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The rate of onset (hazard) of tearing modes is modelled probabilistically using statistical
learning algorithms. Axisymmetric energy-density equilibrium fields are taken as raw
high-dimensional input features which are reduced with principal component analysis.
Signal processing of non-axisymmetric magnetics fluctuation array data provides the
target information from which to learn. Model selection, visualization and calibration
assessment procedures are detailed. The analysis is deployed at large scale across
the DIII-D tokamak database. Standard model selection criteria suggest that the
energy-density post-processed feature is a better choice for modelling the onset rate
compared to the non-processed equilibrium reconstruction solution. Two example
applications of the learned rate function are demonstrated: (i) proximity-to-onset discharge
monitoring and (ii) database analysis showing an (expected) observational global trend
that the general hazard increases as a plasma performance metric increases. An important
connection between the hazard function and its use as a conditional probability generator
is reviewed in the Appendix.
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1. Introduction

Tearing modes (TMs) in tokamak plasmas (Wesson 2011) are notoriously difficult to
characterize in terms of experimentally resolved features of tokamak equilibria (Bishop
et al. 1991). This is unfortunate since TMs either initiate, or are a symptom of,
chains of events leading to plasma disruptions, which need to be avoided in future
reactor grade devices (de Vries et al. 2011). There is a vast literature on TM stability
physics. Practical stability calculations with quantitative predictive capacity have not
yet been demonstrated for arbitrary tokamak plasmas. Part of the reason for this is the
assortment of TM onset mechanisms involved. The most fundamental ones are classical
instabilities which may come in current-driven or pressure-driven varieties. The other
main type is considered classically stable but which can be triggered by other nonlinearly
evolving magnetohydrodynamic modes, perturbing sensitive aspects of the equilibrium
configuration, leading to TM onset. Triggering mechanisms include edge localized modes
and sawtooth oscillations (Wesson 2011). A third type of TM onset is radiation imbalances
due to impurity accumulations (Gates & Delgado-Aparicio 2012). Even though the basic
physics of these paths leading to TM onsets are established, the observed behaviour of
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a given real experimental plasma is likely to have an irreducible stochastic component.
One reason for this is insufficient internal diagnostic resolution and measurement noise.
Another reason is that near marginal stability, unpredictable plasma turbulence and
thermal-fluctuation may effectively randomize the outcome. This suggests that there is
value in approaching the TM onset problem using probabilistic modelling and machine
learning to estimate the statistical regularities (Lawless 2002). Precise characterization of
the rate of TM onset at given parts of physical feature space can provide useful information
which otherwise would be difficult to obtain. Machine learning TM onset models can also
be used as interpolation vehicles across the available database allowing completely new
ways of searching and sorting plasma discharges. The topic of this paper is the initial
development of capable database-wide association toolsets and techniques that are focused
on quantifying and extracting information about the conditions for TM onset in the DIII-D
tokamak.

The specific contributions of this work are: (i) automation of the labelling of TM onset
events across a large subset of the DIII-D tokamak (Luxon 2002) database; (ii) principal
component analysis of physics-motivated high-dimensional axisymmetric equilibrium
features; (iii) the extension of TM onset hazard modelling to include both rotating mode
onsets and locked mode onsets; and (iv) the first example demonstration of time-series
TM hazard monitoring. All database-wide computations in this study use special fast-disk
DIII-D database clone and parallel programming techniques (Moritz et al. 2017; Sammuli
et al. 2018). The onset hazard modelling approach to TMs in tokamaks was introduced by
Olofsson, Humphreys & La Haye (2018). Prior work to extend the scale of the hazard
modelling (Olofsson, Sammuli & Humphreys 2019) was limited in that the labelling
only included rotating TM onsets. The hazard modelling approach differs significantly
from what is typically done for disruption prediction, which is a machine learning
augmented research topic with a large body of literature (Pau et al. 2019; Rea et al.
2020; Bandyopadhyay et al. 2021). Instead of attempting to model the probability of
some future event, the hazard modelling attempts to produce a function that gives the
instantaneous event onset intensity. In principle, such a function is a fundamental generator
of the future event probabilities. Some of these ideas have been applied in disruption
prediction research (Tinguely et al. 2019). The DIII-D tokamak has a strong track-record
of research on TM stability (La Haye et al. 2000; Buttery et al. 2008; Turco & Luce 2010;
Turco et al. 2018; La Haye et al. 2022) and its database has unusually many examples
from which to learn statistically. An important caveat with the underlying database is
that magnetics-only equilibrium reconstructions need to be used to get excellent database
coverage. This limits the resolution of internal details of the axisymmetric equilibrium
features.

This report is organized as follows. Section 2 describes the non-axisymmetric magnetics
diagnostics analysis schemes that are required to define a statistical learning problem.
The output from these analysis tools is arguably the central deliverable in this work, as
the information in the target variables and the implied analysis time windows drives the
rest of the computation. Section 3 describes database-wide efficient single-pass principal
component analysis and the pair of physics-motivated axisymmetric field features used for
the statistical learning to follow is presented in § 4. Section 5 demonstrates two example
applications of the fitted hazard function. The report is concluded with a discussion in § 6,
which lists limitations and future improvements.

2. Magnetics analysis and labelling

This section provides an overview of the two types of magnetics analyses that are used
to detect the onset of either rotating n = 1 modes (RM) or locked n = 1 modes (LM).
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The magnetics diagnostic instrumentation for the DIII-D tokamak is outlined in Strait
(2006). The RM detector is based on coherent fluctuation analysis with windowed fast
Fourier transforms (FFTs). The fundamentals of the RM detector method is summarized
in Strait (2006) and references therein. The LM detector is based on a novel two-axis
internal-external decomposition (Sweeney & Strait 2019). Figure 1 shows examples of
both RM and LM onset detection (in the same shot). Figure 3 shows a Markov chain
illustrating how the onset detectors should be combined to model a total hazard function.
This is described in more detail in § 2.4.

