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The paper studies the function space of continuous piecewise linear functions in the space
of continuous functions on the m-dimensional Euclidean space. It also studies the special
case of one dimensional continuous piecewise linear functions. The study is based on the
theory of Riesz spaces that has many applications in economics. The work also provides
the mathematical background to its sister paper Aliprantis, Harris, and Tourky (2006), in
which we estimate multivariate continuous piecewise linear regressions by means of Riesz
estimators, that is, by estimators of the the Boolean form

Ŷ =
∨
j∈J

∧
i∈Ej

(
r0
i + r1

i X1 + r2
i X2 + · · · + rm

i Xm

)
,

where X = (X1, X2, . . . , Xm) is some random vector, {Ej }j∈J is a finite family of finite
sets.

1. INTRODUCTION

The purpose of this paper is twofold: first, to study the function space of continuous
piecewise linear functions in the space of continuous functions; and second, to
provide the necessary mathematical background to our paper, Aliprantis, Harris,
and Tourky (2006), which studies statistical estimators that we dub Riesz estima-
tors. In that paper, we envisage a situation in which we seek to estimate a random
variable Y based on some observed random vector X = (X1, X2, . . . , Xm) using
estimators of the Boolean form:

Ŷt =
∨
j∈J

∧
i∈Ej

fi ◦ Xt. (R)
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78 ALIPRANTIS ET AL.

In this equation, each fi : Rm → R is an affine function of the form fi(x) =
ai · x + αi , where ai ∈ Rm and αi ∈ R. Furthermore, {Ej }j∈J is a finite family of
finite sets and ∨ and ∧ are the vector lattice operations almost sure supremum and
almost sure infimum, respectively.

One application of Riesz estimators is the parametric estimation of continuous
piecewise linear functions from data. That is, a situation in which the conditional
expectations E(Yt |Xt) is equal to f ◦ Xt, where the function f : Rm → R is a con-
tinuous function that agrees with a finite number of affine functions. In other words,
the estimated function is continuous and there exist regions S1, S2, . . . , Sp ⊆ Rm

and parameters β1, β2, . . . , βp ∈ Rm+1 such that (in matrix notation)

E(Yt |Xt) =




(1, Xt)β1 if Xt ∈ S1,

(1, Xt)β2 if Xt ∈ S2,
...

(1, Xt)βp if Xt ∈ Sp.

(�)

In this paper, we explore in a deterministic setting the relationship between contin-
uous piecewise linear functions that induces the functional form (�) and functions
that are Max-Min of a finite number of affine functions that induce the form (R).
We also study in a deterministic setting the very special case of one-dimensional
piecewise linear functions.

We briefly summarize the work in the present paper: we denote the function
space of affine functions from Rm to R by Aff. A continuous piecewise linear
function is a continuous function from f : Rm → R that agrees with a finite number
of affine functions f1, f2, . . . , fp. These affine functions are the components of
the piecewise linear function. Now, for each i = 1, 2, . . . , p, let

Si = {x ∈ Rm: f (x) = fi(x)}.
The sets S1, S2, . . . , Sp are the “regions” of the function. (For a complete definition,
see Section 4, in which we require that each Si be the closure of its interior.)

Following the recent work of Ovchinnikov (2002), we establish that the space
of continuous piecewise linear functions is the linear lattice hull of Aff, that is, it
is the smallest lattice subspace containing Aff. In particular, there exists a family
of subsets E1, E2, . . . , EJ of {1, 2, . . . , p}, such that

f (x) =
J∨

j=1

∧
i∈Ej

fi(x),

for every x ∈ Rm. We note several things about this Max-Min representation. First,
we can compute the Max-Min representation of a piecewise linear function using
information about the function f and its components f1, f2, . . . , fp. Second, we
can compute the regions of the functions starting from Max-Min representations.
Third, given a set of affine functions F = {f1, f2, . . . , fp}, we can enumerate
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CONTINUOUS PIECEWISE LINEAR FUNCTIONS 79

through a finite combination of Max-Min operations the finite family of continuous
piecewise linear functions generated by the set F . This third property is exploited
in Aliprantis, Harris, and Tourky (2006).

Continuous piecewise linear functions are often used in computational eco-
nomics. For instance, in the computation of Nash equilibrium of two-person finite
games and fixed points approximation. Therefore, the ideas studied in the present
paper may be useful in computational economics. This avenue of research has not
been explored by the authors.

2. RIESZ SPACES AND BANACH LATTICES

The objective of this section is to present a brief discussion of the basic mathemat-
ical background in Riesz space theory needed for the present work and to study the
Riesz estimators in Aliprantis, Harris, and Tourky (2006). The mathematics behind
the theory of Riesz estimators are those of Riesz spaces and Banach lattices. We
recall here some basic properties of Riesz spaces, and for details and terminology
we refer to Abramovich and Aliprantis (2002a), Aliprantis and Border (1999),
Aliprantis and Burkinshaw (2003), Luxemburg and Zaanen (1971), and Schaefer
(1974).

An ordered vector space is a real vector space L equipped with an order relation
≥ that is compatible with the algebraic structure of L in the sense that if x ≥ y,
then:

(a) x + z ≥ y + z for each z ∈ L, and

(b) αx ≥ αy for all α ≥ 0.

An ordered vector space L is said to be a Riesz space (or a vector lattice) if L is
also a lattice in the sense that every nonempty finite subset of L has a supremum
(least upper bound) and an infimum (greatest lower bound). Following the standard
terminology from lattice theory, we shall denote the supremum and infimum of a
set {x1, . . . , xn} by

n∨
i=1

xi and
n∧

i=1

xi,

respectively. In particular, the supremum and infimum of any pair of vectors x and
y are denoted by x ∨ y and x ∧ y, respectively. The simplest example of a Riesz
space is R with the usual order. Here x ∨ y and x ∧ y are the largest and smallest
numbers of the set {x, y}; for instance, 2 ∨ 3 = 3, 1 ∧ 0 = 0, and 3 ∧ 3 = 3.

For an element x of a Riesz space L, the positive part of x is defined by
x+ = x ∨ 0, the negative part by x− = (−x) ∨ 0, and the absolute value by
|x| = x ∨ (−x).

The following is a simple but very useful result.

LEMMA 2.1. An ordered vector space is a Riesz space if and only if x+ exists
for each vector x.
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80 ALIPRANTIS ET AL.

For an illustration of the above notions, let L = C[0, 1], the vector space of all
continuous real valued functions defined on [0, 1]. With the pointwise ordering
and algebraic operations C[0, 1] is a Riesz space such that for each x ∈ L and
each t ∈ [0, 1] we have

x+(t) = max{x(t), 0}, x−(t) = max{−x(t), 0}, and |x|(t) = |x(t)|.

