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ABSTRACT

We analyze optimal consumption in the life cycle model by introducing life and
pension insurance contracts. The model contains a credit market with biometric
risk, and market risk via risky securities. This idealized framework enables us
to clarify important aspects of life insurance and pension contracts. We find
optimal pension plans and life insurance contracts where the benefits are state
dependent. We compare these solutions both to the ones of standard actuarial
theory, and to policies offered in practice. Implications of this include what role
the insurance industry may play to improve welfare. The relationship between
substitution of consumption and risk aversion is highlighted in the presence
of a consumption puzzle. One problem related portfolio choice is discussed -
the horizon problem. Finally, we present some comments on longevity risk and
cohort risk.
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1. INTRODUCTION

Four or five decennials back life and pension insurance seemed less problematic
than today, at least from the insurance companies’ point of view. Prices were set
by actuaries using life tables, and a “fixed calculation” interest rate. This rate
was not directly linked to the equilibrium interest rate of the market, or any
other market linked quantities or indexes. The premium reserves of the indi-
vidual and collective policies were invested in various assets, and when the dif-
ferent contracts were settled, the evolution of the premium reserve determined
the final insurance compensation. If the return on the premium reserve had been
higher than the calculation rate, this gave rise to a bonus. For a mutual company
“bonus” need not only involve a payment from the insurer to the customer, but
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could also involve a payment in the other direction. For a stock owned corpo-
ration the bonus could in principle only be non-negative. In most cases this did
not matter all that much, since the calculation rate was set to the safe side, which
meant lower than the realized return rate on the premium reserve.

In several countries the nominal interest rate was high during some parts of
this period, often significantly higher than the fixed rate used in determining
premiums. In Norway, for example, this calculation rate (4%) appeared from
some point in time as a legal guaranteed return rate in the contracts. For current
policies this guarantee is reduced to 3%, and even lower.

During the last two or three decennials this interest rate guarantee has be-
come a major issue for many life insurance companies. What initially appeared
to be a benefit with almost no value, later turned out to be rather valuable for
the policy holders, and correspondingly problematic for the insurers.

In this paper we study demand theory under idealized conditions using the
life cycle model. This model takes the security market as given. Although the
model does not explicitly contain insurance companies, nor a public sector, op-
timal insurance contracts are assumed to exist. We derive optimal contracts in
this complete model, and compare these to contracts that are offered in the real
world. We argue that the insurance industry can provide more consumption
substitution over the life time of the consumers, than they can manage alone
- since companies do not have any finite horizon. The preference structure im-
plies that some smoothing in consumption is desired by the individuals. How-
ever, the analysis reveals a consumption puzzle when confronted with aggregate
consumption and market data. Among other things this says that the “repre-
sentative” individual do not prefer quite as much smoothing as implied by the
real data. Thus something seems to be wrong with the model employed for the
individual - it does not quite match reality after aggregation. Recursive utility,
the subject of a companion paper, give better results on these particular issues.

Every downturn in the financial market has typically been accompanied by
problems for the life insurance industry. This is particularly true for privately
owned life insurance companies, with a regulatory regime that focuses on yearly
results. Collective pension funds with a different form of regulation seem less
affected. For both types of companies the contracts offered are typically long
term.

In view of this, managements of privately owned life insurance companies
seem to prefer to offer “defined contribution” type policies to the more tradi-
tional “defined benefit” ones. The former type exposes the companies less to risk
than the latter, and equity can be set lower. A thought provoking observation is
then that when customers are askedwhat type of contract they prefer, the answer
is typically defined benefit, i.e., the contract with most consumption smoothing.
This is consistent with the view that customers can, by and large, manage or-
dinary savings themselves, including saving through the financial markets, for
example by investing in mutual funds. What they need from an insurer is pre-
cisely - insurance. This means a reliable arrangement providing yearly payment
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of known real value to cover subsistence, and a little more, in the case that the
individual’s savings strategy did not work out all that well.

One would think that life and pension insurance companies should be able
to offer precisely this kind of insured pensions to the public. This industry is
normally perceived as taking a long term perspective, and should be able to
let the equity premium work to their advantage in the long run. While an in-
dividual customer may have problems to carry out an optimal substitution of
consumption during his/her life time because of a bounded life span, the insur-
ance industry is presumably less constrained in this regard, and should be able
to “time diversity”.

If the insurance industry only offers defined contribution, or unit linked-type
pension plans, finance theory tells us that the industry can only expect to earn
the risk-free rate in the long run. The insurers will then compete with investment
funds and other financial intermediaries, and the fees should eventually come
down due to competition. The resulting return on the insurance companies’ op-
erations is unlikely to meet the requirements of the owners. On the other hand,
there is the principle of dynamic consistency, which tells us that when there is
some product demanded by enough people, there will eventually be amarket for
this product. So where does that lead the insurance industry? These are some of
the topics discussed in this paper.

When there is consumption in several periods in a world with a perfect credit
market with no financial risk, the standard model turns out to works just fine.
This is also the case in a one period problem with financial uncertainty, a so-
called timeless situation. When there is consumption in several periods (at least
two) and there is also financial risk, we have a so-called temporal problem. In
such situations induced preferences may not satisfy the substitution axiom, so
the von Neumann-Morgenstern expected utility (Eu) theory does not have ax-
iomatic underpinnings. This problem is taken up in the companion paper.

The life cycle model has a long history, and has been used extensively to an-
alyze optimal consumption with or without various forms of uncertainty/risk.
The main body of research can be found in the economics literature, but also ac-
tuaries have been concerned with the model, primarily related to pension insur-
ance. Ramsey (1928) seems to be the first to rigorously study the problem of sav-
ing in a continuous-time model. Also Fisher (1930) is an early reference to this
subject. Yaari (1965) introduces an uncertain life time in theRamseymodel, and
Hakansson (1969) introduces risky securities in a discrete time model. Richard
(1975) and Fisher (1973) study the latter problem in a continuous-time model,
extending the results of Merton (1971) to a stochastic horizon. In the insurance
literature Milevski (1998) is concerned about asset allocation towards the end
of the life cycle, Huang et al. (2012) extends to a stochastic force of mortality,
and Devolder and Hainaut (2006) studies the pension problem in presence of
mortality risk only.

The focus of the formal part of the present paper is the separation of time
substitution from risk aversion, tomotivate for an extension to recursive, stochas-
tic differential utility, treated in a companion paper. This part differs frommost
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of the extant literature in that the various optimization problems are solved us-
ing Kuhn-Tucker (with Lagrangian multipliers) instead of dynamic program-
ming. Since all the optimization problems treated are infinite dimensional, di-
rectional derivatives (Gateau derivatives) replace ordinary derivatives.When ap-
plicable, our results are in agreement with those of the literature, but we discuss
several different subjects not treated in a unified framework before. The non-
formal part of the paper addresses current issues of general interest in the life
and pension insurance industry, and relate these to the formal part, whenever
possible.1

The paper is organized as follows: In Section 2 we introduce consumption
and saving with only a credit market available. Here we explain some actuarial
concepts related to mortality. In particular we study the effects from pooling.

In Section 3 we include mortality risk, i.e., an uncertain planning horizon, in
the model of Section 2 and derive both optimal life insurance as well as optimal
pension insurance, and investigate their properties when there is only a credit
market present.

In Section 4 we introduce a financial market for risky securities in addition
to the pure risk free credit market. Here we derive the optimal consumption and
pension insurance, and show that with pension insurance available, the actual
consumption rate at each time is larger than without.

In Section 5 we discuss a consumption puzzle, when the theory is confronted
with real data. In Section 6 we discuss business cycles. In Section 7 we derive
implications of the optimal pension plan, and discuss comparative statics. In
Section 8 the connection to actuarial theory and insurance practice is briefly
taken up, and in Section 9 a one-period “timeless” model is presented in order
to analyze to what extent a pension insurance works as diversification.

In Section 10we finally analyze life insurance. Here we determine the optimal
amount of life insurance, a state dependent quantity - an unusual result for the
actuarial literature, and discuss its possible relevance to the insurance industry.

The portfolio choice problem is briefly studied in Section 11, in Section 12we
point out a solution to time horizon problem and in Section 13 we study a second
portfolio choice puzzle. Finally, in Section 14 we reflect on longevity risk and
cohort risk, and give in Section 15 a summary discussion of our results, where
we also suggest some extensions.

2. CONSUMPTION AND SAVING

In our development it will be an advantage to start with the simplest problem in
optimal demand theory, when there is no risk and no uncertainty of any kind.

Consider a person having income e(t) and consumption c(t) at time t. Given
income, possible consumption plans must depend on the possibilities for saving
and for borrowing and lending. We want to investigate the possibilities of using
income during one period to generate consumption in another period.
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To start, assume the consumer can borrow and lend to the same interest rate
r . Given any e and c, the consumer’s net savingW(t) at time t is

W(t) =
∫ t

0
er(t−s)(es − cs)ds. (1)

Assuming the person wants to consume as much as possible for any e, not any
consumption plan is feasible. A constraint of the type W(t) ≥ a(t) may seem
reasonable: If a(t) < 0 for some t, the consumer is allowed a net debt at time t.
Another constraint could beW(T) ≥ B ≥ 0, where T is the planner’s horizon.2

The consumer is then required to be solvent at time T.
The objective is to optimize the utilityU(c) of lifetime consumption subject

to a budget constraint. There could also be a bequest motive when life insurance
is an issue.

2.1. Uncertain planning horizon

In order to formulate themost natural budget constraint of an individual, which
takes into account the advantages of pooling risk, we introduce mortality. Yaari
(1965), Hakansson (1969) and Fisher (1973) were of the first to include an un-
certain lifetime into the theory of the consumer.

The remaining lifetime Tx of an x year old consumer at time zero is a random
variable with support (0, τ ) and cumulative probability distribution function
Fx(t) = P(Tx ≤ t), t ≥ 0. The survival function is denoted by F̄ x(t) = P(Tx >

t). Ignoring possible selection effects, it can be shown that

F̄ x(t) = l(x+ t)
l(x)

(2)

for some function l(·) of one variable only. The decrement function l(x) can
be interpreted as the expected number alive in age x from a population of l(0)
newborne.

The force of mortality, or death intensity, is defined as

μx(t) = fx(t)
1 − Fx(t)

= − d
dt

ln F̄ x(t), Fx(t) < 1, (3)

where fx(t) is the probability density function of Tx. Integrating this expression
yields the survival function in terms of the force of mortality

F̄ x(t) = l(x+ t)
l(x)

= exp
{

−
∫ t

0
μx(u) du

}
. (4)

Suppose y ≥ 0 a.s. is a non-negative process in L, the set of consumption
processes. Later L will be a set of adapted stochastic processes y satisfying
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E(
∫ τ

0 y2t dt) < ∞. If Tx and y are independent, the formula

E
(∫ Tx

0
ytdt

)
=

∫ τ

0
E(yt)

l(x+ t)
l(x)

dt =
∫ τ

0
E(yt)e− ∫ t

0 μx(u)dudt (5)

follows essentially from integration by parts, the independence assumption and
Fubini’s Theorem. Assuming the interest rate r is a constant, it follows that the
single premium of an annuity paying one unit per unit of time is given by the
actuarial formula

ā(r)
x =

∫ τ

0
e−rt lx+t

lx
dt, (6)

and the single premium of a “temporary annuity” which terminates after time
n is

ā(r)
x:n̄| =

∫ n

0
e−rt lx+t

lx
dt. (7)

Under a typical pension plan the insuredwill pay a constant, or “level” premium
p up to some time of retirement n, and from then on he will receive an annuity
b as long as he lives. The principle of equivalence gives the following relationship
between premium and benefit:

p
∫ n

0
e−rt lx+t

lx
dt = b

∫ τ

n
e−rt lx+t

lx
dt.

In standard actuarial notation this is written

pā(r)
x:n̄| = b

(
ā(r)
x − ā(r)

x:n̄|
)
. (8)

The following formulas are sometimes useful in life insurance computations

μx(t) = − l ′(x+ t)
l(x+ t)

, and fx(t) = − l ′(x+ t)
l(x)

= l(x+ t)
l(x)

μx+t, (9)

where l ′(x+ t) is the derivative of l(x+ t) with respect to t. The present value
of one unit payable at time of death is denoted Āx. Using (9) and integration by
parts, it can be written

Āx =
∫ τ

0
e−rt fx(t)dt = 1 − r ā(r)

x . (10)

This insurance contract is called Whole life insurance. If the premium rate p is
paid until the retirement age n for a combined life insurance with z units payable
upon death, and an annuity of rate b per time unit as long as the insured is alive,
we have the following relationship between p, b and z:

pā(r)
x:n̄| = b

(
ā(r)
x − ā(r)

x:n̄|
) + z(1 − r ā(r)

x ). (11)

Pension insurance and life insurance can now be integrated in the life cycle
model in a natural way, as we shall demonstrate.
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2.2. The effect from pooling

In the discussion of consumption and saving, the following quantity plays an
important role:

E
{
W(Tx)e−rTx} = expected discounted net savings. (12)

In the absence of a life and pension insurance market, one would, as before,
consider consumption plans c such thatW(Tx) ≥ B, or

W(Tx)e−rTx ≥ b ≥ 0 almost surely (13)

e.g., debt must be resolved before the time of death. If, on the other hand, pen-
sion insurance is possible, one can allow consumption plans where

E
{
W(Tx)e−rTx} = 0 (no life insurance.) (14)

Those individuals who live longer than average are guaranteed a pension as long
as they live via the pension insurancemarket. The financing of this benefit comes
from those who live shorter that average, which is what pooling is all about. We
elaborate further on the pooling aspect in Section 4.4, where also a securities
market is available for the consumer.

