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Abstract

The transmitted and reflected second harmonics (SH) generation by an oblique p-polarized laser pulse irradiated on
vacuum-magnetized plasma interface is investigated. The laser pulse propagates through a homogenous, underdense,
and transversely magnetized plasma. The transverse magnetic field plays the role of a self-generated magnetic field
produced in laser plasma interaction. It is shown that if the transmitted and reflected SH components investigated as a
simultaneous process, the maximum SH power deviates from previous reports specially near the critical angle. The
deviation increases with laser field intensity and plasma density. The results reveal that the conversion efficiency
increases slightly by increasing incident angle and drastically enhances near the critical angle. We show that the
transmitted SH power decreases by increasing the magnetic field strength, in contrast to the normal incidence, which
the SH power is increased. The comparison revealed that the SH efficiency is greater for transmitted component, while
the reflected component is more proper for technical and experimental applications. This paper not only conforms the
previous reports for angle far from the critical but also modifies them for the SH generation near the critical angle.
Moreover, this paper gives a new insight for SH generation by a magnetized plasma.
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1. INTRODUCTION

The problem of intense short-pulse laser–plasma interaction
has been an active area of research. Among them, non-linear
phenomenon of harmonic generation has been interested by
many researchers from 1961 up to now (Franken et al., 1961;
Grebogi et al., 1983; Esarey et al., 1993; Ondarza-Rovira &
Boyd, 2000; Földes et al., 2003; Racz et al., 2006; Cairns,
2009). In process of high-order harmonic generation, second
harmonics (SH) has a unique place because of many applica-
tions such as extreme ultraviolet non-linear optics (Yeung
et al., 2017), laser–plasma interaction properties, X-ray sources
(Giulietti et al., 2009), etc. On the other hand, the generation of
magnetic fields during high-intensity laser–plasma interaction
is a subject that has been under investigation for many years
(Lehner, 1994; Berezhiani et al., 1997; Gorbunov et al.,

1997; Zheng et al., 2000; Kato et al., 2004). This subject has
motivated an ingoing strong effort to analysis of laser interac-
tion with magnetized plasmas.

A magnetic field with proper configuration may be em-
ployed for efficient SH generation by providing the addition-
al momentum, which is essential for phase matching (Kant &
Sharma, 2004; Askari & Noroozi, 2009, 2011; Vaziri
(Khamedi) et al., 2015). When a magnetic field is applied
into a plasma, the electron dynamic is modified, and this
leads to the non-linear current modification. Therefore, it is
reasonable that the magnetic field affects the harmonics gen-
eration. The magnetic field could have additive (Kant &
Thakur, 2016) or destructive (Sharma & Sharma, 2012;
Kuri & Das, 2016) role on SH conversion efficiency in inter-
action of laser-magnetized plasma. When the density pertur-
bation produced by magnetic field is coupled with electron
quiver motions, it is plausible to generate the SH (Jha
et al., 2007). It has been shown that the SH power is in-
creased by increasing the magnetic field strength in normal
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radiation of a linearly polarized laser pulse with a magnetized
plasma; however, the magnetic field was essential for SH
generation. On the other hand, when a p-polarized laser
pulse is obliquely incident on a vacuum–plasma interface,
SH can be generated in the absence of magnetic field and
or any required conditions for phase matching (Jha &
Agrawal, 2014). Generation of phase-mismatch second and
third harmonics has been studied in the interaction of an in-
tense laser pulse with strongly magnetized dense plasma, and
it is shown that the harmonic efficiencies can be increased by
magnetic field (Ghorbanalilu, 2012). In addition, generation
of phase-mismatch SH radiation in the reflected component
of vacuum–plasma interface by using a s-polarized laser
pulse have been reported (Parashar & Sharma, 1998; Singh
et al., 2005).
The experimental and theoretical investigation approved

strong SH generation in Argon gas by focused spatiotempo-
ral femtosecond laser pulses (Li et al., 2014). On the other
hand, second and third-harmonic generations from magnetic
metamaterials have been observed under normal and oblique
incidences of femtosecond Gaussian laser pulse (Klein et al.,
2007). Furthermore, SH radiation from underdense plasma
has already been observed in past decades (Mori et al,
2002; Giulietti et al., 2009). Moreover, the recent observa-
tion approves the SH generation in the laser interaction
with plasma–vacuum boundary (Yeung et al. 2017).
The brief history of SH generation shows that this phenom-