2.1. Rotating mode (RM) detection
The RM onset detector uses fast-sampled (mostly 200.0 kHz) non-integrated (measuring
band-limited dB/dt) magnetic probe array data. Rotating n = 1 mode signatures in DIII-D
are typically at ∼10 kHz and below. In the analysis used in this work, ten midplane
magnetic probes are employed, of which nine are located on the outboard side, and one is
located on the inboard side. The inboard probe is important in that it allows distinguishing
between sawtooth oscillations, which are also n = 1, and TMs. The outboard probes are
approximately distributed evenly along the outboard perimeter.

The signal processing algorithm is based on finding coherent fluctuation frequencies
associated with a specified spatial wavelength, matching that of a n = 1 mode. The
analysis is implemented as a filter that maintains a running estimate of the short-time
power spectrum of each probe signal and the cross-spectra of pairs of probe signals.
The FFTs are fed data pre-processed with mean removal and Hamming windowing.
The algorithm uses cross-spectra between a probe and its neighbour (the next toroidal
coordinate). An additional cross-spectrum is needed for the inboard probe and its
nearest outboard neighbour (at approximately the same toroidal coordinate). The resulting
information is used to compute array-averaged coherences (robustified by removing
smallest amplitude and highest amplitude probes). The magnitude and phase of the
coherence is used to extract information about the rotating modes. Specifically, the phase
of the coherence spectra can be divided by the real-space toroidal angle separation to
estimate the RM n-number, which must be sufficiently close to 1 (assuming that the
magnitude of the coherence is sufficiently high). In the case where coherent fluctuations
are isolated, the amplitude of the corresponding RM can be estimated by a weighted sum
across the power spectrum bins (only counting the isolated frequency assumed to be due
to n = 1). The coherent fluctuation amplitude is apportioned to either the odd or even
trace (‘odd’ and ‘even’ refer to the spatial m number) based on the complex phase of the
cross-spectrum for the special inboard–outboard probe pair.

An example application of the RM code is displayed in figure 1(a) (blue and green
traces). It is seen that the estimated amplitude level for the RM (due to the above algorithm,
which only sees non-integrated dB/dt) is consistent with the initial locked mode amplitude
level (which is inferred using a very different algorithm, using integrated magnetic field
measurements ∼B, at a much lower sample rate). Generally, as the RM speed of rotation
decreases, this method works less well. Sub-kHz signals are difficult to analyse with this
technique. In figure 1(a), it is seen that the volatility of the amplitude estimate appears to
increase shortly before the RM signal dies off completely (just before locking). Figure 1(b)
shows a different case that exemplifies how the ‘odd’ trace consistently captures the
sawtooth oscillations, while the ‘even’ trace captures a rotating mode that grows rapidly.
Eventually, this RM signal dies off and the TM locks also in this discharge around
t = 3.91 s (not shown).
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FIGURE 1. Example application of the RM (even/odd refers to poloidal mode number m) and
LM event detector codes to magnetic signals. (a) DIII-D shot which exhibits an n = 1 mode that
grows while rotating, then eventually locks. The RM detector catches the mode around t = 2.73 s,
and the LM detector catches it around t = 3.55 s. The LM amplitude signal shoots up just as the
RM amplitude signal disappears (mode locking). The respective detection levels are shown as
dotted horizontal lines. The event detections are shown as dashed vertical lines. The RM odd
trace and the LM external trace are intentionally ignored by the detectors. In a shot, the RM odd
trace (green) presumably shows a sawtooth crash just before the growth of the RM even signature
(blue). (b) More sustained ‘odd’ trace sawtooth activity and a rapidly growing mode emerging
on the ‘even’ trace (later LM signal not shown). The same reference levels as in panel (a) are
shown by the horizontal dashed lines.
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2.2. Locked-mode (LM) detection
The LM onset detector is using two types of magnetic diagnostics: (i) saddle loops
measuring radial magnetic field averages; and (ii) probes measuring tangential magnetic
fields. Both (i) and (ii) are integrated by analogue electronics before digitization. A total
of eight radial measurement signals and ten tangential measurement signals are used.
Each signal originates from a pair-difference of two actual physical probes (Strait 2006).
Optionally, a set of 18 active coil current measurements (associated with driven saddle
coils) can be used to ‘compensate’ the 18 distinct measured signals. Typical sample
frequencies for the 18 LM detection signals are 20.0 and 50.0 kHz. In contrast to the
RM analysis, the LM analysis is sensitive to drifts and offsets in the signals. A practical
method to handle these slowly changing offsets is to use a ‘dynamic rebaselining’ scheme
(Strait, Munaretto & Sweeney 2019). In this analysis, a one-pole filter with time constant
τb is used to maintain a running average level for each magnetic measurement included.
The dynamic baseline level is defined as the running average, delayed by a time τd. The
rebaselined signal is then defined by subtracting the dynamic baseline (filtered, delayed)
from the original magnetic measurement. The effect of this scheme is that abrupt transients
are preserved, while slowly drifting offsets (of any kind) are suppressed. Here, the values
τb = 100 ms and τd = 100 ms were employed. If ‘compensated’ signals are used, then the
original measurement is redefined by subtracting the known instantaneous coupling from
active coils to each sensor. If the active coils carry DC-only currents, this may improve the
analysis.

The rebaselined signals are then interpreted using an ordinary least-squares estimation
procedure. Based on the known geometry of the sensor array, a matrix K can be defined
that links a set of sine, cosine modes to the measurements. The estimation matrix M is
defined by the standard normal equations M = (KTK)−1KT. In this work, only the rows
of M that are associated with the n = 1 internal and external sine and cosine components
are used (the matrix also contains n = 2, n = 3). In case some measurements are missing
from a shot, the estimation matrix is regenerated by deleting the corresponding rows of K
(the full K has 18 rows and 12 = 3× 4 columns). Cosine cn=1 and sine sn=1 coefficients
for the estimated n = 1 fields (internal and external, respectively) are combined with mode
amplitude estimates in the usual sense Ân=1 =

√
c2

n=1 + s2
n=1.

