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Propagating and evanescent internal waves in a
deep ocean model
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We present experimental and computational studies of the propagation of internal
waves in a stratified fluid with an exponential density profile that models the deep
ocean. The buoyancy frequency profile N(z) (proportional to the square root of
the density gradient) varies smoothly by more than an order of magnitude over
the fluid depth, as is common in the deep ocean. The non-uniform stratification is
characterized by a turning depth zc, where N(zc) is equal to the wave frequency ω and
N(z < zc) < ω. Internal waves reflect from the turning depth and become evanescent
below the turning depth. The energy flux below the turning depth is shown to decay
exponentially with a decay constant given by kc, which is the horizontal wavenumber
at the turning depth. The viscous decay of the vertical velocity amplitude of the
incoming and reflected waves above the turning depth agree within a few per cent
with a previously untested theory for a fluid of arbitrary stratification (Kistovich and
Chashechkin, J. Appl. Mech. Tech. Phys., vol. 39, 1998, pp. 729–737).
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1. Introduction
In a stratified fluid, an internal wave transports momentum and energy as the

propagating disturbance is restored by buoyancy forces. In the absence of rotation,
internal waves satisfy the dispersion relation

ω

N(z)
= sin(θ(z)), (1.1)

where ω is the angular frequency of the wave, θ is the angle of propagation relative
to the horizontal, N(z) = √−(g/ρ0)(dρ/dz) is the buoyancy frequency, g is the
gravitational acceleration, ρ0 is a reference density and ρ(z) is the density profile.
Approximately half of the internal wave energy in the ocean is produced by tidal flow
over bottom topography (Munk & Wunsch 1998; Wunsch & Ferrari 2004).

Oceanic buoyancy frequencies vary greatly, decreasing from the values in shallow
water to become two orders of magnitude smaller in the well-mixed abyss (see the
example in § 4). Pingree & New (1991) found that deep in the Bay of Biscay N(z)
became so small that the internal waves became nearly vertical (equation (1.1)) at the
point of bottom boundary reflection. Recently King et al. (2012) analysed data for
pressure, temperature, and salinity for thousands of locations throughout the oceans,
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and found that in many locations in the deep oceans the buoyancy frequency becomes
smaller than ωM2 = 1.4052 × 10−4 rad s−1, the frequency of the M2 (lunar) tides.
Internal waves approaching a turning depth zc, where N(zc) = ωM2, become vertical
by (1.1) and then reflect from the turning surface; below the turning depth the waves
are evanescent (exponentially damped).

Kistovich & Chashechkin (1998) developed a linear theory that describes the
propagation of internal waves in arbitrary stratifications, including those that contain
a turning depth. While their theory gives analytic expressions for the vertical velocity
field, the derivation requires the wavelength and beam width to be small compared to
the length scale characterizing the stratification, which is the case examined here.
Recent studies (Nault & Sutherland 2007; Mathur & Peacock 2009, 2010) have
developed theories for the propagation of internal waves in non-uniform stratifications
that do not require these assumptions. Sutherland & Yewchuk (2004) and Gregory
& Sutherland (2010) performed experimental tests with a focus on the reflection and
transmission of internal waves through weakly stratified regions. Mathur & Peacock
(2009, 2010) verified their theory with experiments focused on the interaction of
internal wave beams with sharp density gradients and finite-width transition regions, as
a model of the upper ocean and thermocline.

Here, we focus on internal wave propagation in stratified fluids with exponentially
varying buoyancy frequency profiles N(z) to model the deep ocean (see the example
in § 4). While the buoyancy frequencies in our studies vary by a factor of 12, the
variation is sufficiently slow that the assumptions of Kistovich & Chashechkin (1998)
are satisfied, allowing us to perform the first tests of their theory. Our experiments
and numerical simulations examine reflection from a turning depth and the viscous
decay of internal waves as they propagate in non-uniform stratifications. In addition,
we characterize the decay of the energy and energy flux for evanescent waves beneath
a turning depth.