The implication is that the individual’s savings possibilities are “exhausted”,
by allowing gambling on own life length. Clearly the above constraint in (14)
is less demanding than requiring that the discounted net savings, the random
variable in (13), is larger that some non-negative number b with certainty. Inte-
gration by parts gives the following expression for the expected discounted net
savings

E
{
W(Tx)e−rTx} =

∫ τ

0

(
et − ct

)
e− ∫ t

0 (r+μx+u)dudt. (15)

This expression we have interpreted as the present value of the consumer’s net
savings, which is seen from (15) to take place at a “spot” interest rate

r + μ > r

where the inequality follows since the mortality rate μ > 0. This is a result of
the the pooling effect of (life and) pension insurance. The existence of a life and
pension insurance market allows the individuals to save at a higher interest rate
than the spot rate r . With a pure pension insurance contract, the policyholder
can consume more while alive, since terminal debt is resolved by pooling.

Example1 (A pension contract, or an annuity)

Suppose e(t) = 0 for t > n. The condition E
{
W(Tx)e−rTx} = 0 is seen to corre-

spond to the Principle of Equivalence in this situation:∫ n

0

(
et − ct

)
P[Tx > t]e−rtdt =

∫ τ

n
cte−rt P[Tx > t]dt. (16)

https://doi.org/10.1017/asb.2014.26 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2014.26


8 K.K. AASE

Here the difference (et − ct) can be interpreted as the premium (intensity) pt paid
while working, giving rise to the “pension” (or total consumption rate) ct after the
time of retirement n. This relationship implies that the pension is paid out to the
beneficiary as long as necessary, and only then, i.e., as long as the policy holder is
alive.

Notice the similarity between the actuarial formula in (8) and the above
equation (16). Both equations are, of course, based on the same principle. It
presents no difficulty to separate ordinary savings frompension in the above, but
for the sake of simplicity of exposure, we shall employ an integrated approach
in what follows.

3. THE OPTIMAL DEMAND THEORY WITH ONLY A CREDIT MARKET

3.1. Introduction

In order to analyze the problem of optimal consumption (including optimal
pension), we need assumptions about the preferences of the consumer. Let L
be a set of deterministic, real functions, L+, the positive cone of L, the set
of consumption rate processes, and R is the real line. To start, we assume the
preferences are represented by a utility function U : L+ × R → R given by
the additive and separable von Neumann-Morgenstern expected utility of the
form

U(c, z) = E
{ ∫ Tx

0
e−δtu(ct)dt + e−κTxv(WTx)

}
, (17)

where z = WTx . Here δ and κ represent utility discounting, and are interpreted as
impatience rates, u : R→ R is a strictly increasing and concave utility function,
and v : R → R is a another utility function. The function v is connected to
life insurance, and may represent a bequest motive, but as we will argue later,
“bequest” is not always the most natural cause for life insurance. The functions
u and v are sometimes referred to as felicity indices.

The classical reference to this material is of course Ramsey (1928).We could,
in a natural way, have extended the analysis to include a recursive structure of
preferences like in Koopmans (1960), which is often taken as a precursor to re-
cursive utility. As it turns out, the standardmodel canmanage well when there is
no risk, so this would be to complicate things unnecessary. The possible problem
with this model is simply that the world contains risk, the model does not.

The variable z = WTx is interpreted as the amount of life insurance. It is often
assumed to be a given constant (e.g., 1) in the standard theory of life insurance,
but we allow it to be a decision variable of the insurance customer. First we focus
on pensions and annuities and set v ≡ 0.
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3.2. The pension problem

The pension problem may then be formulated as:

max
c

E
{ ∫ Tx

0
e−δtu(ct)dt

}
(18)

subject to (i) E
(
W(Tx)e−rTx) = 0, and (ii) ct ≥ 0 for all t. Ignoring the positiv-

ity constraint (ii) for the moment, we may use Kuhn-Tucker and a variational
argument to solve this problem. The Lagrangian is

L(c; λ) =
∫ τ

0
u(ct)e− ∫ t

0 (δ+μx+s )dsdt + λ

(∫ τ

0

(
e(t) − c(t)

)
e− ∫ t

0 (r+μx+s )dsdt
)

.

If c∗(t) is optimal, there exists a Lagrange multiplier λ such that L(c; λ) is max-
imized at c∗(t) and complementary slackness holds. Denoting the directional
derivative of L(c∗; λ) in the direction c by 
L(c∗, λ; c), the first order condition
of this unconstrained problem is


L(c∗, λ; c) = 0 in all ‘directions’ c ∈ L,

which is equivalent to

∫ τ

0

(
u′(c∗

t )e
− ∫ t

0 (δ+μx+s )ds − λe− ∫ t
0 (r+μx+sds

)
c(t)dt = 0, ∀c ∈ L.

This gives the first order condition

u′(c∗
t ) = λe−(r−δ)t, t ≥ 0. (19)

Notice that the force of mortality μx(t) does not enter this expression.
Differentiating this function in t along the optimal path c∗, we deduce the

following differential equation for c∗

dc∗
t

dt
= (r − δ)T(c∗

t ), (20)

where T(c) = − u′(c)
u′′(c) . When financial risk is present, this quantity is interpreted

as the absolute risk tolerance function of the consumer, the reciprocal of the abso-
lute risk aversion function A(c) i.e., T(c) = 1/A(c). Here this interpretation does
not makemuch sense, since there is no (financial) risk, only biometric risk which
we assume can be diversified away by pooling. The interpretation in the present
situation is, perhaps, best illustrated by an example.
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Example2 (A pension contract for the CEIS consumer)

Assume that the income process et is:

et =
{
y, if t ≤ n;
0, if t > n

(21)

where y is a constant, interpreted as the consumer’s salary whenworking. The utility
function is assumed power utility u(c) = 1

1−ρ
c1−ρ . The parameter ρ ≥ 0 is called

the time preference parameter.3 This utility function has a constant elasticity of in-
tertemporal substitution (CEIS) in consumption, denoted by ψ and related to the
parameter ρ via ψ = 1

ρ
.

Returning to the first order conditions, the optimal consumption (and pension)
is then c∗

t = ke
1
ρ
(r−δ)t, where k is an integration constant. Equality in constraint

(i) determines the constant k: The optimal life time consumption (t ∈ [0, n]) and
pension (t ∈ [n, τ )) is then

c∗
t = y

ā(r)
x:n̄|
ā(r0)
x

e
1
ρ
(r−δ) t for all t ≥ 0. (22)

Here r0 = r − r−δ
ρ

and ā(r)
x:n̄| and ā(r0)

x are the actuarial formulas explained in (6)
and (7). Although the first order conditions in (19) do not depend on mortality, the
optimal consumption c∗

t does, since the Lagrange multiplier λ, or equivalently, the
integration constant k, is determined from the “average” budget constraint (i). Also,
the positivity constraint (ii) is not binding at the optimum, due to the form of the
felicity index u. Notice that in this example, T(x) = ψ x for all x.4

For the CEIS-utility of this example, we notice that the function A(x) =
ρ/x is associated with the time preference ρ, and the function T is similarly
associated to the EIS-parameter ψ .

3.3. The effects from changing EIS

The differential (20) tells us that the value of the interest rate r is a crucial bor-
der value for the impatience rate δ. When δ > r the optimal consumption c∗

t is
always a decreasing function of time t, when δ < r the optimal consumption
increases with time. In the first case, the “impatient” one has already consumed
so much, that he can only look forward to a decreasing consumption path. The
“patient” one can, on the other hand, look forward to a steadily increasing fu-
ture consumption path. In Example 2 we see from (22) that the former has an
optimal consumption path that is decreasing exponentially, while the latter has
an exponentially increasing consumption path. This seems to suggest that it may
be difficult to compare consumption paths between different consumers. That
this is not so clear-cut as this example might suggest, will follow when we in-
troduce a securities market where the consumers are allowed to invest in risky
securities as well as a risk-less asset in order to maximize lifetime consumption.
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In Example 2 we can derive comparative statics for the EIS-parameter ψ =
1
ρ
. This can be inferred from the following

∂

∂ψ
c∗
t = y

ā(r)
x:n̄|e

ψ (r−δ) t

(ā(r0)
x )2

(r − δ) (t − τ0) , (23)

where the constant time τ0 is found from the first mean value theorem for inte-
grals: ∫ τ

0
s
lx+s
lx

e−r0s ds = τ0

∫ τ

0

lx+s
lx

e−r0s ds

for some τ0 ∈ (0, τ ). For the patient individual, an increase in ψ leads to an
increase in consumption later on (i.e., for t > τ0) and a decrease earlier in life
(t < τ0). For the impatient individual the conclusions are just the opposite.

An increase in ψ means that the individual becomes less averse to fluctua-
tions in consumption across time.

3.4. The effects from changes in the interest rate

It is also of interest to explore the effect on optimal consumption of an increase
in the interest rate. This will shed some further light on the interpretation of the
EIS in the present situation. Loosely speaking, EIS deals with the individual’s
ability to manage deterministic variations in consumption in order to increase
overall utility. In the present case with no financial risk, it is indeed the EIS
interpretation, or equivalently, time preference, that is relevant. When risk is
introduced, the parameter ρ will play more than one role for the conventional
model.

An individual with a low value of ρ requires less compensation in the future
for a decrease in consumption today, than an individual with a larger value of
ρ. If an individual has a low value of ρ, this means that this person is relatively
“neutral” to consumption substitution across time. The individual has a high
ability to do this type of transfer, and, will typically need little help from others,
like a life and pension insurance company, or other financial institution. This
person has an associated large value for ψ . When ρ = 0 the individual is neutral
with respect to consumption substitution, and has an infinite EIS-parameter.

Think of a bear living in the northern hemisphere as having a large value of
the EIS-parameterψ . This animal may easily postpone consumption for several
months, and is well-suited to tackle the significant deterministic variations in
consumption posed by the differences between the seasons. A lemming, to take
another example, could not postpone consumption in this way since it would
then simply die.5 The property of consumption substitution has nothing to do
with risk aversion, which is addressing something else, namely the individual’s
attitude to variations across the states of nature.
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Returning to the effect on the optimal consumption of an increase in the risk
free interest rate r , we get

∂

∂r
c∗
t = y

ā(r)
x:n̄|e

1
ρ
(r−δ) t

(ā(r0)
x )2

ψ

(
t −

(
1
ψ

τ
(n)
1 +

(
1 − 1

ψ

)
τ2

))
, (24)

where the two time points τ
(n)
1 and τ2 are defined by first mean value theorem

for integrals as follows∫ n

0
s
lx+s
lx

e−rs ds = τ
(n)
1

∫ n

0

lx+s
lx

e−rs ds

and ∫ τ

0
s
lx+s
lx

e−r0s ds = τ2

∫ τ

0

lx+s
lx

e−r0s ds

respectively. From the expression (24) we see that an increase in the interest rate
r leads to an increase in the optimal consumption later, and a decrease in the
optimal consumption earlier in the individual’s life span, provided the break-
point-in-time t̃ = ( 1

ψ
τ

(n)
1 + (1− 1

ψ
)τ2) is strictly positive. t̃ is seen to be a convex

combination of the two time points τ
(n)
1 and τ2 when ψ ≥ 1, and when ψ = 1,

t̃ = τ
(n)
1 . We conjecture that τ

(n)
1 < τ2 since the pension age n < τ , but this also

depends upon the relation between r and r0. This means that t̃ = (τ2 − 1
ψ

(τ2 −
τ

(n)
1 )) is an increasing function of ψ , so that when ψ increases, t̃ approaches τ2.
An individual with a EIS-parameter ψ ≥ 1 will use an increase in the interest
rate to save more early when t < t̃, and accordingly consume more later when
t > t̃.

When ψ is smaller than one, an increase in the interest rate will not neces-
sarily have this substitution effect, and the “income effect” may dominate.

This is of course an important observation related to the insurance industry.
According to this result will individuals with ψ ≥ 1 react to an increase in the
interest rate potentially different from an individual with ψ < 1.

