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Run-up on a truncated impermeable beach is analysed theoretically and
experimentally to find the volume of fluid, associated with a single wave event,
that flows over the end of the beach. The theoretical calculations investigate the
motion using the shallow-water equations and the fluid is allowed to flow freely
over the end of the beach. Two models of wave events are considered: dam-break
initial conditions, in which fluid collapses from rest to run-up and overtop the
beach, and a waveform that models swash associated with the collapse of a long
solitary bore. The calculations are made using quasi-analytical techniques, following
the hodograph transformation of the governing equations. They yield predictions for
the volume of fluid per unit width that overtops the beach, primarily as a function
of the dimensionless length of the beach. These predictions are often far in excess
of previous theoretical calculations. New experimental results are also reported in
which the overtopping volumes due to flows initiated from dam-break conditions are
studied for a range of reservoir lengths and heights and for a range of lengths and
inclinations of the beach. Without the need for any empirically fitted parameters,
good agreement is found between the experimental measurements and the theoretical
predictions in regimes for which the effects of drag are negligible.

Key words: coastal engineering, hydraulic control, shallow water flows

1. Introduction
The run-up of waves on beaches and coastal structures is a topic both of

fundamental interest in fluid dynamics and of practical importance: applications
range from understanding the sediment transport which maintains or erodes beaches
(e.g. Pritchard & Hogg 2005) to predicting the hazards posed by tsunami impact
(Synolakis & Bernard 2006). A configuration which is of particular interest occurs
when the sloping surface up which the waves run is truncated at some distance
above the position of the undisturbed shoreline, as, for example, when waves impact
a sharp-crested breakwater, a natural beach berm or when tsunamis overtop berms
and dunes, with typical length scales of the truncated beaches in these examples
ranging from tens to hundreds of metres. In this case, water is driven over the crest
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of the beach and does not return in the backwash. This overtopping may represent
a hazard to both people and infrastructure (Reis et al. 2008) and there is a pressing
need for accurate predictive tools to assess the effectiveness of sea defences to wave
overtopping during storms (Donnelly, Kraus & Larson 2006). Additionally, the water
which overtops the beach may contaminate the region behind it, as when sea water
invades a freshwater lagoon, possibly generating and sustaining a saline ecosystem
(Donnelly et al. 2006). It may drive sediment over the crest and off the beach face
(Kobayashi, Tega & Hancock 1996; Baldock et al. 2005), thus degrading the beach and
rendering it more susceptible to storm damage. Overtopping and sediment overwash
are also very important for the growth of beach berms, where sediment is deposited
on the crest rather than transported offshore (Hine 1979; Weir, Hughes & Baldock
2006). Finally, the overtopping, by modifying the backwash, may significantly alter
the morphodynamic effect of the wave (Hogg & Pritchard 2004b).

Modelling wave overtopping and the associated overwash of sediment has
traditionally been tackled using empirical approaches, but more recently numerical
models have been developed, which are based upon the integration of primitive
governing equations for the fluid flow. (See Reis et al. 2008 and Donnelly et al. 2006
for reviews and comparisons of the various approaches.) In this study, we employ
the nonlinear shallow-water equations to model the motion, following Hu, Mingham
& Causon (2000) and Hubbard & Dodd (2002), amongst others, while noting that
there will be situations in which there are appreciable vertical fluid accelerations and
thus the motion falls outside of the dynamical regime modelled by these equations.
However, as for many other coastal flows, the applicability of the shallow-water
equations to wave run-up and overtopping is well established (Dodd 1998; Shiach
et al. 2004; Brocchini & Dodd 2008) and we anticipate that they will model the
motion accurately.

For some applications, it is important to consider overtopping under a long sequence
of periodic or random waves (e.g. Dodd 1998; Shiach et al. 2004), but the simplest
form of this problem occurs when a single wave breaks and runs up a beach. In the
case when the beach is not truncated, there is an asymptotic description of the flow
due to Shen & Meyer (1963), which takes the form of an analytical solution to the
shallow-water equations. This was subsequently extended by Peregrine & Williams
(2001) (hereafter PW01) to the case of a truncated beach, for which the dimensionless
overtopping volume per unit width was calculated as a function of the dimensionless
length of the beach.

Although most experimental work has considered sequences of waves, sufficient
evidence exists to suggest that the PW01 model does not fully capture the process of
single-wave overtopping. In particular, Baldock et al. (2005) carried out a series of
experiments in which regular waves overtopped a truncated planar beach: they used an
empirical correlation to relate the properties of these waves to the parameters in the
model developed by Peregrine & Williams (2001), and compared their results for the
maximum depth at the crest and for the variation of the overtopping volume with
the length of the truncated beach. They demonstrated that the PW01 model
substantially underestimated flow depths and thus overtopping rates, and that
improved agreement could be found by using the semi-empirical model of Baldock &
Holmes (1997) to describe the swash lens. These results motivated the development
of a new numerical solution to the shallow-water equations (Guard & Baldock
2007), which was shown to predict flow depths better than the analytical expression
proposed by Shen & Meyer (1963). This solution was later written in analytical form
by Pritchard, Guard & Baldock (2008).
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Figure 1. The configuration of the flow and the dimensionless variables that are used in
the mathematical model. The dashed line shows the initial elevation of the fluid within the
reservoir and that the dimensionless height of the confining dam is unity.

Another set of experiments which are relevant to this study was carried out
by Baldock et al. (2007). They performed experiments on dam-break flow over a
truncated planar beach (the same configuration as described below and depicted
in figure 1). Fluid depths were compared successfully with the predictions from a
numerical model, based on the shallow-water equations with friction (Baldock et al.
2007). The main focus of this study, however, was on sediment transport, and Baldock
et al. (2007) did not present data for the volume of water overtopping the beach.

In this study, we calculate the volume of fluid per unit width that overtops
a truncated planar beach, due to the run-up of a wave. The fluid motions are
assumed to be sufficiently shallow so that they may be modelled by the nonlinear
shallow-water equations and the incoming wave is generated by the instantaneous
removal of a dam that confines elevated fluid (Antuono & Hogg 2009) or by offshore
disturbances that generate waves of a specified form (Pritchard et al. 2008). Fluid
may freely overtop the truncated beach while the conditions there are supercritical,
but once critical conditions are established, there is a shoreward influence on the
motion. Our results are obtained through quasi-analytical techniques, employing
the hodograph transformation of the governing equations and building upon the
methods recently developed by Hogg (2006), Pritchard et al. (2008), Antuono, Hogg
& Brocchini (2009) and Antuono & Hogg (2009). These analytical methods offer
several advantages over direct numerical integration of the governing equations in
that they exploit the underlying characteristic structure of the dependent variables
and provide considerable insight into the roles played by the initial and boundary
conditions imposed on the flow. Typically the results are obtained through the
solution of an integral equation, which is readily tackled using standard numerical
techniques (see, for example, Hogg 2006 and § 3). For the overtopping flows analysed
in this paper, we show that the PW01 model significantly underpredicts the volume
of fluid that overtops the truncated beach, essentially because it is built upon a
model of run-up that underpredicts the shoreward fluxes of fluid (Baldock et al.
2005). However, we show that their results are recovered when the length of the
beach is close to, but just less than, the maximum run-up length of the wave,
thus illustrating that the hydrodynamic solution of Shen & Meyer (1963), on which
the PW01 model is built, is an asymptotic description of the motion close to the
wavefront.

In this contribution, we also present the results of new laboratory experiments that
investigate the volume of fluid that overtops a planar truncated beach. The fluid is
released from a tilted flume from an initial state of rest behind a confining dam and
flows along the inclined base, overflowing the end of the apparatus. When the fluid
recedes and ceases overtopping, the end of the apparatus is then sealed and the volume
collected is measured. We thus experimentally measure the overtopping associated
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with only the first wave and not the subsequent reflections. This configuration
corresponds precisely to that studied theoretically and thus we are able to confirm the
theory by quantitatively comparing it with experimentally measured results. Indeed,
we will show that the overtopping volume may be computed by specifying the
values of two dimensionless parameters that specify the length of the reservoir and
the length of the beach and that this produces results that are in close agreement
with the experimental measurements without the inclusion of any empirically fitted
parameters. Although the agreement is with inviscid theory, we do find that drag
affects the motion by significantly curtailing the run-up along the inclined beach
(Hughes 1995; Puleo & Holland 2001), thus preventing fluid overtopping when the
end of the beach is sufficiently distant from the initially confining dam.