An example application of the LM code is displayed in figure 1(a) (red and cyan traces).
The abrupt LM event for the internal amplitude signal (red) is clear and follows just after
the RM trace (blue) vanishes. Notice that after a time τd has passed since the LM event,
the event itself starts to creep into the rebaselining scheme. So the drop in amplitude
of the red trace from its peak is likely an artefact of the dynamic rebaselining, and this
scheme should not be used for detailed analysis of the mode post-locking (which does not
apply to the present analysis). This scheme is only used to detect the LM event transient
itself (but the rebaselining could be freezed when an event is detected) in the presence of
various drifts and offset levels (and it can be incorporated in real-time in plasma control
systems for mode-locking detection). Notice how the noise-levels for the LM traces are
approximately the same in amplitude as the typical ‘odd’ trace signals from the RM code
in figure 1(a,b), but well below its threshold value, here set to 15.0 G.

2.3. Threshold-count curves for RM and LM detectors
Figure 2 shows the number of detected events as a function of the event threshold
amplitude level. There are a total number of six different amplitude traces generated by
the RM and LM codes. The RM code produces n = 1 ‘even’ and ‘odd’ traces. The LM
code produces the n = 1 ‘internal’ and ‘external’ traces. The LM code can be run either
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FIGURE 2. Number of events caught across the database for the four different branches of n = 1
amplitude traces. The RM analysis code provides ‘even’ and ‘odd’ traces, of which the odd trace
mainly captures sawtooth activity at low amplitude, which is ignored. The LM code produces
‘internal’ and ‘external’ amplitude traces. Both these traces are computed in two different ways:
uncompensated and DC compensated (meaning that active coil currents were explicitly fetched
and known couplings were subtracted).

with or without DC compensation. The RM ‘odd’ trace gets tripped on small amplitude
activity mostly associated with sawtooth fluctuations. These typically are found at or close
to the rotational frequency of the n = 1 TMs, and separating these from the RM even trace
significantly improves the RM detector specificity.

In this work, the RM detector threshold is at 4.0 G (even trace only, odd trace ignored)
and the LM detector threshold is set at 15.0 G. These values are selected based on both (i)
examples such as figure 1 and (ii) the global statistics shown in figure 2. The RM detector
level appears to be mostly free of sawtooth influence but still not so high as to ignore
many potentially low-amplitude RMs. If the RM threshold is too high, the event time can
also move far away from the actual onset time. The LM detector level chosen appears
to be high enough to avoid potential influence from transients that show up on both the
internal and external traces. Such transients are likely not due to an actual LM of interest,
which should be found only on the internal trace. Additionally, the difference between the
DC-compensated and uncompensated event detection statistics start to become very small
at the selected threshold and above, suggesting that the effect of active coil transients is
not a concern at that level.

At the selected thresholds, the RM and LM detections are compared in detail by
checking the joint results for the same plasma discharges. The number of shots where
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both detectors ran, in this study, is 18 026 (subset of shots in the DIII-D database range
#155 001–#187 977). In 12 226 of these doubly analysed shots, there was no event found
by any of the detectors. In 2506 of the shots, only the RM event was detected. In 1389 of
the shots, only the LM event was detected. In 1905 of the shots, both the RM and the LM
detectors triggered, but in 1707 (of the 1905), the RM event preceded the LM event in the
same shot. These results are consistent with the expectation in that (i) many times RMs
never lock (lots of torque injected into the plasma, or RM too small), (ii) LMs can develop
with no prior RM (born locked), or its RM is very short-lived, rotates slowly or both,
and therefore is not detected, and (iii) the common sequence of events is otherwise that
an RM appears, grows, locks, then its LM signature is detected (Fitzpatrick 1993). Both
example events in figure 1 are of this common type. In some cases, a mode could be born
locked and then spun up and subsequently be detected as an RM (i.e. LM preceeding RM).
Alternatively, there could be detection errors. Whatever the reason, the event that comes
first will be used to define the TM onset, as explained in § 2.4. Notice that the total number
of shots with both RM/LM detector data runs and the availability of suitable equilibrium
reconstructions (next section) is somewhat smaller (17 178 in this study).

2.4. Preparing a jointly labelled dataset (RM and LM)
Figure 3 shows a representation of the probabilistic model relevant for the present work.
The dataset to be prepared should reside in the pre-event flat-top state. Any RM or
LM event, whichever comes first, terminates this pre-event flat-top state. The respective
probabilities of events of type RM, LM are h1/(h1 + h2), and h2/(h1 + h2) (assuming these
values were known). The hazard modelling in this work attempts to estimate a function for
the total hazard h = h1 + h2, which defines the jump-intensity out of the pre-event flat-top
plasma state. For the plasma example shown in figure 1(a), the relevant data preparation
then becomes that of cutting away all data after the RM onset is detected (and not using
the LM detection result). The data from this shot will be included up to time t = 2.73 s,
and only its final time slice will be marked as being an ‘onset event’. For any shot where
neither an RM nor LM onset is detected, its data will be included for the full flat-top, and
all time-slices are non-events/normal. Although RM and LM events are distinct from the
perspective of the detector, this construction of the total hazard combines both types of
detections into a single event rate. This is done purposefully as the RM and LM are seen
as manifestations of a single underlying TM event.

After the data have been prepared as outlined above, each pre-event flat-top time-slice
will have a feature vector (covariate vector) x(t) associated with it. The data are
now used to define a specific statistical estimation problem (or machine learning
problem): approximate a function h(x) that maps the covariate x(t) to the most probable
instantaneous hazard rate. The function is not given access to the value of the time t, only
the present value x of the covariate vector, which is supposed to contain information about
the relevant physical state. The feature generation is detailed in § 3, whereas the statistical
modelling is detailed in § 4. The learning problem is mapped to the standard binomial
likelihood by noting that the survival probability across a small time-step Δ > 0 can be
defined as exp(−h(x)Δ) (Olofsson et al. 2018). Consequences of this small-step property
are further explored in Appendix B.

