.

A dusty plasma can exist in a strong coupling state quite easily because of highly
charged dust particles, which is called a strongly coupled dusty plasma (SCDP). Here,
the SCDP has been modelled under the formalism of a generalized hydrodynamic (GHD)
fluid model (Kaw & Sen 1998). This model treats the SCDP as a viscoelastic (VE) fluid
and characterizes its VE effects through the ratio η/τm. In other words, here, the effect of
viscoelasticity on KH vortices is observed by varying this ratio. The coupling parameters
η and τm are the shear viscosity and the Maxwell relaxation time, respectively. The ratio
η/τm is stated in terms of Coulomb coupling parameter Γ by the relation η/τm = pdΓ /ρd
(Das & Kaw 2014; Avinash & Sen 2015). Here, ρd and pd denote the mass density and
pressure of the dust fluid, respectively. We consider the incompressible limit of the GHD
model which in addition to the evolution of hydrodynamic KH instability also supports
transverse shear (TS) waves that propagate at phase velocity

√
η/τm (Kaw & Sen 1998;

Dharodi et al. 2014, 2016). These propagating shear waves have the same symmetry
as that of their source structure, until there is no boundary effect or no interaction with
other waves or obstacles like vortices. Since our interest is in KH instability of rotating
SCDPs, we consider the specific cases of sharp vorticity patches: (i) single-circulation and
(ii) multi-circulation vorticity shell profiles. The single-circulation case has already been
somewhat discussed in Das, Dharodi & Tiwari (2014) and Dharodi et al. (2014); in the
present paper we explore it in more detail. We observe the KH instability at each circular
interface between two relative rotating flows in the form of small vortices along with a
pair of ingoing and outgoing wavefronts of TS waves. The interactions between interacting
KH vortices and TS waves help the VE fluid in better mixing than standard hydrodynamic
fluids where only interactions between the KH vortices take place. To substantiate this
observation, passive tracers are dispersed throughout the medium.

In the context of fluid mechanics, tracer transport has been studied extensively for
flow visualization (Douady, Couder & Brachet 1991; Fessler, Kulick & Eaton 1994)
with the help of theoretical (Balkovsky, Falkovich & Fouxon 2001; Zaichik, Simonin &
Alipchenkov 2003; Falkovich & Pumir 2004; Bec et al. 2006), computational (Squires
& Eaton 1991; Boivin, Simonin & Squires 1998; Reade & Collins 2000; Zhou, Wexler
& Wang 2001; Yeung 2001, 2002; Ishihara & Kaneda 2002; Collins & Keswani 2004;
Biferale et al. 2004, 2005; Chun et al. 2005; Cencini et al. 2006) and experimental (Ott
& Mann 2000; La Porta et al. 2001; Mordant et al. 2001; Voth et al. 2002; Sawford et al.
2003) approaches. This technique is also used in complex fluids (polymers, colloids and
biological materials) (Mason et al. 1997; Waigh 2005). An analysis of the separation of
the particle trajectories with a two-dimensional hydrodynamic fluid was also carried out
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by Falkovich, Gawedzki & Vergassola (2001). In dusty plasma, Schwabe et al. (2014)
observed the vortex movements by adding some microparticles around the void. Here,
we consider two kinds of point-like tracer particles: (i) non-inertial and (ii) inertial
tracer particles. The tracer dynamics is simulated using a one-way coupled Lagrangian
point-particle approach (Riley & Patterson 1974; McLaughlin 1989) which means the
tracers are affected by the fluid flow, but not vice versa. In the case of multi-circulation
vortex profiles, at intermediate time range, a complete picture of a turbulent flow is
observed which has a collection of small KH vortices and waves. When the system is
left for a very long time, it ultimately settles down to a single vortex faster than in a
hydrodynamic fluid. It is observed that the relaxation rate of such a turbulent medium
increases with increasing coupling strength.

This paper is organized as follows. In § 2, the GHD model especially developed for
the study of SCDPs is extended to include the transport of passive Lagrangian tracers.
In the incompressible limit, this extended model is referred to as the incompressible
generalized hydrodynamic tracer transport (i-GHTT) model. Section 3 presents the
numerical procedure in order to solve the set of equations of the i-GHTT model. In § 4,
we numerically explore the evolution of different types of sharp rotating vorticities in VE
fluids and quantify the mixing they generate using tracer particles simulations. Finally, § 5
contains the discussion and the conclusions.