The paper is structured as follows. First we formulate the mathematical description
of the flow and briefly introduce the hodograph transformation (§ 2). Overtopping
due to dam-break flow is then calculated, first analysing the supercritical phase of the
motion (§ 3.1) and then the motion with critical conditions imposed at the end of the
truncated beach (§ 3.2). These yield predictions for the overtopping volumes of fluid
per unit width (§ 3.3). We also analyse the effects of a bounded dam-break release of
fluid by calculating the influence on the motion due to an impermeable back wall
at the end of the reservoir that initially contains the fluid. We first calculate the
hydrodynamics (see the Appendix) and then couple this description to the model of
overtopping (§ 3.4). These calculations are quasi-analytical and exploit the hodograph
transformation of the governing equations to form a single integral equation that is
solved to determine the overtopping flux. Experiments that measure the overtopping
volumes from dam-break releases in inclined flumes are reported in § 4 and the
results are compared with the theoretical predictions in the same configuration. We
then consider the overtopping volumes due to the waveform proposed by Guard
& Baldock (2007) and compute them by following the same analytical techniques
(§ 5). This calculation illustrates that the analytical framework developed here may be
applied to other types of fluid motion. Finally we summarise our results and present
some conclusions (§ 6).

2. Governing equations and the hodograph transformation
We analyse the two-dimensional motion of inviscid fluid along a planar beach on

the assumption that the flow is predominantly parallel to the underlying boundary.
This implies that fluid accelerations perpendicular to the plane are negligible and the
pressure adopts a hydrostatic distribution. We first treat the motion that occurs when
fluid is instantaneously released from a state of rest within a reservoir behind a dam,
before calculating results for other waveforms (see § 5). This idealised initial condition
captures many of the features of wave run-up on a beach: it exhibits a shoreline that
runs up the beach before receding (its motion is essentially ballistic) and it leads to
the formation of a backwash bore (Antuono & Hogg 2009). Furthermore, this initial
condition is readily reproduced in experiments (see § 4).

We adopt x and z coordinate axes that are parallel and perpendicular to the plane,
respectively, with the origin located at the base of the dam; the inclination of the
plane is denoted by θ (see figure 1). Then the dimensionless shallow-water equations
that govern the evolution of the depth of the flow, h(x, t), and its velocity, u(x, t), are
given by (see Peregrine 1972)

∂h

∂t
+

∂

∂x
(uh) = 0 and

∂u

∂t
+ u

∂u

∂x
+

∂h

∂x
= −1. (2.1)
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In these equations, length scales parallel and perpendicular to the plane have been
rendered dimensionless with respect to h∗

0/tan θ and h∗
0, respectively, where h∗

0 denotes
the initial dimensional height of fluid immediately behind the dam. Times are non-
dimensionalised by (h∗

0 cos θ/g)1/2/ sin θ , where g denotes gravitational acceleration.
With these dimensional scales, we find that there are two dimensionless parameters
remaining, E ≡ tan θE∗/h∗

0 and L ≡ tan θL∗/h∗
0, which essentially measure the length

of the beach (E∗) and the length of the reservoir (L∗) relative to the length scale of
the fluid flow.

The initial conditions are that u(x, 0) = 0 and

h(x, 0) =

{
1 − x, −L � x � 0,

0, x > 0.
(2.2)

The boundary conditions are that there is no flow at the back wall, u(−L, t) = 0,
and that a shoreline forms, xf (t), where the depth of the fluid vanishes, h(xf , t) = 0,
until the end of the truncated beach at x =E is reached at t = ts . Thereafter while
the motion is supercritical at x = E, the fluid flows off the end of the beach and out
of the domain. Eventually, however, the Froude number (F = u/

√
h) at the end of

the beach drops and the flow first becomes critical (F = 1) at t = t∗. Then, following
Peregrine & Williams (2001), we assume that the end of the beach acts as a hydraulic
control point on the flow and we impose

u =
√

h at x = E, for t > t∗. (2.3)

This way, we treat the end of the beach as a broad-crested weir, at which the flow
undergoes the transition from a subcritical to a supercritical state. Alternatively, and
this is closer to the experimental configuration, the end of the beach is a free overfall
where the flow also passes from a sub- to a supercritical state. In this configuration, it
is likely that critical conditions are attained slightly upstream of the overfall. However,
the distance upstream is typically a few multiples of the flow depth, thus permitting the
condition of criticality to be enforced at the end to a good approximation (Henderson
1966). Other configurations at the end of the beach are possible, such as a sharp-
crested weir: these are typically associated with an empirical discharge expression that
could be written in a form similar to (2.3), though possibly with a different constant
of proportionality, thus allowing the general formulation that follows to be applied.

It is possible to maintain the boundary condition (2.3) until the depth of fluid at
x = E vanishes at t = tf and thereafter the shoreline retreats. If the reservoir is of
infinite length, this sequence of flow events occurs provided E > 1; for shorter beaches,
E < 1, the flow evolves to a steady state in which overtopping occurs indefinitely and
thus there is no time, tf , at which the flow begins to recede. In contrast, for finite-
length reservoirs and for the waveforms of § 4, there is always an upper bound to the
volume of fluid overtopping the end of the truncated beach.

The shallow-layer model (2.1) neglects hydraulic resistance, an assumption that
is most questionable when the flow depths are small so that the drag forces may
significantly retard the motion. These resistive forces are particularly significant close
to the front of the flow, where the depth vanishes and, analogously to dam-break
flows over horizontal surfaces (Whitham 1955; Hogg & Pritchard 2004a), they may
be no longer negligible, generating a drag-affected region close to the front. However,
once the front has passed and the flow begun to overtop, the depth increases and the
drag may become less significant until the overtopping phase nears its end and the
flow depths become small again. In § 4 where the experimental results are presented,
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it is evident that for flows initiated from a dam-break configuration at laboratory
scales, drag may significantly curtail the run-up (cf. Whitham 1955; Miller 1968;
Hogg & Pritchard 2004a), but that accurate predictions of the overtopping volumes
are obtained using an inviscid model of the motion. This is because the volume of
fluid associated with the drag-affected tip is small relative to the remaining volume
of overtopping fluid that follows it, unless the beach approaches the maximum length
for overflow.

The governing equations (2.1) can be rewritten in characteristic form as follows:

α ≡ u + t + 2c = constant along curves such that ẋ = u + c, (2.4)

β ≡ u + t − 2c = constant along curves such that ẋ = u − c, (2.5)

where c =
√

h and where a dot denotes differentiation with respect to time. Using α

and β as independent variables instead of x and t (the hodograph transformation),
we find that u =(α + β)/2 − t and c =(α − β)/4, while (2.4) and (2.5) become

∂x

∂β
=

(
3 α + β

4
− t

)
∂t

∂β
along curves such that α = constant, (2.6)

∂x

∂α
=

(
α + 3 β

4
− t

)
∂t

∂α
along curves such that β = constant. (2.7)

Combining (2.6) and (2.7), we find that

∂2t

∂α∂β
=

3

2(α − β)

(
∂t

∂α
− ∂t

∂β

)
. (2.8)

The hodograph transformation remains invertible provided the Jacobian of the
transformation, J , remains finite and non-vanishing. By using (2.6) and (2.7), it
is possible to show that

J ≡ ∂t

∂α

∂x

∂β
− ∂t

∂β

∂x

∂α
= 2c

∂t

∂α

∂t

∂β
. (2.9)

To solve this problem analytically, we use the scheme described in Hogg (2006),
which employs a Green’s function in the hodograph plane and utilises the linear
differential form given by ω = −V da + Udb, in which

V =
3tB

2(a − b)
+

B

2

∂t

∂a
− t

2

∂B

∂a
and U = − 3tB

2(a − b)
+

B

2

∂t

∂b
− t

2

∂B

∂b
. (2.10)

In these expressions, B = B(a, b; α, β) is the Riemann function that satisfies the partial
differential equation adjoint to (2.8), which is given by

∂2B

∂a∂b
+

3

2(a − b)

(
∂B

∂a
− ∂B

∂b

)
− 3B

(a − b)2
= 0, (2.11)

subject to the boundary conditions

∂B

∂b
=

−3B

2(a−b)
along a = α,

∂B

∂a
=

3B

2(a−b)
along b = β and B(α, β; α, β) = 1.