Similarly, if x ∈ L and r ∈ R, then for each t ∈ [0, 1] we have

(x−r)+(t)=
{
x(t)−r if x(t) ≥ r

0 if x(t) < r,
and (x−r)−(t)=

{
r−x(t) if x(t) ≤ r

0 if x(t) > r.

Also, notice that if {x1, . . . , xn} ∈ C[0, 1], then for each t ∈ [0, 1] we have

[
n∨

i=1

xi

]
(t) = max{x1(t), . . . , xn(t)} and

[
n∧

i=1

xi

]
(t) = min{x1(t), . . . , xn(t)}.

Since C(Rn) with the pointwise ordering is a Riesz space, the above formulas are
also true for functions of C(Rn).

Our interest here is in the structure of the Riesz subspaces of a Riesz space. A
vector subspace M of a Riesz space L is said to be a Riesz subspace (or a vector
sublattice) if x, y ∈ M imply that both x∨y and x∧y belong to M . If we consider
the product vector space R� (where � is any nonempty set) and order it pointwise,
then (with the above lattice operations) R� is a Riesz space. Moreover, if � is
a topological space, then C(�) (the vector space of all continuous real-valued
functions on �) and Cb(�) (the vector space of all uniformly bounded continuous
real-valued functions on �) are both Riesz subspaces of R�.

It should be clear that arbitrary intersections of Riesz subspaces are Riesz
subspaces. This implies that every nonempty subset A of a Riesz space L is
included in a smallest Riesz subspace, called the Riesz subspace (or the vector
sublattice) generated by A and denoted R(A).

Next, we shall briefly describe the Riesz subspace R(A), an important subspace
for our work. For every nonempty subset A of a Riesz space L, the symbol A∧ will
denote the collection of all vectors that can be written as infima of finite subsets of
A. That is, a vector a ∈ L belongs to A∧ if there exist vectors a1, a2, . . . , ak ∈ A

such that a = ∧k
i=1 ai . Similarly, A∨ is the set consisting of all suprema of finite

subsets of A. We write A∨∧ for (A∨)∧ and A∧∨ for (A∧)∨. So, a vector a belongs
to A∨∧ if and only if there exists a finite family {Ej }j∈J of nonempty finite
subsets of L such that a = ∨

j∈J

∧
Ej . It turns out that A∨∧ = A∧∨ is always

true.
Now we can describe the Riesz subspace generated by a set as follows.

For proofs and more discussion, see Section 5 of Abramovich and Aliprantis
(2002a,b).
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LEMMA 2.2. The Riesz subspace R(A) generated by a vector subspace A of a
Riesz space coincides with A∧∨ and also with A∨∧. That is, R(A) = A∧∨ = A∨∧ .

COROLLARY 2.3. The Riesz subspace generated by a nonempty subset A of a
vector lattice is precisely the vector space R(A) = [A]∧∨, where [A] is the linear
span of A.

When a Riesz space L is equipped with a norm that is compatible with the order
structure of the space in the sense that |x| ≤ |y| implies ‖x‖ ≤ ‖y‖, then L is
called a normed Riesz space.1 A Banach lattice is a Riesz space that is a Banach
space under a lattice norm. It is not difficult to see that in a Banach lattice the
closure of a Riesz subspace is likewise a Riesz subspace.

The two classical examples of Banach lattices are the C(X )-spaces, where
X is a compact topological space and the norm is the sup norm ‖ · ‖∞,
that is,

‖f ‖∞ = sup
x∈X

|f (x)|,

and the Lp(µ)-spaces, where 1 ≤ p ≤ ∞, and the norm is given by

‖f ‖p =
[∫

|f |p dµ

] 1
p

, if 1 ≤ p < ∞ and ‖f ‖∞ = ess supf, if p = ∞.

3. ONE-DIMENSIONAL PIECEWISE LINEAR FUNCTIONS

We present here a few properties and formulas dealing with continuous piecewise
linear functions defined on R or on a closed interval of R.

DEFINITION 3.1. A function f : R → R is called piecewise linear (affine) if
there exist real numbers −∞ < a0 < a1 < · · · < ak < ∞ and pairs of real
numbers (mi, bi), i = 0, 1, . . . , k, k + 1, such that

f (t) =



mit + bi if ai−1 ≤ t ≤ ai for some 1 ≤ i ≤ k,

m0t + b0 if t ≤ a0,

mk+1t + bk+1 if t ≥ ak+1.

The parameters {a0, a1, . . . , ak} and the pairs (mi, bi), i = 0, 1, . . . , k, k + 1,

are referred to as a representation of f and the functions fi(t) = mit + bi as the
components of the representation.

Similarly, a function f : [a, b] → R, where [a, b] is a closed interval of R,

is piecewise linear if there exist a partition a = a0 < a1 < · · · < ak = b of
the interval [a, b] and pairs of real numbers (mi, bi), i = 1, . . . , k, such that
f (t) = mit + bi for all ai−1 ≤ t ≤ ai .

Notice that, according to these definitions, piecewise linear functions are auto-
matically continuous. The following result should be obvious.
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FIGURE 1. Notice that f (t) = b1 + t+ − 2(t − a1)
+ + 2(t − a2)

+.

LEMMA 3.2. If f : R → R is piecewise linear, then its restriction to any
closed interval of R is likewise piecewise linear. Moreover, if [a, b] is any closed
subinterval of R, then the components of the piecewise linear function f : [a, b] →
R are among the components of f : R → R.

In addition, every piecewise linear function on a closed interval of R can be
extended to a piecewise linear function to all of R.

The piecewise linear functions on a closed interval are characterized as follows.
The idea is depicted in Figure 1.

LEMMA 3.3. Let f : [a, b] → R be a piecewise linear function. If
{a0, a1, . . . , ak} and (mi, bi), i = 1, . . . , k, is any representation of f, then for
each t ∈ R we have

f (t) = b1 + m1t +
k−1∑
i=1

(mi+1 − mi)(t − ai)
+.

In particular, a function f : [a, b] → R is piecewise linear if and only if there exist
a partition a = a0 < a1 < · · · < ak = b of [a, b] and constants c, c0, c1, . . . , ck

such that for each t ∈ [a, b] we have f (t) = c + ∑k
i=0 ci(t − ai)

+.

Proof. Let a ≤ t ≤ b. If a0 ≤ t ≤ a1, then note that

b1 + m1t +
k−1∑
i=1

(mi+1 − mi)(t − ai)
+ = b1 + m1t = f (t).