3. Feature processing and dimensionality reduction

This section details a practical principal component analysis (PCA) of a pair of
field features related to the distribution of magnetostatic self-energy associated with
the axisymmetric equilibrium. The underlying data are derived from the standard
magnetics-only equilibrium reconstruction for the DIII-D database (Lao et al. 1985).
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FIGURE 3. Continuous-time Markov model with two absorbing states: RM and LM. The
respective jump rates from the pre-event flat-top state are h1 and h2. The hazard function in
this work directly models the sum of these jump rates: h = h1 + h2. With the sum-total h as the
learning objective, the data from each shot should be prepared up to the occurrence of either
the RM or LM event, whichever comes first, or in the case of no event, cut off at the end of the
discharge flat-top.

It is generally accepted that this does not meaningfully resolve the internal current
density distribution. However, the general plasma shape is well characterized, as are basic
descriptors, such as the normalized pressure and global inductances. Further comments
about this are found in § 6.

Notice that the PCA dimensionality reduction algorithm is used in a standard
unsupervised way, i.e. there is no reference to the onset event information in this feature
processing step. The PCA achieves a sorting of the feature data according to variance along
principal vectors (this sorting may or may not be associated with signal versus noise). The
combination of the unsupervised PCA with model fitting and selection is the topic of § 4.

3.1. Scaleable computation of feature basis vectors
The calculation of the database-wide PCA basis for a feature is arranged as follows.
Let x be a vectorized instance of the feature of interest (the values on the grid of some
EFIT-derived quantity taken as a column vector). All available worker processes are given
a batch of shots. The batches are created by shuffling the available shots randomly and
partitioning the shuffled list into disjoint sets of approximately equal size. The shuffling
makes the time required to process each batch the same on average (each shot has a
variable number of time slices associated with it). As each worker finishes a batch, it
receives a yet unprocessed batch, until all batches have been processed. For each finished
batch b, the worker returns three objects back to the calling process: (i) the number of time
slices nb that was used for all shots in the batch; (ii) the mean feature 〈x〉b; and (iii) the
mean outer product 〈xxT〉b. The calling process maintains the total statistical information
(n, 〈x〉, 〈xxT〉) by assimilating the incoming results (in any random order) using the update
program

(n, 〈x〉, 〈xxT〉)← (n+ nb, α〈x〉 + β〈x〉b, α〈xxT〉 + β〈xxT〉b), (3.1)

where α = n/(n+ nb) and β = nb/(n+ nb), and← denoting assignment. Notice that the
individual features x are calculated by the workers on-the-fly and not returned or stored
(due to memory constraints).

When the parallel aggregation is done, a symmetric eigenvalue decomposition (EVD)
is computed for the (centred) matrix

VΛVT = 〈xxT〉 − 〈x〉〈x〉T (3.2)
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and the first few columns of the orthonormal V are used as the basis set for the feature of
interest, assuming the EVD has been sorted so that Λ has decreasing diagonal elements
λi+1 < λi. This PCA basis calculation only requires one single pass over the database.

Denote the first k columns of V by Vk. The reduced representation of a feature x is then
computed as

z = VT
k (x− 〈x〉) , (3.3)

where z is a k-dimensional vector of coefficients that specify the offset from the mean
feature, along the dominant principal axes of the covariance matrix. Computation of
(3.3) requires a second pass over the database, since each specific feature x need to
be recalculated and Vk is unknown in the first pass. The reduced vector can be used to
approximate the full feature again as

xrec = 〈x〉 + Vkz, (3.4)

where the reconstruction error ‖xrec − x‖2
2 is bounded by the sum of the trailing

eigenvalues
∑

i=k+1 λi (in a statistical sense). Denote the full sum Γ ≡∑
j λj. The

dimension cutoff k is usually determined as the smallest integer satisfying a condition∑k
j=1 λj/Γ ≥ η, where η = 0.995 or similar. The computational modelling that follows

works with the adimensional feature vectors

z̃ = 1√
Γ

z (3.5)

so that the joint treatment of different features has a standard numerical scale. In what
follows, this is important for the logistic linear regression modelling, but does not matter
for the particular type of nonlinear learning machine applied.

The EVD (3.2) can be related to an equivalent singular value decomposition (SVD) as
follows. Let all the samples be collected in a matrix X, each row being a sample. Here, X
has N ∼ 2.5 M rows and 4225 columns. Let 1 be a length-N column of ones. Disassemble
X into two terms X = 1〈x〉T + X̃, so that X̃ has zero-sum (zero-mean) columns 1TX̃ = 0T.
It follows that (1/N)XTX = 〈x〉〈x〉T + (1/N)X̃TX̃. So the right-hand side of (3.2) is equal
to (1/N)X̃TX̃ (sample covariance matrix). Given the SVD of the centred data matrix X̃ =
USVT, it follows that (1/N)X̃TX̃ = V(S2/N)VT, so the singular values σi (diagonal of S)
are related to the eigenvalues as λi = σ 2

i /N.