(2.12)

In this case, the Riemann function is given by Garabedian (1986)

B(a, b; α, β) =
(a − b)3

(a − β)3/2(α − b)3/2
F

[
3

2
,
3

2
; 1;

(a − α)(β − b)

(a − β)(α − b)

]
, (2.13)
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where F is the hypergeometric function (Abramowitz & Stegun 1964). Accordingly,
the solution t(α, β) satisfies (2.8) if the linear differential form ω is exact, that is, for
all regular domains, D, in the (α, β) plane, we require that∫

∂D

ω = 0, (2.14)

where ∂D represents the boundary of D.

3. Overtopping from dam-break flows
3.1. Initial motion and supercritical overtopping

From the dam-break initial conditions on a non-truncated beach (see (2.2)), Antuono
& Hogg (2009) demonstrated that the motion, in terms of the hodograph variables,
is given by

t =

∫ α

2

B(a, −2; α, β)

[
3

4

(a − 2)

(a + 2)
+

1

2

]
da, (3.1)

x =

(
α + 3β

4
− t

2

)
t − 1

4

∫ α

2

t(a, β) da. (3.2)

This expression is valid within the expansion fan −t2/4 − t < x < xf (t); fluid outside
this fan remains at rest. The shoreline motion is a singular point within the hodograph
plane with α =β = 2. It is not possible to evaluate it from (3.1), but directly from
the definition of the characteristic curves, it may be shown that the shoreline moves
ballistically up the beach and is given by

xf = 2t − t2/2. (3.3)

At this stage, we note that the solution for the flow derived by Shen & Meyer (1963),
on which the PW01 model of overtopping is built, corresponds to (3.1) and (3.2)
in the regime α − 2 � 1. Thus, their solution corresponds to the region close to the
shoreline. Shen & Meyer’s solution may be considered as being generated from the
collapse of fluid with a constant initial dimensionless depth of unity behind the dam,
rather than the initial conditions treated here (cf. (2.2)). It is therefore anticipated
that such a flow will lead to the forward propagation of a reduced volume of fluid
compared to that initiated from (2.2) and thus the potential overtopping volumes are
considerably reduced as well. This expectation will be established in the results that
follow. However, when the beach is relatively long so that only fluid close to the
shoreline may overtop (2−E � 1), the asymptotic form of the flow field for α −2 � 1
will accurately represent the motion and our results for overtopping volumes in this
regime converge to those of PW01.

From (3.3), it is straightforward to find the earliest time at which the flow reaches
the end of the beach. This occurs at

t = ts ≡ 2 −
√

4 − 2E. (3.4)

For t > ts , the fluid overtops the truncated beach. Initially there is supercritical flow at
the end of the truncated beach, but as the flow slows and deepens, critical conditions
are attained and thereafter the motion differs from that calculated by Antuono &
Hogg (2009). The flow first becomes critical (u =

√
h) at the end of the beach when, in

terms of hodograph variables, t =(α + 3β)/4. Thus, denoting the onset of criticality
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by (t, α, β) = (t∗, α∗, β∗), we solve

t(α∗, β∗) =
α∗ + 3β∗

4
and x(α∗, β∗) = E. (3.5)

The variation of these values with E is plotted in figure 2. We note that in the regime
δ ≡ 2 − E � 1,

t∗ = 2 − δ

2
+ · · ·, α∗ = 2 +

1

2

(
2

3

)3/2

δ3/2 + · · · and β∗ = 2 − 2δ

3
+ · · ·. (3.6)

Furthermore, in the regime 0 <E � 1, we find that

t∗ =
3
√

6

8
∆ + · · ·, α∗ = 2 + ∆ + · · · and β∗ = −2

3
+

3
√

6 − 2

6
∆ + · · ·, (3.7)

where ∆ =8

√
(9 +

√
6)E/15.

In the Appendix, we show that the first α-characteristic that is affected by the
impermeable back wall is given by αws = 4(1 + L)1/2 − 2. Thus, the establishment of
critical conditions at the end of the truncated beach is unaffected by the back wall if
α∗ <αws and so we may determine a minimum length of reservoir, Lcrit , such that the
onset of critical conditions is unaffected by the reservoir length if L > Lcrit . We plot
the variation of Lcrit with the length of the beach, E, in figure 2(b).

3.2. Critical overtopping

For t > t∗, the overflow at the end of the beach acts as a control on the fluid
motion such that critical conditions (u =

√
h) are maintained at this location. As a

consequence, the overflow at the end of the beach now affects the motion upstream
and, in this subsection, we calculate the ensuing motion in terms of hodograph
variables.

It is convenient to consider the modification to the motion in both the hodograph
(α, β) and physical (x, t) planes (see figures 3 and 4). Offshore of the β =β∗
characteristic and onshore of the α = α∗ characteristic, the motion is unaffected
by the overtopping at the end of the beach. The flow first becomes critical at the
point A= (α∗, β∗) in the hodograph plane. The curve SA represents the variation of
the hodograph variables at the end of the beach during the supercritical overtopping.
The curve AB represents the hodograph variables at the end of the beach during the
critical overtopping; it is written as (α, βc(α)) and the determination of βc remains
one of the aims of this subsection. Provided the beach is sufficiently long (E > 1), this
curve intersects β = α and then a receding shoreline forms and overtopping finishes
after some finite time (t = tf ).

During the phase of the motion with critical conditions at x =E, we impose that
u =

√
h, which implies that t = (α + 3βc)/4. Furthermore, treating x ≡ x(α, β), we find

that at the end of the beach

dx

dα
=

∂x

∂α
+ β ′

c

∂x

∂β
=

α − β

2
β ′

c

∂t

∂β
= 0, (3.8)

where β ′
c ≡ dβc/dα and the final simplification comes from the equations along the

characteristics (see (2.6), (2.7)). Using (3.8) we may also evaluate the derivative of t

along the curve β = βc: this is given by

dt

dα
=

∂t

∂α
=

1 + 3β ′
c

4
. (3.9)
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Figure 2. (a) The values of the characteristic variables, α∗ and β∗, and the time, t∗, at which
critical conditions are first attained at the end of the truncated beach as a function of the length
of the beach, E. Also plotted are the asymptotic approximations for these quantities in the
regimes E � 1 and 2−E � 1. (b) The minimum length of reservoir, Lcrit , such that if L>Lcrit ,
critical conditions are attained at the end of the truncated beach before the dam-break flow is
modified by the presence of the back wall.

In the hodograph plane, the region influenced by the critical overflow condition at
x = E is bounded by the curve AB and the characteristic β = β∗. Within this region, we
employ Riemann’s method to construct the solution. This is based upon integrating
around the closed contour ABCD, where

A = (α∗, β∗), B = (α, βc(α)), C = (α, βc(α)) and D = (α, β∗). (3.10)
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Figure 3. The hodograph plane for E = 1.5. Supercritical overtopping occurs at x = E along
the curve SA and critical overtopping at x = E along the curve βc(α). The closed contour
ABCD is used to construct the solution in the regions influenced by the critical overtopping.
The depth of the flowing layer vanishes along the dashed line (α =β).

The contribution from the segment BC is given by

∫ α

α

−V (a, βc(α); α, β∗) da =

[
−1

2
Bt

]α

α

+

∫ α

α

t

(
∂B

∂a
− 3B

2(a − b)

)
da. (3.11)

In the integral of (3.11), t denotes t(a, βc) and B ≡ B(a, βc; α, β∗) and likewise for the
derivative of B . The contributions from the segments CD and DA are, respectively,
given by

∫ β∗

βc

U (α, b; α, β∗) db =

[
1

2
Bt

]β∗

βc

and

∫ α∗

α

−V (a, β∗; α, β∗) da =

[
−1

2
Bt

]α∗

α

. (3.12)

Finally, we evaluate the integral along the curve AB , which is parameterised as
β = βc(α) (and as b = bc(a)). This yields∫ α

α∗

(
−V + U

dbc

da

)
da =

∫ α

α∗

[
− 3tB

2(a − bc)
(1 + b′

c) + t
∂B

∂a
+ Bb′

c

∂t

∂b
− 1

2

d

da
(tB)

]
da.

