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In this paper we describe a detailed study of the wake structures and flow dynamics
associated with simulated two-dimensional flows past a circular cylinder that is either
stationary or in simple harmonic cross-flow oscillation. Results are examined for
Re = 500 and a fixed motion amplitude of ymax/D = 0.25. The study concentrates
on a domain of oscillation frequencies near the natural shedding frequency of the
fixed cylinder. In addition to the change in phase of vortex shedding with respect
to cylinder motion observed in previous experimental studies, we note a central
band of frequencies for which the wake exhibits long-time-scale relaxation oscillator
behaviour. Time-periodic states with asymmetric wake structures and non-zero mean
lift were also observed for oscillation frequencies near the lower edge of the relaxation
oscillator band. In this regime we compute a number of bifurcations between different
wake configurations and show that the flow state is not a unique function of the
oscillation frequency. Results are interpreted using an analysis of vorticity generation
and transport in the base region of the cylinder. We suggest that the dynamics of
the change in phase of shedding arise from a competition between two different
mechanisms of vorticity production.

1. Introduction
The coupling between the unsteady wake of a circular cylinder in a cross-flow and

motion of the cylinder is important in structural, offshore and thermal power engineer-
ing applications. A significant feature of the cylinder–wake interaction problem for
simple harmonic cross-flow oscillation is that the point in the motion cycle at which
vortices are formed and released is sensitive to the frequency of cylinder oscillation.
Experimental flow visualization studies, such as those of Ongoren & Rockwell (1988),
demonstrate this sensitivity for flows where the frequency of cylinder cross-flow os-
cillation (fo) is close to the natural shedding frequency of the fixed cylinder (fv); the
timing of vortex formation (measured with respect to cylinder motion) switches phase
by approximately 180◦ over a very narrow range of forced oscillation frequencies.
The evidence suggests that on each side of the switch the vortex shedding mode
corresponds to the usual Kármán-street wake, at least for low motion amplitudes.

The switch also produces a change in the phase of vortex-induced forces on the
cylinder, and can affect the sign of mechanical energy transfer between the moving
cylinder and the flow. The change in the sign of energy transfer was first suggested by
Den Hartog (1934) and has since been verified experimentally, e.g. by Blackburn &
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256 H. M. Blackburn and R. D. Henderson

Melbourne (1997). As the sign of energy transfer determines whether cross-flow
oscillations will tend to increase or decrease in amplitude, the mechanics of the phase
switch has implications in the study of vortex-induced vibration.

The present work deals mainly with a detailed numerical investigation of the
cylinder–wake interaction for a single oscillation amplitude, but over a range of very
finely spaced frequencies near the vortex shedding frequency for the fixed cylinder.
The Reynolds number was set sufficiently high for the switch phenomenon to be
observed at the oscillation amplitude employed. The restriction to a single amplitude
and Reynolds number, and especially to two-dimensional computations, was made
in order to contain the demand on computer resources while still providing useful
insight.

In previous studies, such as those of Gu, Chyu & Rockwell (1994) and Lu &
Dalton (1996), it has been observed that as the frequency ratio fo/fv is increased,
the onset of the switch in timing of vortex formation is associated with a contraction
of the vortex formation region. This observation, while interesting, does not in itself
provide a mechanism which could produce the change in timing. We propose that the
underlying physical mechanism responsible for the switch is a competition between
two vorticity production mechanisms, and carry out an initial investigation of this
hypothesis.

2. Dimensionless groups

Our primary characterization of results is made in terms of the frequency ratio
F = fo/fv and amplitude ratio A = ymax/D, where fv is the fixed-cylinder vortex
shedding frequency, fo and y are respectively the frequency and displacement of
the simple harmonic cross-flow oscillation, and D is the cylinder diameter. The
instantaneous displacement is described by the dimensionless variable α(t) = y(t)/D.
Reynolds number is based on the free-stream flow speed U and cylinder diameter,
i.e. Re ≡ UD/ν, and the fixed-cylinder vortex shedding frequency is described by the
Strouhal number St ≡ fvD/U. Lift and drag forces per unit length, Fl and Fd, are
non-dimensionalized by 1

2
ρU2D to give lift and drag coefficients, Cl and Cd. The base

pressure coefficient is defined as Cpb = 1 + 2(p180 − p0)/ρU
2 where p0 and p180 are the

pressures at the furthest upstream and downstream points on the cylinder surface.

The mechanical energy transferred from the flowing fluid to the oscillating cylinder
per motion cycle can be written in dimensionless form as

E =
2

ρU2D2

∫ T

0

ẏFl dt =

∫ T

0

α̇Cl dt =
1

2

∮
(Cl dα+ α dCl) , (2.1)

where T is the motion period. The quantity E is positive when work is done on the
cylinder, negative when work is done on the fluid. A Green’s theorem has been used
to derive the last integral as the signed area enclosed by a limit cycle on an (α,Cl)
plot, with the sense of traverse in the path integral set the same as that observed on
the limit cycle.

The phase angle, φ, between the cross-flow displacement y(t) and the fundamental
harmonic of the lift force Fl(t) can also be used as an indicator of the transfer of
mechanical energy from the fluid to the cylinder. For positive values of E, φ lies in
the range 0 – 180◦.
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Figure 1. Frequency entrainment boundaries (◦) and wake velocity phase switch locus (�)
observed by Stansby (1976) at Re = 3600.

3. Previous work
Although much of the underlying motivation for forced oscillation studies obviously

lies with the vortex-induced vibration problem, the bulk of what follows deals with
forced oscillation studies. A review of relevant vortex-induced vibration results is
given in § 3.3.

3.1. Entrainment

The most well-known feature of the fluid–structure interaction between a circular
cylinder in forced cross-flow oscillation and its wake is the primary lock-in regime.
This occurs when the frequencies of vortex shedding and cross-flow oscillation coalesce
near F = 1 as the result of an entrainment process. In forced oscillation studies, vortex
shedding is entrained by the cylinder motion, hence the vortex shedding frequency
changes to match the cylinder oscillation frequency.

The general structure of the entrainment envelope is illustrated in figure 1 which
shows results obtained by Stansby (1976) with Re = 3600; also shown is the (A,F)
locus of points at which the phase angle between a wake velocity signal and cylinder
motion changed by approximately 180◦. The envelope of entrainment is thought to
begin at F = 1 for A → 0+, and as shown the range of F expands as the oscillation
amplitude increases.

Some results, such as those of Koopman (1967), suggest that a critical minimum
amplitude of oscillation must be reached before entrainment occurs, and in his
experiments this was A ' 0.05. In Koopman’s case, it seems probable in the light of
subsequent experimental results (e.g. Williamson 1989) that the value of the minimum
amplitude was associated with overcoming the occurrence of slant-wise, as opposed
to parallel, vortex shedding for the stationary cylinder (see e.g. figures 4 and 5 of
Koopman’s paper).

It is likely that some limiting minimum amplitude does indeed exist in most
experimental studies, since below some small amplitude the perturbation imposed
on the flow by the cylinder oscillation will be too weak to maintain control of the
turbulent wake. As the cylinder wake exhibits spatio-temporal chaos immediately with
the onset of three-dimensionality at Re ' 190 (Henderson 1997), a limiting minimum
amplitude for continual entrainment can be presumed to exist at all higher Reynolds
numbers. At very low motion amplitudes, intermittent entrainment replaces continual
entrainment for turbulent wakes, as shown by Blackburn & Melbourne (1997). Details
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of the entrainment envelope are sensitive to Reynolds number, end effects, tunnel
blockage and turbulence levels.

3.2. Influence of frequency ratio F on the timing of vortex shedding

Within the primary lock-in regime, many results suggest that the phase relationship
between cylinder motion and vortex shedding is sensitive to the frequency ratio F . As
noted above, early flow visualization results for forced cylinder oscillation obtained
by Den Hartog (1934, reproduced by Zdravkovich 1982) clearly show two distinctly
different timings of vortex formation with respect to cylinder motion for different
values of frequency ratio F . From the visualization results, Den Hartog inferred a
change in sign of the mechanical energy transferred from the flow to the cylinder
during the motion cycle. Amplitudes and frequencies of oscillation were not recorded.

Den Hartog’s flow visualization was followed by Bishop & Hassan’s (1964) mea-
surements of lift and drag force for flow past a cylinder in forced cross-flow oscillation.
Their results were obtained with a horizontal cylinder driven in the vertical direction
in a water channel with a free surface. These results have had substantial impact
although, as has also been noted by Bearman & Currie (1979), difficulties associated
with cancellation of inertia forces lead to some reservations about both the accuracy
of their measurements and the details of their conclusions. Bishop & Hassan’s results
show distinct changes in both amplitude and timing of vortex-induced forces exerted
on the cylinder as the oscillation frequency is changed within the primary lock-in
range. In addition, they found evidence of hysteresis, with different paths or solution
branches traversed, depending on whether the oscillation frequency was incrementally
increased or decreased between measurements.