2. The GHTT model

A dusty plasma can be prepared or found as a SCDP rather easily because of high charge
on the micrometre-sized dust particles. Below the crystallization limit (Γc ≈ 170; Ikezi
1986), a SCDP behaves like a VE fluid which favours both the incompressible TS modes
and the compressible longitudinal modes. To study such a SCDP, the GHD fluid model is
found to be quite suitable which takes into account both types of modes. To scrutinize the
effect of transverse modes and to abate the possible pairing with the longitudinal modes,
we consider the incompressible limit of GHD (i-GHD) model. Thus, the i-GHD model
represents incompressible SCDPs which support transverse modes only. The momentum
and continuity equations for the i-GHD model of a homogeneous SCDP can be written as[

1 + τm

(
∂

∂t
+ vd · ∇

)] [
∂vd

∂t
+ vd · ∇vd + ∇pd

ρd
− ∇φd

]
= η∇2vd (2.1)

and
∇ · vd = 0, (2.2)

respectively. Here, ρd = ndmd is the mass density of the dust fluid, nd is the number density
which is normalized by its respective equilibrium value nd0 and md is the mass of a dust
particle. The scalar potential φd in the dusty plasma system is normalized by KBTi/e.
The parameters e, Ti and KB are the electronic charge, ion temperature and Boltzmann
constant, respectively. The charge fluctuation over each dust grain has been ignored.
The time and length are normalized by the inverse of dust plasma frequency ω−1

pd =
(4π(Zde)2nd0/md0)

−1/2 and plasma Debye length λd = (KBTi/4πZdnd0e2)1/2, respectively.
In the incompressible limit the Poisson equation has been replaced by the quasi-neutrality
condition. The dust fluid velocity vd is normalized by λdωpd. The term τm(vd · ∇) in the
generalized momentum equation is responsible for introducing the collective behaviour in
the medium. When this term becomes zero (τm = 0), the momentum equation becomes
the Navier–Stokes equation. In other words, the GHD model turns into a standard
hydrodynamic fluid model. Moreover, the presence of this term conserves the Gallilean
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invariance (Tiwari et al. 2012c). It is noticed that apart from the incompressible dusty
plasma medium, the reduced set of equations can also be applied to other correlated
many-body systems, for example, electron–ion plasmas (Das & Kaw 2014), ultracold
plasmas and high-energy-density plasmas (Diaw & Murillo 2015).

In our earlier paper (Dharodi et al. 2014), we proposed an idea of extending the GHD
model by including passive tracer particles with an interest in estimating the diffusion in a
medium. In order to accomplish this, we consider two kinds of point-like tracer particles:
(i) non-inertial tracers and (ii) inertial tracers. The non-inertial tracers follow the flow
exactly, while the velocity of the inertial tracers differs from the flow velocity due to
viscous drag force (Sapsis & Haller 2010). The tracer particle dynamics is simulated using
a one-way coupled Lagrangian point-particle approach. The one-way coupled particle
approach means the tracers do not affect the fluid motion; in other words, the tracers
are passive. We also neglect any kind of interaction between particles and gravity effect
on their dynamics. We further assume that the inertial tracer particles have density ρp,
different from the density ρd of the fluid. Under these assumptions, the particles are
transported in the flow according to the following equations:

dvpi

dt
= 1

τs
(vd(rpi) − vpi), (2.3)

drpi

dt
= vpi, (2.4)

where rpi and vpi are the position and velocity of the ith particle, respectively, and vd(rpi)
is the dust fluid velocity at the particle position rpi, which is obtained by solving the set
of (3.3) and (3.4). These equations are a simplified approximation of the Maxey–Riley
equations (Maxey & Riley 1983). Although the neglected effects might have significant
impacts in real flows, these could be incorporated into a future study because, even after
neglecting them, (2.3) describes a complex enough system and it is worth studying to set
the foundation for future research. The particle time scale τs denotes the response time of
the particles and is known as Stokes time (Guha 2008).

Although the particles are assumed as point particles, they do have finite mass and
therefore finite inertia. The ratio of a particle time scale to a fluid time scale is known
as the Stokes number (St). The effect of particle inertia is often given by using St or τs.
Depending on the value of St or τs or inertia: for low value, the particles are predicted to
follow the fluid flow passively like fluid particles, while at very high value the particles
almost remain unaffected by the medium fluctuations. Between these two limits, when the
particle and fluid time scales are comparable, the particles respond in a fast and strong
manner to the fluctuations.