3.2. Calculation and properties of J · A
The field feature being explored in this work, and described in this subsection, has several
justifications. The feature carries information about plasma shape and distributions in
both toroidal and poloidal directions. The feature visually look like the current density
which is favourable for interpretation. Its integral represent magnetostatic energy, and
it is part of the Lagrangian for magneto-mechanical systems, such as the macroscopic
stability of tokamak plasmas. Gradients of the Lagrangian in principle decide the stability
(although it is unclear whether that theoretical property can be meaningfully exploited
in this context). The form used here generates positive-valued features regardless of
the sign of the plasma current or the toroidal magnetic field. This makes the PCA
mean feature 〈x〉 more meaningful. This feature has compact support (the distribution
of plasma-associated current density) and the circuit self-inductances derived from it are
correlated with standard quantities such as the internal inductance 
i and the poloidal
beta βp. The database-wide mean feature pair (defined below) is depicted in figure 4. The
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FIGURE 4. Database-wide pair of mean energy-based features. (a) Toroidal mean feature 〈x〉,
where x is the toroidal term ftor of (1/2)J · A. (b) Mean feature when instead, x is the poloidal
term fpol of (1/2)J · A. Approximately 2.5 million equilibrium reconstructions were used in the
analysis, accrued from 17 000 different DIII-D plasma discharges.

flat-top averaged operating space in terms of the associated scalar summary pair (Ltor,Lpol)
(also defined below) is shown in figure 5. The first few orthogonal PCA basis vectors for
the feature pair, calculated as detailed in § 3.1, is shown in figure 6. In what follows, r, z and
φ denote the coordinates in the usual cylindrical system, where φ is the toroidal symmetry
angle. The axis of rotation is at r = 0, z is the axis-parallel coordinate and z = 0 has no
special meaning except it is usually defined to be at the nominal midplane of the tokamak
chamber. The axisymmetric fields are distributions in (r, z) space which hold their value
for all φ.

The field (1/2)J · A represents magnetostatic configuration energy density, as long as
the Coulomb gauge is used, which can be enforced by requiring ∇ · A = 0. This magnetic
vector potential A is not typically computed or stored in standard databases of equilibrium
reconstructions. Instead, it is here computed as-needed, as the features are required in
the passes across the database. It is done as follows. The plasma current density J triad
(Jφ , Jr, Jz) is produced from the stored equilibrium reconstruction (Jφ(r, z) is a field of
scalar values on the same grid in (r, z) as the underlying equilibrium reconstruction, and
so on). Specifically, representations for Jφ(r, z) and Bφ(r, z) can be generated directly
by mapping stored information, and Jr, Jz can be defined through μ0Jr = −(1/r)∂z(rBφ)
and μ0Jz = (1/r)∂r(rBφ) using finite differencing. For numerical consistency, this specific
J (r, z) is used as the input to (source term for) the remainder of the calculation, in the end,
allowing the calculation of J · A, where A = A(J ). The toroidal component of the vector
potential (Aφ , Ar, Az) is obtained by solving

Δ∗(rAφ) = −μ0rJφ (3.6)
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FIGURE 5. Scatter plot of the pre-event flat-top averages of the circuit self-inductances defined
by (3.10) and (3.11). The set of discharges is partitioned into three sets: those where there was
no onset event anywhere (green), those that have an RM onset (blue) and those that have an
LM onset (red). The correlation coefficient between Ltor (Lpol) and 
i (βp) is 0.76 (0.65) for this
dataset. The TM onset events are distributed across this average operating space, with only small
differences. The mean for each set is marked by a coloured square. The cross-hairs through each
mean marker shows the quantile range (0.10, 0.90) for the marginal distributions associated with
each set.
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FIGURE 6. Database-wide PCA basis vectors. The top row shows the first eight orthonormal
vectors for the toroidal feature. The bottom row shows the first eight orthonormal vectors for
the poloidal feature. The first vector in both rows is largely (anti-)parallel to the respective mean
feature (cosine similarities −0.99 and −0.98). The colour-scale is adapted to each thumbnail
independently. The basis vectors are the columns of the matrix (3.2) for the respective feature
(toroidal and poloidal).
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on the same grid, with Δ∗a = r∂r((∂ra)/r)+ ∂2
zza, where the boundary condition is

defined using the right-hand side source and the known Green’s function for this elliptic
operator. Multiplying (3.6) by 2π yields the familiar equation for the poloidal flux function
ψ = 2πrAφ . The poloidal vector potential components can be solved by mapping to the
very same (3.6) with a different source term and some post-processing. This mapping is
further detailed in Appendix A. Specifically, solve

Δ∗(rΘ) = −μ0Iz

2π
, (3.7)

where Iz(r, z) is an integral current function defined from Jz(r, z) as Iz(r, z) = ∫ r
0 dr′2πr′Jz.

The right-hand side in (3.7) is equal to −rBφ , with Bφ being the poloidal plasma current
generated toroidal field. The poloidal part of the vector self-potential can be computed as
streamlines of the solution to (3.7)

(Ar,Az) = 1
r
(−∂z (rΘ) , ∂r (rΘ)) (3.8)

and based on (3.6), (3.7), the features used in this work are the two terms ftor, fpol in the
decomposition

1
2 J · A = 1

2 JφAφ + 1
2 (JrAr + JzAz) = ftor(r, z)+ fpol(r, z), (3.9)

which are further dimensionality reduced as detailed in § 3.1. The integral U =
(1/2)

∫
dVJ · A is the all-space field energy associated with the source distribution J .

Two useful scalar reductions of these field features are plasma self-inductances L, defined
by relationships U = (1/2)LI2. The toroidal circuit self-inductance is

Ltor = I−2
φ

∫
4πrftor dr dz = I−2

φ

∫
dVJφAφ, (3.10)

where Iφ =
∫

dr dzJφ and dV = 2πr dr dz. Let Ipol = maxr,z Iz, then the poloidal circuit
self-inductance is similarly defined by

Lpol = I−2
pol

∫
4πrfpol dr dz (3.11)

and the space (Ltor,Lpol) is a two-dimensional reduction that depends only on the circuits
traced out by J . These self-inductances are used as axes in the scatter plot of the database
shown in figure 5. Here, Ltor carries information about poloidal magnetic fields (toroidal
current loops), whereas Lpol carries information about toroidal magnetic fields (poloidal
current loops). Notice that the events and non-events are scattered in this space similar to
each other, with no clear tendency of separation.

Numerically, discretized (3.6), (3.7) are solved as general Sylvester equations EX +
XF = G, where X is the unknown matrix of field values, shaped as the grid, and E, FT

represent the elliptic operator separated in r, z, and G combines boundary and source data.
A standard general-purpose Sylvester solver is used which does not assume any specific
structure to E, F.