So, we can assume that aj−1 ≤ t ≤ aj for some 1 < j ≤ k. Notice that for
each 1 < i ≤ k − 1 we have miai + bi = mi + 1ai + bi + 1 or (mi + 1 − mi)ai =

https://doi.org/10.1017/S1365100506050103 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100506050103


CONTINUOUS PIECEWISE LINEAR FUNCTIONS 83

−(bi + 1 − bi). Consequently, we have

b1 + m1t +
k−1∑
i=1

(mi+1 − mi)(t − ai)
+

= b1 + m1t +
j−1∑
i=1

(mi+1 − mi)(t − ai)
+

= b1 + m1t +
j−1∑
i=1

(mi+1 − mi)(t − ai)

= b1 + m1t +
[

j−1∑
i=1

(mi+1 − mi)

]
t −

j−1∑
i=1

(mi+1 − mi)ai

= b1 + m1t +
[

j−1∑
i=1

(mi+1 − mi)

]
t +

j−1∑
i=1

(bi+1 − bi)

= b1 + m1t + (mj − m1)t + (bj − b1) = mj t + bj = f (t),

and the proof is finished.

COROLLARY 3.4 [Brown, Huijsmans, and de Pagter (1991)]. The vector
subspace generated in C[0, 1] by the collection {1, t} ∪ {(α − t)+: , α ∈ R}
coincides with the Riesz subspace of all piecewise linear functions on
[0, 1].

COROLLARY 3.5. Let g: R → R be a piecewise linear function. If
{a0, a1, . . . , ak} and (mi, bi), i = 0, 1, . . . , k, k + 1, is an arbitrary representa-
tion of g, then for each t ∈ R we have

g(t) = b0 + m0t +
k∑

i=0

(mi+1 − mi)(t − ai)
+.

In particular, a function f : R → R is piecewise linear if and only if there exist
real constants m0, b0, a0, a1, . . . , ak and c0, c1, . . . , ck such that for each t ∈ R
we have

f (t) = b0 + m0t +
k∑

i=0

ci(t − ai)
+.

Proof. Consider the function h: R → R defined by

h(t) = b1 + m1t +
k−1∑
i=1

(mi+1 − mi)(t − ai)
+.
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As in the proof of Lemma 3.3, it is easy to see that h(t) = f (t) for all a0 ≤ t ≤ ak .
Moreover, h(t) = m1t + b1 for all t ≤ a0 and h(t) = mkt + bk for all t ≥ ak .
Since

m1t + b1 + m1(a0 − t)+ − m0(a0 − t)+ = b0 + m0t for all t ≤ a0

m1t + b1 + m1(a0 − t)+ − m0(a0 − t)+ = m1t + b1 for all t ≥ a0

mkt + bk + (mk+1 − mk)(t − ak)
+ = mk+1 + bk+1 for all t ≥ ak, and

mkt + bk + (mk+1 − mk)(t − ak)
+ = mkt + bk for all t ≤ ak,

it follows that

g(t) = m1(a0 − t)+ − m0(a0 − t)+h(t) + (mk+1 − mk)(t − ak)
+

= m1(a0−t)+−m0(a0−t)++b1+m1t+ · · ·

· · · +
k−1∑
i=1

(mi+1−mi)(t−ai)
++(mk+1−mk)(t−ak)

+

= m1(a0 − t)+ − m0(a0 − t)+ + b1 + m1t +
k∑

i=1

(mi+1 − mi)(t − ai)
+

= b0 + m0t + (m1 − m0)(t − a0)
+ +

k∑
i=1

(mi+1 − mi)(t − ai)
+

= b0 + m0t +
k∑

i=0

(mi+1 − mi)(t − ai)
+,

as desired.

We close the section with two results that will be useful for our study later.

LEMMA 3.6. Let f : [a, b] → R be a piecewise linear function and let
{a0, a1, . . . , ak} and (mi, bi), i = 1, . . . , k, be a representation of f . Also let
m = f (b) − f (a)

b − a
, the slope of the line segment joining the points (a, f (a)) and

(b, f (b)).
Then there exist some 1 ≤ i ≤ k with mi ≥ m and some ai−1 ≤ ξ ≤ ai

satisfying f (ξ) = m(ξ − a) + f (a).

Proof. Assume by way of contradiction that if mi ≥ m, then we have f (t) �=
m(t − a) + f (a) for all ai−1 ≤ t ≤ ai . In particular, we have m1 < m. Given that
for a ≤ t ≤ a1 we have f (t) = m1t + b1 = m1(t − a) + f (a), the latter implies
f (t) < m(t − a) + f (a) for all a < t ≤ a1. Notice that for each a1 ≤ t ≤ a2 we
have

f (t) = m2t + b2 = m2(t − a1) + f (a1).

So, if m2 < m, then for each a1 ≤ t ≤ a2 we have f (t) < m(t − a) + f (a).
On the other hand, if m2 ≥ m, then for each a1 ≤ t ≤ a2 we must have f (t) <
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m(t − a) + f (a); otherwise (by the intermediate value theorem) there should
exist some a1 ≤ ξ ≤ a2 with f (ξ) = m(t − a) + f (a), which contradicts our
assumption. The same argument yields f (t) < m(t−a)+f (a) for all a2 ≤ t ≤ a3.
Continuing this way we see that f (ak) = f (b) < m(b−a)+f (a) = f (b), which
is impossible.

As an immediate consequence we get the following result.

COROLLARY 3.7 [Ovchinnikov (2002)]. Let f : [a, b] → R be a piecewise
linear function and let {a0, a1, . . . , ak} and (mi, bi), i = 1, . . . , k, be the pa-
rameters of a representation of f . Then there exists some 1 ≤ i ≤ k such that
f (a) ≥ mia + bi and f (b) ≤ mib + bi .

Proof. According to Lemma 3.6 there exist some 1 ≤ i ≤ k and some ai−1 ≤
ξ ≤ ai satisfying mi ≥ m = f (b) − f (a)

b − a
and f (ξ) = m(t − a) + f (a). Note

that for each ai−1 ≤ t ≤ ai we have mit + bi = mi(t − ξ) + f (ξ) and that
for all a ≤ t ≤ b we have m(t − a) + f (a) = m(t − ξ) + f (ξ). This implies
mit + bi ≤ m(t − a) + f (a) for all a ≤ t ≤ ξ and mit + bi ≥ m(t − a) + f (a)

for all ξ ≤ t ≤ b, and our conclusion follows.

4. MULTIVARIATE PIECEWISE LINEAR FUNCTIONS

Recall that any function f : Rm → R of the form f (x) = α + a · x, where α ∈ R
is a constant and a ∈ Rm is a fixed vector, is called an affine function. As usual,
an affine function f is linear if α = 0, i.e., f (x) = a · x. A function f : S → R,
where S is a subset of Rm, is said to be an affine function if it is the restriction
of an affine function defined on Rm. Let Aff denote the collection of all affine
functions on Rm and note that Aff is a vector subspace of C(Rm).

LEMMA 4.1. Regarding affine functions we have the following:

(1) The vector space Aff of all affine functions is the linear span in C(Rm) of the functions
{1, e1, e2, . . . , em}, where 1(x) = 1 and ei(x) = xi for all x ∈ Rm. That is, we have
Aff = Span {1, e1, e2, . . . , em}; and so Aff is an (m+ 1)-dimensional vector space.2

(2) Two affine functions f, g ∈ Aff coincide if and only if f (x) = g(x) for all x in a
nonempty open subset of Rm. In particular, if a subset S of Rm has an interior point,
then any affine function on S is the restriction of a unique affine function defined
on Rm.