The non-inertial tracers follow the fluid flow exactly and can be considered as attached
to the fluid surface. They are characterized by their position rpi and velocity vpi = vd(rpi)
that is the dust fluid velocity at their position. Their equation of motion corresponds to the
limit τs → 0 in the set of (2.3) and (2.4) and becomes

drpi

dt
= vd(rpi). (2.5)

Thus, here, the set of (2.1)–(2.4) represents the VE model for inertial tracer particles
while the set of (2.1)–(2.2) and (2.5) represents that for non-inertial tracer particles.
Both sets of equations are referred to as the i-GHT2 or i-GHTT model henceforth in the
article. It should be noted that in the i-GHTT model, with an interest to include both
the compressible longitudinal and incompressible transverse modes one can just replace
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the i-GHD model (set of (2.1)–(2.2)) with the complete GHD model (set of (5)–(7) in Kaw
& Sen (1998)), say the GHTT model.

2.1. Transport properties
To quantify the average diffusion of tracer particles, the ensemble-averaged mean square
displacement (MSD) of tracers is measured which is associated with the mixing of the
fluid (Jeon et al. 2013). The MSD is defined as

MSD(t) = 1
N

N∑
j=1

(rj(t) − rj(0))2. (2.6)

Here, rj(0) is the initial position of the jth particle at t = 0, rj(t) is the position at time t
and N is the total number of tracers in the ensemble. The slope of MSD versus time is
proportional to the diffusion coefficient of tracer particles which in turn is supposed to
measure the mixing performance of the carrier fluid. Thus, the mixing performance of the
carrier fluid can be quantified through the time–MSD slope, a larger slope meaning the
carrier fluid mixes better.

3. Simulation methodology

For the numerical simulations, first we need to express the model (2.1) as per
requirements of simulation software LCPFCT (Boris et al. 1993). To fulfil these
requirements, we split equation (2.1) into the following two coupled equations:

∂vd

∂t
+ vd · ∇vd + ∇pd

ρd
− ∇φd = ψ, (3.1)

∂ψ

∂t
+ vd · ∇ψ = η

τm
∇2vd − ψ

τm
. (3.2)

For two-dimensional studies, all the variables are functions of x and y only. The newly
introduced quantity ψ(x, y) on the right-hand side of (3.1) represents the strain induced
in the elastic medium by the time-varying velocity fields. Next, the gradient terms are
eliminated by taking the curl of (3.1) which yields an equation for the evolution of the
vorticity field ξ = ∇ × vd with z component only, i.e. ξz = ∇ × vd(x, y). So the coupled
set of (3.1)–(3.2) has been recast in the following form:

∂ξz

∂t
+ (vd · ∇) ξz = ∇ × ψ, (3.3)

∂ψ

∂t
+ vd · ∇ψ = η

τm
∇2vd − ψ

τm
. (3.4)

Here, ξz is normalized with dust plasma frequency. The LCPFCT software is based on
a finite difference method and has been used to solve the coupled set of (3.3) and (3.4).
Taking the curl of relation ξz = ∇ × vd(x, y) and using the incompressible condition given
by (2.2), i.e. ∇ · vd(x, y) = 0, we get

∇2vd(x, y) = −∇ × ξz. (3.5)

This velocity–vorticity relation is used to update the fluid velocity at each time step using
FISHPACK (Swarztrauber, Sweet & Adams 1999). The validation of our numerical code
has been done in our earlier papers (Dharodi et al. 2014; Dharodi 2020).
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In further details of the simulation procedure in advancing the tracer particles with
flow, we have the dust fluid velocity for each particle at the respective position at each
time step. This dust velocity is used in particle momentum (2.3). Equations (2.3) and (2.4)
are numerically integrated together to find the new position and velocity at the end of each
time step. This integration is based on the first-order Runge–Kutta method. The particle
velocity vp is calculated by interpolating the velocity defined on nearby grid points, based
on a first-order Lagrangian interpolation scheme. The particles are advanced with fluid
time step.

4. Numerical results and discussion

The prime objectives of this section are to numerically explore the evolution of different
types of sharp rotating vorticity flows shown in figure 2 and to quantify the mixing they
generate using the tracer particle simulations. In figure 2, it should be noted that each
interface has some perturbations (each common interface has different colour from that
of two adjacent fluid flows) in order to break the radial symmetry with rotation and
to hasten the KH instability. For each type of flow, the simulations are performed for
varying coupling strength of VE fluid which is usually measured as the ratio η/τm. All the
simulations are performed with periodic boundary conditions in both the x and y directions
in the simulation box.