This naturally leads to the question of how large the EIS-parameter is for
the typical insurance customer. Below, but primarily in the companion paper,
we shall return to this question.

3.5. Including life insurance

It is quite natural to also study life insurance in this framework, where the goal
is to determine the optimal amount of life insurance for an individual. In other
words, the problem is to solve

max
c(t),z

E
{ ∫ Tx

0
e−δtu(ct)dt + e−κTxv(z)

}

subject to (i) E
(
W(Tx)e−rTx) ≥ E

(
ze−rTx), and (ii) ct ≥ 0 for all t and z ≥ 0.
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The Lagrangian for the problem is (ignoring again the non-negativity con-
straints (ii)),

L(c, z; λ) =
∫ τ

0
u(ct)e− ∫ t

0 (δ+μx+s )dsdt + v(z)(1 − κ ā(κ)
x )

− λ

(
(1 − r ā(r)

x )z−
∫ τ

0

(
e(t) − c(t)

)
e− ∫ t

0 (r+μx+s )dsdt
)

.

The first order condition (FOC) in c is the same as for pensions treated above.
The FOC in the amount z of life insurance is obtained by ordinary differentia-
tion with respect to the real variable z, which gives

v′(z∗) = λ
1 − r ā(r)

x

1 − κ ā(κ)
x

.

We can thereby determine both the optimal life time consumption, including
pension, and the optimal amount of life insurance. An example will illustrate.

Example3 (The CEIS consumer)

Assume et is as in (21), the consumption felicity index is u(x) = 1
1−ρ

x1−ρ , and

the life insurance index is v(x) = 1
1−θ

x1−θ , where ρ and θ are both time preference
parameters. The optimal life insurance amount and optimal consumption/pension
are given by

z∗ = λ− 1
θ

(
1 − r ā(r)

x

1 − κ ā(κ)
x

)− 1
θ

and c∗
t = λ

− 1
ρ e

1
ρ
(r−δ)t

. (25)

Equality in the “average” budget constraint (i) determines the Lagrangianmultiplier
λ. The equation that determines λ is

λ− 1
θ (1 − r ā(r)

x )

(
1 − r ā(r)

x

1 − κ ā(κ)
x

)− 1
θ

+ λ
− 1

ρ ā(r0)
x = y ā(r)

x:n̄|. (26)

Notice that with life insurance included, the optimal consumption and the pension
payments become smaller than without life insurance present, which is seen when
comparing the expressions in (25) and (26) with (22). This just tells us the obvious:
When some resources are bound to be set aside for the beneficiaries, less can be
consumedwhile alive. The optimal amount in life insurance is an increasing function
in income y, and depends on the interest rate r , the pension age n, the time preference
parameter ρ as well as the impatience rate δ, the bequest time preference parameter
θ and the corresponding impatience rate κ, the insured’s age x when initializing the
pension and insurance contracts, and the insured’s life time distribution through the
actuarial formulas in (25) and (26).

Comparative statics in the parameters are not straightforward, and numerical
technics may be necessary. As an example, when θ = ρ, it can be seen that the
optimal amount of life insurance z∗(κ) as a function of the bequest impatience rate
κ is increasing for κ ≤ κ0 for some κ0 > 0, and decreasing in κ for κ > κ0. For
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14 K.K. AASE

reasonable values of κ this means that more impatience with respect to life insurance
means a higher value z∗ of the optimal amount life insurance.

The above results deviate rather much from the standard actuarial formulas,
which is to be expected since the two approaches are different. The actuarial
theory is primarily based on the principle of equivalence and time preference
neutrality. This is problematic, since time neutral insurance customers would
simply not demand any form of pension or life insurance since this individual
can handle time substitution very well on on own account. Therefore we assume
that the individuals have ρ > 0, unlike what is usually assumed in actuarial
theory, and use expected utility as our optimization criterion for now.

Similarly, the effect of a partial increase in the interest rate on the optimal
amount of life insurance does not depend on the parameterψ being larger than,
or smaller than one - life insurance has to do with risk aversion, not time sub-
stitution. Rather does the sign of the derivative depend upon the level of the
interest rate through some factor (1− r t̃), where t̃ is some positive break-point-
in-time. This derivative is thus positive when r is small, and negative when r is
large - a future consumption benefit is more valuable today if the interest rate is
low than if it is high.

Going back to the actuarial relationship (11), the three quantities p, b and z
representing the premium, the pension benefit and the insured amount respec-
tively can in principle be any non-negative numbers satisfying this relationship.
In the above example, all these quantities are in addition derived so that expected
utility is optimized. The optimal contracts still maintain the actuarial logic rep-
resented by the principle of equivalence, which in our case corresponds to the
budget constraint (i) on the “average”. The present analogue to the relationship
(11) is:

∫ n

0
(y− c∗

t )
lx+t
lx

e−rtdt =
∫ τ

n
c∗
t
lx+t
lx

e−rtdt + z∗(1 − r ā(r)
x ), (27)

where the constant premium p corresponds to the time varying pt = (y−c∗
t ) for

0 ≤ t ≤ n, the constant pension benefit b corresponds to the optimal c∗
t for n ≤

t ≤ τ , and the number z corresponds to z∗ found in (25), where also the optimal
pension c∗

t is given. So, even if we use another principle than standard actuarial
theory, we agree on the principal structure, represented by the similarity between
(27) and (11).

So far the insured amount is still a deterministic quantity, albeit endoge-
nously derived. The reason for the non-randomness in z∗ in the present situation
is that only biometric risk is considered.

When uncertainty in the financial market is also taken into account, we shall
demonstrate that the optimal insured amount becomes state dependent, and the
same is true for c∗

t . Both real and nominal amounts are then of interest when
comparing the results with insurance theory and practice.

Including risky securities in a financial market is our next topic.
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4. THE FINANCIAL MARKET

We consider a consumer/insurance customer who has access to a securities mar-
ket, as well as a credit market and pension and life insurance as considered in
the above. The securities market can be described by the vector νt of expected
returns of N risky securities in excess of the risk-less instantaneous return rt,
and σt is an N× Nmatrix of diffusion coefficients of the risky asset prices, nor-
malized by the asset process, so that σtσ

′
t is the instantaneous covariance matrix

for asset returns. Both νt and σt are assumed to be progressively measurable
stochastic processes. Here N is also the dimension of the Brownian motion B,
the components of which are independent.

We assume that the cumulative return process Rnt is an an ergodic process for
each n, where dXn

t = Xn
t dR

n
t for n = 1, 2, . . . , N, and Xn

t is the cum dividend
price process of the nth risky asset.

Underlying is a probability space (�,F, P) and an increasing information
filtration Ft generated by the N-dimensional Brownian motion, and satisfying
the “usual” conditions. Each price process X(n)

t is a continuous stochastic pro-
cess, and we suppose that σ (0) = 0, so that rt = μ0(t) is the risk-free interest
rate, also a stochastic process. T is the finite horizon of the economy, so that
τ < T. The state price deflator π(t) is given by

πt = ξte− ∫ t
0 rs ds, (28)

where the “density” process ξ has the representation

ξt = exp
(

−
∫ t

0
η′
s dBs − 1

2

∫ t

0
η′
s · ηsds

)
, (29)

where vector stochastic integration is used. Here η(t) is the market-price-of-risk
for the discounted price process Xte− ∫ t

0 rsds , defined by

σ(ω, t)η(ω, t) = ν(ω, t), (ω, t) ∈ � × [0,T], (30)

where the nth component of νt equals (μn(t) − rt), the excess rate of return on
security n, n = 1, 2, . . . , N. From Ito’s lemma it follows from (29) that

dξt = −ξt η′
t · dBt. (31)

We assume from now on that the density ξt is a martingale.
The agent is represented by an endowment process e (income) and a utility

function U : L+ × L+ → R, where we extend the set L of Section 3 to be the
following

L = {c : ct is progressively measurable, and E
(∫ T

0
c2t dt

)
< ∞}.

L+, the positive cone of L, is the set of consumption rate processes.
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The specific form of the functionU is as before, namely the time additive and
separable one given in (17). The remaining life time Tx of the agent is assumed
independent of the risky securities X. The information filtrationFt is enlarged to
account for events like Tx > t. This enlargement is assumed to satisfy “Hypoth-
esis (H)”, or the immersion property, ensuring that the enlargement of filtration
is benign so that the Brownian motion remains one also in the larger filtration.

This type of situation is called a temporal problem of choice. In such a sit-
uation is is far from clear that the time additive and separable form of U is
the natural representation of preferences (an early reference is here Jan Mossin
(1969)).

4.1. The consumption/portfolio choice

First we ignore life insurance, which we return to in Section 10. The consumer’s
problem is, for each initial wealth level w, to solve

sup
(c,ϕ)

U(c) (32)

subject to an intertemporal budget constraint

dWt = (
Wt(ϕ

′
t · νt + rt) − ct

)
dt + Wtϕ

′
t · σtdBt, W0 = w. (33)

Here ϕ′
t = (ϕ

(1)
t , ϕ

(2)
t , . . . , ϕ

(N)
t ) are the fractions of total wealth held in the risky

securities. The first order condition for the problem (32) is given by the Bellman
equation:

sup
(c,ϕ)

{D(c,ϕ)J(w, t) − μx(t)J(w, t) + u(c, t)
} = 0, (34)

with boundary condition

EJ(w,Tx) = 0, w > 0. (35)

The function J(w, t) is the indirect utility function of the consumer at time t
when the wealthWt = w, and represents future expected utility at time t in state
w, provided the optimal portfolio choice strategy is being followed from this
time on. The differential operator D(c,ϕ) is given by

D(c,ϕ)J(w, t) = Jw(w, t)(wϕt · νt + rtw − ct) + Jt(w, t) (36)

+ w2

2
ϕ′
t · (σt · σ ′

t ) · ϕt Jww(w, t).

The problem as it now stands is a non-standard dynamic programing problem,
a so called non-autonomous problem. Instead of solving this problem directly,
we solve an equivalent one. We return to the optimal investment problem in
Section 11. As is well known (e.g., Cox andHuang (1989) or Pliska (1986)), since
the market is complete, the dynamic program (32)–(36) has the same solution
as a simpler, yet more general problem, which we now explain.
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Also to be noticed at this point is the following: When uncertainty of “gam-
bles” being optimized over resolves at dates in the future, after important de-
cisions must be taken, then use of standard models is suspect and often quite
wrong (e.g., Kreps (1988)). “Standard models” here mean the von Neumann-
Morgenstern expected utility representation extended to several periods in the
additive and time-separable way demonstrated in the above, and also the use of
dynamic programming (DP). We know that DP works for the standard model,
but what if the standard model does not work?

4.2. An alternative problem formulation

The problem is here to find

sup
c ∈ L

U(c), (37)

subject to

E
{ ∫ Tx

0
πtct dt

}
≤ E

{ ∫ Tx

0
πtet dt

}
:= w (38)

Here e is the endowment process of the individual, and it is assumed that et is
Ft-measurable for all t.

As before, the pension insurance element secures the consumer a consump-
tion stream as long as needed, but only if it is needed. This makes it possible to
compound risk-free payments at a higher rate of interest than rt.

The optimal wealth processWt associated with a solution c∗ to the problem
(37) and (38) can be implemented by some adapted and allowed trading strategy
ϕ∗, since the marketed subspace M is assumed equal to L (complete markets).
Without mortality this is a well-known result in financial economics.

The framework we use is sufficiently general to also allow for incomplete
markets, since the solution to the above problem is at least as good as the solu-
tion to the dynamical programming problembecause it has fewer constraints. By
introducing the new random variable Tx equality of these solutions still holds:
In principal mortality corresponds to a new state of the economy, which should
normally correspond to its own component in the state price, but the insurer can
diversify this type of risk away by pooling over the agents, all in age x, so that
the corresponding addition to the Arrow-Debreu state price is only the term
exp{− ∫ t

0 μx(u)du}, a non-stochastic quantity. Accordingly, adding the pension
insurance contract in an otherwise complete model has no implications for the
state price π other than multiplication by this deterministic function, and thus
the model is still “essentially” complete. Formally this property hinges on “Hy-
pothesis (H)”, among others, mentioned above.
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4.3. The optimal consumption/pension problem

The constrained optimization problem (37) and (38) can be solved by Kuhn-
Tucker and a variational argument. The Lagrangian of the problem is

L(c; λ) = E
{ ∫ Tx

0

(
u(ct, t) − λ(πt(ct − et))

)
dt

}
, (39)

We assume that the optimal solution c∗ to the problem (37) and (38) satisfies
c∗
t > 0 for a.a. t ∈ [0,Tx), a.s. Then there exists a Lagrange multiplier, λ, such
that c∗ maximizes L(c; λ) and complementary slackness holds.