ena has been studied by many authors. They have investigated
the SH generation inside the plasma or in the vacuum. In view
of this fact that in a real physical system the SHcanbe generated
inside the plasma aswell as vacuum due to the laser pulse inter-
action with plasma surface, we would like to investigate the
generation of SH in both sides of the plasma–vacuumboundary
simultaneously. The results presented in this paper not only
confirm the previous reports, but also can bemodified and gen-
eralized to a magnetized plasma. On the other hand, results
show that the SH power is less than that the previous reports
for a non-magnetized plasma if the transmitted and reflected
SH radiations are considered simultaneously.We show that de-
viation with previous reports enhances by increasing the laser
intensityand plasma density. Themodel is valid for underdense
plasma (ω2

p/ω
2
0 ≪ 1) in the weakly relativistic regime (I0≤

1017 W/cm2 and or a20 ≪ 1) for angle of incidence varying
from 0° up to critical angle. It is lucid that beyond the critical
angle, propagation constant becomes imaginary number and
the laser propagation becomes evanescent.
The organization of this paper is as follows: In the next

section, we derive the equation for non-linear current density
as a source of SH generation. The study is undertaken in the
mildly relativistic regime, using a perturbative approach. In
Section 3, we obtain the amplitudes of transmitted and re-
flected SH radiations. The SH conversion efficiency, for
both transmitted and reflected components, is presented in
Section 4, and the influences of incidence angle, magnetic
field strength, and plasma density on SH power are investi-
gated. The conclusion is summarized in Section 5.

2. FORMULATION AND GOVERNING EQUATIONS

Consider a vacuum–plasma interface at z= 0; z< 0 being
vacuum and z> 0 a uniform underdense plasma of density n0
that is set in a B(= B0ŷ) transverse magnetic field. A
p-polarized laser beam (propagating in the x–z plane) incidents
on the interface at an angle of incidence θ as shown in Figure 1.

E0 = (x̂ cos θ− ẑ sin θ) 1
2
E0 exp[i(k0xx+ k0zz− ω0t)] + c.c, (1)

where E0 is the amplitude of the incident electric field, k0x=
(ω0/c)sin θ and k0z= (ω0/c)cos θ are thewavenumber compo-
nents along the x and z directions, respectively. The electric and
magnetic fields of the transmitted laser can be written as

E1 = (x̂(e1− sin2 θ)1/2− ẑ sinθ)1
2
E1 exp[i(k1xx+ k1zz−ω0t)]+ c.c,

(2)

B1 = ck1 × E1/ω0, (3)

where k1x= k0x, k1z = (ω2
0/c

2e1 − k21x)1/2, and e1 = k21c
2/ω2

0
is the dielectric constant at frequency ω0. E1 = 2

���
e1

√
E0/(e1+������������

e1 − sin2 θ
√

/ cos θ) is the amplitude of the fundamental
electric field transmitted into the plasma. The SH electric
field can be written as

E2 = (x̂(e2− sin2 θ)1/2− ẑsinθ)1
2
E2 exp[i(k2xx+ k2zz−2ω0t)]+ c.c,

(4)

where k2x= (2ω0sin θ)/c, k2z = (4ω2
0/c

2e2 − k22x)1/2. Fur-
thermore e2 = k22c

2/4ω2
0 and E2 are the dielectric constants

at frequency 2ω0 and the SH wave amplitude, respectively.
The wave equation governing the propagation of electromag-
netic waves through the plasma is given by

∇2E−∇(∇.E) − 1
c2

∂2E
∂t2

= 4π
c2

∂J
∂t

, (5)

Fig. 1. Schematic representation of second-harmonic generation process.
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where J is the plasma electron current density. The governed
equations on electronmotion are given by the set of relativistic
cold electron fluid equation

d(γv)
dt

= − eE
m

− e

mc
v × (B+ B0), (6)

and the continuity equation

∂n
∂t

+∇.(nv) = 0, (7)

where γ is the relativistic factor, v andn are the velocity and den-
sity of plasma electrons, B and B0 are the magnetic fields cor-
responding to the radiation laser pulse and a self-generated
magnetic field. We would like to start with perturbative
theory and expand all quantities in orders of the radiation
field amplitude. Bymaking use of Eq. (6), the velocity compo-
nents in the x and z directions are, respectively, given by