4.1. The KH instability of rotating SCDPs
Since our interest is in KH instability of rotating SCDPs, we consider the specific cases
of sharp vorticity patches: (i) single-circulation and (ii) multi-circulation vorticity shell
profiles. Before proceeding with the direct assessment of the evolution of KH instability
through the numerical results, it is useful to understand the process of formation of these
vortices for sharp rotating flows through the schematic picture illustrated in figure 1.
In this figure, multi-circulation vorticity profile has three different flows: core fluid
rotates clockwise (yellow), inner shell rotates anticlockwise (cyan) and outer shell rotates
clockwise (green). Each rotating flow is separated by a sharp interface; the fluid on either
side rotates in counter directions. These counter-rotating flows create a region of high
shear at each of the interfaces which immediately evolve into small co-rotating (like-sign)
KH vortices. The direction of rotation of these vortices depends on the net relative rotation
of alternate flows. At the inner interface, the core fluid (yellow) rotates clockwise while
the inner-shell fluid (cyan) rotates anticlockwise, resulting in the KH vortices having
anticlockwise rotation (blue-coloured vortices with blue curved arrows). Similarly, at the
outer interface, the inner-shell fluid (cyan) rotates anticlockwise while the outer-shell
fluid (green) rotates clockwise, resulting in clockwise-rotating KH vortices (red-coloured
vortices with red curved arrows). In the case of further evolution, transport processes like
merging and convection become important. When two co-rotating (like-sign) vortices
are brought sufficiently close to each other, they start to rotate around one another
and eventually merge to form a single vortex,while in convection the counter-rotating
(unlike-sign) vortices propagate together as a single structure (dipole) to convect the fluid.

Thus far, these appraisals are particularly true for an inviscid hydrodynamic fluid where
no source term exists. Whereas an incompressible VE fluid, besides KH instability, would
also support the TS waves that propagate through the medium at phase velocity vp =√

η/τm. Since TS waves have the same symmetry as that of their source structure, the TS
waves emitted from each circular interface should be cylindrical in shape (Dharodi 2020;
Dharodi et al. 2014).
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FIGURE 1. Formation of KH vortices at the circular sharp interfaces of core–shell flow regions
(without any corresponding scale). The black circles with arrows in the flow regions indicate the
direction of rotation. At the inner interface, the KH votices rotate anticlockwise (blue-coloured
vortices with blue curved arrows), while at the outer interface they rotate clockwise (red-coloured
vortices with red curved arrows).

4.1.1. Evolution of single-circulation sharp-vorticity vortex
The velocity profile for the single-circulation sharp-vorticity vortex is given as follows:

v0 =
{

vx0 = −φ0
( y − yc)

b
; vy0 = φ0

(x − xc)

a
|r| � 6

0 otherwise.
(4.1)

The vorticity corresponding to the above velocity profile is given as

ξz0 =
⎧⎨
⎩φ0

(
1
a

+ 1
b

)
|r| � 6

0 otherwise.
(4.2)

Here |r| =
√

((x − xc)/a)2 + (( y − yc)/b)2, a and b are the major and minor axes,
respectively, and xc and yc are the x and y coordinates of the centre of the vorticity profile.
The vorticity will have a clockwise rotation if amplitude φ0 > 0, or have a anticlockwise
rotation if φ0 < 0 and have no rotation if φ0 = 0. We consider that the clockwise-rotating
vorticity profile has circular symmetry with parameters a = b = 1, amplitude φ0 = 1 and
sharp cutoff at radial distance |r| = 6 units away from the centre of the vortex (0, 0). This
vorticity profile (yellow colour) is shown in figure 2(a) which has a circular interface with
surrounding stagnant fluid at t = 0. The simulation region is a square box of length 12π
units.

Figure 3 shows the time evolution of the vorticity profile given in figure 2(a) in the
inviscid hydrodynamic fluid. The sharpness of the clockwise-rotating vorticity profile
generates a strong rotational sheared flow. This sheared flow results in creation of small
co-rotating (anticlockwise) KH vortices (dark-blue-coloured vortices) at the vorticity
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(a) (b) (c)

FIGURE 2. Initial rotating sharp vorticity profiles at t = 0 to study the KH instability. The
colour scale corresponding to a particular vorticity profile has been given in the following
respective figure which shows its evolution. The simulation region is a square box of length
12π units for all these systems.

FIGURE 3. An inviscid hydrodynamic fluid. The time evolution of a sharp clockwise-rotating
vorticity which has a circular interface with surrounding stagnant fluid. The sharpness of the
vorticity profile generates small KH vortices at the interface that results in a anisotropic isolated
structure.