Denoting the directional derivative of L(c∗; λ) in the “direction” c ∈ L by

L(c∗, λ; c), the first order condition of this unconstrained problem becomes


L(c∗, λ; c) = 0 for all c ∈ L (40)

This is equivalent to

E
{ ∫ τ

0

((
u′(c∗

t )e
−δt − λπt

)
c(t)

)
P(Tx > t)dt

}
= 0, for all c ∈ L, (41)

where the survival probability P(Tx > t) = l(x+t)
l(x) . In order for (41) to hold true

for all processes c ∈ L, the first order condition is

u′(c∗
t ) = λeδtπt = λe−(

∫ t
0 rsds−δt)ξt a.s., t ≥ 0 (42)

in which case the optimal consumption process is

c∗
t = u′−1

(
λe−(

∫ t
0 rsds−δt)ξt

)
a.s., t ≥ 0, (43)

where the function u′−1(·) inverts the function u′(·). Comparing the first order
condition to the one in (19) where only biometric risk is included, we notice that
the difference is the state price density ξt in (42). Still mortality does not enter
this latter condition.

Differentiation (42) in t along the optimal path c∗
t , by the use of Ito’s lemma

and diffusion invariance the following stochastic differential equation for c∗
t is

obtained

dc∗
t = (

(rt − δ)T(c∗
t ) + 1

2
T3(c∗

t )
u′′′(c∗

t )

u′(c∗
t )

η′
t · ηt

)
dt + T(c∗

t ) η′
t · dBt (44)

where T(c) is defined before Example 2. Since there is financial risk present, at
first it seems natural to interpret T(·) as the absolute risk tolerance function and
not as EIS · c. A discussion of this issue we return to later.

Comparingwith the corresponding differential equation (20) for c∗
t with only

biometric risk present, it is seen that including market risk means that the dy-
namic behavior of the optimal consumption is not so crucially dependent upon
whether rt < δ at time t or not. This follows since there is an additional term
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in the drift, and there is a diffusion term present under market risk. Thus the
role played by the impatience rate δ is not quite that clear cut with market risk
present as it is with only a risk-free credit market.

Notice that when the market-price-of-risk ηt = 0 of all t ∈ [0,T] a.s., the
two equations coincide.

Below we consider an example in which the felicity index is the same as in
Example 3. At this stage the standard model would interpret ρ as the relative
risk aversion, call it γ , where ψ = 1/γ has the same interpretation as for the
deterministic model. Thus time substitution and risk aversion are closely inter-
twined in the conventional model.

Example4 (The CRRA/CEIS-consumer)

With the felicity index of Example 3, the optimal consumption takes the form

c∗
t = (λe−(

∫ t
0 rsds−δt)ξt)

− 1
γ a.s., t ≥ 0. (45)

The budget constraint determines the Lagrangemultiplier λ, wheremortality enters.
Suppose we consider an endowment process et giving rise to a pension as in (21).
Using Fubini’s theorem this constraint can be written

∫ n

0

(
ye− ∫ t

0 rsds
lx+t
lx

− λ
− 1

γ e− δt
γ E

(
π

(
1− 1

γ

)
t

)
lx+t
lx

)
dt

+
∫ τ

n
(−1)λ− 1

γ e− δt
γ E

(
π

(
1− 1

γ

)
t

)
lx+t
lx

dt = 0. (46)

For illustration, assume here that the price processes are geometric Brownian mo-
tions, the interest rate r is a constant, and the market price of risk η is a constant.
By the properties of the state prices πt and (28)–(31), it then follows that

E
(

π

(
1− 1

γ

)
t

)
= e−[(1− 1

γ
)(r+ 1

2
1
γ

η′ ·η)]t
.

Accordingly, the budget constraint can be written

y
∫ n

0
e−rt lx+t

lx
dt = λ

− 1
γ

∫ τ

0
e−

[
δ
γ
+
(
1− 1

γ

)(
r+ 1

2
1
γ
η′ ·η

)]
t lx+t
lx

dt.

Defining the quantity

r1 = r − 1
γ

(r − δ) + 1
2
1
γ

(
1 − 1

γ

)
η′ · η,

the Lagrangian multiplier is determined by

λ
− 1

γ = y
ā(r)
x:n̄|
ā(r1)
x

.
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From this, the optimal consumption (t ∈ [0, n]) and the optimal pension (t ∈ [n, τ ])
are both given by the expression

c∗
t = y

ā(r)
x:n̄|
ā(r1)
x

e
1
γ
(r−δ) t

ξ
− 1

γ

t for all t ≥ 0. (47)

which can be compared to (22) giving the corresponding process with onlymortality
risk present. Notice that this latter formula follows from (47) by setting η = 0, in
which case ξt = 1 for all t (a.s.) and r1 = r0.

The expected value of the optimal consumption is given by

E(c∗
t ) = y

ā(r)
x:n̄|
ā(r1)
x

exp
{
1
γ

(
r + 1

2
η′ · η

(
1 + 1

γ

)
− δ

)
t
}
, (48)

which is seen to grow with time t (already) when r > δ − 1
2η

′ · η(1 + 1
γ
). When the

opposite inequality holds, this expectation decreases with time. In terms of expec-
tations, the crucial border value for the impatience rate δ is no longer r but rather
(r + 1

2η
′ · η(1 + 1

γ
)) when a stock market is present.

4.4. Pensions versus ordinary consumption

Now it timewe demonstratewhy pension insurance exists. This is an extension of
the observationmade in Section 2.2 about the effect of pooling in a deterministic
world.

With pension insurance allowed, the actual consumption at each time t in
the life of the consumer is at least as large as the corresponding consumption
when the possibility of “gambling” on own life length is not allowed, provided
the value of life time consumption w is fixed. This demonstrates a very concrete
effect of pooling with market uncertainty allowed.

To this end, consider the random, remaining life time Tx of an x-year old as
we have worked with all along, and for comparison, the deterministic life length
T, where T = E(Tx) = ēx is the expected remaining life time of an x-year old
pension insurance customer. For the purpose of this demonstration the above
model works just fine.

We consider the situation with a CEIS/CRRA-customer with parameter γ

as in Section 4.3, and denote the value of life time consumption w, i.e.,

1
π0
E

(∫ Tx

0
πt c∗

t dt
)

= w.

Using (45) this can be written λ
− 1

γ ā(r1)
x = w, or

λ
1
γ = ā(r1)

x

w
, (49)
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where we have set π0 = 1 without loss of generality. The corresponding value of
life time consumption w for the deterministic time horizon T is determined by

1
π0
E

(∫ T

0
πt ct dt

)
= w,

where it is assumed that in the two situations the budget constraints are the
same. Again the optimal consumption/pension ct is given in (45), however, the
Lagrange multipliers determining the optimal consumption/pension are differ-
ent in the two cases. In order to distinguish, we denote the optimal consump-
tions by c∗

t and ct, respectively. The multiplier for the situation with no pension
insurance is determined by

λ
− 1

γ

(T)

∫ T

0
e−r1t dt = w,

using Fubini’s theorem, which in actuarial notation is equivalent to

λ
1
γ

(T) =
ā(r1)
T̄|
w

. (50)

The function ā(r1)
t̄| = ∫ t

0 e
−r1tdt = 1

r1
(1 − e−r1t) is (strictly) convex in t, which

means that ā(r1)
x = E

( ∫ Tx
0 πt c∗

t dt
) = E(ā(r1)

T̄x| ) ≤ ā(r1)
T̄| by Jensen’s inequality,

since T = E(Tx). By (49) and (50) this means that λ
1
γ ≤ λ

1
γ

(T), and using (45) it
follows for all states ω ∈ � of the world that

c∗
t ≥ ct for all w and for each t ≥ 0, (51)

since the state price density ξt is the same in both cases.
With pension insurance available, the individual obtains a higher, or at least

as high, consumption rate at each time t that he/she is alive. This demonstrates
the benefits from pooling when it comes to pensions, and is, presumably, the
original reason for its existence.

When the individual with a deterministic horizon dies, the remaining wealth
remains with the heirs. This wealth is non-negative by assumption. For the indi-
vidual with the pension, the remaining wealth at death is distributed among the
other pensioners. The individuals in the pool exhaust their life time consump-
tion by gambling on own remaining life time.

5. IMPLICATIONS OF THE CONVENTIONAL MODEL

By the conventional model we mean the model outlined in Section 4. Here and
in the discussion that follows, we intend to illustrate the issues of intertemporal
consumption substitution versus risk aversion. As an alternative derivation of
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TABLE 1

KEY US-DATA FOR THE TIME PERIOD 1889–1978. CONTINUOUS-TIME COMPOUNDING. κ̂M,c = 0.4033.

Expectation Standard dev. Covariances

Consumption Growth 1.81% 3.55% σ̂Mc = 0.002, 268
Return S&P-500 6.78% 15.84% σ̂Mb = 0.001, 477
Government Bills 0.80% 5.74% σ̂cb = −0.000, 149
Equity Premium 5.98% 15.95%

c∗
t in Example 4, the stochastic differential equation (44) for the optimal con-
sumption process is

dc∗
t

c∗
t

=
(
rt − δ

γ
+ 1

2
1
γ

(
1 + 1

γ

)
η′
t · ηt

)
dt + 1

γ
η′
t · dBt, (52)

The function T(c) = c
γ

(= ψc). The “solution” to this stochastic differential
equation is

c∗
t = c0e

1
γ
[
∫ t
0 (rs−δ+ 1

2 η′
s ·ηs )ds+

∫ t
0 η′

s ·dBs ], t ≥ 0.

by the Doleans-Dade formula. The initial value c0 is finally determined by the
budget constraint, and (47) would again result in the simple case of constant
r and η, and geometric Brownian motion prices, which would then imply that
the optimal consumption process is also a geometric Brownian motion as in
Example 4.

In society aggregate consumption is observed to be smooth, with a relatively
high growth rate, see e.g., Table 1, where the summary statistics of the data used
in the Mehra and Prescott (1985)-paper is presented.6 By σcM(t) we mean the
instantaneous covariance rate between the return on the index S&P-500 and the
consumption growth rate, in the model a progressively measurable, ergodic pro-
cess. Similarly, σMb(t) and σcb(t) are the corresponding covariance rates between
the index M and government bills b and between aggregate consumption c and
Government bills, respectively.7 κM,c(t) is the instantaneous correlation coeffi-
cient between the return on the market index and the consumption growth rate.

In order to match the estimated consumption volatility (3.55 per cent), from
(52) we notice that this can be accomplished by a large enough value of the risk
aversion γ . This is so since the value of the market-price-of-risk ηt is relatively
large, here about 0.38 and fixed by the summary statistics of Table 1. As it turns
out, γ has to be of the order of 26 to match these statistics. (Here, if d = 1,
we interpret σM,c(t) = σM(t)σc(t)κM,c(t).) This leads to a low value for the EIS
parameterψ . In particular this means thatψ < 1. Ifψ > 1, this does not match
the low observed consumption volatility of the “representative” consumer.

Many examples have been constructed showing that such a high risk aver-
sion is simply not plausible. Furthermore, an estimate of δ is δ̂ = −0.015 in
order to match the estimated, consumption growth rate of close to two per cent.
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Normally we think of the impatience rate as a non-negative quantity, since hu-
man beings are genuinely impatient.

This calibrated values of the preference parameters constitute a pair of con-
sumption puzzles: The first major, empirical problem with the conventional
model is to explain the smooth path of the aggregate consumption growth rate
in society. From (52), where σc(t) = ηt/γ , for the estimated value of ηt, this re-
quires a large value of γ to match the low estimate of the consumption volatility.

The second major problem with the conventional model is to explain the
relatively large estimate of the growth rate of aggregate consumption in society
for plausible values of the parameters. For the estimated value of ηt, and the
large value of γ required to match the low estimated volatility, this requires a
very low value of the impatience rate δ in (52), in fact it has to be negative.

Solving the first problem also solves the second, so there is really one major
puzzle.

The conventional model predicts too large consumption growth volatility,
and too low consumption growth rate for more reasonable values of the pref-
erence parameters. Thus aggregation does not lead to reasonable results. We
conclude that the model can not explain well the observed data.

These two consumption puzzles are of course related to the celebrated “Eq-
uity Premium Puzzle” and the “Risk Free Rate Puzzle”, seeMehra and Prescott
(1985) andWeil (1989)).With equilibrium imposed, these two sets of puzzles are
in fact identical. The standard equilibrium model which the analysis is based
upon is that of Lucas (1978). See also Breeden (1979) for a continuous-time
approach, where the consumption based CAPM is derived.

Both the insurance industry and public institutions contribute to completion
of the real worldmarkets, and to consumption substitution during the life cycles
of the citizens. The conventional model can not explain the observed level of
smoothing in the consumption growth rate. A major weakness with this model
is that two different abilities of human beings are too tightly linked together;
risk aversion equals time preference, i.e., ρ = γ , or ψ = 1/γ . In particular,
these two properties of an individual should be separated.