(3.13)

In this integral, the Riemann function B ≡ B(a, bc; α, β∗) and likewise for its deriva-
tives, and the time field t = (a + 3bc)/4. Then, after combining these contributions,
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Figure 4. Characteristics in the (x, t) plane for E = 1.5, with α and β characteristics depicted
by dashed and solid lines, respectively. The points P =(E, ts), Q = (E, t∗) and R = (E, tf )
represent the times at which there are different phases of the overtopping. At P , the lead
characteristic first reaches x = E and thereafter supercritical overtopping occurs, until the flow
has sufficiently slowed and deepened. The Froude number at x =E first drops to unity at
point Q and thereafter the overtopping is controlled by a critical condition at x = E. At R, the
shoreline begins to retreat and no further overtopping occurs.

using the boundary condition at x = E, we find that

0 = t(α, β∗) −
(

α − βc

α − β∗

)3/2

t(α, βc) +

∫ α

α

t

(
∂B

∂a
− 3B

2(a − βc)

)
da

+

∫ α

α∗

[
− 3tB

2(a − bc)
(1 + b′

c) + t
∂B

∂a

]
da. (3.14)

Before we may evaluate this expression at points within the interior of the domain
that are affected by the critical condition imposed at the end of the truncated beach,
we must first determine the curve βc. To this end, we let α → α (i.e. the point C

coincides with B) and on further substituting the condition of critical flow conditions,
t = (α +3βc)/4, we derive an integral equation for the curve representing x = E in the
hodograph plane, which is labelled AB in figure 3. This is given by

0 = t(α, β∗) −
(

α − βc

α − β∗

)3/2 (
α + 3βc

4

)

+

∫ α

α∗

(
− 3B

2(a − bc)
(1 + b′

c) +
∂B

∂a

)(
a + 3bc

4

)
da. (3.15)
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This is an integral equation for βc(α). It is most readily integrated numerically by
differentiating with respect to α to give

3β ′
c = 4

(
α − b∗

α − βc

)3/2
∂t

∂α
− 9

4

(βc − β∗)(α + 3βc)

(α − β∗)(α − βc)
− 1

+

(
α − β∗

α − βc

)3/2 ∫ α

α∗

(
−3

2

(1 + b′
c)

(a − bc)

∂B

∂α
+

∂2B

∂a∂α

)
(a + 3bc) da. (3.16)

The equation is now in the form of a Volterra integral equation of the second
kind, which may be solved numerically by iteration. Some numerical difficulties are
experienced as the depth of fluid, measured by α − β , becomes very small. To this
end, it is simpler to perform the computations in a rotated coordinate system so
that σ = α − βc and λc = α + βc, and to determine the curve AB as a function of
the parameter σ . This is possible provided that σ varies monotonically with α, a
condition that has been confirmed numerically for E > 1. We denote the value of λ
attained at σ =0 by λf , noting that the time at the point, t = tf , and the values of the
characteristic variables, α = αf and β = βf , are all equal to λf /2.

In the numerical computations, we calculate λc(σi), where σi = σ∗(1 − i/N) and find
converged solutions to a relative accuracy of 10−6 with N = 200, typically after 10
iterations. As E is decreased towards unity, we need to use an increased resolution
and more iterations to attain a converged solution.

We plot the solution for the curve in the hodograph plane in figure 3. For this
calculation, we have assigned E = 1.5, but all values of 1<E < 2 have the same
generic structure. It is straightforward to calculate the characteristic curves, given
t(α, β) within the domain affected by the critical condition at the end of the beach. The
position is given parametrically by integrating along β-characteristics that emanate
from the curve β = βc at x = E. From (2.7), we find that

x(α) = E +
3

4
βc [t(α) − t(α)] +

1

4
αt(α) − 1

4
αt(α) − 1

2
[t(α)2 − t(α)2] −

∫ α

α

1

4
t da.

(3.17)

The characteristic curves are plotted in figure 4. The points P and Q in the physical
plane correspond to points S and A, respectively, in the hodograph plane. The former
represents the time at which the flow front first arrives at the end of the beach,
whereas the latter represents the time at which the flow at the end of the beach first
becomes critical. Profiles of the depth and velocity fields at various instances of time
during the critical phase of overtopping are plotted in figure 5. We note that the
condition of criticality at x = E leads to a discontinuity in the gradients of the depth
and velocity field that propagates from the end of the beach (x = E) back into the
domain. The position of this discontinuity follows the β = β∗ characteristic. We also
note that flow reversal occurs within the domain away from the end of the beach,
while overtopping continues at x = E. Overtopping ceases when the depth of fluid
and velocity first vanish.

3.3. Overtopping fluxes

To complete the calculation we calculate the volume of fluid per unit width that
overtops the end of the truncated beach. This is given by

V =

∫ t∗

ts

uh dt +

∫ tf

t∗

uh dt. (3.18)
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Figure 5. (a) The depth of fluid, h(x, t), and (b) the velocity, u(x, t), as functions of positions at
t = t∗ = 1.767, 1.9, 2.0, 2.1, 2.2, tf = 2.291 during the critical phase of overtopping for E = 1.5.
The first and last profiles are labelled; during this interval, the depth of fluid, h(1.2, t),
progressively increases and the velocity, u(1.2, t), progressively decreases.

The first of these integrals, henceforth denoted by V1, represents the volume flux
during the supercritical phase of the overtopping motion. The second, henceforth
denoted by V2, represents the volume flux when the motion is critical at the end of
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Figure 6. The volume flux per unit width at the end of the truncated beach, q = u(E, t)h(E, t),
as a function of time for the flow model employed in this study (solid line) and by Peregrine
& Williams (2001) (dashed line), with E = 1.5 in each case. Also plotted are the times t∗ at
which the overtopping flow first becomes critical (dotted line).

the beach. Using the condition u =
√

h, it is given by

V2 =

∫ tf

t∗

(
α − βc

4

)3

dt (3.19)

=
σ 4

∗
1024

− σ 3
∗ λ∗

128
+

3

128

∫ σ∗

0

σ 2λc dσ, (3.20)

where σ∗ = α∗ − β∗ and λ∗ = α∗ + β∗.
In figure 6, we plot the temporal variation of the volume flux per unit width,

q = u(E, t)h(E, t) for ts < t < tf for E = 1.5, showing the result from the calculation
in this paper and from Peregrine & Williams (2001). We note that although the fluxes
from both flows develop at the same time (ts = 1) because the trajectories of the fronts
are identical, the flux overtopping is greater for the fluid motion modelled in this
paper and the flow recedes at a later time. This figure also illustrates some of the
influence of the critical condition at the end of the beach: overtopping is finished
at time tf , which is before the retreat of the shoreline if the flow had been along
an untruncated beach (t =2 + (4 − 2E)1/2). We also note that the flow develops a
bore during the backwash on a beach without overtopping (Antuono & Hogg 2009),
but that such a feature is not found during the overtopping of a truncated beach.
In figure 7, we consider the variation of the total volume of fluid that overtops the
beach with the dimensionless length of the beach. We note that the current model
exceeds the predictions of Peregrine & Williams (2001) by an order of magnitude
for relatively short beaches, but that the predictions converge as the dimensionless
length of the beach approaches the maximum run-up distance of the incoming fluid
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Figure 7. The volume of fluid per unit width overtopping the truncated beach. In (a) the
overtopping volumes during the supercritical and critical phases are plotted (V1 and V2,
respectively). In (b), the total overtopping volume is plotted (solid line), along with that
calculated by Peregrine & Williams (2001) (dashed line).