Bishop & Hassan identified two ‘critical frequencies’ (values of F) bounding the
hysteresis loop: at Re = 6000 and A = 0.25, these frequency ratios were F = 0.86 and
0.95 (by interpolation in their table 1). Negative values of φ (i.e. E negative) occurred
for F above the upper critical value, while below the lower critical frequency ratio,
φ ' 170◦ (E positive). With F decreasing from high values, the branch which started
with φ negative was followed, with a gradual increase in φ until a value of ‘about
90◦’ was reached at the lower critical frequency. At this point ‘the motion is unstable
and the phase angle jumps suddenly from about 90◦ to about 180◦, without having
an intermediate value, these angles being with respect to the original direction’. On
increasing F from low values, the φ ' 170◦ branch was followed until the upper
critical frequency was reached, at which point the ‘phase angle changes suddenly by
180◦, so there is no frequency range in which the phase angle changes gradually’.
(Quotations taken from § 9.3 of their paper.)

Stansby (1976) conducted experiments with forced cross-flow oscillations of a
circular cylinder in a low-turbulence (0.25% intensity) wind tunnel. A hot-wire probe
was used to measure velocity outside the wake, 1D downstream and 2.15D across from
the centre of the cylinder in its mean position. Analysis of the hot-wire and cylinder
displacement signals enabled assessment of entrainment and also measurements of
phase angle between the wake velocity and cylinder displacement signals, as shown for
example in figure 1 for measurements obtained at Re = 3600. In the primary lock-in
regime, Stansby observed that the phase angle jumped approximately 180◦ at values
of F which decreased with increasing A. At Re = 3600 and A = 0.25, the value of F
for the switch was 0.86, similar to the lower critical value of F found by Bishop &
Hassan at corresponding A. He also observed hysteresis associated with the jump, but
only for one of two Reynolds numbers (9200) and one amplitude (A = 0.29). From
the behaviour of the velocity signals, Stansby inferred that the jump was associated
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with a change in wake width, from being greater than that for the fixed cylinder
below critical F , to being less than that for the fixed cylinder above critical F .

Bearman & Currie (1979) carried out an experiment with forced oscillation of
a circular cylinder in a water channel with a free surface. The Reynolds number
(2.4 × 104) and maximum amplitude of cylinder oscillation (Amax = 1.33) were both
greater than in Stansby’s experiment, and the turbulence intensity was also higher, at
5.5%. Bearman & Currie used a pressure tap located at the shoulder (90◦) point of the
cylinder in order to provide a signal related to the lift force. In examining the phase
angle between this signal and the cylinder displacement, they found a rapid switch
of approximately 130◦ magnitude, dependent on oscillation amplitude, at values of
foU/D ' 5.5, which for St = 0.2 corresponds to F ' 0.91. Below the critical frequency,
phase angles were approximately 0◦, while above it, phase angles were approximately
120◦ at the lower motion amplitudes. The magnitude of the fluctuating pressure also
changed substantially with the switch in phase angle, with highest values of C ′p at
higher values of F . No evidence of hysteretic behaviour was reported.

Ongoren & Rockwell (1988) presented hydrogen-bubble flow visualization results
from a water tunnel flow past an oscillating cylinder at 0.85 < F < 1.17, A = 0.13,
Re = 885. The bubbles marked the fluid upstream of the cylinder and consequently
some of the details of flows inside the near wake, immediately downstream of the
cylinder, were not revealed. However, there is an obvious switch in timing of vortex
formation with respect to cylinder motion between F = 0.9 and F = 1.17, shown in
their figure 2. Analysis of velocity measurements in the near wake showed the change
in phase angle between cylinder displacement and wake velocity was approximately
180◦, and occurred near F = 1. Flows on each side of the timing switch gave rise to
Kármán vortex streets (D. Rockwell 1997, private communication).

Also in 1988, Williamson & Roshko published visualization results for flows past an
oscillating cylinder, produced using a towing tank with a computer-controlled towing
carriage. Reynolds numbers varied in the range 300–1000. Flow visualization was
obtained using aluminium flakes on the free surface of the water, which was pierced
by the cylinder. A very wide range of A and F values was used, with 0.2 < A < 5
and 0.33 < F < 5; at low amplitudes of oscillation and in the primary lock-in zone,
amplitude ratio intervals of A = 0.1 and frequency ratio intervals of F ' 0.5 were
used. A number of modes of vortex shedding were observed, leading to a map for the
location of different modes in the (A,F) control space.

Williamson & Roshko labelled the different shedding modes they observed accord-
ing to the number of vortex-couple pairs (‘P’) or single vortices (‘S’) shed into the
wake per cylinder motion cycle. Hence the conventional Kármán-mode vortex street
is called ‘2S’ in their nomenclature, while another antisymmetric shedding mode was
labelled ‘2P’, for two vortex pairs shed per motion cycle. Among a number of other
modes, they also found an asymmetric mode with one vortex couple and a single
vortex produced per motion cycle, which they labelled ‘P+S’. This asymmetric mode
had also been observed in the earlier experiments of Griffin & Ramberg (1974) at
Re = 190, although no observations of the 2P mode are noted in their results.

According to Williamson & Roshko’s results, near F = 1 and at low values of A,
the entrainment region of the (A,F) control space is occupied by 2P mode shedding
(lower values of F) and 2S mode shedding (higher F). Although they did not measure
vortex-induced forces in their experiment, Williamson & Roshko associated the phase
switch observed by Bishop & Hassan with the jump from 2S, or Kármán-mode,
shedding, to the 2P shedding mode. Uncertainty about this conclusion remains, as
conversely Bishop & Hassan presented no flow visualization, and, as noted above, the
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change in phase of shedding observed by Ongoren & Rockwell was not accompanied
by a change in shedding mode – Kármán-mode wakes occurred on both sides of the
phase switch in their experiment. Likewise, Den Hartog’s flow visualizations do not
reveal a change in shedding mode on either side of the large switch in phase.

Gu et al . (1994) reported experimental measurements of near-wake vorticity fields
obtained for cylinders oscillating at A = 0.2 and two values of Reynolds number,
Re = 185 and Re = 5000. At Re = 185, the distance downstream from the cylinder
centreline at which large-scale clusters of vorticity were observed to roll up from
the main shear layers was found to reduce with increasing values of F . At a fixed
point in the motion cycle, the side of the cylinder at which the first vortex formed
changed abruptly between F = 1.10 and F = 1.12. Similar behaviour was observed in
ensemble-averaged results at Re = 5000, but there the timing switch occurred between
F = 0.85 and F = 0.90.

In a numerical study, Lu & Dalton (1996) used a finite-difference method to
simulate two-dimensional flows past an oscillating cylinder at Re = 185, 500 and
1000. At Re = 185 and A = 0.4, the influence of F on the instantaneous vorticity
contours presented by Lu & Dalton was similar to that shown in the results of Gu et
al . at the same Reynolds number and at A = 0.2, in that there was a switch in timing
of vortex formation; also the length of the vortex formation region decreased with
increasing F .

3.3. Phenomena of vortex-induced vibration

Entrainment behaviour in vortex-induced vibration of flexible or flexibly mounted
circular cylinders differs from that for forced oscillation. The primary reason is that
a wider range of system dynamics is available in vortex-induced vibration, where the
fluid–structure coupling can occur in both directions, as opposed to forced oscillation
experiments, where the fluid motion is coupled to the body motion but not vice
versa. Another significant difference is that in vortex-induced vibration, the long-
term average of E must remain positive to match the drain of energy to mechanical
damping present in any real system.

While it is conventional in vortex-induced vibration experiments to use a cylinder
with fixed structural natural frequency fn and observe the effects of varying the flow
speed U, it is also possible to consider the flow speed U to be fixed and consider
instead the effects of varying fn. We take this line in the discussion that follows as it
fits more naturally with the approach taken in forced oscillation experiments.

As for forced oscillation, entrainment occurs when fn/fv ≈ 1, although it is usually
also observed that fn/fv < 1 during lock-in. The entrainment frequency is a free
parameter: for systems in which the structure–fluid density ratio m/ρD2 is high (here
m is the cylinder mass per unit length), the entrainment frequency tends to be near
fn, i.e. the vortex shedding frequency is entrained by the structural frequency (see e.g.
Feng 1968, reproduced by Parkinson 1989). Conversely, when the density ratio is low
the entrainment frequency tends instead towards fv , as shown by Angrilli, Di Silvio &
Zanardo (1972, m/ρD2 ∼ 1.5), i.e. the fluid oscillation has a substantial influence in
setting the frequency. The cylinder may be free to move in the streamwise direction in
addition to the cross-flow direction: while this is the norm in engineering applications,
many experiments have allowed only cross-flow motion. As the streamwise oscillation
amplitude is usually relatively small in the primary lock-in regime, it is likely that the
streamwise freedom has only a minor influence.