The above leads us to consider alternative types of the representation of pref-
erences. The one we find of particular interest in pension insurance is recursive
utility, which allows us to separate consumption substitution from risk aversion.
The resulting model gives an optimal consumption that involves more smooth-
ing than the present model. As a consequence it fits much better the summary
statistics of Table 1 for reasonable parameter values. This is the topic of our
companion paper.

For an insurance company the implications of the observations from the
present model may be several: In real life companies meet many different
types of customers, demanding different pension insurance contracts. The above
individual is rather extreme, and has also implications for a typical insur-
ance customer. Any customer with preferences like this “individual” would
need assistance both in substituting consumption across time, and also in
saving/investment decisions. A defined benefit pension plan would clearly be
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appropriate.However, the insurance industry can not tailormake their contracts
to an “individual” who constitutes an empirical puzzle.

The “representative agent” of this section is a construct, formally obtained
by aggregation. This agent only holds the market portfolio, no bonds and does
not buy any insurance. Our insurance customer in the life cycle model is of
course not a “representative” agent in this meaning, but the preferences should
be close.

6. BUSINESS CYCLES INCLUDED

In order to demonstrate how robust the puzzle of the previous section is, let us
assume that the stock market index is a mean reverting process, and see if this
changes anything. Since business cycles exist in the real world, this will make
our model of the market index more realistic. Business cycles should somehow
be reflected in the data, which a realistic model should also account for. In Ex-
ample 4 wemade the assumption that the market index is a geometric Brownian
motion.

As a concrete illustration, imagine that the stock market index satisfies the
following dynamic equation

dXt = κt(αt − lnXt)Xtdt + σM(t)XtdBt (53)

Here κt and αt are two deterministic processes, that could be just constants, and
σM(t) is the volatility of the return rate on the market index, satisfying usual
conditions. The price process Xt is a strictly positive process such thatYt = lnXt
is anOrnstein-Uhlenbeck (OU)-process. Themean reversion effect in thismodel
is higher for large values of Xt than for low. For α, κ and σM constants, the
solution of (53) is

Xt = X0 exp
{(

α − 1
2

σ 2
M

κ

)(
1 − e−κt) + e−κtσM

∫ t

0
eκsdBs

}
, (54)

in which case
dYt = κ(α − Yt)dt + σMdBt, (55)

which is the dynamics of an OU-process. In this model the market-price-of-risk
is ηt = (κ(α − lnXt) − rt)/σM(t). Proceeding as in Section 4.3 we now use the
FOC (42) i.e., c∗

t = (λeδtπt)
− 1

γ := f (π, t), where

dπt = −πt(rtdt + ηtdBt).

By Ito’s lemma, since

fπ(π, t) = − 1
γ

(c∗
t )

(1+γ )λeδt, fπ,π (π, t) = 1
γ

(
1
γ

+ 1
)

(c∗
t )

(1+2γ )λ2e2δt and

ft(π, t) = − δ

γ
c∗
t ,

https://doi.org/10.1017/asb.2014.26 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2014.26


LIFE INSURANCE AND PENSION CONTRACTS I 25

this gives

dc∗
t

c∗
t

=
(
rt − δ

γ
+ 1

2
1
γ

(
1 + 1

γ

)
η′
t · ηt

)
dt + 1

γ
η′
t · dBt. (56)

This is (44) with the present market-price-of-risk η and the present risk toler-
ance function T. As can be seen, this is also the same equation for the optimal
consumption c∗

t as (52), again with the present process ηt. Since

ηt = κt(αt − lnXt) − rt
σM(t)

= μM(t) − rt
σM(t)

, (57)

whereμM(t) = κt(αt−lnXt) is the return rate of themarket index, the consump-
tion puzzle with mean reversion is seen to be the same as the corresponding
puzzle with geometric Brownian motion in Example 4.

Since no distributional assumptions were made in (44), we could equally
well have taken this equation as a starting point for our present investigation.
In other words, the consumption puzzle remains for the present set of prefer-
ences regardless of the form of the drift and diffusion terms of X so long as
these satisfy standard conditions for existence of solutions of the corresponding
stochastic differential equations.

Another question is the impact of business cycles on welfare. This has been
the topic of much research over the last 40 years. This cycle around the secular
trend has negative impact on consumer welfare. Suppressing it, i.e., smoothing
out the business cycles, would be beneficial to consumers who dislike consump-
tion fluctuations around the optimal growth rate μc(t) .8 As mentioned, the in-
surance industry can contribute by making reserves in good times, i.e., by time
diversification.

A last point: From analyses in the frequency domain (e.g., Dew-Becker and
Giglio, 2013), we know that for the standard power utility the only thing that de-
termines the price of risk for a shock is how it affects consumption today, while
under standard recursive utility long-run risks matter. Recall that the negative
shock of the finance crisis in 2007 had a longer lasting effect on consumption
than just one year, which is more in line with the latter preference specification.
However, much remains to be done in this direction.

7. DISCUSSION OF THE OPTIMAL PENSION

Abstracting from the consumption puzzle on the aggregate level, the model is
still considered to give interesting results on an individual level for many other
issues.

We choose to refer to risk preference instead of time preference, but as we
saw previously, we must be keenly conscientious about the difference. Observe
that when stock market uncertainty is present, since γ > 0, the solution in (45)
tells us that when state prices πt are low, optimal consumer is high, and vice
versa. State prices reflect what the representative consumer is willing to pay for
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an extra unit of consumption; in particular it is convenient to think of πt as high
in “times of crises” and low in “good times”.

In real terms this property of pensions is the same as for optimal consump-
tion. In times of crises the pensions are lower than in good times. This merely
explains the intrinsic logic of this treatment, namely that society can only pay
the pensioners what the economy can manage at each time. To the extent that
this also happens in real life, this is partly a consequence of the way insurance
companies and governments manage resources by yearly budgets.

Insurance companies, for example, pay the pensions from funds, which in
bad times are lower than in good times. Such companies have the possibility
and ability, however, to take a long term view and build reserves in good times,
thereby smoothing premium reserves across time.

With this perspective in mind, insurance companies could consider provid-
ing the type of pension and life insurance contracts that many people seem to
prefer, namely that of smoothing life time consumption across both time, and
states of nature. Since individuals have a shorter time perspective than the in-
surance industry, individuals can not “time diversify” the way the industry can.
Again this is an argument for pooling, but more that that: An insurance com-
pany can interchange time integrals with state integrals under ergodicity (The
Gibbs Conjecture) better than an individual.

Ordinary state pensions are paid out each year to the whole generation of
pensioners. If this is done on a year by year basis with yearly budget constraints,
this will naturally lead to real fluctuations in benefits. If aggregate consumption
in society is down in one particular year, everyone is in principle worse off, sim-
ply by the mutuality principle. This appears very different if also governments
chose to take a long term view and smooth across time as well as over the states
of nature, something a government should be able to accomplish, and many
nations actually do this to a certain degree. A deeper discussion of this topic
would lead us into business cycles, fiscal policy and macroeconomics, which is
beyond the scope of this presentation (see e.g., Rodden et al. (2003)).

7.1. Comparative statics

In Section 3 we considered what happens to consumption, in a pure credit mar-
ket with only mortality risk when, for example, the interest rate increases. In
the present we have the possibility to investigate what happens to consumption
when conditions in themarket for risky assets change. Such partial analyses may
have limited validity, since the actual capital market should be in some sort of
equilibrium. In such an environment an increase in, for example, the market-
price-of-risk may stem from increased uncertainty in relation to the aggregate
consumption in society, which in its turn will lower the equilibrium interest rate.

At the risk of violating such principles, let us nevertheless consider the par-
tial effect on the expected value of the optimal consumption at time t, as seen
from time t = 0, of an increase in the market-price-of-risk. For simplicity of
exposition we assume there to be only one risky asset (N = 1), where σt, νt and
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rt are all deterministic and constant in time. We then get

∂E(c∗
t )

∂η
= y

ā(r)
x:n̄|
ā(r1)
x

exp
{
1
γ

(
r + 1

2
η′ · η

(
1 + 1

γ

)
− δ

)
t
}

η
1
γ

(
1 + 1

γ

)
(t − t̃1),

(58)
where

t̃1 =
1
γ

− 1
1
γ

+ 1
t̃2

and t̃2 is determined by the equality∫ τ

0
s
lx+s
lx

e−r1s ds = t̃2

∫ τ

0

lx+s
lx

e−r1s ds

by the first mean value theorem for integrals. We notice that only when the pa-
rameter γ ≤ 1, or ψ ≥ 1, is the break-point-in-time t̃1 ≥ 0, in which case the
expected consumption decreases for t ≤ t̃1 and increases for t > t̃1 with an in-
crease in η, ceteris paribus. This should be compared to the substitution effect in
Example 2, and must be attributed to the EIS-interpretation of ψ = 1/γ . When
ψ < 1 on the other hand, an increase in the market-price-of-risk η leads to an
increase in the expected consumption for all t > 0, and there is no transparent
substitution between consumption early and late in life. The income effect then
dominates.

An increase in η could also mean a decrease in the volatility σ in the stock
market (recall that σMη = (μM − r)), in which case more is invested in the
stock market relative to the bond market. The individual with γ < 1 would
then invest, consume less earlier and more later. The risk averse individual with
γ > 1 would miss this opportunity, according to the standard model.

7.2. Pensions in nominal terms

Pensions (and insurance payments) are usually not made in real, but in nominal
terms. There exist index-linked contracts, but these are still more the exception
than the rule. In nominal terms the optimal consumption is given by c∗

t πt.
For the model of Example 4, the nominal pension is

c∗
t πt = (λeδt)

− 1
γ π

(1− 1
γ
)

t .

Here the value γ = ψ = 1 is again seen to be a border value of these two
parameters in the sense that for γ > 1 (ψ < 1) both optimal consumption and
pensions in nominal terms are countercyclical. This can give rise to an illusion
of being insured against times of crises.

People with γ < 1 (ψ > 1) experience no such illusion, since nominal
amounts behave as real amounts with respect to cycles in the economy. In the
situation when 0 < γ < 1 the agent is sometimes called risk tolerant. Notice

https://doi.org/10.1017/asb.2014.26 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2014.26


28 K.K. AASE

that when γ = 1 the nominal consumption does not vary with the state price πt
and is in addition deterministic.

The optimal pension problem has no solution unless the agent is risk averse,
i.e., γ > 0.

Independent studies indicate a range of γ from zero to ten, where a value
between one half and three is considered both moderate and plausible.9

8. THE CONNECTION TO ACTUARIAL THEORY AND INSURANCE PRACTICE

In standard actuarial theory the nominal pension is nonrandom, at least this is
what most textbooks on the subject take as a premise. Referring to the above
standard theory, this is only consistent with γ = 1, corresponding to logarith-
mic utility, the case when the substitution effect and the income effect cancel
in the standard model. In addition this theory commonly uses the principle of
equivalence to price insurance contracts, where the state price density implicitly
is set equal to a constant, i.e., ξt ≡ 1. This implies that the agent is really risk
neutral, so γ = 0 follows, and the conventional model breaks dow. Thus there
seems to be an inconsistency between the standard life cyclemodel and actuarial
text-book theory.

In insurance practice, which actuaries are primarily engaged in, let us again
distinguish between the two main types of contracts; (a) defined benefits, and
(b) defined contributions. With regard to the first, before possible profit sharing
the nominal value is usually taken to be constant in the insurance contracts,
although as we have noticed, sometimes contracts are offered where the real
value is approximately constant. A deterministic contract is not consistent with
any finite value of γ for the standard model.

Attached to this contract is usually a return rate guarantee. Many life in-
surance companies are having difficulties with this guarantee in times when the
stock market is down. Lately, in times of crises, this tends to go together with a
low interest rate (like in the financial crisis of (2007– )) due to government in-
terference. In such cases life insurance companies suffer twofold, and must rely
on built-up reserves before, possibly, equity is being used. These problems seem
closely connected to a regulatory regime with focus on yearly performance, for
contracts that are intrinsically long term.

Defined contribution contracts are actively marketed by the insurance com-
panies at the present. For such contracts the insurance customers take all the
financial risk, and mainly mortality risk remains with the companies. There is
no rate of return guarantees, and the contract functions much like unit linked
pension contract, or simply like a mutual fund. Thus the nominal, as well as
the real pensions are state dependent, in accordance with the basic theory out-
lined above. In neither case does a guaranteed return enter the optimal pension
contract. A guarantee affects the insurance company’s optimal portfolio choice
plan. Typically, due to the nature of the guarantees and regulatory constraints,
the companies are led to sell when the market goes down, and buy when the
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market rises.With a constantmarket volatility, this is just the opposite of what is
known to be optimal, to be discussed later. However, typically market volatility
increases in crises, in which case it may be optimal to sell.