(E → 2) and the overtopping volume vanishes. Indeed from the PW01 model, it may
be shown that

V = 1
108

(2 − E)3 + · · · when 2 − E � 1. (3.21)

3.4. Overtopping from dam-break flows with finite reservoirs

Our calculations of overtopping volumes have thus far been for flows from reservoirs
that are sufficiently long that the fluid has retreated from the end of the truncated
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Figure 8. The minimum length of reservoir, Lmin , such that overtopping the truncated beach
is not affected by the impermeable back wall, plotted as a function of the length of the
beach, E.

beach and the overtopping has finished before any influence of the finite size of the
reservoir is felt. In terms of the characteristics underlying the governing equations, this
requires that the flow recedes before the α-characteristic generated by the reflection
at the back wall of the rearmost β-characteristic, which arises from the initiation of
the flow, has reached the end of the beach. In terms of the hodograph plane, this
requires that αf <αws ≡ 4(1 + L)1/2 − 2 (see the Appendix). Thus, for each length
of beach E, we may determine the minimum length of reservoir, Lmin , so that its
finite extent exerts no influence on the overtopping (see figure 8). We note that
when converted to dimensional length scales, this constraint may correspond to flume
lengths that are prohibitively large for laboratory investigations (see § 4). Thus, in
this section, we investigate the overtopping that occurs from finite-length dam-break
releases.

The calculation is made possible by coupling the analysis of overtopping (see above)
with the analysis for a finite-length reservoir (see the Appendix). It is most readily
explained by reference to the hodograph plane (see figures 9 and 10).

First, employing the notation introduced in the Appendix that the curve in the
hodograph plane corresponding to u(0, t) = 0 is denoted by α = αw(β), we examine
when the wall curve is such that α′

w > 0 for all β > −2 (figure 9). The first stage
of the calculation is to find the portion of the curve in the hodograph plane that
corresponds to critical conditions before the back wall exerts any influence on the
motion (β = βc(α) for α∗ < α < αws). This computation is described above (§ 3.2) and
thereafter we may evaluate t(αws, β) for β∗ < β < βc(αws) using (3.14). Subsequent
overtopping is affected by the back wall, and by using (A 7), we evaluate t(α, β∗) for
α > αws . To extend the portion of the critical overtopping curve, βc(α), into α >αws , we
must first find t(α, βc(αws)). This is straightforwardly done by applying the Riemann
method to the straight line segments that make up the closed curve PQRS (see
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Figure 9. The hodograph plane for L = 2 and E =1, showing the curve that represents the
critical condition at the end of the truncated beach, β = βc(α), and the curve that represents
the no-flow condition at the back wall, α = αw(β). Critical conditions are first attained at the
end of the beach when α =α∗ and the back wall begins to influence the flow when α = αws . For
this length of reservoir (L>Lc), the hodograph plane does not develop a fold. Also shown is
the integration contour PQRS, which is used to evaluate t(α, βc(αws)).

figure 9), to yield

t(α, βc(αws)) =

(
αws − βc(αws)

α − βc(αws)

)3/2

t(αws, βc(αws)) +

(
α − β∗

α − βc(αws)

)3/2

t(α, β∗)

− B(αws, β∗; α, βc(αws))t(αws, β∗) +

∫ αws

α

(
∂B

∂a
− 3B

2(a − β∗)

)
t(a, β∗) da

+

∫ βc(αws )

β∗

(
−∂B

∂b
− 3B

2(αws − b)

)
t(αws, b) db. (3.22)

In the first of these integrals, B ≡ B(a, β∗; α, βc(αws)) and likewise for its derivatives,
while in the second, B ≡ B(αws, b; α, βc(αws)) and likewise for its derivatives. Armed
with this evaluation of time along the β-characteristic β = βc(αws), it is then possible
to extend the curve for critical overtopping using the methods described above (§§ 3.2
and 3.3). An illustrative plot is shown in figure 9. We note that the gradient of βc is
discontinuous at α = αws , reflecting the discontinuities in the gradients of the height
and velocity fields across this characteristic.

The calculation is more complicated if L < Lc, thus implying that α′
w(−2) < 0

and thus the hodograph plane develops folds (see figure 10). To proceed with the
solution, we still need to evaluate t(α, βc(αws)), which may be done using the methods
presented earlier in this subsection, although, in this case, αb <α <αws , where αb is
the minimum value of αw(β) (see the Appendix). Using this calculation, it is then
possible to compute the extension of the critical curve in the hodograph plane.
It is now possible that overtopping finishes (βc(α) = α) for some value of α in
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Figure 10. The hodograph plane for (a) L = 1 and E =0.9, and (b) L = 1 and E =0.5, showing
the curve that represents the critical condition at the end of the truncated beach, β = βc(α) and
the curve that represents the no-flow condition at the back wall, α = αw(β). Critical conditions
are first attained at the end of the beach when α = α∗ and the back wall of the reservoir begins
to influence the flow when α = αws . For both these sets of parameter values, the hodograph
plane develops a fold at α = αws and α-characteristics carry diminishing values of α for some
period. In (a) overtopping finishes before the values of α begin to increase again, whereas in
(b) overtopping finishes after this point.
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this range, in which case the calculation is complete. Alternatively it is possible that the
curve reaches the values α =αb and is thereafter defined for increasing α. Negotiating
this fold in the hodograph plane does not cause any difficulties in principle: the time
t(α, βc(αb)) must be evaluated along the β-characteristic emanating from the turning
point of the critical curve and then the same methods for finding the overtopping
curve can be followed until the flow has receded from the end of the truncated beach.
In figure 10, we plot the critical overtopping curve for both of these scenarios.

4. Experiments
Experiments to measure overtopping volumes from dam-break initial conditions

were conducted in a tilting flume in the School of Civil Engineering, University of
Queensland. A schematic of the experimental facility is shown in figure 1. The tilting
flume is 3 m long, 0.4 m wide and 0.4 m high. The flume has an impermeable PVC bed
(roughness height, ks ≈ 0.01 mm) and clear glass walls. One end of the flume (x = −L)
is closed permanently. The other end is open to allow overtopping. A dam gate can be
located at any position along the flume length to hold a reservoir of desired volume.
The dam gate is PVC, 12 mm thick, with a silicon seal at the sides and a flexible foam
seal at the base. The seals together with a small amount of silicon grease along the
sidewall on the reservoir side eliminate sufficient leakage from the reservoir so that
the bed downstream of the gate can be maintained as dry prior to the gate release. A
small drain hole immediately downstream of the gate facilitates draining small leaks
while filling the reservoir and setting instrumentation. The gate is raised by a pivoting
lever arm and this was performed manually. Video analysis of the gate indicated that
it opened to a height in excess of 0.2 m in approximately 0.12 s and thus following
Lauber & Hager (1998), we anticipate that the speed of gate opening is sufficiently
rapid for it to have little effect on the flow that ensures. Figure 11(a) shows the dry
bed ahead of the fluid and a wall of water that is approximately perpendicular to the
base of the flume at the instant the gate is clear of the water surface. Figure 11(b)
illustrates the run-up flow tip during propagation up the slope towards the edge,
showing that the fluid attains a smooth profile.

Overtopping experiments were performed for three different flume gradients, 1/10,
1/20 and 1/30. The reservoir length, L∗, was varied between 1 and 2 m, with initial
water depths, h∗

0, behind the dam ranging from 0.055 to 0.28 m. Flow depths were
measured approximately 6 cm back from the edge and at the mid-point of the
channel using non-intrusive Mic+25 Microsonic acoustic displacement sensors. A
further sensor was attached to the gate to provide a timing trigger. Overtopping flow
was collected in overtopping tanks of different sizes, from which the overtopping
volumes were obtained. Secondary and reflected waves from the back wall result in a
sequence of overtopping events in general. To ensure that only the initial overtopping
event was measured, a flap hinged to the upper part of the flume at the open edge
was closed manually the instant the initial overtopping ceased, excluding secondary
waves from the measured volumes.