∂v1x
∂t

= − eEx

m
+ ωcv1z, (8)

and

∂v1z
∂t

= eEz

m
− ωcv1x, (9)

where ωc(= eB0/mc) represents the cyclotron frequency and
Ex,z= E1(x,z)+ E2(x,z) in which E1(x,z) and E2(x,z) are the
amplitudes of electric field in fundamental and SH. By
making use of Eqs (2)–(4), we can solve Eqs (8) and (9) to
derive the first order of velocity components as

v1x = iω2
0a1xc

ω2
c − ω2

0

+ ω0ωca1zc

ω2
c − ω2

0

( )
ei(k1xx+k1zz−ω0 t)

+ 2iω2
0a2xc

ω2
c − 4ω2

0

+ ω0ωca2zc

ω2
c − 4ω2

0

( )
ei(k2xx+k2zz−2ω0 t) + c.c.,

(10)

v1z = ω0ωca1xc

ω2
c − ω2

0

− iω2
0a1zc

ω2
c − ω2

0

( )
ei(k1xx+k1zz−ω0t)

+ ω0ωca2xc

ω2
c − 4ω2

0

− 2iω2
0a2zc

ω2
c − 4ω2

0

( )
ei(k2xx+k2zz−2ω0t) + c.c.

(11)

Where aj(x,z)= eEj(x,z)/mω0c ( j= 1,2) are the components of
normalized amplitude of the transmitted fundamental and SH
electric field.
By following the same steps, the expression for velocity

components in second order is given by

∂v2x
∂t

= e

mc
v1zB1y − v1x

∂v1x
∂x

− v1z
∂v1x
∂z

+ ωcv2z, (12)

and

∂v2z
∂t

= − e

mc
v1xB1y − v1z

∂v1z
∂z

− v1x
∂v1z
∂x

− ωcv2x. (13)

The second-order velocity components are obtained by using
of Eqs (10) and (11) and simultaneous solutions of Eqs (12)
and (13) as bellow

v2x = e1a21ω
2
0c

2

(ω2
c − ω2

0)2(ω2
c − 4ω2

0)
1
ω0

(2ω4
0 − ω4

c − 4ω2
0ω

2
c )k1x

[

−iωc(4ω2
c − ω2

0)k1z
]
e2i(k1xx+k1zz−ω0t) + c.c.,

(14)

v2z = e1a21ω
2
0c

2

(ω2
c − ω2

0)2(ω2
c − 4ω2

0)

[
iωc(4ω2

c − ω2
0)k1x.

+ 1
ω0

(2ω4
0 − ω4

c − 4ω2
0ω

2
c)k1z

]
e2i(k1xx+k1zz−ω0t) + c.c.

(15)

Using Eq. (7), the first-order density perturbation is given as
follows

n1 = n0a1ωck21c
2

ω0(ω2
c − ω2

0)
ei(k1xx+k1zz−ω0 t)

+ n0a2ωck22c
2

4ω0(ω2
c − 4ω2

0)
ei(k2xx+k2zz−2ω0t) + c.c. (16)

We find from Eq. (16) that the density perturbation
disappears in the absence of external magnetic field.
The plasma current density J = −env components can be
derived as

Jx = − n0eω0c

ω2
c − ω2

0

(iω0a1x + ωca1z)ei(k1xx+k1zz−ω0t)

− n0eω0c

ω2
c − 4ω2

0

(2iω0a2x + ωca2z)ei(k2xx+k2zz−2ω0t)

− n0ece1a21ω
2
0

(ω2
c − ω2

0)2(ω2
c − 4ω2

0)
−3iωc(ω2

0 + ω2
c )k1zc

[

+ 2ω0(ω2
0 − 4ω2

c)k1xc
]
e2i(k1xx+k1zz−ω0t) + c.c.,

(17)

and

Jz = − n0eω0c

ω2
c − ω2

0

(ωca1x − iω0a1z)ei(k1xx+k1zz−ω0 t)

− n0eω0c

ω2
c − 4ω2

0

(ωca2x − 2iω0a2z)ei(k2xx+k2zz−2ω0 t)

− n0ece1a21ω
2
0

(ω2
c − ω2

0)2(ω2
c − 4ω2

0)
2ω0(ω2

0 − 4ω2
c )k1zc

[

+ 3iωc(ω2
0 + ω2

c )k1xc]e2i(k1xx+k1zz−ω0t) + c.c.