Guarantees seem attractive to customers for a variety of reasons, so such
contracts are not likely to disappear from the market: By the principle of dy-
namic consistency, if there is some product that enough people want, eventually
there will be a market for this product. Insurers are reluctant to offer such con-
tracts at the present, but this may well change in the future.

There are different reasons why guarantees originated in the life and pen-
sion insurance business. In Norway, as the story goes, it became part of the
legal terms of the contracts, more or less by an oversight, in times where the
short term interest rate was considerably higher that the 4% that was generally
employed in the premium calculations on which the standard actuarial tables
were based. Also demand from customers likely played a role.

During the financial crisis of 2007 and onwards, casual observations seem to
suggest that many individuals would rather prefer the defined benefit type to the
other. As an example,10 the employees of a life and pension insurance company
would rather prefer a collective defined benefit pension plan, but were voted
down by the board. Collective pension plans organized by firms on behalf of
their workers, are almost exclusively defined contribution plans these days (at
least in Norway), which appear to be the least costly of the two for the firms,
and also the preferred choice to offer by the insurance companies at the present.

In times of crises, defined benefit pension contracts seem most attractive to
the customers, at least as long as they ignore the possibility that their insurance
company may go bankrupt. In the crisis referred to above, some life insurance
companies failed. However, a great number of individuals throughout the world
lost parts of, or even their entire pensions due to the fall in the stock market, for
holders of defined contribution pension plans. In times of rising stock prices, on
the other hand, such contracts may seem attractive to many individuals. What
alternative the individuals find best may thus seem to depend upon where in the
business cycle an individual happens to retire. In isolation, this does not seem
like a sound principle.

In practice, when a pension insurance customer approaches retirement age,
the financial risk of the individual’s premium reserve is gradually decreased by
the company to avoid these kind of problems.

In the next section we present a simple one-period model that points in the
same direction.

9. A SIMPLE ONE-PERIOD MODEL. THE “TIMELESS” CASE

In real life consumers are likely to separate consumption decisions from pen-
sions. A reasonable pension may then, at least partly, be regarded as an insur-
ance against a bad state in the economy when the consumer retires.
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In this regard it may be useful to return to the standard actuarial model of
Section 2.1, where (8) prescribes a fixed yearly pension b, when optimal con-
sumption is taken as given. In the present setting where market risk is included,
in order to obtain an insurance effect of a pension we should, perhaps, bring in
insurance companies explicitly in the model and consider Pareto optimal risk
sharing, but that is beyond the scope of the present presentation.

What we choose to focus on is the following. Consider the insurance problem
in the simple setting of a one-period model (a timeless problem). Let W be the
state dependent wealth at time one (which is also the consumption then) without
pension insurance. Suppose the pension insurance buyer can purchase a pension
contract specifying the amount Y to be paid out at time one at a premium p
paid at time zero. Here the pension amount Y = Y(ω) is also state dependent
seen from time zero. The state price in the economy is denoted by π , a random
variable, and here taken as exogeneous. The optimal pension amount Y is then
a solution of the following problem,

maxYEu(W+ Y− p) subject to E
(
π · (W+ Y− p)

) ≤ E
(
π · W)

. (59)

Here the inequality is the agent’s budget constraint and the utility function u
satisfies u′ > 0, u′′ < 0. The Lagrangian of the problem (59) is

L(Y; λ) = E
(
u(W+ Y− p) − λπ · (Y− p)

)
.

The directional derivative of the Lagrangian at the optimal Y, denoted by Y∗,
in the direction Z is


L(Y∗; λ; Z) = E
((

∂u
∂Y

(W+ Y∗ − p) − λπ

)
Z
)

.

The first order condition is then


L(Y∗; λ; Z) = 0 in all “directions” Z ∈ L2,

which implies that
u′(Y∗ + W− p) = λπ

or
Y∗ = (u′)−1(πλ) − (W− p) a.s. (60)

This equation tells us that the optimal pension amount is negatively correlated
with random endowmentW. As we have pointed out, this is a desirable property
of a pension insurance. Since the budget constraint is obtained with equality
(u′ > 0), the premium p = E(πY∗).

Normally the consumption endowment W results from savings in the secu-
rity market, and if this is done in an “optimal” way W is negatively correlated
with the state price π as earlier explained. Under risk aversion, the inverse func-
tion of u′ is a decreasing function. This means that when the state price π in-
creases, and consequently (W− p) decreases, on the average, the term (u′)−1(πλ)
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decreases, and the term −(W− p) increases, on the average. As a consequence
the positive correlation between Y∗ and the security market is reduced, which is
what risk averse pension customers presumably want. Notice that for timeless
problems the Eu-theory works just fine from an axiomatic point of view.

10. INCLUDING LIFE INSURANCE

10.1. The conventional model

We are now in position to analyze life insurance in the setting of the life cy-
cle model. The contracts we derive here are idealizations. The results may give
useful information to the life insurance industry about what contracts to offer.

We assume that the felicity index u and the utility function v are as in Ex-
ample 3 of Section 3.1. The problem can then be formulated as follows:

max
z,c≥0

E
{ ∫ Tx

0
e−δt 1

1 − γ
c1−γ
t dt + e−κTx 1

1 − θ
z1−θ

}

subject to
E{e−rTxW(Tx)} ≥ E{πTxz},

where z is the amount of life insurance, here a random decision variable. Here
W(t) is the consumer’s net saving at time t given by

W(t) =
∫ t

0
er(t−s)πs(es − cs)ds. (61)

The Lagrangian of the problem is:

L(c, z; λ) = E
{ ∫ τ

0
e−δt 1

1 − γ
c1−γ
t

lx+t
lx

dt + e−κTx 1
1 − θ

z1−θ

− λ

[
πTxz−

∫ τ

0
πt(et − ct)

lx+t
lx

dt
]}

.

The first order condition in c is:


cL(c∗, z∗; λ; c) = 0, ∀c ∈ L+

which is equivalent to

E
{ ∫ τ

0

(
(c∗
t )

−γ e−δt − λπt
)
ct
lx+t
lx

dt
}

= 0, ∀c ∈ L+

and this leads to the optimal consumption/pension

c∗
t = (

λeδtπt
)− 1

γ a.s. t ≥ 0
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as we have seen before in (45). The first order condition in the amount of life
insurance z is:


zL(c∗, z∗; λ; z) = 0, ∀z ∈ L+

which is equivalent to

E
{(

(z∗)−θe−κTx − λπTx

)
z
}

= 0, ∀z ∈ L+ (62)

Notice that both z∗ and z are F ∨ σ(Tx) - measurable. For (62) to hold true, it
must be the case that

z∗ = (
λeκTxπ(Tx)

)− 1
θ a.s., (63)

showing that the optimal amount of life insurance z∗ is a state dependent FTx -
measurable quantity.

One may wonder which of time preference or risk preference is the correct
interpretation of the parameters θ and γ . (This will be clear once we turn to
recursive utility, applied to life insurance. For an exposition of recursive utility
in general, see e.g., Kreps and Porteus (1978).

If the state is relatively good at the time of death, the state price πTx is then
low and (πTx)

− 1
θ is relatively high (when θ > 0). Thus this life insurance contract

covaries positively with the business cycle. In practice this could be implemented
by linking the payment z∗ to an equity index.

One can again wonder how desirable this positive correlation with the econ-
omy is. For optimal consumption we found it quite natural, but not so for pen-
sions. Similarly, life insurance possess the characteristics of an ordinary, (non-
life) insurance contact. In some cases itmay seem reasonable that a life insurance
contract is countercyclical to the economy, thereby providing real insurance in
time of need. For this to be the result, however, the function v must be convex,
corresponding to risk proclivity which here means that θ < 0, but risk loving
people do not buy insurance.

The expected value of z∗ is found by conditioning, assuming that ν, η and r
are all deterministic constants. It is given by the formula

E(z∗) = λ− 1
θ

∫ τ

0
exp

{
1
θ

(
r + 1

2
η′ · η

(
1 + 1

θ

)
− κ

)
t
}
lx+t
lx

dt. (64)

For a given value of budget constraint (λ), this expectation is seen to be larger
if r + 1

2η
′ · η(1 + 1

θ
) > κ than if the opposite inequality holds. As for pensions,

in terms of expectation has the impatience cut-off-point increased from r to
(r+ 1

2η
′ ·η(1+ 1

θ
)). In other words, not only themarket interest rate r , but also the

market-price-of-risk and the relative risk aversion of the function v determines
what it means to be impatient, when a stock market is present.
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Using the budget constraint with equality, we find an equation for the La-
grange multiplier λ;

E
{
πTxz

∗ −
∫ τ

0
(et − c∗

t )πt
lx+t
lx

dt
}

= 0.

With a constant income of y up to the time n of retirement, and an optimal
pension c∗

t thereafter as in (21), we obtain the equation

λ− 1
θ (1 − r2ā(r2)

x ) + λ
− 1

γ ā(r1)
x = yā(r)

x:n̄|,

where

r1 = r − 1
γ

(r − δ) + 1
2
η′ · η

1
γ

(
1 − 1

γ

)

as in Section 4.3, and

r2 = r − 1
θ
(r − κ) + 1

2
η′ · η

1
θ

(
1 − 1

θ

)
.

In the special situation where κ = δ and θ = γ so that u = v, it follows that
r1 = r2 and

λ
− 1

γ = yā(r)
x:n̄|(

1 + (1 − r1)ā
(r1)
x

) .

It is at this point that pooling takes place in the contract. In this situation the
optimal consumption/pension is given by

c∗
t = yā(r)

x:n̄|(
1 + (1 − r1)ā

(r1)
x

) e((r−δ)/γ )t ξ
− 1

γ

t , (65)

and the optimal amount of life insurance at time Tx of death of the insured is

z∗ = yā(r)
x:n̄|(

1 + (1 − r1)ā
(r1)
x

) e((r−δ)/γ )Tx ξ
− 1

γ

Tx . (66)

This means that the optimal amount of life insurance is determined jointly,
through the constant λ, with the optimal consumption/pension.

Also Richard (1975) noticed that optimal life insurance is proportional to
wealth for CRRA-utility (which is the case here, see Section 11). In the above
formulation it is emphasized that the optimal amount of life insurance depends
on the date of death of the insured. One would think that these contracts ought
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to represent an innovation in the theory of ordinary life insurance, where these
properties are normally not taken into account.

10.2. Discussion of state dependent life insurance contracts

If large parts of the population buy life insurance products, a positive correlation
with the business cycle is a natural property of the life cycle model. If we intro-
duce insurance companies, this corresponds to no building of reserves. Unlike
pension insurance, however, life insurance is a product that not everybody seems
to demand. We can single out two different family situations where life insur-
ance is of particular interest. The first concerns a relatively young family with
small children. Then one of the parents can usually not work full time, which
means that the other is the main provider. If this person dies, in for example an
accident, this is of course dramatic for this family. Life insurance then plays the
role of insurance for the loss of the remaining life time income. As can be seen
from the expression in (66), the insured amount is proportional to the present
value at time zero of life time income yā(r)

x:n̄|. If death comes early, Tx is relatively
small so the factor e((r−δ)/γ )Tx is close to one.

The other situation we have in mind is the traditional one with a bequest
motive, usually meaning that an older person wants to transfer money to his or
her heirs. The social need for this insurance may seem less obvious than in the
first situation described. Here the factor e((r−δ)/γ )Tx may be large for the patient
life insurance customer, implying a large insured sum to the beneficiaries. De-
spite of all the good reasons for a life insurance contract for the young family,
its seems far less widespread than life insurance with the bequest motive, which
is somewhat ironic.

In climate economics the bequest idea could be interesting in the following
sense. By paying a premium today (e.g., by reducing consumption and utility
now), one may “roll over” a more sustainable society to future generations by
“inter-personal transfers”.

One objection to the optimal solutions (63) and (66) is that the amount
payable has not been subject to “enough pooling” over the individuals.
The pooling element is present, since it is used in the budget constraints,
but the amount payable is here crucially dependent on the actual time of
death Tx of the insured, which is unusual in both life insurance theory and
practice.

Focusing on the standardmodel, one alternative approach is to integrate out
mortality in the first order condition (62). Notice that this is strictly speaking
not the correct solution to the optimization problem, but must instead be con-
sidered as a suboptimal pooling approximation. This results in the following
approximative first order condition:

Ez,z∗
{(

(z∗)−γ (1 − δā(δ)
x ) − λ

∫ τ

0
πt fx(t)dt

)
z
}

= 0, ∀z,
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assuming again that κ = δ and θ = γ . The solution to this problem, also a
random variable, is given by

z̄∗ =
(

λ
∫ τ

0 ξte−rt fx(t)dt

1 − δā(δ)
x

)− 1
γ

a.s. (67)

However, this contract is seen to depend on the state of the economy from time
0 when the insured is in age x, to the end of the insured’s horizon τ . At time of
death Tx (< τ) this quantity is not entirely known, which is a consequence of our
approximative procedure. Ignoring this information problem for the moment,
by employing the budget constraint, the Lagrange multiplier λ is found as

λ
− 1

γ = yā(r)
x:n̄|

ā(r1)
x + E[(

∫ τ

0 ξte−rt fx(t)dt)
(1− 1

γ )]

(1−δā(δ)
x )

− 1
γ

(68)

Inserting λ from (68) into (67), the suboptimal insured amount results.
When stock market uncertainty goes to zero, i.e., when ξt → 1 a.s., z̄∗ con-

verges to the corresponding contract of Section 3.1 when only biometric risk is
present.