2. Kistovich–Chashechkin theory
Kistovich & Chashechkin (1998) describe the propagation of internal waves in

arbitrary stratifications. The two-dimensional theory accounts for viscous dissipation,
diffusion and turning depths. The density profile is assumed to be ρ0(z)= ρ00[1+s0(z)],
where s0 is the reduced salinity and ρ00 is a reference density. The internal wavefield
is assumed to have a time-dependence of the form exp(−iωt) (which is henceforth
omitted). Then the linear Navier–Stokes equations in the Boussinesq approximation
become

−iωu=− 1
ρ00

∂p

∂x
+ ν1u, −iωw=− 1

ρ00

∂p

∂z
+ ν1w− sg, (2.1)

−iωs+ w
ds0

dz
= D1s,

∂u

∂x
+ ∂w

∂z
= 0, (2.2)

where u is the horizontal velocity, w the vertical velocity, p and s the pressure and
salinity, ν the kinematic viscosity, D the salt diffusivity, g gravitational acceleration (in
the direction −ẑ), and 1= ∂2/∂x2 + ∂2/∂z2 is the two-dimensional Laplacian.

The internal wavefield may be described by the vertical displacement h(x, z), which
is related to the vertical velocity by w=−iωh. Solutions may be sought in the form

h(x, z)=
∫ ∞

0
f (z, k) exp(ikx) dk, (2.3)

where k is the wavenumber.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

28
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.284


Propagating and evanescent internal waves in a deep ocean model 573

Asymptotic solutions for f may be obtained if N(z) varies slowly compared to the
length scales describing the internal wave beam, yielding

f (z, k)= A(k)√
γ

exp
[

iν̃k2(1− 3γ 4)

4ωγ 2

]
exp

{
iξk
∫ z

z0

[
γ − iν̃k2 (1+ γ 2)

2

2ωγ

]
dz′
}
, (2.4)

where A(k) describes the spectral properties of the wave source located at (x0, z0),
ν̃ = ν +D, ξ = 1 (−1) for beams propagating down (up), and γ 2(z)= (N2(z)−ω2)/ω2.

In addition, Kistovich and Chashechkin describe the reflection of an internal wave
beam from a turning depth zc, defined as N(zc)= ω and N(z) < ω for all z< zc:

fr(z, k)= B(k)√|γ | exp

[
iν̃k2(1− 3γ 4)

4ωγ 2
− ik

∫ z

zc

{
γ − iν̃k2 (1+ γ 2)

2

2ωγ

}
dz′
]
, (2.5)

ft(z, k)= C(k)√|γ | exp

[
iν̃k2(1− 3γ 4)

4ωγ 2
+ k

∫ z

zc

{
|γ | + iν̃k2 (1+ γ 2)

2

2ω|γ |

}
dz′
]
, (2.6)

where fr is the reflected wave for x > xc and z > zc and ft is the transmitted
(evanescent) wave for z < zc. Given the spectral amplitudes A(k) of the incoming
wave, we have B(k)= A(k)e−iφ0eiπ/2, and C(k)= A(k)e−iφ0eiπ/4, where

φ0 = k
∫ zc

z0

[
γ − iν̃k2 (1+ γ 2)

2

2ωγ

]
dz′, (2.7)

which takes into account the phase winding and viscous decay as the beam propagates
from the source at (x0, z0) to the turning depth at (xc, zc).

3. Methods
3.1. Two-dimensional numerical simulations of the Navier–Stokes equations

We numerically simulate internal wave propagation in non-uniform stratifications by
solving the Navier–Stokes equation using CDP 2.4 (Ham & Iaccarino 2004), which
is a parallel, unstructured, finite-volume-based solver modelled after the algorithm of
Mahesh, Constantinescu & Moin (2004). We disable the subgrid-scale modelling in
CDP. Second-order accuracy in space and time is achieved by using a fractional-
step time-marching scheme and multiple implicit schemes for the spatial operators
(Ham, Mattsson & Iaccarino 2006). We perform two-dimensional simulations in the
Boussinesq approximation, which is justified by the small density variation and
predominantly two-dimensional flows examined in the experiments. CDP solves the
following equations for the pressure p, density ρ and velocity v = (u,w) in the (x, z)
directions:

∂v/∂t + (v ·∇)v=−∇p/ρ0 − gρ/ρ0ẑ+ ν∇2v+ F/ρ0, (3.1)
∇ ·v= 0, ∂ρ/∂t + (v ·∇)ρ = D∇2ρ, (3.2)

where ρ0 = 1000 kg m−3 is a reference density, g the gravitational acceleration, ν the
kinematic viscosity, and F drives the internal waves, as described below. The density
diffusion coefficient D = 2 × 10−9 m2 s−1 is equal to the value for sodium chloride,
which is used in the experiments, resulting in a Schmidt number ν/D = 500 in water.
Simulations for Schmidt number values varying from 10 to 106 yielded the same
results within 1.5 %, as expected for our low-Reynolds-number system where there is
no wave breaking.
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Run ω
(rad s−1)