interface |r| = 6. These like-sign vortices start merging as rotation progresses that leads
the fluid to evolve into an anisotropic isolated structure. In figure 4, where η = 5 and
τm = 20, once the vortex begins to rotate, we observe a pair of ingoing and outgoing
cylindrical shear waves from the interface along with these small like-sign KH vortices.
During the evolution, it is observed that both the waves carry the like-sign vortices which
interact with themselves in order to merge and also interplay with these waves as well. The
fluid within the inner region (|r| � 6) favours mixing due to the ingoing waves, while the
stationary fluid in the outer region (|r| � 6) becomes mixed due to the outgoing waves.
Thus, the TS waves assist the process of fluid mixing by convecting it inside and outside
the vortex structure. Unlike the inviscid case, here, the KH vortices are confined to the
radial emitted waves. Since the wavefronts are cylindrical in shape, the interplay between
waves and vortices leads the evolution of the VE fluid towards an isotropic structure. In
figure 5, we have simulated another case of VE fluid which has less coupling strength
(η/τm = 0.125) with η = 2.5 and τm = 20. Unlike figure 4, since the TS waves are not
strong enough to dominate over the KH instability, there is less confinement of KH vortices
to the waves. This is evident from figure 5 where the evolution of the medium towards an
isotropic structure and the mixing process are much slower in comparison with figure 4.
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FIGURE 4. Viscoelastic fluid with coupling parameters η = 5 and τm = 20. The time evolution
of a sharp rotating vorticity which has a circular interface with surrounding stagnant fluid. The
sharpness of the vorticity profile generates small KH vortices at the interface along with a pair of
ingoing and outgoing wavefronts of TS waves that assist in fluid mixing by convecting it inside
and outside the vortex structure.

FIGURE 5. The time evolution of a sharp rotating vorticity in VE fluid with coupling parameters
η = 2.5 and τm = 20. Due to less coupling strength, the evolution of the medium towards an
isotropic structure and the mixing process are much slower in comparison with figure 4.

In conclusion, as a result of greater coupling strength or stronger TS wave, the medium
evolution attempts to realize radial symmetry and shows better mixing. The mixing is
found to be minimal in inviscid fluid.

The single-circulation sharp profile carries single types of anticlockwise-rotating
KH vortices across its only interface. While a multi-circulation profile with two or
more interfaces produces clockwise as well as anticlockwise KH vortices. Thus, in the
multi-circulation case, apart from merging between like-sign vortices, the propagation of
unlike-sign vortices as a dipolar structure also becomes important which can assist in
increasing the spatial domain of mixing fluids.

4.1.2. Multi-circulation vorticity shell profile
Here, we first consider the simplest case of multiple shells of vorticity having two flows:

inner core flow and a outer shell flow, both flows having reversal circulation. The velocity
profile for this configuration is given as follows:

v0 =
⎧⎨
⎩

vx0 = −φ0( y − yc); vy0 = φ0(x − xc)|r| � 5
vx0 = φ0( y − yc); vy0 = −φ0(x − xc)5 < |r| � 10
0 otherwise.

(4.3)
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FIGURE 6. An inviscid hydrodynamic fluid. Evolution of vorticity having two circular sharp
flows, inner core and outer shell flows have reversal circulation, in time generates small KH
vortices at each interface that results in an anisotropic isolated structure.

The vorticity corresponding to the above velocity profile is given as

ξz0 =
⎧⎨
⎩

2φ0 |r| � 5
−2φ0 5 < |r| � 10
0 otherwise.

(4.4)

With the parameter φ0 = 1, we consider both flows to rotate with equal rotation rates and in
opposite directions (figure 2b). Figure 6 shows the evolution of this vorticity profile for an
inviscid fluid. At the inner interface, the KH vortices rotate anticlockwise (blue-coloured
vortices), while at the outer interface they rotate clockwise (red-coloured vortices). As
time goes on, merging between like-sign vortices takes place at both interfaces, and
simultaneously growing closeness between both interfaces due to the radial gradient in
vorticity resulting in interactions between the counter-rotating (red–blue) vortices as well.
These counter-rotating vortices result in the formation of propagating dipolar structures
which help to convect the fluid across a wider domain than the single interface (which
only favours the merging process).