We can derive an insured amount z∗∗ that is consistent with the information
available at time of death of the insured as the following conditional expectation

z∗∗ := E{z̄∗|FTx}.

This is a random variable at the time when the life insurance contract is initial-
ized, and an observable quantity at the time of death of the insured, and thus
solves the information problem.

Note that this contract would benefit the young family in the case of early
death of the provider, since those who die early are subsidized by those who live
long when the insured sum is subject to enough averaging.

The advantage with this contract is that it takes into account pooling over
life contingencies at two stages of the analysis. Furthermore it is consistent with
the standard analysis when there is “no market risk in the limit”.

11. THE OPTIMAL PORTFOLIO CHOICE PROBLEM

We have barely touched upon the portfolio choice problem in Section 4.1, but
could there proceed without really having to solve it. This is due to the fact that
in the model we discuss, we may separate the the consumer’s portfolio choice
problem from his or her optimal consumption choice. In the present section
we do solve the investment problem explicitly. For this we need the agent’s net
wealthWt at time t. For the CRRA-consumer of the standard model, it is given
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by

Wt = 1
πt
Et

{ ∫ Tx

t
πsc∗

s ds
}

= 1
πt
Et

{ ∫ Tx

t
π

(1− 1
γ
)

s λ
− 1

γ e− δ
γ
sds

}
,

where we have used (45). Here Et means conditional expectation given the in-
formation filtration Ft ∨ (Tx > t), i.e., given the financial information available
at time t and the fact that the individual is alive then. Recalling that at time t
the agent is in age x+ t, we get, using Fubini’s theorem

Wt = 1
πt

λ
− 1

γ

∫ τ

t
Et

(
π

(
1− 1

γ

)
s

)
e− δ

γ
s lx+s
lx+t

ds.

Provided σt = σ , νt = ν and rt = r are all deterministic constants, the condi-
tional expectation appearing in the integrand is computed as follows:

Et
(
π

(1− 1
γ
)

s

)
= Et

(
π

(1− 1
γ
)

t e(1− 1
γ
)(−r− 1

2 η′·η)(s−t)+(1− 1
γ
)η′·(Bs−Bt)

)

= π

(
1− 1

γ

)
t e−

[(
1− 1

γ

)
r+ 1

2
1
γ

(
1− 1

γ

)
η′·η

]
(s−t)

,

where we have used the lognormal representation for the state price π and
the moment generating function of the normal distribution. This gives for the
wealth process

Wt = π
− 1

γ

t λ
− 1

γ e− δ
γ
t ā(r1)

x+t = c∗
t ā

(r1)
x+t, (69)

where r1 is as given in Section 4.3. This shows that the wealth at any time t in
the life of the consumer, who is then in age (x+ t), is equal to the actuarial value
of receiving the optimal consumption c∗

t per time unit for the rest of his or her
life, discounted at the rate r1.

This observation is the analogue of a result that states that optimal consump-
tion is “proportional” to wealth, see e.g., Merton (1971) and Richard (1975).
Going back to Section 10.1, we notice that this is also true for the optimal
amount of life insurance z∗.

For logarithmic utility, r1 = δ the subjective interest rate; when γ �= 1 this
discount rate depends on the volatility of the state prices, or the market price of
risk η, δ, r as well as of γ . In fact, r1 can be interpreted as the a risk adjusted
return rate.

Using the dynamics for c∗
t given in (47), by Ito’s lemma we obtain the fol-

lowing dynamic representation for the wealthWt:

dWt = μW(t)dt + 1
γ
Wtη · dBt,

for some drift term μW(t). Comparing this to the intertemporal budget con-
straint (33) of Section 4.1, we may apply diffusion invariance to determine the
the optimal fractions ϕ′

t = (ϕ
(1)
t , ϕ

(2)
t , . . . , ϕ

(N)
t ) of total wealth held in the risky
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securities at each time t. By equating the two diffusion terms, we obtain that

1
γ

η = ϕt · σ.

and recalling that ση = ν, it follows from this that the optimal investment frac-
tions are

ϕ = 1
γ

(σσ ′)−1ν, (70)

where ν, with components νn = μn − r , n = 1, 2, . . . N, is the vector of risk
premiums for the N risky securities. These ratios are all seen to be constants,
meaning that they do not depend upon the age (x+ t) of the investor, the state
of the economy π , or on the investor’s death intensity μx+t.

This result is the same as the one found byMossin (1968), Samuelson (1969)
and Merton (1969, 1971) without pension insurance present. A random time
horizon simply does not alter this result.

The formula (70) basically tells us that when prices of stocks increase, it is
optimal to sell, and when prices fall it is optimal to buy, provided volatilities
do not change. From an insurance perspective companies are often led to do
the opposite, as we have mentioned before, which is of course unsatisfactory.
However, in times of crises the volatility of the stock market index typically
increases, in which case the optimal fraction in the index goes down.

In the formula (70) it is customary that γ is interpreted as relative risk aver-
sion, and 1/γ is relative risk tolerance. The EIS-interpretation of ψ = 1/γ does
not appear relevant in this connection.

One objection to result (70) is that the optimal strategy does not depend
upon the investor’s horizon. This is against empirical evidence, and also against
the typical recommendations of portfolio managers and insurance companies.
The typical advice is that as the horizon gets shorter, the investor should gradu-
ally go out of equities, and thus take on less financial risk. This issue we present
a short discussion of in the next section.

Another objection about this model is that under our assumptions about de-
terministic σt, νt and rt this model implies that the volatility of the consumption
growth rate σc is equal the volatility σW of the return rate on the wealth portfolio
Wt. Thus, from Table 1 we notice that the market portfolio can not be a proxy
for the wealth portfolio under these assumptions.

12. THE HORIZON PROBLEM

In this part we examine the effect of horizon and wealth on portfolio choice. We
assume that the felicity index u(x, t) satisfies the following

u(x, t) =
{ 1

1−γ (t)x
(1−γ (t))e−δt, if γ (t) �= 1;

ln(x)e−δt, if γ (t) = 1.
(71)
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where γ : [0, τ ) → R+ is a continuous and strictly positive function of time.
Notice that in this case u(x, t) is not time and state separable, but this is the
only relaxation of the standard assumptions that is done. Aase (2009) shows
that the optimal investment ratios are

ϕ(t) = 1
γ (t̃t)

(σσ ′)−1ν, (72)

where t̃t is anFt−measurable random time satisfying t̃t ∈ (t, τ ). It is determined
at each time t by the equation

γ (t̃t) =
∫ τ

t g(s, t)ds∫ τ

t g(s, t)
1

γ (s)ds
:= Wt

Zt
. (73)

HereWt is the agent’s optimal wealth at time t, given by equation

Wt =
∫ τ

t

(
λeδs)− 1

γ (s) π
− 1

γ (s)
t

exp
{

−
(
r + 1

2
1

γ (s)
η′ · η

)(
1 − 1

γ (s)

)(
s − t

)} l(x+ s)
l(x+ t)

ds. (74)

Notice that when the function γ (t) ≡ γ , then the wealth in this equation be-
comes the same as the wealth in (69), as the case should be. Clearly the quantity
Zt can be computed from the expression forWt in (74) and the function γ (t).

The consequences of this result are several, and the above reference gives the
details. Herewe only point out that if the risk aversion function γ (t) is increasing
with time, this result implies that individuals should investmore in the risky asset
when they have a longer horizon, i.e., when they are young, and gradually move
into bonds as they grow older. This is then in agreement with both advice from
investment professionals, and with empirical studies of actual behavior.

It seems natural, with this assumption, that the investor should pick some
average time in the remaining horizonwhen deciding on today’s portfolio choice.

The horizon problem should, perhaps, be formulated in the mean reverting
setting of Section 6, since one concern is what happens when retirement takes
place in a slump. The technical side of this problemhas been considered in Benth
and Karlsen (2005), where the result presented is rather complicated, but the
optimal ratio in the risky asset depends on the horizon. Another situation is
when, in the the standard model, there is a bequest utility function v different
from u. Time dependence can then arise in the optimal portfolio solution as
well.

Other treatments of the horizon problem include Samuelson (1989),
Milevski (1998), Delong (2008) and Bodie (2009), among others.
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13. A SECOND PORTFOLIO CHOICE PUZZLE

In connection with the optimal portfolio choice result (70), there is also another
empirical puzzle. Again we refer to the study of Mehra and Prescott (1985) of
the US-economy for the period of 1889–1978, where the data are summarized
in Table 1.

Based on the conventional, pure demand theory of Section 11, by assuming
a relative risk aversion of around two, the optimal fraction in equity is 119%
follows from the standard formula (70), using the summary statistics of Table 1,
and assuming one single risky asset, the index itself. In contrast, depending upon
estimates, the typical household holds between 6% to 20% in equity. Conditional
on participating in the stock market, this number increases to about 40% in
financial assets.

One could object to this that the conventional model is consistent with a
value for γ around 26 only. Using this value instead, the optimal fraction in
equity is down to around 7%, which in isolation is reasonable. However, such
a high value for the relative risk aversion is considered implausible, as we have
discussed before.

This is a problem where the recursive model gives much more reasonable
results, see Aase (2014a).

14. LONGEVITY AND COHORT RISK

We round off by discussing some issues that do not directly come as a result of
the above analysis, but which are related to problems commonly discussed in
connection with pensions.

In comparing longevity risk with cohort risk, it is tempting to dismiss the
latter as not being of such fundamental importance as the former. By cohort
risk is meant that some periods have larger numbers of retired people than other
periods. This is a transient phenomenon that will eventually pass away, and not
a structural one, as longevity risk. Of course, when these two risks materialize
at the same time, this causes extra problems for any nation’s welfare programs.
This seems to be the case inmanywestern countries when the large broods borne
right after World War II become pensioners. In addition these cohorts tend to
live longer than the generations before them.

In some countries the actuarial tables are modified every year, like in
Canada, in other countries the same tables as were constructed in 1963 were still
used in 2009, like in Norway. The theory in this paper assumes that the tables
capture the real mortality risk, and pooling works so that there is no economic
risk premium associated with mortality. As long as the proper measures have
been taken regarding reserving for longevity risk, there should be few problems
for the private insurance industry with respect to either of these two types of
risk.
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For government welfare programs, the situation is of course different. Many
developed countries have a social security system that pays a basic pension to
its citizens. This is usually independent of what the individuals have arranged
in terms of pensions from the insurance industry. In Norway, for example, the
country that I know best, the government pensions are determined by the prin-
ciple of “pay as you go”. For those only acquainted with the premium reserving
of private or mutual insurance companies, this may not look like a sound prin-
ciple. In the parliament (Stortinget) the politicians determine a basic amount
each year, called one G upon which the pensions are based. In 2010 the size
of G = NoK75.641, corresponding to USD13.000. The more registered work
effort an individual has put in, and the higher the salary, the higher the pen-
sion. Consider the incentives: By and large this arrangement means that the
daughters and sons of the beneficiaries determine the benefits. Thus the “weak”
part - the pensioners - seem protected, or at least, they get what they “deserve”.
Second, what about economic sustainability? Since all pensions are determined
from the basic amount G, by making this amount state dependent, matters can
be arranged such that the nation each year pays the pensions it can afford. As
we have mentioned earlier, here nations are in addition able to carry out some
sort of time diversification on the aggregate level.

In practice, to set G lower one year than the previous year may require a
great deal of political determination and courage, which means that the system
represents no guarantee that the nationwill not consume beyond itsmeans.Here
rules rather than discretion may be the solution.

In addition to this basic pension from the government, and possible private
pensions with the insurance industry, in many countries there are pensions also
from the employers. These collective pensions are usually arranged between the
employers and private insurers. The pensions depend upon how long an em-
ployee has been with the company, what the salary has been, and the premium
reserve moves with the worker as he or she changes jobs.

The two types of risk, longevity risk and cohort risk, are problematic for
governments’ welfare schemes. One solution has been pointed out in a recent
report.11 By increasing the pensionable age by a few years, the projected increase
in the state’s pension expenses may be mitigated. In particular this report claims
that by increasing the pension age by two years, this increases the state’s income
of about four per cent of GDP for the case of Norway. For an average working
period of 40 years, an increase of two years means that the total work effort is
society has increased by five per cent. In other words, society can become five
per cent richer if people work two more years.