While in principle both the density ratio m/ρD2 and mechanical damping ratio
ζ are independent parameters in vortex-induced vibration problems, they are often
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combined in a single parameter ζm/ρD2. This characterization approach becomes
more valid as m/ρD2 increases and cylinder motion becomes more nearly simple
harmonic. Significant, O(D), response amplitudes typically occur when ζm/ρD2 � 1.
A number of results obtained with low ζm/ρD2 exhibit two (or more) distinct
solution branches (e.g. Feng 1968; Brika & Laneville 1993; Khalak & Williamson
1996). Transition between the branches often occurs with hysteresis. Smoke flow
visualization results presented by Brika & Laneville suggest that the two highest
amplitude branches are associated with different vortex shedding modes, i.e. 2S and
2P mode shedding. This in turn suggests that the transition between the solution
branches is also associated with a change of timing of vortex-induced forces with
respect to cylinder motion. This was demonstrated by the results of Khalak &
Williamson (1997), who presented time series of the lift phase angle φ on the two
main solution branches. As the mechanical damping was very low in these experiments
(ζ = 0.0045), the time-average phase angles observed for the two branches were very
close to 0◦ and 180◦. Also, it must be the case that these average values lie in the range
0–180◦ because of the constraint that E take positive (although here small) values. A
related change in timing was suggested by the earlier results of Feng, who employed
a single-point pressure measurement to approximately characterize the lift force.

Occasionally the change in timing found in vortex-induced vibration has been
discussed as though it were the same phenomenon as found in forced cross-flow
oscillation studies (e.g. Bearman & Currie 1979; Williamson & Roshko 1988; Brika &
Laneville 1993). While the sets of phenomena are undoubtedly related, a switch in
timing associated with a change in sign of mechanical energy transfer cannot be
observed in vortex-induced vibration experiments, at least not when the vibration
and shedding are completely entrained and periodic. This is due to the fact that in
vortex-induced vibration only positive values of mechanical energy transfer from the
flow to the cylinder can exist over the long term, while the sign of E is not constrained
for forced oscillation.

4. Objective and approach
Our objective in the present work is to study the effect of variations in frequency

ratio F on entrainment phenomena produced by forced cross-flow oscillation within
the primary synchronization regime. Understanding this type of fluid–structure inter-
action is made more complicated by the difficulty of visualizing and measuring the
large-scale separated flow near a moving body. More fundamentally, the flows are
complex and time-varying, and there are few theoretical results available to guide
interpretation. We have taken a numerical simulation approach in order to overcome
the operational difficulties and better understand the physical processes involved.
Our calculations are limited to two-dimensional flows at a fixed Reynolds number of
Re = 500. From the calculations we determine time-dependent forces and vorticity
fields for a fixed cylinder and for oscillating cylinders as a function of the frequency
ratio F . The study is also restricted to a single cross-flow oscillation amplitude ratio
A = 0.25 in order to reduce the demand on computer resources – the trade-off has
been the capacity to investigate the effect of very small variations in F .

A word of explanation is needed regarding the applicability of two-dimensional
results for this problem. At Re = 500 the wake of a fixed cylinder is three-dimensional
and turbulent. On the evidence that spanwise correlations of forces, wake velocities,
etc. all increase with increasing cylinder motion amplitude (e.g. Toebes 1969; Novak &
Tanaka 1975) it is reasonable to suggest that the harmonic motion of a long circular
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cylinder seems to suppress three-dimensionality and produce flows that are more two-
dimensional than their fixed-cylinder counterparts, at least in the near-wake region.
The stochastic nature of turbulent three-dimensional motions is obviously neglected in
our model, but we do not believe that this is important in regard to the fundamental
mechanisms driving the fluid–structure interaction, because these mechanisms are
primarily two-dimensional. For the study of the mechanics of phase switch, a more
important factor is the dependence on Reynolds number. The strong dissipation of
flows at low Reynolds number (e.g. Re = 200) inhibits the phenomenon of a phase
switch with a change in sign of E. We have found that two-dimensional simulations
at Reynolds numbers higher than approximately 400 are, however, able reproduce
this basic phenomenon. It is expected that the simulations reported here for Re = 500
will provide a guide to understanding the physics of the fluid–structure interaction
and the vorticity dynamics of the near-wake for large Reynolds number.

Following details of the numerical method and associated convergence studies in § 5,
we present in § 6 results for the two-dimensional flow past a fixed cylinder at Re = 500
in the form of instantaneous streamlines and vorticity contour plots. Here we show
that a significant feature of the near wake is a strong shear layer that forms on the
base surface of the cylinder and interacts with the main shear layers during the vortex
formation process. Results for frequency traverses conducted at the fixed amplitude
ratio A = 0.25 are presented in § 7. Two solution branches for antisymmetric, periodic,
Kármán-street wakes are followed from initial conditions generated at F = 0.875
and F = 0.975 which lie on each side of the phase switch described above. Two
additional solution branches associated with asymmetric, periodic shedding modes
were discovered during the frequency-traverse simulations, giving rise to the possibility
of multi-valued solutions and hysteresis at some frequency ratios. It is found that
periodic solution branches are separated at intermediate frequency ratios by a weakly-
chaotic regime that displays characteristics associated with relaxation oscillators. In
§ 8 we decribe this regime and the aperiodic states that arise at frequencies above
and below the main synchronization regime. In § 9 we advance a hypothesis for the
mechanism that underlies the phase-switch behaviour and test it by controlling one
of the two vorticity production mechanisms for this flow.

5. Computational methods
A spectral element spatial discretization was employed in conjunction with a

second-order time-splitting scheme (Karniadakis, Israeli & Orszag 1991) in order
to solve the two-dimensional incompressible Navier–Stokes equations. The solver
uses a primitive-variable formulation. Vorticity, when required for presentation of
results, was computed in post-processing. Details of the method, its application to
two-dimensional and three-dimensional simulations and stability analyses of fixed
cylinder wakes, and comparisons with experimental results are discussed in Hen-
derson & Karniadakis (1995), Henderson (1995), Barkley & Henderson (1996) and
Henderson (1997).

In the computational technique used for the present study, the incompressible
Navier–Stokes equations are solved in a moving reference frame fixed to the cylinder

∂u

∂t
= −∇P +N (u) + ν∇2u− a (5.1a)

with

∇ · u = 0, (5.1b)
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Figure 2. Spectral element mesh with 422 elements. Dimensions are given in terms of cylinder
diameter D.

where P = p/ρ, N (u) represents the nonlinear terms, here implemented in skew-
symmetric form, i.e. N (u) = −(u · ∇u + ∇ · uu)/2, and a is the acceleration of the
reference frame. The boundary conditions at prescribed-velocity boundaries are set as
u = −v, where v is the velocity of the reference frame. The corresponding boundary
condition employed in solving the pressure Poisson equation is generated by taking
the dot product of the domain unit outward normal, n, with (5.1a) to give

∂P

∂n
= n · [N (u)− ν∇× ∇× u] , (5.2)

where the form of the viscous term follows the suggestion of Orszag, Israeli &
Deville (1986). On the cylinder boundary,

∂P

∂n
= n · [N (u)− ν∇× ∇× u− a] . (5.3)

The technique allows cylinder motion but maintains the shape of the mesh constant
over time, avoiding computational overheads which would otherwise be associated
with its geometric deformation. Previous applications of the method to both simple
harmonic cylinder oscillation and vortex-induced vibration are detailed in Black-
burn & Karniadakis (1993) and Blackburn & Henderson (1995a, b; 1996).

The mesh used for the calculations had 422 conforming quadrilateral elements
with equal-order interpolants in all elements and is shown in figure 2. The overall
dimensions of the mesh in terms of cylinder diameter D are: cross-flow 30, stream-
wise 62, outflow 52. A 236-element non-conforming mesh (not shown, for details see
Blackburn & Henderson 1995a) was used for cross-checking results; this mesh had
overall dimensions: cross-flow 30, streamwise 65, outflow 50.

The results computed on the mesh shown in figure 2 have been examined for con-
vergence by changing the order of the Gauss–Lobatto–Legendre (GLL) polynomial
interpolants used (see § 5.1, following), but in order to check the possible sensitivity
of the results to placement and size of elements, cross-checks were carried out using
the 236-element non-conforming mesh. These cross-checks were computed for single
instances on each of the periodic solution branches to be described in § 7.3, and
while there were very minor quantitative variations in results, the computed wake
vorticity contours and qualitative solution behaviours observed for the two meshes
were always in good agreement.
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p 4 5 6 7 8 9

St 0.2287 0.2283 0.2279 0.2281 0.2278 0.2280

Ĉl 1.172 1.171 1.180 1.198 1.198 1.200
Cd 1.453 1.452 1.448 1.461 1.458 1.460
−Cpb 1.478 1.492 1.487 1.506 1.504 1.506
û(3.5, 0) 0.8833 0.9216 0.9357 0.9120 0.9242 0.9150

Table 1. p-Convergence results for the fixed cylinder, where p is the order of the tensor-product
Lagrange interpolant shape function employed in each spectral element.

p 4 5 6 7 8 9

Ĉl 1.768 1.737 1.778 1.771 1.782 1.776
Cd 1.410 1.396 1.415 1.412 1.418 1.414
−Cpb 1.333 1.334 1.372 1.364 1.378 1.377
û(3.5, 0) 1.068 1.051 1.041 1.036 1.034 1.033

Table 2. p-Convergence results for the oscillating cylinder, A = 0.25, F = 1.0. St values match those
for the fixed cylinder at corresponding p. Values of û(3.5, 0) are given in the frame of reference of
the oscillating cylinder.