Proof. The proof of part (1) is obvious. The proof of part (2) follows easily from
the following simple property: If a nonzero linear functional f satisfies f (x) ≥ α

for all x in a nonempty open set O, then f (x) > α must be the case for all x ∈ O.
To see this, fix x ∈ O and assume that f (x) = α. Since O is an open set, there

exists some ε > 0 such that x + B(0, ε) ⊆ O. So, for each y ∈ B(0, ε) we have
α+f (y) = f (x +y) ≥ α or f (y) ≥ 0. This implies f (y) = 0 for all y ∈ B(0, ε)

and so f = 0, which is impossible.
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We are now ready to introduce the general concept of piecewise linear
function.

DEFINITION 4.2. A function f : Rm → R is called piecewise linear (or piece-
wise affine) if there exist distinct affine functions f1, f2, . . . , fp and subsets
S1, S2, . . . , Sp of Rm such that:

(1) Each Si is closed with nonempty interior and Int(Si) = Si .3

(2) If i �= j, then Int(Si) ∩ Int(Sj ) = �©.
(3)

⋃p

i=1 Si = Rm.
(4) If x ∈ Si, then f (x) = fi(x).

We also introduce the following terminology and notation.

(a) The sets Si are called the regions of f and the functions fi will be referred to as the
components of f .

(b) The pairs (S1, f1), . . . , (Sp, fp) are the characteristic pairs of f .
(c) The set of all piecewise linear functions will be denoted by PL.

A remark is in order here. The same definition of a piecewise linear function can
be given for solid domains, that is, for closed convex subsets of Rm with nonempty
interior. All results in this section hold true for piecewise linear functions with
solid domains. We assume that our functions have domain Rm for the sole purpose
of simplifying the exposition. The reader can verify directly that when m = 1
the definitions for piecewise linear functions given in Definitions 3.1 and 4.2 are
equivalent; see also Corollary 4.10.

Here is an example of an piecewise linear function with a solid domain in
R2.

Example 4.3. Let Q = [0, 12] × [0, 12] = {(x, y) ∈ R2: 0 ≤ x ≤ 12; 0 ≤ y ≤
12}. Consider the piecewise linear function f : Q → R defined by

f (x1, x2) =




x1 − 5 if x2 ≥ x1 & 2x1 ≥ 17 − x2,

x2 − 5 if x2 ≤ x1 & x1 ≥ 17 − 2x2,

−x1 − x2 − 12 if x2 ≥ x1 & 2x1 ≤ 17 − x2 & 2x1 ≥ 17 − 2x2,

or x2 ≤ x1 & x1 ≤ 17 − 2x2 & 2x1 ≥ 17 − 2x2,

x1 + x2 − 5 if 2x1 ≤ 17 − 2x2.

The regions of this function are shown in Figure 2 and its graph is depicted in
Figure 3.

Notice that the regions cannot be specified by separate thresholds on the
variables x1 and x2. This would be the case only when the function f is itself
separable. �

The rest of the discussion in this section is devoted to the properties of piecewise
linear functions. The fundamental result for our work will be obtained in the sequel
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FIGURE 2. The regions of the function f : R2 → R.

FIGURE 3. The graph of f : R2 → R.
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(see Theorem 4.15) and it states that the collection of all piecewise linear functions
is precisely the Riesz subspace generated in C(Rm) by the affine functions.

LEMMA 4.4. Every piecewise linear function is continuous.

Proof. Let f : Rm → R be piecewise linear and let xn → x. If f (xn) �→ f (x),
then (by passing to a subsequence) we can assume without loss of generality that
there exists some ε > 0 such that |f (xn) − f (x)| ≥ ε for each n. Now notice that
there exist some i and a subsequence {yn} of {xn} satisfying yn ∈ Si for each n. But
then we have ε ≤ |f (yn) − f (y)| = |fi(yn) − fi(y)| → 0, which is impossible.
This shows that f is continuous.

The following result presents an extremely simple characterization of piecewise
linear functions.

THEOREM 4.5. A continuous function f : Rm → R is piecewise linear if and
only if there exist affine functions f1, . . . , fk such that for each x ∈ Rm there exists
some 1 ≤ i ≤ k satisfying f (x) = fi(x).

Moreover, the set of components of f is a subcollection of the collection of
affine functions {f1, . . . , fk}.

Proof. If f is piecewise linear, then the condition is trivially true. So, for the
converse, assume that there exist affine functions f1, . . . , fk such that for each
x ∈ Rm there exists some 1 ≤ i ≤ k such that f (x) = fi(x). We can assume that
the affine functions f1, . . . , fk are distinct. We claim the following:

• For each nonempty open subset V of Rm there exists a nonempty open subset
W of V and some 1 ≤ i ≤ k such that f = fi on W .

To see this, assume by way of contradiction that the claim is false. This implies
that f �= f1 on V , that is, f1(v) �= f (v) for some v ∈ V . Since f and f1 are
continuous, there exists some nonempty open subset V1 of V such that f1(x) �=
f (x) for all x ∈ V1. Similarly, since (by our hypothesis) f �= f2 on V1 there exists
some nonempty open subset V2 of V1 such that f2(x) �= f (x) for all x ∈ V2.
Continuing this way, we see that there exist nonempty open sets Vk ⊆ Vk−1 ⊆
· · · ⊆ V1 ⊆ V such that for each 1 ≤ i ≤ k we have fi(x) �= f (x) for all x ∈ Vi .
But then for each x ∈ Vk we have f (x) �= fi(x) for all 1 ≤ i ≤ k, which is
impossible, and our claim has been established.

Now for each 1 ≤ i ≤ k let Oi = ⋃{U ⊆ Rm: U is open and f = fi on U}.
That is, Oi is the largest open set on which f = fi . By the preceding discussion
Oi �= �© for at least one i. (To see this take V = Rm and apply (•).) Deleting
the Oi with Oi = �©, we can assume that Oi �= �© for each i. Put Si = Oi , and
note that f = fi on Si . We shall verify that the closed sets S1, . . . , Sk satisfy the
conditions of Definition 4.2. Start by observing that condition (4) is obvious.

For (1) note that from Oi ⊆ Si , we get that Int(Si) �= �© and that Oi ⊆ Int(Si).
Moreover, Oi = Int(Si) must be the case, since otherwise the maximality property
of Oi will be violated. The condition Oi ∩ Oj = �© for i �= j should be obvious
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and the validity of (2) follows. If
⋃k

i=1 Si �= Rm, then by the above discussion
there exists some nonempty open subset Q of Rm\⋃k

i=1 Si and some 1 ≤ � ≤ k

such that f = f� on Q. But then the open set O� ∪ Q violates the maximality
property of O�. Hence,

⋃k
i=1 Si = Rm.