In figure 7, we observe that a pair of ingoing and outgoing wavefronts emanates from
each of the two sharp interfaces of the vortex structure along with KH vortices (see the first
panel). It is observed that both wavefronts at the inner interface carry the blue-coloured
(rotating anticlockwise) vortices, while at the outer interface they carry red-coloured
(rotating clockwise) vortices. During the emission of these shear waves, like-sign vortices
interact with themselves in order to merge. The stagnant fluid in the outermost region
(|r| � 10) undergoes mixing due to the outgoing wave from the outermost interface at 10,
while the innermost vortex region undergoes mixing due to the ingoing wave emanating
from the sharp interface located at 5. Interestingly, the vortex region confined within the
two sharp interfaces (5 < |r| � 10) undergoes mixing due to the ingoing wave from the
outermost interface and the outgoing wave from the innermost interface. This region is
probably a convection-dominating region due to the higher possibility of formation of
propagating dipolar structures. As a result of multiple interaction processes, the mixing
becomes fast and efficient compared with the cases discussed so far. Next, we consider
another VE fluid in figure 8 having lower coupling strength, i.e. η = 2.5, τm = 20, vp =
0.35. It is observed that at each time step the spatial confinement of this medium is
lower than in figure 7. Moreover, the comparison manifests that the mixing and evolution
symmetry of a medium are proportional to the coupling strength of that medium as
observed for earlier cases.
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FIGURE 7. Viscoelastic fluid with coupling parameters η = 5 and τm = 20. The time evolution
of vorticity having two circular sharp interfaces, inner core and outer shell have reversal
circulation, generates small KH vortices at each interface along with a pair of ingoing and
outgoing TS wavefronts that results in fluid mixing by convecting it inside and outside the vortex
structure.

FIGURE 8. Viscoelastic fluid with coupling parameters η = 2.5 and τm = 20. The time
evolution of vorticity having two circular sharp interfaces, both having reversal circulation. Due
to the lower coupling strength, the spatial confinement of this medium is lower than in figure 7.

Next, in order to make a better comparative numerical analysis of the mixing rate, we
consider a more complex scenario of multiple circulations (each consecutive one having a
reversal in its circulation) having the following velocity flow profile:

v0 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

vx0 = −φ0( y − yc); vy0 = φ0(x − xc) |r| � 2.5
vx0 = φ0( y − yc); vy0 = −φ0(x − xc) 2.5 < |r| � 5
vx0 = −φ0( y − yc); vy0 = φ0(x − xc) 5 < |r| � 7.5
vx0 = φ0( y − yc); vy0 = −φ0(x − xc) 7.5 < |r| � 10
0 otherwise.

(4.5)

The vorticity corresponding to the above velocity profile is given as

ξz0 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2φ0 |r| � 2.5
−2φ0 2.5 < |r| � 5
2φ0 5 < |r| � 7.5
−2φ0 5 < |r| � 10
0 otherwise.

(4.6)

For the parameter φ0 = 1, the initial vorticity profile is shown in figure 2(c). The
complexity of this motion of multi-circulation structure is evident from figure 9 for inviscid
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FIGURE 9. An inviscid hydrodynamic fluid. The time evolution of multi-circulation vorticity
profile, each consecutive one having a reversal in its circulation, generates small KH vortices
at each interface. This evolution provides a complete picture of a turbulent flow which is a
collection of various kind of vortices, and exhibits transport properties like convection and
merging.

FIGURE 10. The time evolution of multi-circulation vorticity profile in VE fluid with η = 5 and
τm = 20. The strong interaction between KH vortices and TS waves results in relaxing of the
medium into a single vortex faster than for inviscid fluid.

fluid. In the initial time period, the vortices of KH instability develop across the interface
of each shell. At intermediate time range, this evolution provides a complete picture
of a turbulent flow throughout the entire system which is a collection of several small
symmetric and non-symmetric vortices. The transport phenomena like merging between
two co-rotating vortices, convection due to the evolution of dipolar (two counter-rotating)
vortices, collision between these dipolar vortices and also the formation and evolution of
tripolar structures become more frequent than for the cases discussed above. Figure 10
presents the evolution of the same initial profile (figure 9) of vorticity for VE fluid
with coupling parameters η = 5, τm = 20. From the comparative observations between
figures 9 and 10, it is interesting to notice that the presence of TS waves leads to the
relaxing of the turbulent medium to a single vortex faster than in inviscid fluid. In figure 11
(η = 2.5, τm = 20, vp = 0.35), since the TS waves are weaker than in figure 10, the less
spatial confinement of the turbulent medium results in a slower merging process, due to
which the relaxation time of the medium becomes longer.

A comparison of figures 10 and 11 clearly displays these observations.

4.2. Transport of tracer particles
In § 2 we have stated that tracer particles with very low inertia follow the flow passively,
while particles with very high inertia will remain almost unaffected by the medium
fluctuations. Between these two limits particles show the strongest response to the medium
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FIGURE 11. The time evolution of multi-circulation vorticity profile in VE fluid with η = 2.5
and τm = 20. Since the TS waves are weaker than in figure 10, the relaxation time of the medium
becomes longer.

fluctuations. Simulations are performed for all three types of inertial particles: very low
(τs = 0.05), intermediate (τs = 1) and very high (τs = 50) inertia. To observe the exclusive
effect of inertia, we transport these particles through a similar smooth rotating vorticity
vortex in an inviscid fluid. An inviscid fluid has no source term which favours the emission
of TS waves or dissipative term like viscosity. Also, we choose a smooth rotating vorticity
vortex which does not satisfy the KH destabilization condition anywhere in the vorticity
patch. The equation of such smooth rotating vorticity is given as