Previous experimental studies of the run-up of fluid from dam-break initial
conditions in this experimental configuration (Baldock et al. 2007) revealed that
the maximum run-up was significantly less than the theoretical dimensional
maximum of 2h∗

0/ tan θ . This difference is presumably due to the action of drag
on the thin layer of fluid at the front of the flow. Therefore, we were unable to study
truncated beaches of dimensionless lengths, E > 1.2, because the fluid does not run
up beyond that point. However, it also emerged that all bar one of the experimental
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(b)

(a)

Figure 11. Photographs of dam-break flows in the laboratory flume for conditions h0 = 0.1 m,
L∗ = 1.6 m and tan θ = 0.1. The photographs show the fluid (a) just after the gate has cleared
the reservoir of fluid and (b) when the wavefront is approximately halfway through its run-up.

conditions were affected by the presence of the back wall, measured in dimensionless
terms by L < Lmin (see figure 8). This is an important conclusion about this set
of experiments, illustrating the need for the calculations in the Appendix; many
of the experimental conditions were for relatively short truncated beaches (E < 1)
for which the overtopping volume from an unbounded reservoir would be infinite.
The dimensionless length of the beach, E, ranged between 0.17 and 1.22, while the
dimensionless length of the reservoir, L, ranged between 0.33 and 2.38. We report the
experimental conditions and the theoretical predictions in table 1.

For each set of values for the dimensionless lengths of the beach and the reservoir,
we compute the theoretical predictions for the dimensionless overtopping volume
per unit width and we plot the theoretically calculated and experimentally measured
results in figure 12 and give the numerical values in table 1. We note that there
is generally good quantitative agreement between the theory and the experiments.
There are some outliers for which the theory overpredicts the experimentally measured
values. These are associated with relatively long beaches (often with E � 1.0) and long
reservoirs, for which drag curtails the overtopping earlier than predicted by the inviscid
model. The remaining outlier, which is an underprediction by the model, corresponds
to the experimental conditions with the greatest reservoir depth (and maximum

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

43
25

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004325


Overtopping a truncated planar beach 541

tan θ L∗ E∗ h∗
0 Volume L E Vexp V V̂

(m) (m) (m) (m3)

0.100 1.0 2.0 0.248 0.0173 0.403 0.810 0.070 0.080 0
0.100 1.0 2.0 0.220 0.0109 0.455 0.914 0.056 0.069 0
0.100 1.0 2.0 0.200 0.0065 0.500 1.005 0.040 0.057 0
0.100 1.0 2.0 0.190 0.0050 0.526 1.058 0.035 0.050 0
0.100 1.0 2.0 0.165 0.0004 0.606 1.218 0.004 0.025 0
0.100 2.0 1.0 0.187 0.0436 1.070 0.537 0.312 0.304 0.350
0.100 2.0 1.0 0.152 0.0232 1.316 0.661 0.251 0.275 0.227
0.100 2.0 1.0 0.103 0.0028 1.942 0.976 0.067 0.125 0
0.100 2.0 1.0 0.084 5.7×10−6 2.381 1.196 2.0×10−4 0.029 0
0.050 2.0 1.0 0.275 0.1659 0.364 0.182 0.274 0.217 0.281
0.050 2.0 1.0 0.200 0.0872 0.500 0.250 0.272 0.260 0.344
0.050 2.0 1.0 0.158 0.0594 0.633 0.317 0.298 0.287 0.382
0.050 2.0 1.0 0.100 0.0238 1.000 0.501 0.297 0.309 0.374
0.050 2.0 1.0 0.055 0.0011 1.818 0.910 0.047 0.162 0
0.050 1.0 2.0 0.148 0.0142 0.338 0.677 0.081 0.090 0
0.050 1.0 2.0 0.100 0.0006 0.500 1.001 0.007 0.057 0
0.033 2.0 1.0 0.072 0.0170 0.926 0.463 0.273 0.310 0.390
0.033 2.0 1.0 0.050 0.0068 1.333 0.667 0.226 0.274 0.221
0.033 2.0 1.0 0.102 0.0345 0.654 0.327 0.277 0.291 0.386
0.033 2.0 1.0 0.150 0.0685 0.444 0.222 0.254 0.245 0.321
0.033 2.0 1.0 0.200 0.0843 0.333 0.167 0.176 0.207 0.264

Table 1. The experimental measurements of the overtopping volumes resulting from dam-break
initial conditions, along with the dimensionless length of reservoir, L, distance to the end of
the beach, E, and experimentally determined dimensionless overtopping volume, Vexp . Also
listed are the theoretical predictions of the dimensionless volume per unit width, V , and the

simple estimate, V̂ = max(0, (1/2)(2 + L)L − (1/2)(L + E)2).
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Figure 12. The theoretical predictions of the dimensionless overtopping volume per unit width
plotted against the experimentally measured values. Data were collected at various inclinations
of the flume, depths of fluid behind the dam and lengths of reservoir (× L∗ = 1 m; ◦ L∗ =2 m).
The solid line represents perfect agreement.
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dimensional overtopping). It is possible that the finite gate opening time is a reason
for this mismatch between theory and experimental measurements, because it changes
the nature of the initial wave that propagates towards the back wall and its subsequent
reflection. However, notwithstanding these discrepancies, the agreement between the
predicted and observed volumes, with no empirically determined fitting parameters, is
encouraging and is supportive of the framework for modelling overtopping developed
in this study. In particular, the experimental results indicate that the shallow-water
equations, coupled to the condition of hydraulic control, are able to predict accurately
the overtopping volumes. Also given in table 1 is a calculation of overtopping volumes
just based on conservation volumes: the overtopping volume is estimated as the
difference between the initial fluid volume and the volume that could be contained
within the flume when the fluid is quiescent with a horizontal surface, having spread
along the entire length of the apparatus. This dimensionless overtopping volume per
unit width is then calculated as V̂ = max(0, (2 + L)L/2 − (L + E)2/2). Although this
simple prediction is in reasonable accord with the experiments when the distance to
the end of the flume is very short (E � 1), it fails to account for the flow dynamics
that lead to run-up and overtopping for longer beaches (E = O(1)).

5. Overtopping from Guard–Baldock waveforms
In this section, we calculate the overtopping under the model of wave run-up on

a linear beach introduced by Guard & Baldock (2007) and subsequently written in
analytical form by Pritchard et al. (2008).

The solution developed by Guard & Baldock (2007) is constructed as a
generalisation of the ‘dam-break’ solution of Shen & Meyer (1963), with a single
additional adjustable parameter. As in a dam-break flow, the initial condition involves
the collapse of a vertical front at (x, t) = (0, 0), creating a ‘fan’ of β-characteristics.
A seaward boundary condition is subsequently imposed in which the incoming
characteristic information α increases with time, rather than remaining constant,
α = 2, as in the Shen & Meyer solution. This represents a more sustained incoming
flux of fluid, typical of a developed bore in which the incoming water has some
onshore momentum at time t = 0; the result is that the swash lens becomes deeper
and the on- and offshore velocities more symmetrically distributed either side of flow
reversal than in the Shen & Meyer solution.

Specifically, for convenience, the solution of Guard & Baldock (2007) employs
the boundary condition α = 2 + kt on the retreating characteristic β = −2/3 (which
corresponds to the back of the characteristic fan). The limit k = 0 corresponds to the
Shen & Meyer solution; as k is increased, the bore is sustained more strongly, and
Guard & Baldock (2007) demonstrated that k =1 gave reasonably good agreement
with experimental measurements of the depth within the swash zone.

In terms of the hodograph variables, Pritchard et al. (2008) showed that

t =
1

k

∫ α

2

5a − 14

3

2

(
a +

2

3

)B

(
a, −2

3
; α, β

)
da, (5.1)

and x(α, β) is given by (3.2). This solution develops the same motion at its front as
that formed by the flow with dam-break initial conditions, namely xf = 2t − (1/2)t2

(which corresponds to the characteristic variables α =β = 2).
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Figure 13. The values of the characteristic variables, α∗ and β∗, and the time, t∗, at which
critical conditions are first attained at the end of the truncated beach as functions of the length
of the beach, E, for the model of wave run-up given by Pritchard et al. (2008) with k = 0.5
(dashed line) and 1 (solid line).

We may now use this model of wave run-up to determine the volume of fluid per unit
width that overtops a truncated beach of length E. To this end, we find that the flow
first reaches the end of the beach at t = ts ≡ 2 −

√
4 − 2E (see (3.4)). The flow remains

supercritical until u =
√

h at x = E and this first occurs at (t, α, β) = (t∗, α∗, β∗). We
plot these quantities as functions of the length of the beach in figure 13. Thereafter,
the overtopping flow remains critical until the flow recedes at t = tf , a time that is
determined as part of the solution.