5.1. Convergence tests

In order to establish appropriate choices for the order of the tensor-product GLL
shape functions employed within each spectral element for the default mesh, tests
were conducted both with the cylinder held fixed, and with the cylinder oscillating in
cross-flow at an amplitude ratio A = 0.25 and frequency ratio F = 1.0. For these tests
the time step was held constant at ∆tU/D = 0.0025.

Results of these tests are presented in tables 1 and 2, where global flow coefficients

St, Ĉl , Cd and Cpb are presented for different values of the order, p, of the polynomial

basis. Here St is the Strouhal number, Ĉl the peak coefficient of lift, Cd the mean
coefficient of drag and Cpb the mean value of the coefficient of base pressure. Also
included are peak values of streamwise velocity, û, at a point 3.5D downstream from
the cylinder centreline. For all measures employed the variation between the values at
p = 7 and p = 9 was less than 1%, and p = 9 has been used for the bulk of the results
reported here. Spot checks with p = 7, p = 10 and p = 11 have also been carried
out. Conversely at low values of p it was found that it became impossible to obtain

periodic solutions for both the cases tested: e.g. for p = 2 for the fixed cylinder, Ĉl
would fluctuate of order 5% from cycle to cycle.

The values of Cd in table 1 may be compared with curve fits to two-dimen-
sional simulation results published in Henderson (1995), where at Re = 500, Cd =
Cdf + Cdp = 0.171 + 1.274 = 1.445; Cdf and Cdp are respectively the viscous and
pressure contributions to the mean drag. The slight variation (approx. 1%) between
this value and the values found in table 1 gives an indication of the mesh-to-mesh
variation in numerical results (primarily the result of variations in domain size) and
the accuracy of the curve fit at this Reynolds number. Figure 3 shows a comparison
to Henderson’s curve fits for Cd, and also to three-dimensional experimental and
computational results.

With the second-order time-splitting scheme, a check of temporal convergence at

p = 7 for the fixed cylinder showed that values of St, Ĉl and Cd were constant to
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3

2

1

10 100 1000
0

2D

Steady

Cd

Re2

Re

Re1

Figure 3. Coefficient of drag for fixed circular cylinders. •, ◦, Weiselsberger (1921); +, three-dimen-
sional computations, Henderson (1997); �, present results. Solid lines show curve fits to two-dimen-
sional results of Henderson (1995). Re1: onset of vortex shedding, Re2: onset of three-dimensionality.

four significant figures over the range 0.0015 < ∆tU/D < 0.0045. For the majority of
results presented here, 0.0025 < ∆tU/D < 0.004, as appropriate to maintain numerical
(Courant) stability in the explicit nonlinear substep of the time-splitting scheme.

6. The fixed cylinder
While not the main focus of this study, vorticity contours for simulation of the two-

dimensional flow past a fixed cylinder are included here as a basis for comparison with
similar results to be presented for the oscillating cylinder. Instantaneous streamlines
are also presented, although many features of the near-wake velocity field can be
deduced from the vorticity contours. Figure 4 shows vorticity contours and streamlines
for five instants drawn from the half of the vortex shedding cycle during which the
lift force acts in the upwards direction, starting and ending at times of zero lift.
Attachment and separation points are labelled A and S respectively in figure 4(a–e).

Four key concepts can be used as aids to interpretation of vorticity contours. First,
continuity demands that separation and (re)attachment points must occur in pairs for
a two-dimensional flow. Second, in the frame of reference of the body, separation and
attachment occur at points of zero surface vorticity, as may be verified by a study
of figure 4. Both these concepts are dealt with in detail by Lighthill (1963). Third,
in an incompressible flow, vorticity production can only occur at a solid boundary
in response to wall-tangential components of pressure gradient and/or boundary
acceleration. For a two-dimensional flow of a Newtonian incompressible fluid the
equation for the vorticity source strength at solid walls in an inertial reference frame
reads (Morton 1984; Hornung 1989):

−ν n · ∇ω = −n× (∇P + a) , (6.1)

where ω is the vorticity vector, n again is a unit wall-normal vector, a is the wall
acceleration and all terms are evaluated at the wall. This equation expresses the
idea that vorticity must diffuse away from a solid boundary at the same rate that it
is produced by local conditions. Fourth, for flow past a body that has no angular

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

99
00

43
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112099004309


266 H. M. Blackburn and R. D. Henderson

(a)

(b)

(c)

(d )

(e)

( f )

(g)

(h)

(i)

( j )

Figure 4. Fixed cylinder, Re = 500. Instantaneous vorticity contours and streamlines for the half
of the vortex shedding cycle during which lift is positive – lift is zero for (a) and (e). Black vorticity
contours show vorticity of positive sign; grey contours, negative sign.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

99
00

43
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112099004309


Flow past an oscillating cylinder 267

acceleration, the integral around the body perimeter of the flux of vorticity is zero at
every instant, which is a consequence of (6.1) and the continuity of the pressure field:∮

−ν n · ∇ω dS =

∮
−ν ∂ω

∂n
dS = 0, (6.2)

where the scalar ω represents the single out-of-plane component of the vorticity
vector in a two-dimensional flow.

There are three separation–reattachment pairs shown in figure 4(a). The two pairs
closest to the horizontal on the basal (i.e. rear) surface form the terminating points
for two separation bubbles – regions of flow where the bounding streamline starts and
ends on the surface of the body. These bubbles have greater areas than are indicated
by the two small black regions of positively-signed vorticity on the basal surface, as
a comparison to figure 4(f ) reveals. Associated with this streamline topology there
is a downflow in the base region of the cylinder which advects vorticity of negative
sign (grey contours), produced on the basal surface of the cylinder, towards the lower
shear layer. The lower shear layer has at this stage completed the formation of a large
region of positively-signed vorticity, which contains a detached region of circulating
flow (i.e. a closed streamline loop). This region is accelerating away from the cylinder.

In figure 4(b) the two separation bubbles have coalesced into a single larger bubble,
as indicated by the coalescence of the two regions of positive vorticity on the basal
surface. At this stage there are two separation–reattachment pairs. Since the region
of positive vorticity on the basal surface is growing with time, it can be inferred
that in figure 4(a b), positive vorticity is being produced on the basal surface by a
downward-acting pressure gradient, in agreement with the fact that the lift is positive
at this time. Simultaneously, this vorticity begins to be advected towards the upper
shear layer by flow in the recirculation bubble. The transport is limited by the local
shape of instantaneous streamlines within the separation bubble, although diffusive
transport, normal to the contour lines, will produce significant cross-annihilation.

At the instant of figure 4(c), the upper separation point has moved nearer the
top of the cylinder, and from the streamlines of figure 4(h), there is strong advective
transport of basal shear layer vorticity towards the upper main shear layer. Note also
the small detached streamline loop below the main separation bubble.

In figure 4(d ), a very small region of positive vorticity appears on the upper
basal surface, enveloped by negative vorticity. At the same instant as the formation
of the associated separation–reattachment pair, the lower detached streamline loop
previously visible in figure 4(h) closes on the cylinder surface, as required to maintain
parity of separation and reattachment points. This bifurcation of topology also implies
detachment of the vortex that evolved in figure 4(a–c); the streamline bounding a
region of negative vorticity now forms a closed loop that does not contact the cylinder,
and the vortex accelerates downstream.

Although the vortex formation process is dominated by the roll-up of the main shear
layers, a significant feature illustrated in figure 4 is the formation and advection of a
comparatively strong shear layer at the rear face of the cylinder. The sign of vorticity
in this basal shear layer always opposes the sign of the main shear layer towards
which it advects. Apart from remarks made by Shariff, Pulliam & Ottino (1991) this
feature of the very near wake has previously attracted little comment, presumably as
a consequence of observational difficulties in physical experiments. As a result of the
intricate folding of material lines in the base region (Perry, Chong & Lim 1982) it
becomes very difficult to make conclusions about vorticity transport based on studies
of marker (dye) transport. One of the few qualitative models for the bluff-body

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

99
00

43
09

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112099004309


268 H. M. Blackburn and R. D. Henderson

vortex shedding process (Gerrard 1966) describes vortex formation solely in terms of
the interaction between the main shear layers formed on the upper and lower front
surfaces of the cylinder and ignores the presence of the basal shear layer altogether.