(18)

Substituting the linear parts of current density into the wave
equation, we get to the linear dispersion relations for funda-
mental and SH.

k21c
2 = ω2

0 −
ω2
p(ω2

0 − ω2
p)

ω2
0 − ω2

p − ω2
c

, (19)
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and

k22c
2 = 4ω2

0 −
ω2
p(4ω2

0 − ω2
p)

4ω2
0 − ω2

p − ω2
c

. (20)

Equations (19) and (20) introduce the dispersion relation for
extraordinary waves in fundamental and SH propagating per-
pendicular to the magnetic field.

3. SH GENERATION

In order to evaluate the amplitude of the SH field, the source
currents, Eqs (17) and (18), can be used in the wave Eq. (5)
and equate the SH terms on both sides,

∂2a2x(z)
∂z2

+ χ1
∂a2x(z)
∂z

+ χ2a2x(z) + χ3a2z(z) = χ4e
iΔk.z, (21)

and

∂2a2z(z)
∂z2

+ χ1
∂a2z(z)
∂z

+ χ2a2z(z) − χ3a2x(z) = χ5e
iΔk.z, (22)

where

χ1 = 2ik2z,

χ2 =
ω2
cω

4
p

c2(4ω2
0 − ω2

c)(4ω2
0 − ω2

p − ω2
c )
,

χ3 =
iωcω4

p(4ω2
0 − ω2

p)
2ω0c2(4ω2

0 − ω2
c)(4ω2

0 − ω2
p − ω2

c)
,

χ4 =
2ε1a21ω

2
0ω

2
p

c2(ω2
c − ω2

0)2(ω2
c − 4ω2

0)
× 2iω0(ω2

0 − 4ω2
c)k1xc+ 3ωc(ω2

0 + ω2
c)k1zc

[ ]
,

χ5 =
2ε1a21ω

2
0ω

2
p

c2(ω2
c − ω2

0)2(ω2
c − 4ω2

0)
× 3ωc(ω2

0 + ω2
c)k1xc− 2iω0(ω2

0 − 4ω2
c)k1zc

[ ]
.

In this case, thewavenumberof theSH ismore than twice as large
as that for the fundamental wave at which Δk= 2k1z− k2z is
called the wavevector mismatch for SH radiation. We assume
that ∂a2(x,z)(z)/∂z considerably changes larger than the laser
wavelength, means that ∂2a2(x,z)(z)/∂z

2≪ k2z∂a2(x,z)(z)/∂z,
which is known as the slowly varying envelope approximation
(SVEA) and is almost valid in non-linear processes. Further-
more, assuming a1(x,z) depletes very slightly with z so that the
quantity a21(x,z) can be considered to be independent of z.
Therefore, solution or Eqs (21) and (22) lead us to the normal-
ized amplitudes for the phase-mismatch SH inside the plasma

and vacuum as

a2x(z) =
a2x(0) cos χ3

χ1
z

( )
− a2z(0) sin χ3

χ1
z

( )
+ α q1 cos

χ3
χ1

z

( )([

+q2 sin
χ3
χ1

z

( )
− q1e(χ2+iχ1Δk/(χ1)z)

)]
e(−(χ2/χ1)z), z> 0,

A2r, z< 0,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(23)

and

a2z(z) =
a2z(0) cos χ3

χ1
z

( )
+ a2x(0) sin χ3

χ1
z

( )
+ α q1 sin

χ3
χ1

z

( )([

−q2 cos
χ3
χ1

z

( )
+ q2e(χ2+iχ1Δk/(χ1)z)

)]
e(−(χ2/χ1)z), z> 0,

A′
2r, z< 0,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(24)

where

q1 = χ3χ5 − χ2χ4 − iχ1χ4Δk,

q2 = χ3χ4 + χ2χ5 + iχ1χ5Δk,

α = 1
χ1Δk(2iχ2 − χ1Δk)

,

Here A2r and A′
2r are reflected SH amplitudes in x and z direc-

tions and a2x(0) and a2z(0) refer to the amplitudes of SH wave
components at z= 0. Using∇.a2 = 0 in the vacuum, we find
A′
2r = (k0x/k0z)A2r. Themagnetic field amplitude of the SH ra-

diation derived as

B2y(z) =

mc2

2ie
ik2za2x(z) + 2ik1xa2z(z) + e−(χ2/χ1)z(−φ(z)a2x(0)
[

+f(z)a2z(0) − α[q1(φ(z) + iΔke(χ2+iχ1Δk/(χ1)z))
+q2f(z)])

]
, z> 0,

− mcω0

e cos θ
A2r, z< 0,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(25)

where

φ(z) = χ2
χ1

cos
χ3
χ1

z

( )
+ χ3

χ1
sin

χ3
χ1

z

( )
,

f(z) = χ2
χ1

sin
χ3
χ1

z

( )
− χ3

χ1
cos

χ3
χ1

z

( )
.