ξ0 = Ω0 exp
(− (

x2 + y2) /a2
c

)
. (4.7)

The evolution of the same structure given by (4.7) for ac = 1.0, Ω0 = 5 in an inviscid fluid
is shown in figures 12, 13 and 14. From these figures it is clear that the rotating vortex
keeps rotating without any change. Now, in order to see the response of tracer particles,
initially (t = 0), we distribute 900 inertial particles (shown by red dots) homogeneously
throughout the domain. From figure 12, it is clear that low-inertia particles (τs = 0.05)
follow the dynamics along the rotating vortex, and the particles with higher inertia
(τs = 50; figure 13) show negligible response to the vorticity gradient. In comparison with
previous cases (figures 12 and 13), figure 14 shows that the particles with intermediate
value of τs = 1 encounter a significant outward push. This is because the particle and fluid
time scales are comparable which results in the particles experiencing a notable centrifugal
force due to vorticity gradient. Since the inertial particles are pushed away from regions
where the flow is strong enough, these particles accumulate in strain-dominated regions.
Thus, particles tend to leave regions of high vorticity and cluster into regions of high
strain (Ravichandran, Deepu & Govindarajan 2017). Note that we have simulated a range
of intermediate-inertia particles, and observed the same effect with varying outward push.

With the identification of intermediate-inertia particles and understanding of their
evolution, next we compare the evolution of intermediate-inertia particles (typically,
τs = 1) with non-inertial particles for the inviscid hydrodynamic and VE (η = 5, τm = 20)
fluids in figures 15 and 16, respectively. For this, we choose a sharp rotating vorticity
profile which is given by (4.2). The middle rows in figures 15 and 16 represent the time
evolution of this profile for inviscid and VE fluids, respectively. As the sharp vortex starts
to rotate, it produces larger strain (deformation) in the medium along the interface that
results in the formation of KH instability. The evolution of this rotor has already been
discussed in § 4.1 for inviscid fluid in figure 3 and for VE fluid in figure 4. Initially
(t = 0), here, we distribute 3600 tracer particles homogeneously throughout these fluids.
In both figures 15 and 16, the first and third rows visualize the distribution of non-inertial
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FIGURE 12. An inviscid hydrodynamic fluid carries tracer particles shown as red dots.
The low-inertia tracers (τs = 0.05) follow the dynamics along the smooth rotating vortex.

FIGURE 13. An inviscid hydrodynamic fluid carries tracer particles shown as red dots.
The high-inertia tracers (τs = 50) show negligible response to the rotating vortex.

FIGURE 14. An inviscid hydrodynamic fluid carries tracer particles shown by red dots. Smooth
rotating vorticity vortex with tracers having intermediate inertia, i.e τs = 1, showing strong
response to the vorticity gradient. The particles are pushed away where the flow is strong enough
and accumulate in a strain-dominated region.

particles (shown by magenta dots) and inertial particles (shown by red dots), respectively,
advected by the respective fluid flow shown in the middle row. The accumulation of
non-inertial particles is observed in rotation-dominated regions over the vortex structures,
while the inertial particles accumulate in strain-dominated regions along the interfaces.
This accumulation process leads to the spatial inhomogeneous distribution of particles.
This inhomogeneous distribution of the particles is known as clustering or preferential
concentration. Clustering is well studied in the case of inertial particles (Maxey 1987;
Squires & Eaton 1991; Fessler et al. 1994; Balkovsky et al. 2001; Falkovich, Fouxon &
Stepanov 2002; Goto & Vassilicos 2006; Petersen, Baker & Coletti 2019; Oka & Goto
2021), and several studies are available for non-inertial particles (Drótos et al. 2019).
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FIGURE 15. An inviscid hydrodynamic fluid advecting tracer particles. First and third rows
show the temporal and spatial distribution of non-inertial particles (shown by magenta dots) and
inertial particles (τs = 1, shown by red dots), respectively, corresponding to the sharp vorticity
profile evolution shown in the second row.