4. Linear and nonlinear hazard modelling

This section begins by developing a principal component linear logistic regression
(PCLLR) model for the hazard rate. This basic modelling technique can be used to
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graphically indicate what aspects of the high-dimensional feature set tend to be associated
with more or less tearing onset rates. The model can be fitted directly on the entire
dataset if a rigorous model selection technique is used, which is imported from the
literature on statistical estimation. In addition to being a vehicle for visual interpretation,
the PCLLR model also serves as a benchmark against which more powerful nonlinear
learning machines can be compared. The third subsection describes the usage of certain
configurations of gradient boosting machines applied to the hazard onset estimation.
Finally, the linear and nonlinear models are compared not only in terms of cross-entropy
fitness to event data, but also by sampling their respective calibration curves across a fixed
quantile range of their outputs.

4.1. Principal component linear logistic regression and model selection
A linear logistic regression model in the principal component feature space can be fitted on
the full dataset using second-order optimization. It is beneficial to use the PCLLR model
as a well-defined performance benchmark to compare against more complex and harder to
interpret learning machines. The PCLLR model is specified by an intercept term β0 and a
coefficient vector β = (β1, . . . , βm). The number of coefficients is equal to the sum of the
truncated dimensions from the PCA basis sets: m = n1 + n2. Specifically, n1 (n2) is equal
to the truncation order k in (3.3) for the toroidal (poloidal) feature field. The PCLLR model
evaluates a linear combination of the available features z̃, and puts the resulting scalar (the
log-odds value, f (z̃))

f (z̃) = β0 +
m∑

i=1

βmz̃m = β0 + βTz̃ (4.1)

through a sigmoid transformation

p(z̃) = 1
1+ exp(−f (z̃))

(4.2)

to get the probability p(z̃). The reverse operation is f = log[p/(1− p)], hence its name.
The hazard is obtained through a different transformation of the log-odds value

h(z̃) = 1
Δ

log (1+ exp(f (z̃))) (4.3)

that uses the average time rangeΔ with which the examples are associated. Equation (4.3)
follows from equating the small-time interval survival probability to the hazard h, 1− p =
exp(−�h), handling h as the parameter of an exponential random variate. Only the first
of these relations, (4.1), changes if another learning machine is used. Different PCLLR
models can be compared using a specialization of the very general evidence procedure,
based on a Laplace approximation of the mode of the likelihood function (MacKay 2003).
The model fitting and selection procedure centres around three terms (in logarithmic
scale). First, the (data) likelihood term

L1 =
N∑

i=1

{(1− yi) log(1− pi)+ yi log pi} (4.4)

is larger the better the model fits the dataset. Second, the (regularizing) prior term

L2 = −1
2
βTΣ−1β − m

2
log 2π− 1

2

m∑
j=1

log lΣ,jj (4.5)
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penalizes models which are too ‘extreme’. Specifically, the coefficient vector β is treated
as if drawn from a prior normal distribution β ∼ N(0,Σ), where the covariance matrix
Σ is parametrized appropriately (see § 4.2) by some parameter θ . The quadratric form can
be recast as (−1/2)

∑
j r2

j , where Lr = β, using the Cholesky factor Σ = LLT, and lΣ,jj is
the jth diagonal element of this L. Now β is efficiently optimized for any fixed tuple of
(hyper-)parameters (θ , n1, n2) by a Newton-like method (Murphy 2012), only considering
the first terms L1 + L2. The Hessian at the optimum gives the information required to
evaluate the third term L3. The third term

L3 = m
2

log 2π−
m∑

j=1

log lH,jj, (4.6)

where lH,jj is the jth diagonal entry of the Cholesky factor of the Hessian matrix evaluated
at the minimizer of −L1 − L2 (the Newton-like solver), essentially penalizes the volume
of available parameter space (MacKay 2003). This term limits the complexity of selected
models and should, in principle, be used when comparing models with varying number
of parameters (Murphy 2012). The Hessian information at the optimum can also be
used to extract standard confidence intervals for the fitted PCLLR parameters (and, more
generally, it can be used to generate approximate posterior samples).

The full model fitting and selection scheme can be summarized as

max(θ ,n1,n2)L1 + L2 + L3, (4.7)

where the two truncation orders (n1, n2) respectively refer to the retained dimension of
the toroidal and poloidal features, and θ is the parameter defining the prior covariance for
β (see next subsection). Model selection using heuristic PCA truncation combined with
‘evidence’ maximization (4.7) is illustrated for the PCLLR model in figure 7(a,b). The
problem is simplified by first setting the PCA basis set ‘large-enough’ and then optimizing
the most important hyper-parameter. It is possible to include all the parameters, including
the truncation orders, in the selection programming (4.7) but it becomes computationally
demanding and it is arguably not worth the effort since the results are similar and
the PCLLR model is limited in capacity anyway (as will become clear by comparing
its calibration curves below). In § 4.5, the model selection expressions are evaluated
as a function of the PCA cutoff (to compare different features). Figure 11 generally
suggests an effect of ‘diminishing returns’ for increasing cutoff at n1 = n2 = n ∼ 50,
information impossible to tell by figure 7(a) alone. Each trace in figure 11 corresponds
to maximizations as illustrated in figure 7(b).