In order to obtain the amplitudes a2x(0), a2z(0), and A2r,
we apply the proper boundary conditions for electric and
magnetic fields E2x and B2y and displacement vector εE2z at
z= 0. We get

A2r = −a2x(0), (26)
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2iω0

c cos(θ)A2r + χ2
χ1

− ik2z

[ ]
a2x(0) + χ3

χ1
− 2ik1x

[ ]
a2z(0)

= α q2
χ3
χ1

− q1
χ2 + iχ1Δk

χ1

( )[ ]
.

(27)

Integrating the Poisson equation ∇.eE = −en1, we will get
the following relation

k0x
k0z

A2r − e2a2z(0) = − iωcω2
pk

2
2c

32πk1xω2
0(4ω2

0 − ω2
c)
a2(0). (28)

The right-hand side of Eq. (28) is very small for underdense
plasma (ω2

p/ω
2
0≪1), and we can neglect from this term.

Therefore, we obtain from the set of Eqs (26–28) the SH
waves amplitudes at plasma surface as

a2x(0) = −A2r

= α[q2(χ3/χ1) − q1(χ2 + iχ1Δk/χ1)]
χ2/χ1 − ik2z − 2iω0/c cos(θ) − tan(θ)/ε2(χ3/χ1 − 2ik1x) ,

(29)

and

a2z(0) = α tan(θ)/e2[q1(χ2 + iχ1Δk/χ1) − q2(χ3/χ1)]
χ2/χ1 − ik2z − 2iω0/c cos(θ) − tan(θ)/e2(χ3/χ1 − 2ik1x) .

(30)

The well-known SH conversion efficiency (η) is given by

η = μ2
μ1

|a2|2
|a1|2

, (31)

where μ1 =
���
e1

√
and μ2 =

���
e2

√
are the refractive indexes

corresponding to the fundamental and SH radiations,
respectively.

3.1 Normal incidence

It is straightforward to show that for normal incidence of
laser pulse, the coefficients χ2, χ3, and χ5 do not appear in dif-
ferential Eqs (21) and (22). Furthermore, just the x compo-
nent of SH wave and y component of wavevector exist.
Therefore, coupled Eqs (21) and (22) reduce to an differential
equation for laser field amplitude in x direction as bellow

χ1
∂a2(z)
∂z

= χ′4e
iΔk.z, (32)

where the coefficient χ4 is changed to

χ′4 =
6k1ωcω2

0ω
2
pa

2
1(ω2

0 + ω2
c)

c(ω2
c − ω2

0)2(ω2
c − 4ω2

0)
.

The detailed derivation of Eq. (32) is shown in Appendix.
We obtain the transmitted SH radiation amplitude by solution

of Eq. (32) at normal incidence as bellow

a2(z) = a2(0) − iχ′4
k2Δk

eiΔkz/2 sin
Δk.z

2

( )
. (33)

Following Eqs (23), (25)–(27), for normal incidence, a2(0)
can be derived as bellow

a2(0) = cχ′4
2k2(2ω0 + k2c) . (34)

Above equations show that the amplitude of SH radiation is
different from previous report by Jha et al. (2007). This dif-
ference is due to the reflection of SH radiation from vac-
uum–plasma interface, and changes by plasma density,
strength of magnetic field, and laser intensity. Furthermore,
the reflected SH radiation amplitude at normal incidence is
given by

a′2 = − cχ′4
2k2(2ω0 + k2c) . (35)

Therefore, we obtain conversion efficiencies of the SH in
both sides of plasma boundary as

η(z> 0) = cχ
′2
4

2ωk2a20

sin2(Δk.z/2)
Δk2

+ cχ′4a2(0)
ωΔka20

sin2
Δk.z

2

( )

+
���
e2

√
a22(0)
a20

, (36)

η(z< 0) = 9k21ω
2
cω

4
0ω

4
pa

4
1(ω2

0 + ω2
c)2

k22a
2
0(ω2

c − 4ω2
0)2(2ω0 + k2c)2(ω2

c − ω2
0)4

. (37)

It is obvious from Eq. (36), the first term is in complete
agreement with Jha et al. (2007), and the second and third
terms are obtained by taking into account the reflected SH
components contribution.