That the components of f are among the affine functions f1, . . . , fk should be
obvious from the above discussion.

An immediate consequence of the preceding result is that PL is a Riesz subspace.

COROLLARY 4.6. The collection of all piecewise linear functions on Rm is a
Riesz subspace of C(Rm). In particular, R(Aff) = Aff∨∧ = Aff∧∨ ⊆ PL.

Recall that an affine transformation from Rk to Rm is any function T : Rk →
Rm of the form T (t) = At + b, where A is an m × k real matrix and b ∈ Rm is
a fixed vector. Now if T is an affine transformation and f : Rm → R is an affine
function, then the function f ◦ T : Rk → R is also an affine function. To see this,
assume that f is defined as f (x) = α + u · x and note that for each t ∈ Rk we
have

[f ◦ T ](t) = f (T (t)) = α + u · (At + b) = (α + u · b) + (A′u) · t.

This conclusion in connection with Theorem 4.5 yields the following result.

COROLLARY 4.7. If f : Rm → R is an arbitrary piecewise linear function
and T : Rk → Rm is an affine transformation, then the function f ◦ T : Rk → R
is piecewise linear. Moreover, if f has the components f1, . . . , fp, then the
components of f ◦ T are among the affine functions f1 ◦ T , . . . , fp ◦ T .

In particular, for any two fixed vectors a, b ∈ Rm the function θ : R → R,

defined via the formula θ(t) = f (ta + (1 − t)b), is (one-dimensional) piecewise
linear.

A hyperplane of Rm is any subset of the form H = {x ∈ Rm: a ·x = α}, where
a ∈ Rm is a nonzero vector and α ∈ R is a constant. Clearly, every hyperplane
is a closed set and has Lebesgue measure zero. Notice that two affine functions
f, g: Rm → R either do not agree at any point or the set that they agree is a
hyperplane, that is, the set [f = g] = {x ∈ Rm: f (x) = g(x)} is either empty or
a hyperplane.

The boundaries of the regions of a piecewise linear function are parts of hyper-
planes.

LEMMA 4.8. Let (S1, f1), . . . , (Sp, fp) be the characteristic pairs of a piece-
wise linear function f : Rm → R. For each i let Ii = {j ∈ {1, . . . , p}: j �= i and
Si ∩ Sj �= �©}. Then the boundary of the region Si has the following property:

∂Si =
⋃
j∈Ii

Si ∩ Sj ⊆
⋃
j∈Ii

[fi = fj ].

https://doi.org/10.1017/S1365100506050103 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100506050103


90 ALIPRANTIS ET AL.

In particular,

(a) each boundary ∂Si has Lebesgue measure zero and consists of “parts” of hyper-
planes, and

(b) if x ∈ Int(Si) for some i, then x /∈ Sj for all j �= i.

Proof. Let x ∈ ∂Si . Since B(x, 1
n
)∩ (Rm\Si) �= �©, there exists for each n some

xn ∈ ⋃
r �=i Sr such that xn ∈ B(x, 1

n
). It follows that for some j �= i we have

xn ∈ Sj for infinitely many n. This implies x ∈ Sj = Sj and so x ∈ Si ∩ Sj .
Now assume that x ∈ Si ∩Sj for some j �= i. If x /∈ ∂Si , then x ∈ Int(Si) and so

there exists some δ > 0 such that B(x, δ) ⊆ Int(Si). Since Int(Si) ∩ Int(Sj ) = �©,
we infer that x ∈ ∂Sj . From Int(Sj ) = Sj , it follows that there exists some
y ∈ Int(Sj ) such that y ∈ B(x, δ). This implies y ∈ Int(Si) ∩ Int(Sj ), which is
impossible. Consequently, x ∈ ∂Si , and the proof is finished.

The characteristic pairs of a piecewise linear function are uniquely deter-
mined.

LEMMA 4.9. The regions and the components of an arbitrary piecewise linear
function f : Rm → R are uniquely determined in the following sense: If another
collection of pairs {(S ′

1, g1), . . . , (S
′
q, gq)} satisfies properties (1)–(4) of Defini-

tion 4.2, then q = p and {(S ′
1, g1), (S

′
2, g2), . . . , (S

′
q, gq)} is a permutation of the

collection of pairs {(S1, f1), (S2, f2), . . . , (Sp, fp)}.
Proof. Fix some 1 ≤ i ≤ p. Because Int(Si) is nonempty (and hence it has

positive Lebesgue measure), it follows from Lemma 4.8 that there exists some
1 ≤ j ≤ q such that the open set V = Int(Si) ∩ Int(S ′

j ) is nonempty. In parti-
cular, as fi(x) = gj (x) = f (x) holds true for each x ∈ V , it follows from part (2)
of Lemma 4.1 that fi = gj .

Now let x ∈ Int(Si). Fix δ > 0 such that B(x, δ) ⊆ Int(Si) and let 0 < ε < δ.
As above, B(x, ε) ∩ Int(S ′

r ) �= �© must hold true for some index 1 ≤ r ≤ q. But
then (as above again) gj = fi = gr must be the case. Because the affine functions
g1, . . . , gq are all distinct, we infer that r = j . Therefore, B(x, ε) ∩ Int(S ′

j ) �= �©
for all 0 < ε < δ. This implies x ∈ S ′

j = S ′
j , and so Int(Si) ⊆ S ′

j . Consequently,

Si = Int(Si) ⊆ S ′
j .

By the symmetry of the situation, there exists some 1 ≤ m ≤ p such that
S ′

j ⊆ Sm. This implies Int(Si) ∩ Int(Sm) = Int(Si) �= �©, from which it follows
that m = i. Therefore, Si = S ′

j and so (Si, fi) = (S ′
j , gj ). From the last result,

the desired conclusion now easily follows.

Another consequence of Theorem 4.5 is that for real functions defined on R
the definitions for piecewise linear functions given in Definitions 3.1 and 4.2 are
equivalent.

COROLLARY 4.10. A function f : R → R is piecewise linear according to
Definition 3.1 if and only if it is piecewise linear according to Definition 4.2.
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Proof. Let f : R → R be a function. If f is piecewise linear according to
Definition 3.1, then f is clearly piecewise linear according to Definition 4.2.

For the converse, assume that f is piecewise linear according to Definition 4.2.
Let {(S1, f1), (S2, f2), . . . , (Sp, fp)} be the collection of characteristic pairs of f .
Notice that every fi is of the form fi(t) = mit + bi . So, every nonempty set of
the form [fi = fj ] is simply a point of R. This is connection with Lemma 4.8
shows that the boundary of each Si is a finite set. Now each Int(Si) is the union of
an at most countable collection of pairwise disjoint open intervals. Because ∂Si is
a finite set, a moment’s thought reveals that Int(Si) is a union of a finite number
of pairwise disjoint open intervals. From this it follows that Si is the union of
the closures of these intervals. Now it is easy to see that f is a piecewise linear
function according to Definition 3.1.