This suggestion has of course its weaknesses, since for once it “assumes
away” unemployment, which is not negligible in many western countries. It is
therefore also likely to be controversial. That it is politically difficult, we know
from protests and demonstrations in 2010 and later in countries like Greece, Ire-
land, France, Portugal, Spain, etc. However, it is no secret that some countries
seem to have more “slack” than others. As an illustration, in Table 2 is shown
the employment frequency for people between 60 and 64 years for a number of
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TABLE 2

EMPLOYMENT FREQUENCY IN PER CENT, 60–64 YEARS. SOURCE: EUROSTAT.

Freq. 7 12 12 21 22 31 35 40 43 58 58

Nation Au Fr It Sp Ger Gree Den US UK Swe Nor

European countries and the USA. It starts at about 7% in Austria, goes via 40%
in the USA and ends with 58% in Sweden and Norway.

The official and the real pension age also vary across the European coun-
tries, highest in Iceland with 67 and 66 years, and lowest in France with 60 and
59 years, respectively. The problems with longevity and cohort risk are thus seen
to have both macro, public, and political economic perspectives.

15. SUMMARY, DISCUSSION AND EXTENSIONS

The life cycle model is analyzed in two steps; first with only a credit market and
mortality risk, then with a securities market added. The analysis provides an
optimal demand theory from the point of view of the consumers, who are also
potential life and pension insurance customers. In this model optimal insurance
contracts are derived, assuming they exist, which we then compare to real con-
tracts. We have derived several conclusions from this model, some with more
predictive, or normative power than others, which we now summarize.

The first result was related to the optimal consumption path in the situa-
tion with only a credit market. When there is life time uncertainty, the optimal
consumption paths are shown to be crucially dependent on the impatience rate.
The impatient consumer (δ > r ) must always look forward to an ever decreasing
optimal consumption, since dc∗

t /dt = (r − δ)T(c∗
t ). The patient agent (δ < r ),

on the other hand, can look forward to an ever increasing optimal consumption.
While this gives an interesting and intuitive interpretation of the impatience

rate δ, it is not likely to give reliable predictions. With a securities market in-
cluded this property is diluted, by both a new addition to the drift term and a
diffusion term. In particular the latter will dictate consumption paths to deviate
from the simple, deterministic description just given. This opens up for inter-
personal comparisons of consumption behavior at the same time in agents’ life
cycles. Impatience is more naturally discussed in terms of expectations when a
stockmarket is present, in which case themarket-price-of-risk, risk aversion and
time preference (ψ−1) must all be taken into account when characterizing this
property.

The optimal pensions contain an additional random function when a stock
market is included. This function is reciprocal to the state price density, a fact
which was found to have several interesting implications. In particular the op-
timal pensions are found to be positively correlated with the economy in the
sense that when stock prices are high, the pensions are also high, and vice versa.
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In the conventional model this a quite natural property, in particular for the
aggregate economy, since such a consumption pattern is consistent with what
the economy can deliver.

This inspired a discussion of what insurance companies can do to offer more
reasonable pension and life insurance contracts to the public. We indicated that
by making reserves, pensions can be offered that smooth the individuals life
time consumption, which is clearly desirable in general, for any reasonable set of
preferences. The reason that life insurance companies can offer such smoothing,
is that they can time diversify in the financial markets, something individual
customers can not manage quite that well.

We have a simple demonstration of the advantages of pooling with regard
to pensions. It is shown that, with the same economic resources, the optimal
yearly consumption is strictly larger with pooling, than without. This shows the
mutuality idea is fruitful, a fact that is worth a reminder, in particular since we
live in a time of individualism, seemingly picturing aworld inwhichwe are solely
responsible for our own successes and failures.

Optimal life insurance, where the insured amount is endogenously deter-
mined, is analyzed, and its properties are found reasonable. Like pension insur-
ance, also the insured amounts in life insurance are co-cyclical with the economy.
This can be mitigated by the life insurance industry, just as for pensions.

It should be pointed out that we know little about the specification of the
utility function v, when it serves a bequest motive, as compared to u for the
standard model. Life insurance is an important financial tool for controlling
inter-personal transfers, which necessitates references to the theory of transfers
(like e.g., Bernheim et al., 1985). We show that if the insured amount is to be
countercyclical to the economy, and thus be a bona fide insurance against tough
times for the beneficiaries, this requires risk proclivity of the bequest function
v. This effectively rules out this possibility. A countercyclical insured amount
appears desirable in a finance setting, but risk proclivity does not. This is where
the insurance industry can improve welfare.

We compared our results to both actuarial theory and insurance practice.
With regard to pensions it was found that defined contribution plans are most in
line with the optimal contracts found in this paper for the conventional model.
However, consumption smoothing over the life cycle is preferred by all con-
sumers, due to their time preference. Our conventional model is based on a
representative customer, who, when calibrated to data, happens to have low sub-
stitution elasticity and high risk aversion and time preference. Although we do
not want to draw too many conclusions directly from this, it can be pointed out
that such an individual is likely to prefer to purchase a pension contract with
guarantees.

We have argued that insurance companies should be especially well suited
to take on market risk, since they normally have a long term perspective. This
would enable them to realize the risk premiums in the market in the long run,
which after all are time averages. This is time diversification.
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If an insurance company only offers defined contribution pension plans,
there is virtually no financial risk involved in this line of business, and as a
consequence this company can only expect to earn about the risk free rate in
equilibrium, in the long run. Such a return on the company’s operations is un-
likely to meet the requirements of its owners. However, the consequences for a
privately owned insurance corporation is that equity can then be set low. With
risk subsidies from, say the government, the average cost of capital is low. By
the leverage effect debt has on total returns, the expected return on equity can
then still be high.

Much has been written about the recent financial crises of 2007–09. One
criticism of the financial industry that has been put forth is that the financial
firms were eager to collect fees for their services, by inventing all kinds of prod-
ucts that were difficult to understand for ordinary customers. Such fees can not
be directly considered as a compensation for risks, but were one basis for the
profits in the industry. As long as prices went up, this seemed to work, but as
soon as confidence in the system started to fail, the collapse came partly as a
consequence of failed risk management, among other factors. However, this is
not the major criticism of the industry - it is its ability to leave the downside risk
to the taxpayers.

Financial firms trading in derivatives may access unbounded liability expo-
sures and are granted limited liability. Under such circumstances an all equity
firm holds a call option, whereby it receives a free option to put losses back to
the taxpayers (e.g., Eberlein and Madan (2010)). In such a situation increasing
volatility increases the value of both assets and the liabilities, thereby creating
perverse incentives.

With defined contribution products, the insurers’ equity can be kept low,
but the return on equity should, at least in principle, only be high provided the
insurers are clever in collection fees from the customers, since there is virtually
no financial risk involved. If the products are largely standardized, competition
should bring down these fees, and also the profit margins for the insurers. For
this reason insurers are are sometimes ingenious in tailor making products to
customers, where terms are opaque and difficult to compare.

In some countries there are state guarantees issued for individual pensions.
As with banks, where the government has a stake because it insures deposits,
the reason is to preserve the stability of the financial system, which is important
to preserving the stability of the economy. If an insurance company gets into
a situation of distress, the government may have to come in to honor its com-
mitments to the insurance customers, which can be done by conservatorship.
Because of the importance of thrust between the population and the life insur-
ance industry, it is more common that life insurance companies in distress are
taken over by other companies in the industry. In the 2007-09 crisis, in the US
the government chose to provide funds to the financial firms with virtually “no
strings attached”. This may distort both risk management in the future, as well
as proper pricing of the products.
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Related is the desire to keep equity low, especially for institutions that are
“too big to fail”. By the Miller and Modigliani (M&M) theorems the value of
the firms (like insurance companies and banks) should be independent of the
capital structure so long as the investments are unaffected.12 Since banks may
be bailed out by the government, the cost of capital can be low in these sec-
tors. TheM&M-theory predicts that the cost of capital is a constant function of
leverage. In practice, for an industrial firm the cost of capital is U-shaped as a
function of the debt ratio. At the beginning it falls because of the tax advantage
of debt, for larger value of the debt ratio it increases because of bankruptcy
costs. This trade-off is typically broken for financial firms with an implicit gov-
ernment risk subsidy. Focusing on banks, the low average cost of capital is due
to the government’s role in the case of bankruptcy. By keeping equity low, the
owners can obtain high returns on equity, not necessarily because of good risk
taking, but rather due to the risk subsidy granted by government, combined
with the leverage effect of debt on the expected rate of return on equity.

The low level of equity held prior to the 2007-crisis, together with a previ-
ous deregulation, also tempted some to higher risk taking, which meant that
the investment profile changed as a consequence of the special capital structure
in the banking industry. This is moral hazard, and certainly brings us outside
the M&M framework. Prior to the financial crisis this behavior increased the
risk (unnecessarily) for all the agents involved, except the creditors, the result of
which is known by now. There are also elements of moral hazard in the relation-
ship between owners and management. Many of the same features are present
also in the life insurance industry, although to a lesser extent.

It is essential that the financial industry and the population at large learns
from this, so that future crises become less severe. In order for the relevant re-
quirement on equity and reserves to be appropriate, both incentives must be
aligned with societal goals, and governments must get in place a proper regula-
tory regime that works. The “too big to fail” doctrine must be broken, and the
creditors must be forced to take potential losses. This may downgrade the debt
of banks, but will motivate banks to increase their equity ratios.

Finally the paper discusses optimal portfolio choice strategies. This culmi-
nates with the formula (70), characterizing the optimal plan in the context of
pure demand theory. When applied to market data this formula overestimates
ordinary consumers’ exposures to risky securities. As with all simple formulas,
there are pros and cons. The advantage is the simple logic this formula conveys,
the drawback is that it is framed in a very simple model of a complete, fric-
tionless financial market, which is, perhaps sometimes taken too literally. One
particular assumption about this market is that the investment opportunity set
is constant. (The recursive model turns out to domuch better in this regard, and
can better explain observed data.)

Another weakness with the theory of optimal portfolio choice is related to
the “horizon problem”. Here we make a deviation from the additive and sep-
arable preference representation: We relax the separability of state and time in
the felicity index u(x, t) in the standard model. This is unusual in economic
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models. Nevertheless, it has the potential to explain observed behavior, namely
that as investors grow older, they invest a larger proportion of their wealth in
government bonds.

If we take into account also the supply side of the economy, and for ex-
ample study Pareto optimal contracts, this may give a clearer picture of some
of the problems discussed. We know that such contracts are “smooth” at each
time, unless there are frictions of some kinds, and including the supply side of
the economy may give contracts different from what follows by demand theory
alone.

We observed that the growth rate of aggregate consumption in society has
low estimated volatility when calibrated to data, with a relatively high estimate
for the growth rate. This is not consistent with the model, hence the consump-
tion puzzles of Section 5.

This general discussion revealed several weaknesses with the additive and
separable framework of von Neumann and Morgenstern expected utility in a
temporal context. One reason singled out is that the risk preference has two dif-
ferent, and sometimes conflicting interpretations in this model. We have there-
fore introduced recursive utility in a companion paper, containing a separation
of consumption substitution from risk aversion. This gives a better explanation
of market and consumption data, which opens up for several new interpreta-
tions.

Finally we presented some comments on longevity risk and cohort risk, and
concluded that these problems are, perhaps, best analyzed in the perspective of
macro, public, and political economics.

NOTES

1. This part is, e.g., based on experience from several years as a boardmember of a life insurance
company.

2. Excluding saturation, the inequalities may be replaced by equalities.
3. Some readers may now be confused and rename this parameter γ , and interpret it as the

coefficient of relative risk aversion (CRRA). Again, this interpretation is meaningless here, since
there is no financial risk.

4. Notice the difference of our approach from the one taken in Devolder and Hainaut (2006),
who divide the optimal planning of consumption into two distinct periods, where a transition time
between the periods is calculated (numerically).

5. On another time scale a lemming might have a larger EIS.
6. There are of course newer data sets, and for other countries than the US, but they all retain

these basic features. The data is adjusted from discrete-time to continuous-time compounding.
7. These quantities are “estimated” directly from the original data obtained from Professor

Rajnish Mehra, using the ergodic assumption, and estimates are denoted by σ̂M,c, etc.
8. This property of the consumer has to do with time preference, defined as ψ−1. Ideally this

should be different from risk aversion γ .
9. It may be of interest to notice that Kimball et al. (2008) indicate a value of the relative risk

aversion between 3 and 8, based on responses to hypothetical income gambles in the Health and
Retirement Study, a large-scale US-survey.
10. a case known to the author
11. http://www.dn.no/forsiden/borsMarked/article2029034.ece
12. abstracting from bankruptcy costs, taxes, regulations, and agency problems
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