During the phase of critical overtopping, we calculate the evolution using the
analytical framework presented above (§ 3.2). In particular, we calculate the curve
in the hodograph plane, βc(α), along which x = E. This is equivalent to the curve
AB in figure 3, but is now computed from the integral (3.15), using the flow field
given by (5.1). Given this, we now compute the volume of fluid per unit width, V ,
that overtops the truncated beach for k = 1 and k = 0.5 (see figure 14). We note
that we have calculated finite volumes for all values of 0 <E < 2, in contrast to the
overtopping generated by the dam-break initial conditions, because the fluid motion
modelled by (5.1) eventually recedes fully from the beach.

As k increases and the bore is more strongly sustained, greater volumes of fluid
overtop the beach. For moderate values of E, i.e. 2 − E = O(1), taking k =1 (the best
fit to experimental data for long solitary bores) rather than k = 0 (the Shen–Meyer
solution) increases the predicted overtopping volume by a factor of roughly 3.

The effect of varying k is strongest for higher values of k, reflecting the nonlinear
relationship between the value of k and the total amount of fluid which enters the
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Figure 14. The volume of fluid per unit width that overtops the truncated beach as a function
of the length of the beach, E, for the model of wave run-up given by Pritchard et al. (2008)
with k =0.5 and 1. Also plotted is the overtopping volume per unit width associated with
dam-break flow (dashed line) and the overtopping calculated by Peregrine & Williams (2001)
(dotted line). In (b) the results are viewed as plotted in the regime 2 − E � 1.

swash zone (Pritchard et al. 2008). For values of E closer to E =2, the value of
k is less important, because solutions with any value of k are asymptotic to the
Shen–Meyer solution with k = 0. However, it is important to note that in this regime,
in practice drag is likely to become important.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

43
25

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010004325


Overtopping a truncated planar beach 545

Even the strongly sustained bore with k = 1 predicts significantly lower overtopping
volumes for moderate values of E than does the dam-break solution presented in § 3.
This reflects the fact that dam-break with an infinite reservoir can be regarded as,
effectively, an indefinitely sustained offshore bore, which maintains the overtopping
flow for longer (and indeed, for E < 1, maintains it indefinitely so V becomes
undefined).

6. Summary and conclusions
In this contribution, we have applied the nonlinear shallow-water equations, coupled

with the condition of hydraulic control at the end of the truncated beach to calculate
the volumes of fluid per width that overtop for individual swash events. Specifically
we have analysed the overtopping due to the flows generated from dam-break initial
conditions and from the waveform recently identified by Guard & Baldock (2007) to
provide a good model of bore-driven swash. We typically find that the overtopping
volumes per unit width far exceed the calculations of Peregrine & Williams (2001), by
factors in excess of 10 in some situations. This difference occurs because the earlier
contribution was built upon the hydrodynamic model of swash motion proposed by
Shen & Meyer (1963), a model that provides an asymptotic representation of the
flow field close to the front of the swash flow but does not account for fluid motion
behind it. Thus, when the length of the truncated beach is close to the maximum
run-up of the swash event, the calculations of Peregrine & Williams (2001) provide an
asymptotic representation of the overtopping volumes, but for shorter beaches, they
significantly underestimate this volume.

Our calculations for the overtopping volumes resulting from flows generated by
dam-break initial conditions, extended to account for a finite reservoir length, were
compared quantitatively to results from new laboratory experiments in exactly the
same configuration. We showed that the agreement between the theoretical prediction
and the experimental measurement was generally good, supporting the modelling
framework developed in this study, although the predictions and measurements begin
to diverge when E � 1.0. We reiterate that there are no empirical or ‘fitting’ parameters
introduced for this comparison. The experiments did, however, reveal an important
dynamical feature that is not currently included in the model, namely the role of
hydrodynamic drag. This leads to a slight overprediction of overtopping volumes, but
more significantly it reduces the maximum run-up that may be attained by a single
event. At the laboratory scales that we investigated, the maximum run-up was reduced
by approximately 40 % from its theoretical value. If hydraulic drag were modelled
using a quadratic drag law with a Chezy drag coefficient, CD , then in terms of the
dimensionless variables used in this study, it would introduce an extra term to the
right-hand side of (2.1), given by Λu2/h, with the parameter Λ = CD/tan θ ranging
from 10−2 to 10−1 in these experiments and drag would be non-negligible close to
the front of the motion. Dam-break flows over horizontal surfaces also exhibit a
drag-affected region close the front, the magnitude of which depends on C

1/3
D (Hogg

& Pritchard 2004a). Thus, if the same asymptotic structure persists for flows up
inclined planes, then we might expect corrections to the drag-free velocities of order
(CD/tan θ)1/3, which would lead to the significant curtailing of run-up.

Finally, we remark that this study has demonstrated another application of the
analytical techniques that are possible once hodograph variables have been adopted.
The determination of the structure of the characteristic plane offers considerable
insight to the dynamics, especially concerning the onset of critical conditions at the
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end of the truncated beach and the subsequent impact that this point of hydraulic
control has on the rest of the flow, and the effects of the back wall of the reservoir
when the fluid is released from dam-break initial conditions. The method typically
yields integral equations that are readily integrated numerically. These results could
have been computed using other strategies, such as a direct numerical integration
of the governing equations, but these approaches would not have drawn out the
structure of the characteristic plane as clearly. Our results can therefore be used as a
test case for future numerical strategies.

The authors thank R. Grayson and B. Torr for assistance with the experiments
and P. Guard and M. Barnes for providing the photographic images in figure
11. T.B. gratefully acknowledges support from the Australian Research Council
and the CSIRO Wealth from Oceans Program. The authors also acknowledge the
contributions of three anonymous referees, whose suggestions have led to many
improvements of this paper.

Appendix. The effects of a finite reservoir on a dam-break flow
In this appendix, we investigate the change to the dam-break solution developed by

Antuono & Hogg (2009) and used in § 3.1, induced by the presence of an impermeable
back wall at x = −L. The effects of this boundary first begin to play a role in the
motion when the rearmost characteristic bounding the fan region, and initiated
from the origin at t = 0, reaches x = −L. This occurs at t ≡ tws = 2(1 + L)1/2 − 2.
Furthermore, because this rearmost characteristic corresponds to β = −2 and because
u =0 at the wall, we deduce that α ≡ αws = 4(L + 1)1/2 − 2. Thereafter the effects of
having removed the dam and initiated the flow at t =0 are felt throughout the entire
fluid domain and we must explicitly enforce the condition that u = 0 at x = −L; at
times before tws , this was not necessary because the fluid in a region adjacent to
the wall was stationary and the rearmost characteristic from the origin had not yet
reached the wall. In terms of the hodograph plane, this means that there is no longer
the boundary β = −2 to the region of moving fluid; rather this boundary is now a
curve in the hodograph plane that must be calculated as part of the solution (see
figure 15).

Our method follows Kerswell (2005), although the details are rather different
because the initial condition for this flow is different. It is convenient to parameterise
the curve in the hodograph plane as α = αw(β) and thus the conditions at the wall
are

t = 1
2
(αw + β) and x = −L. (A 1)

Differentiating these conditions with respect to β and for the second of them
simplifying using the characteristic equations (2.6) and (2.7) and u =0, we find
that

dt

dβ
=

∂t

∂α
α′

w +
∂t

∂β
=

1

2
(α′

w + 1) and
dx

dβ
= 0 = − ∂t

∂α
α′

w +
∂t

∂β
, (A 2)

where α′
w ≡ dαw/dβ . Thus, we find that along the curve that represents the boundary

at the rear wall

α′
w

∂t

∂α
=

∂t

∂β
=

1

4
(α′

w + 1). (A 3)

The first forward-propagating α-characteristic that is affected by the condition of no
flow at x = −L carries the value α ≡ αw(−2) = αws . It separates the fan region, within
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Figure 15. The hodograph plane for finite dam-break flows: (a) L = 2; (b) L =0.5. The flow
is given by the fan solution of (3.1) and (3.2), which is valid for −2 � β � α upto α =αws . at
which point the rearmost β-characteristic reaches the back wall. Thereafter the position of the
back wall corresponds to α = αw(β). Note that for (b), L < Lc and α′

w(−2) < 0, and this implies
that the hodograph plane develops a fold. In both figures, ABCD represents the integration
contour employed to construct the solution.