3.2 Non-magnetized plasma

It is clear that in the absence of the magnetic field the coeffi-
cients of χ2 and χ3 are zero and the other coefficients change to

χ1 = 2ik2z,

χ′′4 = − ie1k1xa21ω
2
p

ω0c
,

χ′′5 =
ie1k1za21ω

2
p

ω0c
.

In this case, the dispersion relations of fundamental and SH
waves are expressed by Eqs (19) and (20) with ωc= 0. After
applying these changes in Eqs (23–30), the transmitted and
reflected SH radiation amplitude are written as
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a2(z) = Aei(Δk.z) sin2
Δk.z

2

( )
+ iBeiΔk.z/2 sin

Δk.z

2

( )
− C

[ ]1/2
,

(38)

and

a′2 =
iω2

pa
2
1e1e2k1x

4ω2
0k2zD

, (39)

where

A = ω4
pa

4
1e

3
1

k22zΔk
2c4

,

B = −ω4
pa

4
1e

2
1k

2
1x(e2k0z + k1z)

2ω4
0k

2
2zΔkD

,

C = ω4
pa

4
1e

2
1k

2
1xc

2(e22k20z + k21x)
16ω6

0k
2
2zD

2
,

D = k21xc
2

ω2
0

− e2 1+ k0zk2zc2

2ω2
0

( )
.

We get the conversion efficiencies of the SH inside the
plasma as well as vacuum as bellow:

η(z> 0) = e2

a40
(A(A+ 2B) sin4 Δk.z

2

( )
+ (B(B+ 2C)

[

−2AC cos(Δk.z)) sin2 Δk.z

2

( )
+ C2)

]1/2
,

(40)

η(z< 0)

= ω4
pa

2
0e

4
1e

2
2 cos

4 θ sin2 θ(sin2 θ − e2(1+ cos θ
������������
e2 − sin2 θ

√
))−2

4ω4(e2 − sin2 θ)(e1 cos θ+
������������
e1 − sin2 θ

√
)4

.

(41)

It is obvious from Eq. (38), for B= C= 0, the SH efficiency
is in complete agreement with Jha and Agrawal (2014).

It should be noted that, Eq. (40) is obtained by taking into
account the reflected SH components contribution. Conse-
quently, the introduced SH conversion efficiency by Eq.
(40) is different with previous report in which the reflected
SH contribution was missed (Jha & Agrawal, 2014). The
order of deviation will be discussed in the next section.

4. NUMERICAL RESULTS

In this section, we would like to determine the conversion of
a fraction of a laser beam to its phase-mismatch SH. To do
this, we consider the pump laser a Nd:Yag with intensity
I0≤ 1017 W/cm2 (a0≤ 0.3) and frequency ω0= 1.88 ×
1015 rad/s and or wavelength λ= 1 μm.
Figure 2 depicted variation of conversion efficiency (η%)

with respect to the normalized propagation distance z/λ.
Figure 2 shows that the conversion efficiency is periodic in
z for a given value of Δk, so we have the points with maxi-
mum and minimum electric field amplitudes for the SH radi-
ation. The maximum power efficiency (ηmax) takes place in
the coherence length zc= π/Δk. In Figure 2a, 2b, the red
dashed and black dotted lines are plotted based on the previ-
ous report (Jha & Agrawal, 2014) and Eq. (40), in the ab-
sence of magnetic field, respectively. It seems from the
figure that for incidence angle near the critical, the deviation

Fig. 2. Variation of transmitted second-harmonic conversion efficiency (η%) as a function of normalized propagation distance z/λ for
different values of incidence angle (a) θ= 20 and (b) θ= 80 (θ≈ θc). The previous report (Jha & Agrawal, 2014) (dotted line) is compared
with our result in the absence of the magnetic field (dashed line), respectively. The other parameters are a0= 0.1, ωp/ω0= 0.1.