7. Time-periodic wakes of the oscillating cylinder
For this section of work, simulations were carried out with the cylinder forced

to oscillate in cross-flow at a fixed amplitude ratio of A = 0.25 and with a range
of frequencies fo from approximately 0.75 to 1.05 times the Strouhal frequency for
the fixed cylinder fv , i.e. 0.75 < F < 1.05. Starting from two periodic solutions with
Kármán vortex streets (§§ 7.1, 7.2), results of frequency traverses were computed, and
two main periodic-solution branches were found to emanate from these initial points.
In addition, solution bifurcations were discovered which lead to different, periodic
wake configurations – and transfer between the branches occurs with hysteresis. This
material is dealt with in § 7.3. For all periodic results the vortex shedding frequency,
as defined from the lift time series, was the same as the frequency of cylinder motion.
Aperiodic solutions will be described in § 8.

7.1. Initial results with F = 0.875 and F = 0.975

From previous work (Blackburn & Henderson 1995a, b) it was known that for fre-
quency ratios near F = 0.875 and F = 0.975, markedly different timing of vortex
shedding with respect to cylinder motion would be observed, and these ratios were
chosen for the initial simulations. These were initiated with velocity fields correspond-
ing to periodic vortex shedding for the fixed cylinder, and terminated once periodic
states were again attained.

Examples of vorticity contours for cylinders in simple harmonic cross-flow os-
cillation are shown in figure 5. The two sets of results shown (figure 5a–e, f–j )
are respectively for F = 0.875 and F = 0.975. Each set illustrates one half-cycle
of cylinder motion, starting with the cylinder in its uppermost position. Although
the computations were performed in a frame of reference attached to the cylinder,
they are visualized here in a fixed reference frame, indicated by the cross-hairs. The
change in reference frame has a significant effect on the instantaneous streamlines,
but none on the contours of vorticity because ∇ × a = 0. Instantaneous streamlines
and separation–reattachment points are not provided, in part because they depend
on the frame of reference of the observer.

When comparing the two sets of vorticity contours in figure 5, a marked difference
in the phase relationship between vortex formation and cylinder motion can be
observed. Both the resulting vorticity contours, and the sense of their change with
increasing F , are in good agreement with results presented by Gu et al . (1994) and
Lu & Dalton (1996), allowing for differences in A and Re.

The change in phase relationship is here accompanied by a change in sign of E.
As a consequence of (2.1), the sign of E can be assessed by examining a phase-plane
plot of cross-flow motion and lift force, which for an entrained state will form a limit
cycle. The sign of power transfer is then related to the direction of traverse on the
limit cycle: for positive energy transfer to the cylinder the direction of traverse must
be clockwise, while for negative transfers it must be anticlockwise. A plot showing
the locked states for F = 0.875 (E positive) and F = 0.975 (E negative) is displayed
in figure 6.
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(a)

(b)

(c)

(d )

(e)

( f )

(g)

(h)

(i)

( j )

Figure 5. Instantaneous vorticity contours over half a motion cycle for a cylinder oscillating at
amplitude A = 0.25. (a–e) F = 0.875, energy transfer to body. (f–j ) F = 0.975, energy transfer to
fluid.
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–2

–1

0

1

2

–0.2 0 0.2
α

Cl

fo/fv = 0.875

fo/fv = 0.975

Figure 6. Limit cycles of coefficient of lift Cl vs. cross-flow displacement α at a frequency below the
phase switch (F = 0.875, average energy transfer rate to cylinder positive) and above (F = 0.975,
transfer negative).

7.2. Effect of initial conditions

In order to examine the sensitivity of the solutions to the choice of initial conditions,
a series of tests was conducted where the relationship between the starting time
of cylinder motion and the zero-lift time of vortex shedding for the fixed cylinder
were varied. The starting time t0 for cylinder motion was set at 0, 0.25T , 0.5T and
0.75T relative to the zero-lift time, where T is the vortex shedding period for the
fixed cylinder. These tests were conducted both at F = 0.875 and F = 0.975. In all
cases the asymptotic or long-term outcome was a periodic Kármán street wake. For
F = 0.875 the solutions reached a periodic state within a comparatively short time,
O(15) motion cycles. For F = 0.975 such brief transients could also be observed but,
for some values of t0, comparatively long times, O(200) motion cycles, could elapse
before the periodic state was reached, as illustrated in figure 7 for the case t0 = 0.25T .
During the transient, the solution changed continuously and unpredictably between
cycles with positive and negative E; similar results are reported below in § 8.3.

7.3. Solution branches and bifurcations

Starting with computations for the states at F = 0.875 and F = 0.975, two sets of
frequency traverses were conducted, with frequencies both increasing and decreas-
ing from these initial periodic solutions. The final velocity field from the previous
frequency ratio solution was used to restart the computations at the next frequency
ratio, with the phase angle of cylinder motion adjusted so as to match displacements
between the old and new solutions. This restart technique was employed in order
to mimic the behaviour that would be obtained in a physical experiment where the
driving frequency of cylinder oscillation is varied in small steps. Initially, increments
of frequency ratio ∆F = 0.01 were used, but this was varied in regions where finer
increments were required.

The two solutions obtained at F = 0.875 and F = 0.975 both displayed wakes of
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Figure 7. Time series of Cd and Cl at F = 0.975, showing transient after initiation
of cylinder motion.

the classic alternating Kármán street type, and the flows were perfectly periodic. As
the frequencies of motion were varied by small amounts from the starting values, the
solutions which evolved were also periodic after passage of sufficient time, typically
on the order of 50 shedding cycles. Except for rapid transitions between solution

branches, the values of E, Ĉl , etc., for each new periodic state varied smoothly on
restarting and asymptotically in small increments from the previous values. Periodic
solution states found in this way can each be characterized by a single variable, which
in figure 8 is the dimensionless energy transfer per cycle, E.

In figure 8, four solution branches can be observed, with the two longest ones (K1,
K2) being associated with Kármán street wakes, i.e. shedding modes in which two
regions of concentrated vorticity of opposite sign are created during each cycle of
cylinder motion, leading to an antisymmetric staggered array of vortices of opposite
sign. This results in a time-mean wake which has reflection symmetry about the
centreline. The two Kármán street branches are connected to the two initial states
at F = 0.875 and F = 0.975. The two shorter branches (A1, A2) near the upper
end of the K1 branch, however, are for periodic states with wakes which were not
of the classic Kármán street type. The vortex arrays for these wakes displayed an
asymmetry as opposed to the alternating antisymmetry of the Kármán street. The
lack of symmetry carries over to the time-mean wake as well. In the intermediate
frequency range, 0.905 < F < 0.95, the flows can be characterized as weakly chaotic;
at frequencies below the entrainment or synchronization band, the flows were quasi-
periodic, while at frequencies above the synchronization band the flows were chaotic:
all these aperiodic results are discussed in § 8.

Figure 9 displays some additional data resulting from the frequency traverses. Fig-
ures 9(a) and 9(b) respectively show mean drag and peak lift coefficients normalized
by the values obtained for the fixed cylinder. Figure 9(c) shows the phase angle φ
between lift force and cylinder displacement at the frequency of cylinder oscillation.
As noted in § 2, positive values of E correspond to phase angles between 0◦ and 180◦;
it can be seen that the values of F where values of E change sign in figure 8 are the
same as those where φ crosses into the range 0–180◦.
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0.8 0.9

F

–0.5

0.5

E 0

1.0

K1

A1

A2

Figure 8. Energy transfer coefficient E as a function of frequency ratio F for periodic wake flows.�, Kármán street mode, branch K1; �, Kármán street mode, branch K2; e, asymmetric two-cycle
mode, branch A1; 4, asymmetric synchronized mode, branch A2. Frequency ratios for aperiodic
regimes are shown hatched. Inset shows paths followed in frequency traverse bifurcations.

7.3.1. Kármán street modes

Two Kármán street branches are shown in figure 8. The solutions on the K1 branch
had negative values of E at lower frequencies, progressing continuously to positive
values at higher frequencies. The K2 branch exhibited only negative values of E.
Instantaneous vorticity contour plots for F = 0.80, 0.875 and 0.975 are shown in
figure 10, where plots (a, b) are for solutions on the K1 branch with negative and
positive values of E, respectively, while plot (c) is for a solution on the K2 branch.

As will be discussed more fully in §§ 8.1 and 9, the discontinuous transition and
change in sign of E between the K1 and K2 branches, separated by a range of
frequencies in which the flow was weakly chaotic, supports a characterization of the
associated change in relationship between vortex shedding and cylinder motion as a
switching between different regulation mechanisms. However, the progressive change
in sign of E on the K1 branch does not appear to result from such a switch.