which the solution is affected only by the removal of the dam at x = 0 and is given
by (3.1), from the region that is influenced by the impermeable back wall and which
is analysed in this appendix. Time is continuous across this α-characteristic, as is the
derivative along it (∂t/∂β). The normal derivative (∂t/∂α) is, however, discontinuous
across it.
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From (3.1), we find that

∂t

∂β

∣∣∣∣
β=−2

=
1

2
− 4

(α + 2)3/2
=

1

2

(
1 − 1

(1 + L)3/4

)
, (A 4)

on substituting α = αws . Further, using (A 3), we find that

α′
w(−2) =

(1 + L)3/4 − 2

(1 + L)3/4
and

∂t

∂α

∣∣∣∣
β=−2

=
(1 + L)3/4 − 1

2((1 + L)3/4 − 2)
, (A 5)

the latter showing that the value of ∂t/∂α(β = −2) varies discontinuously across
this α-characteristic from the value of 1/2 within the fan. Thus, we deduce that if
L < Lc ≡ 24/3 − 1, then α′

w(−2) < 0 and so the hodograph plane develops a fold. This
means that there are forward-propagating α-characteristics that are associated with
α < αws . This also shows why it is convenient to parameterise this boundary curve as
a function of β , because for L < Lc, there is a point along the curve at which α′

w =0,
and this would have introduced a singularity in the calculations had we parameterised
the curve as a function of α.

To calculate the curve and the solution affected by the back wall, we employ
Riemann’s method and integrate around a closed curve in the hodograph plane using
the identity given by (2.14). Our closed curve connects the points A, B , C and D,
given by

A = (αws, −2), B = (αws, β̂), C = (αw(β), β̂) and D = (αw(β), β), (A 6)

and depicted in figure 15. The segments AB , BC and CD are straight lines, while DA

is along the curve α =αw(β). This closed contour may be used straightaway when
L > Lc. However, when L < Lc, there exists a point at which α′

w = 0 and thus the
hodograph plane develops folds that require more careful negotiation, as described
below. Using the closed curve ABCD, we find that

0 = t(αws, β̂) −
(

αw − β̂

αws − β̂

)3/2

t(αw, β̂) +

∫ β

β̂

[
−3B

2(αw − b)
− ∂B

∂b

]
t(αw, b) db

+

∫ β

−2

[
3tB

2(aw − b)
(a′

w + 1) + t
∂B

∂b
+

B

4
(a′

w + 1)

]
db. (A 7)

In the first integral of this expression, B ≡ B(αw, b; αws, β̂) and likewise for its
derivatives; in the second integral, B ≡ B(aw(b), b; αws, β̂)) and likewise for its
derivatives, where aw(b) corresponds to αw(b) and t ≡ t(aw, b). We now set β̂ = β

and identify t(αw, β) = (αw + β)/2, the latter representing the dependence of time
along the curve in the hodograph plane representing x = −L (see (A 1)). Thus, we
find that

0 = t(αws, β) −
(

αw − β

αws − β

)3/2
αw + β

2

+

∫ β

−2

B
(a′

w + 1)

4

(
3(aw + b)

aw − b
+ 1

)
+

(aw + b)

2

∂B

∂b
db. (A 8)

This is an integral equation for the curve αw(β). Below it is shown that this equation
is readily integrated numerically by differentiating to form a Volterra equation and
then treated using successive iterations. However, before tackling this, we return to the
case L < Lc for which α′

w(−2) < 0. This means that the hodograph plane first develops
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Figure 16. The velocity, u(x, t), and elevation, h(x, t) + x, as functions of distance at various
times after the rearmost β-characteristic has reached the back wall of the reservoir, in the

case L = 2. The profiles are plotted at t = tws(= 2
√

3 − 2), 1.6, 1.8, 2.0, 2.2, 2.4, 2.6 and 2.8. The
first and the last curve are labelled and during this interval the elevation of fluid at x = −2,
h(−2, t) − 2, and the velocity, u(1.5, t), progressively decrease. The fluid depth vanishes when
the profile intersects the dotted line.

a fold at α = αws . The solution t(αws, β) is known, but subsequent evolution is in the
direction of decreasing α; in other words, following a β-characteristic, we intersect
α = αws (the first α-characteristic that is affected by the back wall) and then subsequent
propagation occurs for decreasing α. However, the range over which α decreases is
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Figure 17. (a) The velocity, u(x, t), and (b) elevation, h(x, t) + x, as functions of distance at
various times after the rearmost β-characteristic has reached the back wall of the reservoir,
in the case L =0.5. The profiles are plotted at t = tws(= 2

√
3/2 − 2), 0.5, 1.0, 1.5, 2.0 and 2.5,

and the curves are labelled with the times. The position of the α-characteristic corresponding
to α′

w = 0 is marked on the profiles for 1.0 � t � 2.5; it is noted that there is no change of
gradient associated at these points. The fluid depth vanishes when the profile intersects the
dotted line.

bounded by the value α = αb at which α′
w = 0. Thereafter, the hodograph plane

develops another fold and subsequent propagation along β-characteristics occurs
with increasing α. To construct the solution for αb � α � αws , we use (A 7) and this
leads to the evaluation of t(αb, β). Thereafter we use the contour EFG, where

E = (αb, βb), F = (αb, β) and G = (αw, β), (A 9)
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where αw(βb) = αb. Parameterising the integration path using a and b as before and
choosing α =αws , we find that

0 =

(
αb − β

αws − β

)3/2

t(αb, β) −
(

αw − β

αws − β

)3/2

t(αw, β) +

∫ β

βb

[
−3B

2(αb − b)
− ∂B

∂b

]
t(αb, b) db

−
∫ βb

β

[
3tB

2(aw − b)
(a′

w + 1) + t
∂B

∂b
+

B

4
(a′

w + 1)

]
db. (A 10)

In the first integral of this expression, B ≡ B(αb, b; αws, β) and likewise for its
derivative, while in the second integral, B ≡ B(aw, b; αws, β) and likewise for its
derivative. Then replacing (β, αw(β), β̂) with (βb, αb, β) in (A 7) and summing
with (A 10) establishes that (A 8) can be used to determine the curve in the
hodograph plane that represents the condition of no flow at the back wall of the
reservoir for all values of L, irrespective of whether the hodograph plane develops
folds.

The equation for t(αw, β) (i.e. (A 7)) is most readily solved numerically by
differentiating with respect to β to generate the following Volterra equation, which
may then be solved by successive iterations

α′
w = 4

(
αws − β

α − β

)3/2
∂t

∂β
− 1 +

9

2

(
αw + β

αws − β

)(
αws − αw

αw − β

)
+

(
αws − β

α − β

)3/2

×
∫ β

−2

[
∂B

∂β
(a′

w + 1)

(
3(aw + b)

aw − b
+ 1

)
+ 2(aw + b)

∂2B

∂b∂β

]
db. (A 11)

In this expression, ∂t/∂β is evaluated at (α, β) = (αws, β). Typically, 10 iterations are
required to obtain an accuracy of 10−6. In figure 15, we plot the boundary curves in
the hodograph plane for L =2 and L =0.5, the latter illustrating a situation in which
the hodograph plane develops folds. Having computed this curve, it is straightforward
to calculate times at other points in the hodograph plane by integrating around the
contour ABCD. The positions, x(α, β), may be found by integrating along α-
characteristics from the curve α =αw(β), using the condition that x(αw, β) = 0. In
figures 16 and 17, we plot profiles of the velocity, u(x, t), and the elevation of fluid,
h(x, t) + x, at various instances of time. We note that these profiles are continuous
at the times plotted, though from Antuono & Hogg (2009), we anticipate that
discontinuities may develop at later times as the fluid recedes. However, the profiles
do exhibit discontinuities in their gradients, which occur at the position of the first
forward-propagating α-characteristic (α = αsw) and which arise due to the reflection
of the rearmost β-characteristic at the wall (x = −L). We further note that the
profiles for L = 0.5, for which there are folds in the hodograph plane, do not exhibit
any discontinuities when α′

w =0; rather this is just a feature of the hodograph
plane.
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