ν
(×10−6 m2 s−1)

A0(z0)
(mm s−1)

k0(z0)
(m−1)

σ (z0)
(m)

1 0.63 1 0.29 24.1 0.109
2 0.63 2 0.27 23.8 0.111
3 0.63 5 0.22 22.0 0.124
4 0.63 10 0.18 20.7 0.135
5 0.63 1 1.37 23.2 0.123
6 0.63 5 1.13 22.3 0.127
7 0.63 5 3.38 18.4 0.157
8 0.63 5 0.12 14.6 0.176
9 0.63 5 0.16 18.7 0.144
10 0.63 5 0.25 25.5 0.117
11 0.63 5 0.09 25.9 0.137
12 0.16 5 0.33 16.5 0.189

TABLE 1. Parameters describing the numerical simulations performed with Grid II
and ρsim, used to compare with the theory of Kistovich & Chashechkin (1998).
Horizontal cross-sections of the vertical velocity field near the wave source are given
by w(x, t) = A0(z0) cos(k0(z0)x − ωt) exp[− (x− µ(z0))

2 /2σ(z0)], where A0 is the velocity
amplitude, ω is the angular frequency, k0 is the wavenumber and σ is the beam width. The
kinematic viscosity ν is constant throughout the simulation domain.

Internal waves are generated by the forcing term F in (3.1), which is similar to that
used by Slinn & Riley (1998), Javam, Imberger & Armfield (1999) and Rodenborn
et al. (2011):

F(x, z, t)= (∇ ×∇ × Ψ ẑ) sin(ωt), (3.3)
Ψ (x, z)= Ψ0 exp[−(a (x− x0)

2+2b(x− x0)(z− z0)+ c (z− z0)
2)], (3.4)

where a = cos2(β)/2σ 2
x + sin2(β)/2σ 2

z , b = sin(2β)/4σ 2
x − sin(2β)/4σ 2

z , c = sin2

(β)/2σ 2
x + cos2(β)/2σ 2

z , ω is the internal wave frequency, Ψ0 is the maximum forcing
amplitude, (x0, z0) is the spatial centre, β is the anticlockwise rotation of the elliptical
Gaussian forcing profile, and σx (σz) is the horizontal (vertical) standard deviation.
The angle β is chosen so that the forcing profile is aligned with the local internal
wave propagation angle θ . The oscillation frequency is ω0 = 0.628 rad s−1 for all of
the simulations and experiments except for Run 12, where ω = ω0/4 (see table 1 in
online supplementary material available at journals.cambridge.org/flm). The time step
is 1t = π/4000ω, which yields 8000 time steps per period. Such fine time resolution
is required to reduce the numerical dissipation sufficiently for accurate measurements
of the viscous decay to be possible. We run the simulations for 40 periods to ensure
that the system has reached a steady state. The forcing profile Ψ (x, z) is varied to
modify the properties of the wave beam (see table 1 in online supplementary material).

Two computational grids are generated using Pointwise Gridgen. Grid I is designed
for direct comparison with the experiments. The domain has the same dimensions
as the experimental tank, namely 0 < x < 0.9 m and 0 < z < 0.6 m. The wavemaker
is centred at (x0 = 0.15 m, z0 = 0.50 m) in both the simulations and experiments.
While the grid is structured (composed of rectangular control volumes), the horizontal
and vertical resolutions vary smoothly to take into account the variable shear as
the beam propagates in the nonlinear stratification. Near the wavemaker the wave
beam is nearly horizontal, resulting in strong vertical shear, while at the turning
depth the beam propagates vertically, necessitating increased horizontal resolution. At
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Run Φ(zc)
(10−7 kg s−3)

kc
(m−1)

α
(m−1)

δ
(%)

1 −3.82 22.2 22.7 0.48
2 −4.15 21.0 22.1 1.08
3 −3.63 18.6 20.3 0.96
4 −2.52 17.0 18.2 2.08
5 −107 22.2 21.8 2.28
6 −92.6 18.6 20.2 0.50
7 −1721 18.2 17.9 0.74
8 −1.81 14.6 15.5 3.42
9 −2.70 17.0 17.7 0.86
10 −3.89 20.9 20.0 2.77
11 −0.91 23.7 25.2 2.20
12 −4.90 14.0 15.3 1.39