In real flows the tracer particles always have some inertial value, so we compute
the ensemble-averaged MSD of intermediate-inertia particles to analyse the diffusion of
particles in the carrier VE fluid. This diffusion of particles is associated with the mixing
of the fluid. For this, we advect the inertial particles having τs = 1 using the sharp rotating
flows discussed above: inviscid fluid in figure 3/figure 15, VE fluid with η = 5, τm = 20 in
figure 4/figure 16 and another VE fluid with η = 2.5, τm = 20 in figure 5. Initially (t = 0),
we disperse 3600 tracer particles homogeneously in these fluids. Figure 17(a) compares
the ensemble-averaged MSD values of inertial particles of τs = 1 for all three types of
fluids. The evolution of MSD occurs in three stages. Initially (here, 0 � t ≈ 1), inertial
particles do not respond until their time scale (here, τs = 1) is less than the fluid time
scale or the Stokes number (St) is less than unity. During the second stage, the particles
start to respond to the flow (1 � t � 3.8), and the slopes grow at almost the same rate for
all fluids. In the final stage (t � 3.8), the slope shows a larger value for a higher coupling
strength and it is minimal for inviscid fluid. The slope of MSD versus time is proportional
to the diffusion coefficient of the tracer particles. Thus, a larger time–MSD slope means
the carrier fluid shows a better mixing performance. Thus, this result is found consistent
with our earlier observations made from the comparative analysis of pictorial evolution
of vorticities in figures 3, 4 and 5. In order to substantiate these observations we further
compute the MSD of tracers with τs = 0.5 (figure 17b) for all three flows under the same
flow conditions. From the plot, again the diffusion of particles increases with coupling
strength. It should be noted that the MSD has been calculated up to time before hitting the
flow to the boundaries.
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FIGURE 16. Viscoelastic fluid with coupling parameters η = 5 and τm = 20 advecting tracer
particles. First and third rows show the spatiotemporal distribution of non-inertial particles
(shown by magenta dots) and inertial particles (τs = 1, shown by red dots), respectively,
corresponding to the sharp vorticity profile evolution given in the second row.

(a) (b)

FIGURE 17. The MSD as function of time for tracing particles. The sharp rotating vorticity
advecting the particles with (a) τs = 1 and (b) τs = 0.5. At later time, the MSD is proportional
to the coupling strength.

In the present work, although we have undertaken the simplest tracer model and
preliminary investigation of tracer distribution (cluster formation) and their transport
property (MSD), it is worth attempting as a foundation for future study.
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5. Summary and conclusion

In this paper, we numerically explore the KH instability for a two-dimensional rotating
SCDP under the formalism of the GHTT fluid model. This model treats the SCDP as
a VE fluid. Here, we consider the specific cases of vorticity with abrupt radial changes,
in particular: single-circulation and multi-circulation vorticity shell profiles. We observe
the KH instability in the form of small vortices at each interface along with a pair of
ingoing and outgoing wavefronts of TS waves. The interactions between KH vortices
and with TS waves govern the mixing which has been quantified using a passive tracer
particle simulation. The advection of tracers with the flow has been noticed. Some main
observations are as follows.

(i) The interplay between the TS waves and interacting KH vortices results in better
mixing of VE fluids than standard hydrodynamic fluids where only the interaction
between KH vortices happens.

(ii) By adjusting the coupling strength parameter (ratio η/τm) which usually represents
the strength of viscoelasticity of the medium, one can control the evolution of
KH instability that results in control over the transport properties like mixing and
diffusion.

(iii) The GHD model especially developed for the study of SCDPs is extended to include
the transport of passive Lagrangian inertial and non-inertial tracer particles. This
extended model is referred to as the GHTT model.

(iv) We observe that the diffusion of intermediate-inertia tracer particles in VE fluids is
proportional to the coupling strength. It is least for an inviscid fluid.

(v) From the multi-circulation vortex profiles, we found that the relaxation rate of a
turbulent medium increases with increasing coupling strength.

The particle tracking model appears to be a suitable diagnostic for understanding
the associated mixing in a fluid through the diffusion process, and nonlinear dust fluid
dynamics through the clustering of a tracers. In the present paper, we just discuss
the preliminary simulations for tracers which are based on first-order schemes. To
advance the tracers we use a first-order Runge–Kutta scheme, and for the velocity
the first-order interpolation scheme. Further improvisations of this model would be to
include higher-order schemes, finite-size tracers, other forces, e.g. gravity, interparticle
interactions, feedback from tracers to carrier fluid, etc. These improvisations would be
extremely fruitful which are left to future work. An experimental research effort is
required in order to validate this numerical work. We believe our results can inspire
future experiments. Some experiments, in order to create rotating vortex flows in dusty
plasmas with external rotating electric fields and/or magnetic fields, have been performed
(Danielson & Surko 2006; Nosenko et al. 2009; Wörner et al. 2011; Karasev et al. 2017).
Keeping in view the present study, experimentalists will have to delimit the externally
driving/rotating forces in order to produce radially confined sharp rotation flows in the
medium.
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