In order to further study piecewise linear functions, we shall need the theory of
arrangements of hyperplanes, which are well-studied combinatorial constructions
that are closely related to vector lattices and the simplex methods in linear pro-
gramming; see Chapter 4 of Björner, Las Vergnas, Sturmfels, White, and Ziegler
(1999).

Recall once more that any subset of Rm of the form H = {x ∈ Rm: a · x = α},
where a ∈ Rm is a nonzero fixed vector and α ∈ R is a constant, is called a
hyperplane of Rm. We can assume without loss of generality that ‖a‖ = 1 and
refer to a as a (unit) vector normal to H . Since H = {x ∈ Rm: (−a) · x = −α},
we see that −a is also another (unit) normal vector to H . In other words, H has
essentially two unit normal vectors, each of which defines an orientation in the
sense that it divides Rm into three parts: a “positive” part {x ∈ Rm: a · x > α}, a
“zero” part {x ∈ Rm: a · x = α}, and a “negative” part {x ∈ Rm: a · x < α}. Of
course, if we let H = {x ∈ Rm: (−a) · x = −α}, then the orientation changes:
the positive part is now negative and the negative part is positive. Thus, writing
H in the form H = {x ∈ Rm: a · x = α}, the vector a defines automatically an
orientation, and H is called an oriented hyperplane.

Now let E be a finite index set and let (He)e∈E , where He = {x ∈ Rm: ae · x =
αe}, be a family of (oriented) hyperplanes in Rm. The family (He)e∈E , is called
an oriented arrangement of hyperplanes (or simply an arrangement). Every
arrangement of hyperplanes (He)e∈E “almost” subdivides Rm into a finite number
of nonempty convex regions. The subdivisions are obtained by means of the “sign”
mapping x �→ σx , from Rm to {+,−, 0}E , that is defined by

σx(e) =



+ if ae · x > αe,

− if ae · x < αe,

0 if ae · x = αe,

that is, σx = (Sign(ae · x − αe))e∈E . Let M denote the range of the function σ ,
that is, M = σ(Rm) ⊆ {+,−, 0}E .

A vector T ∈ M satisfying T (e) �= 0 for all e ∈ E is called a tope of M. Note
that σx is a tope if and only if x /∈ ⋃

e∈E He. Let T1, T2 . . . , TJ be an enumeration
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FIGURE 4. An arrangement of four oriented hyperplanes in R2.

of the topes of M. For each 1 ≤ h ≤ J let

Kh = {x ∈ Rm: σx = Th} = σ−1({Th}).

Obviously, each Kh is a nonempty, open, and convex set. Moreover, from the

identity
⋃J

h=1 Kh = Rm \⋃
e∈E He, we see that

⋃J
h=1 Kh = Rm. The sets K1,

K2, . . . , KJ are called the cells induced by the arrangement of the hyper-
planes (He)e∈E . It should not be difficult to see that the collection of cells
{K1,K2, . . . , KJ } is independent of the orientation of the planes He, and so we can
refer to {K1,K2, . . . , KJ } as the collection of cells generated (or induced) by the
family of hyperplanes (He)e∈E . For an example of an arrangement of hyperplanes,
see Figure 4.

Now let {f1, . . . , fp}, where p ≥ 2, be a collection of distinct affine functions
on Rm. If for each 1 ≤ i < j ≤ p we let Hi,j = [fi = fj ], then the set

E = {(i, j): 1 ≤ i < j ≤ p and Hi,j �= �©}

is a finite set. Letting He = [fi = fj ] = {x ∈ Rm: ae · x = αe} for each e =
(i, j) ∈ E, we see that the family (He)e∈E is an arrangement of hyperplanes, called
an arrangement generated by {f1, . . . , fp}. The collection of cells generated by
(He)e∈E is called the collection of cells generated (or induced) by {f1, . . . , fp}.

With this terminology at hand, we are now ready to state several extra properties
of piecewise linear functions.

LEMMA 4.11. Let F = {f1, . . . , fk} be a finite collection of distinct affine
functions of Rm and let {K1,K2, . . . , KJ } be the collection of cells induced by F .
Assume also that f : Rm → R is a continuous function such that for each x ∈ Rm

there exists some 1 ≤ i ≤ k satisfying f (x) = fi(x).4 Then for a vector x ∈ Kh

we have the following:
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(1) If f (x) = fi(x), then f (y) = fi(y) for all y ∈ Kh.
(2) If f (x) > fi(x), then f (y) > fi(y) for all y ∈ Kh.
(3) If f (x) < fi(x), then f (y) < fi(y) for all y ∈ Kh.

Moreover, for each 1 ≤ h ≤ J there is a unique 1 ≤ ih ≤ k with f = fih on Kh.

Proof. We shall prove (1) first. To this end, suppose that some x ∈ Kh satisfies
f (x) = fi(x).

Let X = ⋃J
h=1 Kh and note that X is an open dense subset of Rm. Notice that

for each z ∈ X any pair of distinct functions fi, fj ∈ F we have fi(z) �= fj (z). So
for each z ∈ X there exists a unique 1 ≤ iz ≤ k such that f (z) = fiz (z). Because
f and the fi are continuous functions and f (z) = fiz (z) �= fj (z) for each j �= iz,
there exists an open neighborhood Nz ⊆ X of z such that for each y ∈ Nz and
all j �= iz we have f (y) �= fj (y) and fiz (y) �= fj (y). This implies that for each
y ∈ Nz we have f (y) = fiz (y), that is, iy = iz.

Now fix y ∈ Kh. Let L(x, y) be the line segment joining x and y and notice that
L(x, y) ⊆ Kh as Kh is convex. Because L(x, y) is compact, there exists a finite
set Z = {z1, . . . , zr} ⊆ L(x, y) such that L(x, y) ⊆ ⋃

z∈Z Nz. We can assume
that the neighborhoods {Nz: z ∈ Z} form a chain, that is, Nzt

∩Nzt+1 �= �© for each
t = 1, . . . , r − 1; see (Abramovich and Aliprantis, 2002b, Problem 1.5.7, p. 50).
This easily implies that for each z ∈ L(x, y) we have f (z) = fix (z) = fiy (z). In
particular, ix = iy .

Therefore, we have shown that for each Kh there exists a unique index 1 ≤ ih ≤
k such that y ∈ Kh implies f (y) = fih(y). This proves (1) and the last part of the
lemma.

To establish (2), assume that f (x) > fi(x) holds true for some x ∈ Kh and
that some other y ∈ Kh satisfies f (y) ≤ fi(y). If f (y) = fi(y), then according
to (1) we must have f (x) = fi(x), which is impossible. If f (y) < fi(y), then
there exists some z in the line segment joining x and y (and hence z ∈ Kh)
satisfying f (z) = fi(z). But then (according to (1) again) we get f (x) = fi(x), a
contradiction. This establishes (2) and the validity of (3) can be proven in a similar
fashion.