7.3.2. Asymmetric wake modes

The discovery of the branches associated with asymmetric wakes occurred by chance
during the frequency traverses from the two initial states. Over a band of frequency
ratios approximately delineated by 0.905 < F < 0.95 it was found that weakly chaotic
flows resulted (§ 8). Results from each frequency traverse (one with positive ∆F , the
other with negative ∆F) eventually arrived again at periodic states for frequencies
outside this range. That is, there was a band of intermediate frequencies over which
the solution was weakly chaotic for both traverses, but outside the band solutions
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Figure 9. Frequency traverse results. (a) Cd/Cd0, mean drag coefficient normalized by result for

fixed cylinder. (b) Ĉl/Ĉl0, peak lift coefficient normalized by result for fixed cylinder. (c) φ, phase

angle between lift force and cylinder displacement. Symbols (�, �; e; 4) denote the same wake
modes as in figure 8.

for each traverse again became periodic. Below the quasi-periodic range, at F = 0.89,
however, the periodic state arrived at for the negative ∆F traverse originating from
the solution at F = 0.975 was different to that obtained for the positive traverse
originating at F = 0.875.

The vorticity contours for the two states at F = 0.89 are shown in figure 11; as
in figure 5 they are shown for times when the cylinder was at the uppermost point
in its motion cycle. The antisymmetric array of Kármán street wake vortices shown
in figure 11(a) is replaced in figure 11(b) by an asymmetric wake. This change is
reflected in the symmetry properties of the (α,Cl) limit cycles for the two cases, which
are shown in figure 12. For both cases the sense of traverse on the limit cycle is
clockwise, hence E was positive; however the limit cycle for the asymmetric wake
lacks the reflection symmetry (α, CL)→ (−α,−CL) of the limit cycle corresponding to
the antisymmetric wake.

The wake asymmetry in figure 11(b) results in a time-mean lift coefficient of
Cl = 0.066 and is also manifested in time series of coefficients of lift and drag as a
period doubling in the drag trace, but not in the lift trace, as shown in figure 13.
Careful inspection of the pattern of vortices in figure 11(b) reveals that the unit of
cyclic repetition of the wake array contains eight vortices, arranged as two vortex
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(a)

(b)

(c)

Figure 10. Vorticity contours for the oscillating cylinder, amplitude A = 0.25. (a) F = 0.8, K1

branch, energy transfer to fluid. (b) F = 0.875, K1 branch, energy transfer to body. (c) F = 0.975,
K2 branch, energy transfer to fluid. Contours are displayed for the instant in the motion cycle where
the cylinder is at maximum cross-flow displacement.

(a)

(b)

Figure 11. Vorticity contours for the oscillating cylinder, amplitude A = 0.25. (a) F = 0.89, K1

branch, Kármán street mode, (b) F = 0.89, A1 branch, asymmetric two-cycle mode. Contours
are displayed for the instant in the motion cycle where the cylinder is at maximum cross-flow
displacement.

couples and four isolated vortices. These eight vortices are produced during two
cylinder motion cycles. It is an intriguing fact that it takes two motion cycles to
complete one spatial repetition of the wake array but that the (α,Cl) limit cycle is
traversed in one motion cycle. We will refer to this shedding mode as the asymmetric
two-cycle mode, and have labelled the associated solution branch as A1 in figure 8.

The discovery of the multi-valued solutions at F = 0.89 prompted a set of inves-
tigations with finer frequency increments in order to follow the associated solution
branches to higher and lower frequency ratios, as shown in figure 8. This led to the
discovery of another solution branch, A2, with another asymmetric wake arrangement
at frequency ratios just below the quasi-periodic range. Also it was found that the
transitions between the different branches displayed hysteresis with respect to changes
in frequency, as indicated by the arrows in the inset of figure 8.

Vorticity contours of the wake on the second asymmetric solution branch are
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Figure 12. Limit cycles of coefficient of lift Cl vs. cross-flow displacement α at F = 0.89. Dashed
line: K1 branch, Kármán street mode; solid line: A1 branch, asymmetric two-cycle mode.
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Figure 13. Time series of Cd and Cl at F = 0.89, on the A1 solution branch (figures 8, 11) for the
asymmetric two-cycle mode. Cl = 0.066.

shown in figure 14, for F = 0.904, where Cl = 0.064. The nature of the asymmetry is
different to that shown in figure 11(b), as one cylinder motion cycle here produces a
complete cycle of the arrangement of wake vortices, which evolves downstream into
a vortex couple and an isolated vortex. The associated drag and lift time series are
illustrated in figure 15, and again the wake asymmetry is reflected in a period-doubling
of the drag trace. This mode of shedding has been reported in experimental results
(Griffin & Ramberg 1974; Williamson & Roshko 1988); in the work of Williamson &
Roshko it was referred to as the ‘P+S’ (pair + single vortex) mode. Instead of this
nomenclature, we will refer to it here as the asymmetric synchronized mode, since
as the frequency ratio drops the wake array progressively becomes less asymmetric
and eventually, prior to the transition from the A2 branch to the K1 branch, cannot
readily be recognized as a pair and single vortex.

As noted in § 5, care has been taken to confirm that the occurrence of multi-valued
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Figure 14. Vorticity contours for the oscillating cylinder on the A2 solution branch (figure 8) for
the asymmetric synchronized mode, F = 0.904.
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Figure 15. Time series of Cd and Cl at F = 0.904, on the A2 solution branch (figures 8, 14) for the
asymmetric synchronized mode. Cl = 0.064.

solutions was not an artifact of numerical error in the simulations. The bifurcated
states are time-periodic and reproducible over a range of solution interpolation orders,
p, and on both the 422-element, conforming, and 236-element, non-conforming meshes.
The sign of the asymmetry taken by the solution is determined by the initial conditions
of the simulation. This was confirmed by the fact that the sign established during the
initial transition to the A1 branch during negative ∆F traverse from the K2 branch
was the opposite of that established as a bifurcation from the K1 branch, while the
solutions were similar in all other respects. The resulting wake vortex arrays were
reflections of one another in the wake centreline, producing a change of sign of Cl .

7.4. Bifurcation structure

The inset to figure 8 shows the bifurcation diagram for the K1, A1 and A2 solution
branches. The structure is made complex by the fact that the three branches are
interleaved. The transitions between the K1 and A1 branches appear to occur through
a subcritical bifurcation. Likewise the shape of the transition between the A1 and
A2 branches suggests another subcritical bifurcation. However the linkage between
the K1 and A2 branches is not readily categorized in terms of one-dimensional
bifurcations; the fact that the A2 branch links directly to the K1 branch appears to
indicate a supercritical-type bifurcation, but the transfer can only be made in one
direction (decreasing F). In order to arrive back on the A2 branch once the K1 branch
has been reached, transfer must first be made to the A1 branch. This complicated
linkage between the three branches indicates the presence of a higher-order bifurcation
structure.

The direct connection between the A2 and K1 branches is also reflected in the
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Figure 16. Time series of Cl and E in the intermediate weakly chaotic regime, F = 0.94.

wake vorticity patterns. At the highest values of F on the A2 branch, the wake is
asymmetric, and can be readily recognized as ‘P+S’. The degree of asymmetry reduces
with F; as the K1 branch is approached, the wake becomes less asymmetric, evolving
to a conventional antisymmetric Kármán wake as the K1 branch is reached.

8. Quasi-periodic and chaotic wakes of the oscillating cylinder
Three aperiodic flow regimes were found during the course of the investigation: F <

0.77, below the entrainment range, for which the resulting flows were quasi-periodic;
0.905 < F < 0.95, where flows were weakly chaotic; F > 1.015, above the entrainment
range, for which the flows were chaotic. Our examination has concentrated on analysis
of time series. We will deal with the weakly chaotic regime first, in § 8.1, as it is more
closely related to the periodic flows described above, before turning to the other two
regimes in §§ 8.2 and 8.3. We have not conducted extensive investigations of flows
outside the frequency range for entrainment, so our classification of these regimes is
incomplete.

8.1. Weakly chaotic relaxation oscillator regime, 0.905 < F < 0.95

The weakly chaotic regime which was observed for 0.905 < F < 0.95 was charac-
terized by the presence of two underlying, incommensurate frequencies: one at the
cylinder oscillation frequency and the other resulting from an almost-periodic switch-
ing between wake states. Fourier analysis of the lift time series in this regime shows
spectra which are very sharply peaked at the cylinder oscillation frequency and its odd
harmonics, but with no distinguishable peak at the long-period switching frequency.
This is due to the comparatively few, O(10), long-period oscillations in the time series
taken for analysis. The regime could be described as quasi-periodic, as opposed to
weakly chaotic, except for random selection of the sign of wake asymmetry in each
of the long-period oscillations.