Fig. 3. Variation of Δηmax as a function of incident angle θ. The parameters
are chosen as a0= 0.1, ωp/ω0= 0.1, and ωc/ω0= 0.
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increases; however, for angle far from the critical (Fig. 2a),
our result is in complete agreement with previous report.
In Figure 3, we plotted the relative difference of themaximum

efficiency (Δηmax = |η′max − ηmax|/�ηmax),whereη′max andηmax
refer to the maximum efficiencies reported based on Jha and
Agrawal (2014) and Eq. (40) also �ηmax = (η′max + ηmax)/2,
as a function of incidence angle. We found from the figure
that the deviation reaches to the maximum around 10%,

near to the critical angle. The results show that deviation
depends strongly to the laser field intensity and plasma
density, too. For example, for a0= 0.3 and plasma density
near ωp/ω0= 0.5, deviation can be increased up to the 36%,
which is considerably large.

Figure 4 reveals the influence of self-generated transverse
magnetic field on the SH power. The figure indicates SH var-
iation in terms of the normalized propagation distance z/λ.
The dashed and solid lines are plotted for a non-magnetized
and a magnetized plasma, respectively. It is understood that
the maximum conversion efficiency is decreased by magnet-
ic field. Taking into account this fact that such strong mag-
netic fields can be generated in laser plasma interaction,
therefore, we expect that in a real physical system, the SH
power becomes less than the power reported for a non-
magnetized plasma (Jha & Agrawal, 2014).

We compare SH conversion efficiency for normally and
obliquely incident of a laser pulse on vacuum–plasma inter-
face in Figure 5, in terms of the self-generated magnetic field
strength ωc/ω0. Figure 5a is in complete agreement with pre-
vious report (Jha et al., 2007). It seems that the magnetic
field intensifies the SH power for normal incidence of a
laser pulse, while SH power is weakened by magnetic field
for obliquely incident. Moreover, Figure 5 clearly shows
that the order of SH power is ten times greater for obliquely

Fig. 4. Variation of transmitted second-harmonic conversion efficiency
(η%) as a function of normalized propagation distance z/λ. The dashed and
solid lines are plotted for non-magnetized and magnetized ωc/ω0= 0.2
(B0= 22MG) plasmas, respectively. The other parameters are ωp/ω0= 0.1
and θ= 20.

Fig. 5. Variation of maximum conversion efficiency (ηmax%) as a function of magnetic field strength ωc/ω0 for a0= 0.3, ωp/ω0= 0.1, (a)
for normal incidence, and (b) for oblique incidence θ= 20.

Fig. 6. Variations of (a) transmitted maximum conversion efficiency (ηmax%) and (b) reflected conversion efficiency (η%), as a function
of incidence angle for a0= 0.1, ωp/ω0= 0.1 and different values of magnetic field strength. The dashed and solid lines are plotted for
B0= 0 and 22 MG, respectively.
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incident. Figure 5a demonstrates that the magnetic field is es-
sentially required for SH generation in normal incidence of a
laser pulse on plasma surface (Jha et al., 2007).
Figure 6 shows variations of transmitted maximum conver-

sion efficiency (ηmax%) and reflected conversion efficiency
(η%) in terms of incident angle varying from θ≈ 0° up to crit-
ical angle for different values of ωc/ω0. The solid and dashed
lines are plotted for a magnetized and non-magnetized plas-
mas. Figure 6a shows that the SH power is smaller in a mag-
netized plasma. As the figures show that the efficiency of
SH radiation increases very smoothly with incidence angle,
however, it drastically increases near the critical angle.
Figure 6b indicates that the influence of magnetic field, on
the reflected SH power, is very poor and just near the critical
angle a minor decrement (≈1%) is observable.
In Figure 7, we plotted variations of transmitted maximum

conversion efficiency (ηmax%) and reflected conversion effi-
ciency (η%) as a function of plasma density ωp/ω0 for differ-
ent values of incident angle. This figure predicts that for a
given angle of incidence θ and magnetic field strength, the
SH power sharply increases for both transmitted and reflected
components when the plasma density satisfies the required
condition θ≈ θc. For example, for given parameters in
Figure 7, the condition θ≈ θc is satisfied for angles θ= 83°

and θ= 77° in plasma densities ωp/ω0≈ 0.1 and ωp/ω0≈
0.2, respectively. We find from the Figures 6 and 7, the
transmitted SH power is more than twice with respect to the
reflected component; however, reflected component is more
appropriate for technical and experimental applications.