From Theorem 4.5 we know that if for a continuous function f : Rm → R
and affine functions f1, . . . , fk for each x ∈ Rm there exists some 1 ≤ i ≤ k

satisfying f (x) = fi(x), then f is piecewise linear. The next result constructs the
characteristic pairs of such a piecewise linear function from a given collection of
affine functions.

THEOREM 4.12. Assume that a continuous function f : Rm → R and a finite
set of distinct affine functions F = {f1, . . . , fk} are such that for each x ∈ Rm

there exists some 1 ≤ i ≤ k satisfying f (x) = fi(x). Let {K1,K2, . . . , KJ } be
the cells generated by F . For each 1 ≤ i ≤ k let

Ei = {h ∈ {1, . . . , J }: f = fi on Kh},
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and then define Si = ⋃
h∈Ei

Kh. We have the following.

(a) If {Ei}i∈I is the family of nonempty Ei, then the family {(Si, fi)}i∈I is precisely the
family of characteristic pairs of the piecewise linear function f .

(b) For each 1 ≤ h ≤ J there exists exactly one i ∈ I such that Kh ⊆ Int(Si).
(c) For each i ∈ I the nonempty set Int(Si) is a union of a finite collection of pairwise

disjoint nonempty open and connected subsets of Rm.

Proof. (a) We know from Theorem 4.5 that the function f is piecewise linear
whose components are among the f1, . . . , fk . The proof here will present also an
alternate constructive proof of Theorem 4.5. Let {K1, . . . , KJ } be the collection
of cells generated by F and for each 1 ≤ i ≤ k define Ei and Si as in the statement
of the lemma.

According to Lemma 4.11 at least one of the Ei is nonempty; relabeling, we
can assume that E1, . . . , Ep are the nonempty Ei , that is, I = {1, . . . , p}. Clearly,
f = fi on Si . Because the affine functions f1, . . . , fk are distinct, it follows from
part (2) of Lemma 4.1 that Er ∩ Es = �© for r �= s and from Lemma 4.11 we see
that

⋃p

i=1 Ei = {1, . . . , J }. The latter yields

p⋃
i=1

Si =
p⋃

i=1

⋃
h∈Ei

Kh =
p⋃

i=1

⋃
h∈Ei

Kh =
J⋃

h=1

Kh = Rm.

Next notice that because for each 1 ≤ i ≤ p we have
⋃

h∈Ei
Kh ⊆ Int(Si), it

follows, on one hand, that Int(Si) �= �© and, on the other hand, that Int(Si) = Si .
Moreover, using part (2) of Lemma 4.1, it is easy to see that Int(Sr)∩ Int(Ss) = �©
for r �= s. Because f = fi holds true for each 1 ≤ i ≤ p, it follows from Defini-
tion 4.2 that f is a piecewise linear function with characteristic pairs (S1, f1), . . . ,

(Sp, fp).
(b) Now let 1 ≤ h ≤ J . According to Lemma 4.11 there exists a unique

1 ≤ ih ≤ k such that f = fih on Kh. This implies that Eih �= �© and Kh ⊆ Int(Sih).
(c) Observe that for each i ∈ I every component of Int(Si), that is, every

maximal (with respect to ⊇) nonempty and connected subset of Int(Si), is open.
Now notice that every Kh ⊆ Int(Si) is open and connected (as being a convex set)
and so is included in some component of Int(Si). Moreover, from the definition
of Si , it is not difficult to see that every component of Int(Si) includes some
Kh. Thus, the number of components of Int(Si) is at most J , and the proof is
finished.

To continue our study, we need one more property of piecewise linear functions.

LEMMA 4.13 [Ovchinnikov (2002)]. If f : Rm → R is a piecewise linear
function with components f1, . . . , fp, then for any pair a, b ∈ Rm there exists a
component fi of f satisfying fi(a) ≤ f (a) and fi(b) ≥ f (b).

Proof. Fix a, b ∈ Rm and consider the continuous function g: R → R de-
fined via the formula by g(t) = f [tb + (1 − t)a]. By Corollary 4.7, g is a
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one-dimensional piecewise linear function whose components are among the
affine functions g1, g2, . . . , gp, where gi(t) = fi(tb + (1 − t)a). Consider g

restricted to [0, 1] and then use Lemma 3.2 in conjunction with Corollary 3.7 to
see that there exists a component gi satisfying f (a) = g(0) ≥ gi(0) = fi(a) and
f (b) = g(1) ≤ gi(1) = fi(b).

The next result presents the basic structural properties of piecewise linear
functions. Its proof is based on the discussion by Ovchinnikov on the referees’
comments concerning his paper Ovchinnikov (2002).

THEOREM 4.14. Assume that f : Rm → R is a piecewise linear function with
characteristic pairs {(S1, f1), . . . , (Sp, fp)} and let {K1,K2, . . . , KJ } be the set
of cells induced by {f1, . . . , fp}.

(1) If for each h we pick xh ∈ Kh and let Eh = {i ∈ {1, . . . , p}: fi(xh) ≥ f (xh)}, then
Eh is nonempty and

f =
J∨

h=1

∧
i∈Eh

fi .

In particular, f ∈ {f1, f2, . . . , fp}∨∧.
(2) If J ∗ is the subset of {1, . . . , J } having the property that for each 1 ≤ h ≤ J there

exists a j ∈ J ∗ such that Ej ⊆ Eh, then we have

f =
∨
j∈J ∗

∧
i∈Ej

fi .

Proof. (1) For each 1 ≤ h ≤ J fix some xh ∈ Kh and then use Theorem 4.12
to choose some 1 ≤ j ≤ p such that Kh ⊆ Int(Sj ). Clearly, fj (xh) = f (xh). This
implies that if for each 1 ≤ h ≤ J we let

Eh = {i ∈ {1, . . . , p}: fi(xh) ≥ f (xh)},

then, on the one hand, Eh �= �© and, on the other hand, a glance at Lemma 4.11
guarantees that for each i ∈ Eh and each y ∈ Kh we have fi(y) ≥ f (y). Now for
each 1 ≤ h ≤ J consider the function

Fh =
∧
i∈Eh

fi, (�)

and note that Fh(y) ≥ f (y) for each y ∈ Kh. Because for some j ∈ Eh we have
fj (xh) = f (xh), it follows from Lemma 4.11 that fj (y) = f (y) for all y ∈ Kh.
Thus, Fh(y) = f (y) for all y ∈ Kh.