TABLE 2. Summary of results presented in figures 3 and 4, where Φ(zc) is the horizontally
integrated vertical flux at the turning depth, kc is the horizontal wavenumber at the
turning depth, α is the decay constant describing the exponential decay of the vertical flux
below the turning depth, and δ is the mean absolute percentage difference between our
measurements of A0(z) and the theoretical predictions of Kistovich & Chashechkin (1998).

the wavemaker we use a horizontal resolution of 1x = 2.5 mm, while the vertical
resolution is 1z = 0.4 mm. The resolutions near the reflection from the turning depth
at (xc, zc) are 1x = 0.4 mm and 1z = 1.5 mm. Grid I is composed of approximately
5.3 × 105 control volumes. No-slip boundary conditions are enforced at x = 0, z = 0,
and x = 0.90 m. The top surface at z = 0.60 m is a free-slip, impenetrable boundary
chosen to emulate the free surface in the experiments. The internal waves are damped
for x > 0.8 m by adding a drag force equal to −0.002v to (3.1) to mimic the
absorbent material present in the experiments.

Grid II is much larger, which allows for greater viscous decay. This increased
propagation distance provides a better testbed for the theoretical predictions of
Kistovich & Chashechkin (1998), as any discrepancies will be magnified. The grid
spans 0 < x < 6 m and 0 < z < 2 m. The wavemaker is centred at (x0 = 1.0 m, z0 =
1.5 m). As with Grid I, the spatial resolution varies smoothly throughout the domain to
account for the variation in the beam angle as it propagates. The horizontal resolution
in the vicinity of the wavemaker is 1x = 5 mm while the vertical resolution is
1z = 0.625 mm. Near the reflection at the turning depth the horizontal resolution is
1x= 1 mm and the vertical resolution is 1z= 2.5 mm. Grid II has ∼2.5× 106 control
volumes. No-slip boundary conditions are applied at all of the boundaries. To reduce
finite-size effects, a drag force of the form −0.02v is added to (3.1) for x < 0.6 m,
x > 5.5 m and z > 1.75 m to damp the wave beams before they reach the boundaries.
We observe less than a 1 % change in our computed velocity fields upon doubling and
quadrupling the temporal and spatial resolution in our simulations, thereby exhibiting
convergence of our solutions.

The density profiles are chosen to be scaled models of the stratification in the deep
ocean, which are typically exponential (see the example in § 4), and which have a
turning depth at zc with N(z) < ω for z < zc. However, our results do not depend
upon the stratification being exponential in form: the crucial aspect is the existence of
a turning depth. Two stratifications are used for the experimental domain covered by
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z (m) ρexpt1 (kg m−3)

0 1047.7
0.0246 1047.3
0.0819 1046.8
0.1305 1045.7
0.1728 1043.7
0.2102 1041.6
0.2438 1039.4
0.2742 1037.4
0.3020 1035.2
0.3276 1033.1
0.3513 1031.0
0.3735 1028.8
0.3942 1026.7
0.4136 1024.6
0.4320 1022.4
0.4494 1020.0
0.4659 1018.2
0.4816 1016.0
0.4965 1013.7
0.5108 1011.7

TABLE 3. Measurements of the experimental density profile ρexpt1, with a best fit given
by (3.5).

Grid I, namely

ρexpt1 = 1061− 10 exp(3.12z) kg m−3, 0 6 z 6 0.6 m, (3.5)

ρexpt2 = 1054− 0.189 exp(11.4z) kg m−3, 0 6 z 6 0.5 m. (3.6)

The depth-dependent buoyancy frequency Nexpt1(z) has a turning depth at zc = 0.12 m,
while the turning depth for Nexpt2(z) is at zc = 0.257 m. The density profile ρexpt1 is
used primarily to study the incoming and reflected wave beams, while the higher
turning depth for ρexpt2 allows for more detailed characterization of the evanescent
waves. The density profile used for all simulations with Grid II, except Run 12, is
given by

ρsim = 1244− 5.75 exp(2.5z), 0 6 z 6 2 m. (3.7)

The resulting buoyancy frequency profile varies by a factor of 12 from top to bottom
and has a turning depth at zc = 0.424 m. The density profile for Run 12 has N(z)
reduced by a factor of 4 for all depths.