Figure 16 shows time series of Cl for one of the solutions obtained in this regime,
at F = 0.94. Also shown is the time series for E, which emphasizes the underlying
almost-periodic nature of the switching between states. At times prior to the rapid
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Figure 17. Time series of Cd and Cl in the quasi-periodic regime, F = 0.76.

change in sign of E at values of tU/D ≈ 50, 220, 390, 560 and 730, the cycle-
average values of Cl can be seen to diverge from zero in the following sequence:
+, +, −, +, −. The sequence is sensitive to initial conditions: a different sequence
emerged for a simulation which was identical except for the addition of a small
Gaussian-distributed perturbation to all the velocities in the initial condition. It
is this sensitivity, and the associated randomness of the sequence, which indicates
that the appropriate classification for this regime is weakly chaotic, as opposed to
quasi-periodic.

All results obtained in this regime displayed characteristics similar to those shown in
figure 16. The period associated with the switching process dropped with increasing F .
Owing to the very long periods associated with the lowest frequency ratios, the precise
nature of the variation of switching period with F has not been established. At lower
frequency ratios, E was positive for more of the time. Also notable is the fact that the
peak positive values of E which can be observed in figure 16 are approximately 0.9,
much higher than the highest values observed for periodic solutions, see figure 8.

The switching process shown in figure 16 strongly suggests relaxation oscillator
behaviour, with different mechanisms vying for control of the wake dynamics. As
F increases, the eventual transition to a periodic Kármán street wake with small
negative values of E at F > 0.95 shows that one mechanism eventually takes control
as the frequency ratio increases. This theme is taken up again in § 9, where we propose
a hypothesis for the controlling mechanism underlying the transition between the K1

and K2 branches.

8.2. Quasi-periodic solutions, F < 0.77

Time series of Cd and Cl for a flow in the quasi-periodic regime (F = 0.76) are
shown in figure 17. Fourier analysis of the time series of lift showed very sharply
peaked spectral features, with two dominant frequency components occurring at fo
and approximately 5fo/4, and with additional sharp peaks at the sum and difference
frequencies of these two fundamental values. Also, close inspection of the time series
reveals no long-period repetition, meaning that the solution is quasi-periodic as
opposed to periodic.

Similar behaviour at F = 0.75, A = 0.25 can be seen in the Re = 200 discrete-vortex
simulation results of Meneghini & Bearman (1995, figure 9 a).
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Figure 18. Time series of Cd and Cl in the chaotic regime, F = 1.02.

8.3. Chaotic solutions, F > 1.015

Time series of Cd and Cl for a flow in the chaotic regime (F = 1.02) are shown in
figure 18. Fourier analysis of Cl time series reveals a dominant, but not particularly
sharp, peak at the Strouhal frequency, and peaks at its odd harmonics, against a
background of broad-band energy. These features, together with the random nature
of the time series shown in figure 18, suggest classification of this regime as chaotic.

9. Mechanics of phase switch
Compared to the fixed cylinder where the only mechanism for vorticity production

is the tangential pressure gradient on the cylinder surface, an additional mechanism
comes into play for the oscillating cylinder: the surface-tangential component of
cylinder acceleration, which has maximum effect on the front and rear surfaces but
none at the upper and lower points of the cylinder. According to (6.1) this motion-
induced vorticity production is related to the body motion by

−ν ∂ω
∂n

= −n× a, (9.1)

where a is the acceleration of the cylinder surface in an inertial reference frame.
The net rate of production, integrated around the perimeter of the cylinder, both
for this mechanism and the pressure-gradient component, is zero at each instant
if the cylinder moves only as a rigid body without rotation. When the cylinder
accelerates downwards (as in figures 5a–c and f–h) this mechanism acts to produce
fluxes of negative vorticity on the front cylinder face and positive vorticity on the
rear face. Quantitatively these fluxes are of larger magnitude in figure 5(f–j ) since the
acceleration is larger than in 5(a–e) by the square of the ratio of the frequency ratios
(a factor of 1.24).

On examination of figure 5, the formation of basal shear layers and their interaction
with the main shear layers is obviously significant. In both figures 5(a) and 5(f ) a
region of positive vorticity near the base of the cylinder is being advected towards the
upper negative vorticity-bearing shear layer. In figure 5(f ), however, the interaction is
much stronger for a number of reasons. First, the diffusive cross-annihilation must be
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far stronger, since the contour lines are more closely spaced. Second, the basal shear
layer (positive vorticity) grows in strength at the same time as it is advected towards
the upper main shear layer, in direct contrast to the case in figure 5(a), where positive
vorticity is being annihilated in the upper base region.

9.1. Competition between vorticity generation mechanisms

The relaxation oscillator behaviour observed in the weakly-chaotic regime (§ 8.1) gives
support to the idea that a competition between different control mechanisms underlies
the discontinuous change in timing of shedding across the weakly chaotic regime. In
the following we suggest a hypothesis for the mechanics of the switch.

The key feature is the relative strengths of, and competition between, the pressure
gradient and motion-induced vorticity production on the basal surface. In the case
of low-frequency oscillations (e.g. figure 5 a–e), shear layers are perturbed such that
they roll up first on the side of the wake towards which the body is moving. Pressure
gradients associated with this roll-up tend to induce vorticity of opposite sign on
the basal surface (as in figure 5b, c). The surface-acceleration vorticity generation
mechanism opposes this production, but is not strong enough to override it.

At higher oscillation frequencies (e.g. figure 5 f–j ), the surface-acceleration produc-
tion mechanism has been able to override the pressure gradient mechanism on the
basal surface of the cylinder. A very intense basal shear layer forms, inducing earlier
roll-up of the main shear layer from the opposite side of the cylinder than occurs in
the lower frequency case. In turn there is a feedback effect whereby the pressure gra-
dient produced in the roll-up of the main shear layer gives rise to vorticity production
that reinforces the tangential acceleration mechanism. The strength of the main shear
layer that is rolling up is enhanced, in order to achieve the balance indicated by the
integral constraint (6.2).

9.2. Simulations with reduced motion-induced vorticity production

The relationship (9.1) can be rewritten to expose the relative contributions due to the
acceleration of the reference frame attached to the cylinder and the acceleration of
the cylinder surface within that reference frame:

−ν ∂ω
∂n

= −n× a = −n× (aframe + arel) . (9.2)

For a given reference-frame acceleration it is kinematically possible to manipulate
the tangential motion of the cylinder surface within the reference frame in order
to achieve any local vorticity flux. For example if the cylinder has the prescribed
motion AD cos 2πfot j then the tangential velocity required on the cylinder surface in
order to reduce the motion-induced vorticity production by a factor β at all angles
θ (measured counterclockwise from the downstream direction i) around the cylinder
periphery is

vrel = β2πfoAD sin 2πfot(− cos θ sin θ i + cos θ cos θ j). (9.3)

The motion-induced vorticity production is zero when the control parameter β = 1.
Such a distribution of cylinder-surface velocities would be difficult to realize exper-
imentally, for it requires that the surface has a local tangential velocity that is a
continuous but non-constant function of angular position.

In order to test the hypothesis that the controlling feature in the phase switch is the
relative importance of pressure-gradient and motion-induced vorticity production, we
have carried out simulations in which the motion-induced vorticity production was
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lowered artificially in the manner indicated by (9.3). No modification is required to
the numerical solution technique, other than to impose a set of time-varying velocity
boundary conditions on the cylinder surface. Since the velocities are tangential, there
is no direct interaction with the pressure through the Neumann boundary condition
(5.3).

Starting from the Kármán wake solutions obtained for F = 0.875 and F = 0.975
(as for figure 5), the relative motion of the cylinder surface was gradually increased
from rest, by increasing β from 0 to 1 over a period TU/D = 100 until the motion-
induced vorticity production was zero everywhere on the circumference. This resulted
in the F = 0.875 solution changing to another with a periodic Kármán street wake,
and an increased value of E. In contrast, the periodicity of the F = 0.975 solution
was destroyed by this procedure, leading to a chaotic wake flow. Subsequently it
was discovered that a periodic solution could also be obtained at F = 0.975 if the
motion-induced vorticity production was reduced by a lesser amount. With βmax = 0.5
this produced a Kármán street wake, with a negative value of E, similar in magnitude
to that for the cylinder with the fixed surface at the same value of F .

From these two new initial periodic solutions, frequency traverses were carried
out, leading to the results illustrated in figure 19. The general similarity of figure 19
to figure 8 is notable, although only positive values of E are now observed on the
K1 Kármán-mode branch. Again it can be seen that multi-valued solutions were
obtained for the lower-F , positive-E regime. One of these solution branches was
for antisymmetric Kármán street wakes (i.e. a K1 branch), the other, with slightly
higher E values, was associated with asymmetric wakes requiring two cylinder motion
cycles for one repetition of the wake vortex array (an A1 branch). No asymmetric,
synchronized (A2) branch was found.