Next, fix y ∈ Rm. For each 1 ≤ h ≤ J there exists (according to Lemma 4.13)
some fj satisfying fj (y) ≤ f (y) and fj (xh) ≥ f (xh). In particular, it follows
that we have j ∈ Eh and consequently Fh(y) = [

∧
i∈Eh

fi](y) ≤ f (y) for all

1 ≤ h ≤ J . This implies [
∨J

h=1 Fh](y) ≤ f (y) for all y ∈ Rm.
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On the other hand, because for each x ∈ Kh we have Fh(x) = f (x), it must be
the case that

J∨
h=1

Fh =
J∨

h=1

∧
i∈Eh

fi = f,

on
⋃J

h=1 Kh. Because
⋃J

h=1 Kh is dense in Rm and
∨J

h=1

∧
i∈Eh

fi and f are both

continuous functions, it follows that
∨J

h=1

∧
i∈Eh

fi = f holds true on Rm.
(2) To establish this identity, note first that if Ej ⊆ Eh, then

∧
i∈Eh

fi ≤∧
i∈Ej

fi ≤ f . This implies
∧

i∈Eh
fi ≤ ∨

j∈J ∗
∧

i∈Ej
fi ≤ f for each 1 ≤ h ≤ J ,

and consequently we have f = ∨J
h=1

∧
i∈Eh

fi ≤ ∨
j∈J ∗

∧
i∈Ej

fi ≤ f , and the
proof is finished.

Combining Corollary 4.6 and Theorem 4.14 we are now ready to state the
fundamental result for this work.

THEOREM 4.15. The vector space PL of all piecewise linear functions is a
vector sublattice of the Riesz space C(Rm) and coincides with Aff∨∧, that is,
PL = Aff∨∧.

In other words, PL is precisely the Riesz subspace of C(Rm) generated by the
(m + 1)-dimensional vector subspace Aff of all affine functions.

The next example reported in Ovchinnikov (2002) shows that piecewise poly-
nomial functions need not admit a sup-inf representation.

Example 4.16. Define the piecewise quadratic function f : R → R as follows:

f (x) =
{

0 if x ≤ 0,

x2 if x > 0.

Notice that x2 ∨ 0 = x2 and x2 ∧ 0 = 0.

Noting that the set {f1, f2, . . . , fp}∨∧ is finite, Theorem 4.15 yields also the
following.

COROLLARY 4.17. If F = {f1, f2, . . . , fp} is a finite set of affine functions
on Rm, then a function f ∈ C(Rm) is piecewise linear with components in F if
and only if f belongs to the finite set F∨∧.

Theorem 4.14 also provides an algorithm for constructing the sup-inf represen-
tation of a piecewise linear function with components f1, f2, . . . , fp and unknown
regions. The next example is a rudimentary algorithm illustrating this.

Example 4.18 (From f, f1, f2, . . . , fp to Aff∨∧). Take f ∈ PL with compo-
nents f1, f2, . . . , fp. Following Theorem 4.14 the function f can be reconstructed
using the following step:
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Step I: Determine E = {(i, j): 1 ≤ i < j ≤ p and [fi = fj ] �= �©} and then for each
e = (i, j) ∈ E pick αe ∈ R and ae ∈ Rm such that

He = {x ∈ Rm: ae · x = αe} = [fi = fj ].

Step II: Using the hyperplane arrangement (He)e∈E determine the cells K1, . . . , KJ .
Step III: For each h = 1, 2, . . . , J choose some xh from the cell Kh.
Step IV: For each 1≤h≤J determine Eh ={i ∈ {1, . . . , p}fi(xh) ≥ f (xh)}.
Step V: Select a “minimal” set J ∗ ⊆ {1, 2, . . . , J } so that it satisfies property (2) of

Theorem 4.14. Then we have

f =
∨
j∈J ∗

∧
i∈Ej

fi .

This procedure gives a desired sup-inf representation of f .

The next example illustrates the preceding algorithm. It also shows how in
applying this algorithm, we can restrict our attention to a closed convex domain
with nonempty interior.

Example 4.19. Consider once again Example 4.3 but with the restricted domain
shown in Figure 5. Take the four affine components of the function f :

f1 (x1, x2) = x1 − 5,

f2 (x1, x2) = x2 − 5,

f3 (x1, x2) = x1 + x2 − 5,

f4 (x1, x2) = −x1 − x2 + 12.

FIGURE 5. The eight regions of the oriented arrangement.
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FIGURE 6. The graphs of f1 ∧ f2 and f3 ∧ f4.

These four affine functions induce eight cells. They are the eight regions of the
oriented arrangement in Step I of the algorithm of Example 4.18 and they are
depicted in Figure 5.

Notice that E1 = {1, 2, 3}, E2 = {1, 2, 3}, E3 = E4 = E5 = E6 = E7 = E8 =
{3, 4}. Therefore, if we take J ∗ = {1, 3}, then we can write

f = (f3 ∧ f4) ∨ (f1 ∧ f2 ∧ f3).

Because we have restricted the domain, we can now write f = (f3∧f4)∨(f1∧f2);
compare Figures 3 and 6.

A rudimentary algorithm for computing the regions of the functions in Aff∨∧

by means of Theorem 4.12 is presented next.

Example 4.20 (From Aff∨∧ to PL). Take f ∈ {f1, f2, . . . , fp}∨∧, where as
usual f1, f2, . . . , fp are affine functions on Rm. Following Theorem 4.12 the
regions of the function f can be obtained using the following steps:

Step I: Determine E = {(i, j): 1 ≤ i < j ≤ p and [fi = fj ] �= �©} and for each
e = (i, j) ∈ E and then pick αe ∈ R and ae ∈ Rm such that He = {x ∈
Rm: ae · x = αe} = [fi = fj ].

Step II: Use the hyperplane arrangement (He)e∈E to determine the cells K1, . . . , KJ .
Step III: For each h = 1, 2, . . . , J choose some xh ∈ Kh and then let

ih = min{i ∈ {1, . . . , p}: fi(xh) = f (xh)}.
Step IV: For each h = 1, 2, . . . , J determine the set Ih = {j ∈ {1, . . . , J }: ij = ih}.
Step V: For each h = 1, 2, . . . , J let Sih = ⋃

i∈Ih
Kj .

The characteristic pairs of the piecewise linear function f are distinct members of
the family {(fih , Sih)}h∈{1,...,J }.
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NOTES

1. Any norm on a Riesz space such that |x| ≤ |y| implies ‖x‖ ≤ ‖y‖ is called a lattice (or a Riesz)
norm.

2. As a matter of fact, if we identify every vector r = (r0, r1, . . . , rm) ∈ Rm+1 with the affine
function on Rm defined by r(x) = r0 + r1x1 + · · · + rmxm, then it is not difficult to see that we can
identify Aff with the vector space Rm+1.

3. If A is any subset of Rm, then Int(A) denotes its interior and Ā its closure. We remark that the
sets Si are not assumed to be connected.

4. Keep in mind that this implies (by Theorem 4.5) that f is piecewise linear.
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