4.2. Prior design and PCLLR model visualization
The inner product (4.1) in the truncated basis can be expanded back to the original
physics field feature space. Since (4.1) is monotonically related to the hazard (4.3), such
a reconstruction provides helpful visualization of what part of the physics features the
PCLLR model attempts to weight. Specifically,

βTz̃ = (Vkβ)
T δx√

Γ
, (4.8)

where δx ≡ x− 〈x〉 (the deviation of the feature from the database mean), which means
that the vector w = Vkβ is the equivalent ‘weight-field’ in the original (but normalized)
magnetostatic energy space. This weight-field has the norm property wTw = βTβ, due to
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FIGURE 7. Model selection based on (a) heuristic PCA truncation and (b) optimization of either
L1 + L2 (green trace) or L1 + L2 + L3 (blue trace). The horizontal axis in panel (a) is the
retained number of components. The horizontal axis in panel (b) is log10 θ , where θ is the overall
strength of the prior term. The optimum θ is the respective maximizer of the traces. Notice
that here, the selected PCA truncation is far into the region which contains only very small
contributions to the overall data variance.

the orthonormality of Vk. However, the PCA dimensionality reduction introduces spatial
correlations among the elements in the weight vector w. To be able to visualize w while
ensuring its internal structure is due to any target signal (and specifically not due to quirks
of the PCA itself), it becomes important to impose uniform prior smoothness of w and use
it to design a ‘neutralizing’ prior on β.

Define the isotropic Matérn kernel G by its matrix elements

gi,j = 〈wiwj〉 =
(

1+
√

5qi,j + 5
3 q2

i,j

)
exp

(
−
√

5qi,j

)
. (4.9)

Each element is associated with a pair of grid points (ri, zi), (rj, zj) using the normalized
distance qi,j =

√
(ri − rj)2 + (zi − zj)2/σg (Rasmussen & Williams 2006). Here, G has the

parameter σg > 0, which is a length-scale (larger value of σg generates smoother priors).
The coefficient vector prior β ∼ N(0,Σ) is then specified by the covariance

Σ(θ) = θ × VT
k G(σg)Vk, (4.10)

where θ > 0 is a scalar strength term, and the parameter vector θ = (θ, σg). The
visualization of the prior weight-fields and the resulting PCLLR model weight-field
estimate, using σg = 0.30, θ = 2500.0, n1 = n2 = 50, are shown in figure 8. Figure 8(a)
illustrates the prior covariance design. Figure 8(b) shows the estimated PCLLR model in
physical space. It is possible to use different prior smoothness and different orders, but
the final result tends to end up looking similar to what is shown in panel (b), as long as
the model selection scheme (4.7) is used to locate the optimal prior strength parameter θ
in (4.10). Panel (a) will have sharper features for smaller σg and more diffuse features for
larger σg. The cutoff orders have been fixed for simplicity.

It is interesting to attempt to interpret the weight-field visualizations in figure 8(b).
Recall that these weight fields are applied to a (1/2)J · A feature time slice after
subtracting the database mean fields, which are displayed in figure 4. It is clear that the
toroidal feature preferentially emphasizes certain edge properties of this differential. It
seems plausible that many of the degrees of freedom in the PCLLR model would be
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FIGURE 8. (a) Visualization of three random prior draws of the PCLLR β parameter using
the smoothness enforcing covariance (4.10). (b) Visualization of the estimated PCLLR model
in physical space, using the prior shown in panel (a). The inner product of the weight fields in
panel (b) with the pair of features for a plasma time-slice (4.8), plus an intercept term, yields the
PCLLR model log-odds output, as defined by (4.1).

spent associating certain classes of plasma shapes (edge geometry) to a hazard value. This
is because certain classes of plasmas are more prone to tearing-mode onsets than other
classes of plasmas, and these plasmas tend to have different current density distribution
support.

It should be understood that the PCLLR model inner product is here split in two
terms βTz̃ = βT

1 z̃1 + βT
2 z̃2, where the first corresponds to the toroidal basis set and the

second corresponds to the poloidal basis set. The two parts are visualized separately
as in (4.8), defining the respective weight vectors w1 and w2. The average ratio of
the size of the toroidal part of the inner product to both parts across the dataset is

〈|βT
1 z̃1|/

√
(βT

1 z̃1)2 + (βT
2 z̃2)2〉 = 0.78. The same average increases to 0.83 if only the

actual event samples are used. This suggests that the toroidal part of the feature pair is
more important with respect to the task.
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4.3. Gradient boosting machine (GBM) using principal component feature set
The GBM (Friedman 2001) is here used to represent powerful nonlinear modelling
capability to assess how much model performance is lost by being constrained by the
linear (but easily visualizable) PCLLR model detailed above. The implementation (Chen
& Guestrin 2016) is used in what follows. GBMs are known to be among the most
efficient techniques in machine learning to model general tabular datasets (Caruana &
Niculescu-Mizil 2006; Hastie, Tibshirani & Friedman 2009). The dimensionally reduced
dataset used in this work arguably falls into this category. Learning the hazard function
with a GBM means that the log-odds function (4.1) is replaced by a sum of B sequentially
fitted nonlinear function

f (z̃) = F0 +
B∑

i=1

Fi(z̃), (4.11)

where F0 is a baseline bias and each additional term Fi(z) is a general regression tree,
designed to improve the fitness of the prior sum of i− 1 trees. The relationships among the
log-odds, the probability and the hazard are unchanged. Unfortunately the ability to specify
closed-form (approximate) posterior models, as could be done for the PCLLR, is lost. Also
lost is the ability to clearly visualize a unique model weight field. Instead, the GBM model
is here evaluated based on the outputs and fitness directly. Standard nested cross-validation
is used to estimate these quantities. The GBM is fit to minimize the negative of (4.4),
reported by dividing it by the number of samples evaluated (since the test sets differ in
size, the per-sample average has to be used). The regularization of the GBM is largely
controlled by the number of boosting rounds B, the depth of the regression trees and the
learning rate. Typically, the number of boosting rounds is auto-detected using an inner
cross-validation scheme that stops early when the validation set metric starts to increase.
In what follows, a few different maximum tree-depths are evaluated, while adjusting the
learning-rate such that the per-split optimum number of boosting rounds is in the range
B ≈ 500–1000.