5. SUMMERY AND CONCLUSION

In conclusion, we investigated the possibility of SH genera-
tion in the interaction of an obliquely p-polarized laser
pulse on a vacuum-magnetized plasma interface. In view of
this fact that strong megagauss magnetic fields can be gener-
ated in a laser plasma interaction, we modeled the self-
generated magnetic field as a transverse magnetic field. We
focused our attention to transmitted as well as reflected SH
components. We shown that if the transmitted and reflected

SH are considered as a simultaneous process, the results de-
viated from previous reports, especially near the critical angle
(Jha et al., 2007; Jha & Agrawal, 2014). The deviation can be
increased by laser intensity and plasma density. Our analysis
revealed a sharp increase for both transmitted and reflected
SH components near the critical angle. We have demonstrat-
ed that transverse magnetic field had destructive role and the
SH power decreased slightly with magnetic field strength en-
hancement. The analytical investigations show that the trans-
mitted and reflected SH amplitudes are proportional to laser
intensity (I ∝ a21), which as expected. If we kept the angel of
incident and magnetic field strength constant and changed
the plasma density, we found that the SH power for both
transmitted and reflected components sharply intensified
when the angle of incidence satisfied the required condition
θ≈ θc. In view of this fact that the critical angle reduced by
increasing plasma density, for a large incident angle the max-
imum power is generated at smaller plasma density. A com-
parison between transmitted and reflected SH revealed that
the conversion efficiency is more than twice for transmitted
component; however, the reflected component is more
proper for technical and experimental applications.
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APPENDIX A. DERIVATION OF SECOND
HARMONIC RADIATION
AMPLITUDE AT NORMAL
INCIDENCE

A p-polarized laser beam incidents on the interface normally
as follow

E0 = x̂
1
2
E0 exp[i(k0z− ω0t)] + c.c. (A.1)

The electric and magnetic fields of the transmitted laser can
be written as

E1 = x̂
1
2
E1 exp[i(k1z− ω0t)] + c.c., (A.2)

B1 = ck1 × E1/ω0, (A.3)

where E1 = 2E0/1+ ���
e1

√
is the amplitude of the fundamen-

tal electric field transmitted into the plasma. The SH electric
field can be written as

E2 = x̂
1
2
E2 exp[i(k2z− 2ω0t)] + c.c., (A.4)

Using Eq. (6), the first order of velocity components in the x
and z directions are, respectively, given by

v1x = iω2
0c

ω2
c − ω2

0

a1e
i(k1z−ω0 t) + 2iω2

0c

ω2
c − 4ω2

0

a2e
i(k2z−2ω0t) + c.c., (A.5)

v1z = ω0ωcc

ω2
c − ω2

0

a1e
i(k1z−ω0t) + ω0ωcc

ω2
c − 4ω2

0

a2e
i(k2z−2ω0 t) + c.c. (A.6)

By following the same steps, the expression for the second-
order transverse velocity are given by

v2x = − iωck1a21ω
2
0c

2(4ω2
c − ω2

0)
(ω2

c − ω2
0)2(ω2

c − 4ω2
0)

e2i(k1z−ω0t) + c.c. (A.7)

By using Eq. (7), the first-order plasma electron density is
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given as follows

n1 = n0a1ωck1c

(ω2
c − ω2

0)
ei(k1z−ω0 t) + n0a2ωck2c

2(ω2
c − 4ω2

0)
ei(k2z−2ω0 t) + c.c. (A.8)

The transverse current density can be derived by using
electron density and velocity as follows

Jx = − in0eω2
0c

ω2
c − ω2

0

a1e
i(k1z−ω0 t) − 2in0ecω2

0

ω2
c − 4ω2

0

a2e
i(k2z−2ω0t)

+ 3in0eωck1c2ω2
0a

2
1(ω2

0 + ω2
c)

(ω2
c − ω2

0)2(ω2
c − 4ω2

0)
e2i(kzz−ω0 t) + c.c.

(A.9)

By substituting the current density into the wave Eq. (5), we
obtain the following expressions

k21c
2 = ω2

0 −
ω2
0ω

2
p

ω2
0 − ω2

c

, (A.10)

and

k22c
2 = 4ω2

0 −
4ω2

0ω
2
p

4ω2
0 − ω2

c

. (A.11)

In order to determine the amplitude of SH field, Eq. (A.9)
can be used in Eq. (5). We arrive

∂2a2(z)
∂z2

+ χ1
∂a2(z)
∂z

= χ′4e
iΔk.z, (A.12)

where Δk= 2k1− k2. Using SVEA approximation in above
equation, we found

χ1
∂a2(z)
∂z

= χ
′
4e

iΔk.z. (A.13)
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