10. Discussion
10.1. Phenomena of the entrainment regime

The central feature of our results is the simulation of the switch in timing of vortex
formation over a narrow band of frequencies, as observed in many experimental
studies (see § 3), and the demonstration that this was accompanied by a change in
sign of energy transfer between the cylinder and the fluid, as originally proposed
by Den Hartog (1934). This encourages comparison with experimental results for
oscillating cylinders, although, as we have noted in § 4, there are some difficulties in
directly relating our two-dimensional simulation results to the three-dimensional wake
flows which exist at the Reynolds numbers operative for most of the experiments.

Conversely, since our simulations are two-dimensional, at a single oscillation ampli-
tude and a fixed value of Re, it is unlikely that all of the wake behaviours that could
occur in physical experiments have been revealed. Also it is possible that we have not
found all the observable shedding modes even for the idealized case we have studied,
especially as near the region of hysteresis behaviour the choice of final flow state is
dependent on initial conditions.

10.1.1. Entrainment envelope

Our results give the frequency limits for entrainment at A = 0.25 as 0.77 < F <
1.015. At the same amplitude ratio, experimental results of Koopman (1967) give
approximately 0.85 < F < 1.15 over the Reynolds number range 100–300, and those
of Stansby (1976) give 0.71 < F < 1.55 at Re = 3600, see figure 1. The lower limit
for entrainment in our results, F = 0.77, is then within the bounds of these two sets
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Figure 19. Reduced motion-induced vorticity production results. Energy transfer coefficient E as a
function of frequency ratio F for periodic wake flows. (�, e), β = 1, zero motion-induced vorticity
production. �, K1 branch, Kármán mode; e, A1 branch, asymmetric two-cycle mode. 4, β = 0.5,
K2 branch, Kármán mode. Solid lines indicate solution branches from figure 8.

of results, while the upper limit, F = 1.015, is somewhat lower. According to our
experience (§ 7.2), at higher F values the times taken to achieve periodicity could be
significant and were much more sensitive to choice of initial conditions than was
the case for the lower-frequency solutions. This sensitivity is perhaps reflected in
variations in the high-F limit for the experimental results, although these could also
result from Reynolds number effects.

10.1.2. Solution branches, hysteresis effects

The traverse along the K1 branch with increasing F was accompanied by an
apparent shortening of the vortex formation region in the near-wake (see figure 10),
as has been recorded previously by Gu et al . (1994) and Lu & Dalton (1996). Also
note that the apparent width of the wake was substantially less on the K2 branch
than on the K1 branch, as assessed by the cross flow extent of vorticity-bearing fluid
in the first 10D of the wakes shown in figure 10. This accords with the report by
Stansby (1976, noted in § 3.2) of a change in wake width on crossing the ‘critical’

value of F . Finally, the jump in Ĉl/Ĉl0 values on moving from the K1 branch to the
K2 branch (see figure 9b) agrees with a jump in C ′p values reported by Bearman &
Currie (1979).

There is qualitative agreement between the lift phase angles recorded by Bishop &
Hassan (1964, see the discussion in § 3.2) and values of φ shown in figure 9(c) for
frequency ratios F above and below the boundaries of the weakly-chaotic relaxation
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oscillator regime. Their upper critical frequency ratio (F = 0.95 at A = 0.25) agrees
exactly with the value where the K2 solution branch terminates in our results, while
their lower critical frequency ratio (F = 0.86) is somewhat below the lower limits of
both the weakly-chaotic regime and the multi-valued solution branches.

Bishop & Hassan’s description of hysteresis behaviour can also be cast in a light
that suggests some qualitative agreement with our experience. In their experiments,
a solution branch with values of φ ' 90◦ was encountered in frequency traverses
with decreasing F . While in our simulations it was possible to transfer to a solution
branch with similar values of φ (A1) with increasing F , this bifurcation path could
be bypassed if large values of ∆F were used. Thus, with reference to figure 9(c), a
possible interpretation is that, when increasing F , Bishop & Hassan’s results followed
the branch with highest φ values (K1), jumping discontinuously to the branch with
negative φ at higher F (K2). Then while traversing with decreasing F , they started on
the K2 branch, encountered the A1 branch, finally reverting to the K1 branch.

10.1.3. Shedding modes

At the oscillation amplitude A used in our simulations, the entire synchronization
range is covered in the results of Williamson & Roshko (1988) by either the 2P mode
(at lower values of F) or the 2S mode (at higher values of F), although they stated that
the P+S mode (which they included on their map but only for A > 1) replaced the
2P mode for Re < 300. While our asymmetric synchronized mode would be identified
with the P+S mode, we have not observed the 2P mode as a periodic solution in
our simulations. It is possible that similar vortex patterns may have appeared during
transient solutions, or at points in time within the quasi-periodic relaxation oscillator
regime.

Another obvious point of divergence between our results and those of Williamson &
Roshko is that the mode we have called the asymmetric two-cycle mode (2P+4S in
their nomenclature) was not noted at all by Williamson & Roshko. They did observe
a 2P+2S mode, associated with a 1/3 subharmonic entrainment, which occurs at
much lower values of F when A = 0.25. It is possible however that our asymmetric
two-cycle mode could evolve to the 2P mode at higher oscillation amplitudes, or
under the influence of three-dimensional wake effects.

As noted in § 3.2, only Kármán-mode shedding has been observed in some forced
oscillation experiments, particularly those for low oscillation amplitudes, such as those
of Ongoren & Rockwell (1988) and Gu et al . (1994). Periodic solutions with Kármán-
mode shedding occupy most of the entrained frequency range in our simulation
results.

A wider range of dynamical behaviour is possible in vortex-induced vibration as
compared to flows with forced cylinder oscillation; however as pointed out in § 3.3,
only flows with positive mean values of E will be observed. This implies e.g. that
flows from the K2 solution branch shown in figure 8 would not be observed in vortex-
induced vibration experiments, but does not preclude coupling with flows similar to
those described in the relaxation oscillator regime (§ 8.1), provided E is positive on
average.

10.2. Phase switch mechanics

Our hypothesis, outlined in § 9.1, is that a competition between vorticity production
mechanisms is responsible both for the onset of the weakly chaotic relaxation oscillator
regime and also for the discontinuous switch in phase of vortex shedding across that
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regime with increasing F . By manipulating the surface velocity of the cylinder, we
were able to change the motion-induced vorticity production, as discussed in § 9.2.

The hypothesis is supported by the fact that setting β = 1 in (9.3) (i.e. reducing the
motion-induced vorticity production to zero) destroyed the K2 branch while increasing
E values on the K1 branch. It is interesting that with β = 0.5 the K2 branch did
not disappear, but that instead its lower-F bound was increased, and with little
change near the high-F bound. This suggests that the associated control mechanism
is important in establishing the switch but has a secondary role in setting the strength
of vortex shedding.

The lower-F bound of the K1 branch with β = 1 and the upper-F bound of the
K2 branch with β = 0.5 were much the same as the values observed in figure 8
(β = 0). This suggests that the outer termination of those branches (i.e. the extent
of the entrainment regime) does not depend on variations in the relative strength of
motion-induced vorticity production, but is produced by some other mechanism.

At a fixed value of F , increasing oscillation amplitude leads to greater cylinder
acceleration, hence increasing the motion-induced vorticity production. In turn this
suggests that if the phase switch does occur as the result of a competition between
pressure-gradient and motion-induced vorticity production mechanisms, the value of
F at which the switch occurs should reduce as A increases. Exactly this effect can be
seen in the experimental results of Stansby (1976), shown in figure 1.

While our suggestion seems a reasonable hypothesis for a control mechanism under-
lying the switch, it does not explain the detailed fluid mechanics of the phenomenon.
Nor does it explain how the coupling of the wake to the cylinder motion comes
about, or why E changes from negative to positive along the K1 solution branch as F
increases.

11. Conclusions
By studying an idealized two-dimensional flow past an oscillating circular cylinder

at Re = 500 we have been able to replicate the phase-switching behaviour observed in
a number of experiments, and demonstrate that the switch is associated with a change
in sign of mechanical energy transfer between the cylinder and the flow. We have
also shown that additional unusual but periodic wakes can also exist, with hysteresis
effects associated with the bifurcations to these states. This may help to explain some
of the hysteresis behaviour observed in previous forced oscillation experiments.

The results suggest that the discontinuous switch in phase of vortex shedding results
from the outcome of a competition between two vorticity production mechanisms.
Simulations in which one of the production mechanisms was switched off resulted in
the disappearance of one of the two periodic Kármán-mode solutions associated with
the switch, supporting the idea that the switch does result from such a competition.

Our simulation results do not reproduce all of the observed behaviours that have
been found in previous forced oscillation experiments, possibly due to the restriction to
a single oscillation amplitude and Reynolds number, and also to the restriction to two
dimensions. The results do however suggest possible avenues for future experimental
and three-dimensional numerical investigations.

A significant proportion of the simulations reported here was performed at the
Australian National University Supercomputer Facility, and we thank its staff for
their support and assistance.
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