3.2. Experimental methods
Experiments are performed in a glass tank with 0 < x < 0.90 m, 0 < y < 0.45 m and
0 < z < 0.60 m. The exponential gradients given by (3.5) and (3.6) are generated
by utilizing the generalized version of the double-bucket method described by Hill
(2002). The density profile is measured by extracting fluid samples at known heights,
which are then measured with an Anton Paar density meter. Example experimental
stratification measurements are given in tables 3 and 4. The experimental density
profiles agree well with the stratification used in the simulations (equations (3.5) and
(3.6)) for 0.1< z< 0.5 m.
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z (m) ρexpt2 (kg m−3)

0 1053.7
0.1885 1053.6
0.2619 1051.4
0.3003 1049.2
0.3265 1047.0
0.3464 1045.1
0.3624 1042.9
0.3759 1040.9
0.3875 1039.0
0.3976 1037.0
0.4067 1035.1
0.4149 1032.3
0.4223 1031.0
0.4291 1029.3
0.4354 1027.5
0.4413 1025.4
0.4468 1023.5
0.4520 1021.7
0.4571 1020.0
0.4622 1018.0
0.4673 1016.5
0.4724 1014.6
0.4775 1012.8
0.4826 1011.2
0.4877 1009.3
0.4928 1007.9
0.4979 1006.5
0.5030 1005.3
0.5081 1004.0

TABLE 4. Measurements of the experimental density profile ρexpt2, with a best fit given
by (3.6).

Internal wave beams are generated using a wavemaker similar to the one developed
by Gostiaux et al. (2007). Our wavemaker (Rodenborn et al. 2011) consists of five
acrylic plates with dimensions 150 mm × 150 mm × 6 mm that are separated by
2.5 mm and placed within a parallelepiped open-sided box. A helicoidal rotating
camshaft oscillates the plates periodically. The eccentricity of the camshaft (12.7 mm)
determines the oscillation amplitude. The generated wave beams are nearly two-
dimensional, particularly along the centre of the tank (y= 0.225 mm) where all of our
measurements are taken. The Reynolds number of the generated waves is Re ≈ 150,
where we have used the wavelength and maximum speed as the relevant length
and velocity scales. The local Richardson number varies along the beam, but has a
minimum value of Ri ≈ 100. The wavemaker is centred at (x = 0.15 m, z = 0.50 m)
and oriented parallel to the the local wave beam angle. The internal wave motions are
dissipated by a fibre mesh for x> 0.88 m.

Particle image velocimetry is used to obtain the two-dimensional velocity field
v = (u,w) in the vertical plane given by y = 0.225 m. Hollow glass spheres with
diameters 8< d < 12 µm and densities in the range 1050< ρ < 1150 kg m−3 are used
as seed particles. The tracers are illuminated by a 5 mm thick laser sheet produced by
a 532 nm wavelength laser (2.5 W). Two 12-bit CCD cameras with 1296 × 966 pixel
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SimulationOcean

SimulationExperiment
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0

FIGURE 1. (a) Buoyancy frequency profile computed using the method described by King
et al. (2012) at 13.02◦ N latitude and 91.77◦ W longitude (Transect P19C, world ocean
circulation experiment, February 1993). The (red) line is an exponential fit to the data. (b)
Snapshot of the vorticity (colour) for a wave beam generated at (x = 1 m, z = 1.5 m) in
simulations, after 40 periods of oscillation. The stratification (equation (3.7)) has a turning
depth at zc = 0.424 m (dashed line). Absolute value of the vertical velocity (colour) near the
turning depth (dashed line) in (c) experiments and (d) simulations with stratification (3.5).

resolution capture orthogonally scattered light in a 194 mm× 145 mm region, 40 times
per period (1t = 0.25 s). The instantaneous velocity fields are determined using the
CIV algorithm developed by Fincham & Delerce (2000) and are interpolated to a
regular 50× 50 grid with spatial resolutions of 1x= 3.9 mm and 1z= 2.9 mm.

4. Results
We have determined N(z) for all 18100 data sets measured in the world ocean

circulation experiment (WOCE). This analysis revealed that N(z) commonly shows
an approximate exponential variation in the deep oceans. In the example shown in
figure 1(a), N(z) varies by two orders of magnitude, and a turning depth exists for
zc ≈−4 km.

An example snapshot of a wave beam propagating in the stratification given by
(3.7) is shown in figure 1(b) (see the movie in the online supplementary material),
with vorticity Ω = ∇ × v indicated by colour. The beam generated at (x = 1.0 m,
z = 1.5 m) propagates down and to the right before being reflected at the turning
depth, causing the energy to move up and to the right. Only a small fraction of the
energy flux penetrates below the turning depth, as shown by snapshots of the vertical
velocity in figure 1(b,c).
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FIGURE 2. (Colour online) Snapshots of the vertical velocity (black) and vorticity (blue)
horizontal cross-sections for (a) the incoming wave beam centred at (µ = 0.30 m, z =
0.40 m) and (b) the reflected wave beam at (µ = 0.76 m, z = 0.37 m) for the stratification
given by (3.5). Laboratory measurements are given by the data points, results from the
simulations are shown as solid black and blue lines, and theoretical predictions are denoted by
the dashed red lines.

We obtain remarkable agreement between the experiments, simulations and theory,
as illustrated by comparing figure 1(c,d) as well as the beam profiles in figure 2.
Horizontal profiles of w are well described by modulated Gaussians of the form

w(x, z, t)= A0(z)[γ (z0)/γ (z)]
1/2 cos(k0(z)x− ωt) exp(−[x− µ(z)]2/2σ (z)2), (4.1)

where A0 is the velocity amplitude, k0 is the wavenumber, µ is the beam centre, σ is
the beam width, and the term [γ (z0)/γ (z)]1/2 accounts for the increase (decrease) in
the vertical velocity as the beam propagates into weaker (stronger) stratification. Even
though the vertical velocity may increase by geometrical effects as N(z) decreases, the
velocity amplitude A0 monotonically decreases owing to viscous dissipation.

4.1. Evanescent internal waves
Below the turning depth zc, internal waves are evanescent with an intensity that
decays exponentially with a decay constant α (Gostiaux et al. 2006). We compute the
intensity of the evanescent wave beams by horizontally integrating the vertical energy
flux,

Φ(z)=
∫

p′w′ dx, (4.2)

where p′ and w′ are the fluctuations in the pressure and vertical velocity, respectively.
Figure 3(a) shows example results for the vertical energy flux below the turning
depth from our simulations. The distance from the turning depth zc − z is scaled
by the horizontal wavenumber at the turning depth kc ≡ k0(zc). Below the turning
depth, the energy flux decays exponentially, except near the bottom boundary. We
characterize the experimental evanescent waves by the horizontally integrated kinetic
energy, E(z)= 0.5

∫ |v|2 dx, which is also shown to decay exponentially in figure 3(a)
for the stratification (3.6).

Our measurements of the decay constants α from both the simulations and
experiments agree well with the expected values α = kc (see figure 3b and table 2).
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FIGURE 3. (Colour online) (a) Decay of the relative horizontally integrated flux Φ(z)/Φ(zc)
for evanescent waves in the simulations for the stratification given by (3.7). The horizontal
wavenumber at the turning depth, kc, is indicated next to each (black, red and blue)
curve. Measurements of the relative horizontally integrated kinetic energy E(z)/E(zc) for
the stratification (3.6) are shown as green diamonds. (b) The decay constant α from
simulations (black circles) and the experiments (green square) are compared to the horizontal
wavenumber at the turning depth, kc (red line).

Therefore, in analogy with evanescence in other contexts, we conclude that the energy
flux is given by

Φ(z)=Φ(zc)e−kc(zc−z) for z< zc. (4.3)

4.2. Viscous decay and internal wave reflection: comparison with theory
The theory of Kistovich & Chashechkin (1998) (see § 2) provides predictions with
no free parameters for the vertical velocity field of internal waves propagating in
arbitrary stratifications. To test these predictions, we compare horizontal cross-sections
of the vertical velocity field computed by our numerical simulations to the theoretical
predictions. Beam profiles are characterized by fitting them to the form (4.1) for
varying z.

To use the theoretical expressions (2.4) and (2.5) for the incoming and reflected
wave beams, we must know the buoyancy frequency profile N(z) and the spectral
amplitudes of the wave source A(k). The buoyancy frequency profile may be
determined using (3.7). We determine A(k) by fitting a horizontal cross-section of
the vertical velocity near the wave source to (4.1), which we then Fourier-transform
analytically to determine the spectral amplitudes. We then compute the predicted
vertical velocity field for the incoming and reflected wave beams using (2.4) and (2.5).

The numerical simulations and theoretical predictions are compared by measuring
the viscous decay of the velocity amplitude A0(z), using the same values of
{k0(z), µ(z), σ (z)} for the simulations and theory. The simulation results for A0(z)
as a function of the geometric length from the turning depth (L − Lc) are compared to
theory in figure 4, where L(z) = ∫ z

z0

√
1+ γ 2(z′) dz′ is the distance from the wave

source and Lc ≡ L(zc). As expected, higher values of viscosity result in a more
rapid decay of the velocity amplitude, as shown in figure 4(a). Figure 4(b) compares
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FIGURE 4. (Colour online) The vertical velocity amplitude A0(z) in the simulations (points)
is compared with the fully constrained theoretical predictions of Kistovich & Chashechkin
(1998) (solid lines) for (a) varying viscosity values and (b) fixed viscosity (5 × 10−6 m2 s−1)
and other parameters given by (ω, k0(z0), σ (z0)): Run 6, (0.63 rad s−1, 22.3 m−1, 0.127 m);
Run 9, (0.63 rad s−1, 18.7 m−1, 0.144 m); Run 12 (0.16 rad s−1, 16.5 m−1, 0.189 m).

cases with the same viscosity but different values of the source wavenumber, source
amplitude, or wave frequency. By comparing Run 6 to Run 9, we see that the higher
wavenumber k0 for Run 6 results in a more rapid viscous decay, as expected given
the k3-dependence in the viscous term in (2.4). However, by comparing Run 12 to
Run 6 we see that Run 12 decays more quickly owing to the four-fold reduction in ω,
even though the wavenumber for Run 12 is lower. In all cases that we have studied,
the fully constrained theoretical predictions agree (on average) within 1.5 % of the
numerical simulations, as summarized in table 2.

5. Discussion
We have presented laboratory experiments and numerical simulations of internal

wave beams propagating in a fluid where the buoyancy frequency N(z) varies by more
than an order of magnitude and decreases exponentially as the bottom boundary is
approached, as is often the case in the ocean (cf. figure 1a). We have examined wave
propagation in a fluid with a turning depth zc, below which N(z) < ω, as occurs at
many locations in the ocean (King et al. 2012). The experiments and simulations agree
within a few per cent with the predictions of the previously untested linear theory of
Kistovich & Chashechkin (1998) for internal wave beam propagation in a fluid with
arbitrary stratification.

The analytical expressions describing the viscous decay of internal waves in non-
uniform stratifications, which we have confirmed here, highlight the fact that beams
with higher wavenumbers will decay much more rapidly owing to the k3-dependence
in the viscous decay term. Critical and supercritical topography are expected to
generate the strongest internal tides in the ocean, and thereby play a dominant role in
models. However, internal tides produced by such steep topography are also typically
characterized by a high wavenumber, which could therefore lead to significant viscous
decay.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

28
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.284


582 M. S. Paoletti and H. L. Swinney

The energy flux below a turning depth is shown to decay exponentially with a decay
constant α = kc, where kc is the horizontal wavenumber at the turning depth. This
decay may limit the role of internal tides beneath turning depths. For example, the
energy flux for an evanescent wave beam with a wavelength λ ∼ 300 m will decay by
an order of magnitude every ∼100 m beneath the turning depth. King et al. (2012)
found that turning depths can occur at depths greater than 1 km above the ocean
bottom. Another consequence of the existence of turning depths well above the ocean
floor is the effect on internal tide generation by flow over topography in a region
where internal waves are evanescent. Internal tides generated below a turning depth
will be greatly reduced in intensity by the exponential damping, which has not been
considered in present models.

The present work has examined two-dimensional wave reflection and transmission at
a turning depth for small-amplitude waves at low Reynolds number and large Schmidt
number. Future work should extend to larger-amplitude waves to examine the effect of
nonlinearity; a recent study of internal wave reflection from a sloping bottom boundary
revealed that even a small amount of nonlinearity led to large departures from the
predictions of linear theory (Rodenborn et al. 2011). An important but challenging
extension of this work should examine the effect of a turning depth on internal
wave behaviour at higher Reynolds number and lower Schmidt number, where wave
breaking can occur. Such a study, necessarily three-dimensional, could provide insight
into the poorly understood problem of mixing in the global oceans (Munk & Wunsch
1998; Wunsch & Ferrari 2004).
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