Table 1 shows a comparison of the best achieved loss functions for the different models
used in this work. The first row represents the ‘constant’ model, which uses no covariates
at all. It is simply the assertion that the baserate applies for all samples in the database. If
there are E events and N examples in the dataset, then the baserate model can be defined
by the log-odds value f0 = log[p0/(1− p0)], where p0 = E/N. The second row shows the
PCLLR model using a total of 100 features. Notice that the intercept parameter for the
PCLLR model is close to the value of f0. Notice further that the initial bias in the GBM
function (4.11) is taken to be f0 (for the available training set, the exact value depends on
random splits). The remaining the rows in table 1 show loss function results for various
GBM settings and using variable PCA truncations.

The difference between the constant model and the PCLLR model is 0.94× 10−3

(nats/sample). The difference between the PCLLR model and the GBM3b model is (also)
0.94× 10−3. This suggests that the improvement (in the data likelihood sense) in going
from the PCLLR model to the GBM model is as large as going from no model (just
baserate) to the PCLLR model. The next subsection goes into further details on how the
model quality improves for the GBM compared to the PCLLR.

4.4. Comparing the calibratedness of the models
Calibratedness here means that the empirical hazard value, as explained in what follows,
should equal its ideal relationship to the model log-odds output f , as given by (4.3).
Figure 9 shows a detailed assessment of the calibration of the PCLLR model. Figure 10
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Model #Features (n1+ n2) Average loss −L1/N Comment

constant 0 0.01550 fixed baserate f0 ≈ −6.13
PCLLR 100 (50+ 50) 0.01456 logistic regression
GBM1 50 (25+ 25) 0.01433 depth-1 trees (decision stumps)
GBM2 50 (25+ 25) 0.01385 depth-2 trees
GBM3a 50 (25+ 25) 0.01373 depth-3 trees, B ≈ 500
GBM3b 60 (30+ 30) 0.01362 more features, B ≈ 700
GBM3c 80 (40+ 40) 0.01368 even more features, B ≈ 550
GBM4a 60 (30+ 30) 0.01353 depth-4 trees, B ≈ 650
GBM4b 80 (40+ 40) 0.01352 depth-4, B ≈ 630

TABLE 1. Comparison of average negative log-likelihood loss function values for a set of GBMs
configured by increasing tree depth level. The loss function values should be seen in relation to
the PCLLR model, and the improvement obtained with the GBM compared to the PCLLR can
be put in context by the difference between the constant model and the PCLLR model.

shows a detailed assessment of the calibration of one of the GBM models. In panel (a)
in both of these plots, the number of samples within a small range of the respective
model log-odds output is counted. Both the total number of samples and the number
of event samples in each such bin are shown (blue and red, respectively). The total
number of samples multiplied by Δ gives the dwell time (the total plasma time) of
the dataset in each bin. Panel (b) in both plots shows the ratio of the event count
divided by the dwell count. This is the (normalized) empirical hazard (events/sample).
Panel (b) also shows the ideal value of �h as the black solid line. The PCLLR
posterior variability of these histogram-based plots is indicated by the uncertain region
(pale lines indicate quantiles 0.05, 0.50 and 0.95). For the GBM, the uncertain region
is instead derived from the spread among the different complete sets of test set
evaluations. The respective ranges of the horizontal axis in the plots are defined by
the quantiles 0.01 and 0.99 of the model output range across the dataset. Going too
far out necessarily breaks any comparison to the empirical ratios since the number of
samples (and events) will go to zero, making the statistics insufficient for meaningful
interpretation.

The plots clearly show that the (PC-)GBM model has managed to achieve approximate
calibration much better than the PCLLR model. For example, the region with peak dwell
count in figure 9(a); f ≈ −6.75, lies below the reference curve (solid black) in figure 9(b).
Presumably, this is because the linear model is not flexible enough to straighten out the
fit in that region without being penalized in other parts of the calibration curve. The
PCLLR model is above the reference curve around the baseline hazard at f ≈ −6.13.
The multi-modal appearance of the event count and the related non-monotonic gradient
of the dwell count are other indicators of inadequate modelling. Figure 10(b) in contrast
exhibits a more regular closeness to ideal calibration, and achieves this by using a
larger range of model outputs (as indicated by the greater span on the horizontal
axis). Figure 10(a) also shows a smoother dwell and event count, compared to those in
figure 9(a). These calibration plots, combined with table 1, provide strong arguments that
the GBM model should be preferred in most cases (the GBM is much harder to visualize
and interrogate, so it is beneficial to be analysed in combination with the PCLLR model)
since it outputs well calibrated hazard rates across a large portion of the database, using
fewer PCA components.
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FIGURE 9. (a) Histogram counts of the database samples sorted along the output of the PCLLR
model. (b) Ratio of the event count divided by the dwell count. This ratio is supposed to be as
close as possible to the ideal relationship shown by the black solid line. The PCLLR model
calibration is assessed by sampling its posterior parameter and regenerating many histograms.
The distribution of the calibrations are shown in the plot: the upper and lower bounding lines
represent quantiles 0.95 and 0.05, respectively.
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FIGURE 10. (a) Histogram counts of the database samples sorted along the output of a GBM
model with maximum tree depth 3. (b) Ratio of the event count divided by the dwell count.
This ratio is supposed to be as close as possible to the ideal relationship shown by the black
solid line. The GBM model calibration is assessed by 8-fold splits of the dataset with inner
cross-validation. The distribution of the calibrations are shown in the plot. Here the upper and
lower bounding lines represent the 0.95 and 0.05 quantiles, respectively, from the spread across
the test set predictions.
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4.5. PCLLR-based comparison to alternative field features
This subsection reports numerical experiments that compare the quality (with respect to
the TM onset event) of the J · A field feature to a standard alternative (to be defined below).
Two ‘controls’ are also assessed. The first control is a field feature with only geometric
information about the support of the current density (in which region it is non-zero). The
second control uses the actual J · A feature but with randomly permuted target labels. The
idea with this control is to destroy the association between the feature and the target labels.
This establishes a ‘no signal’ floor.

Specifically, the three unique pairs of field features are as follows. First is the physically
motivated pair ( ftor, fpol)which is a main topic of the present study. Second, as the standard
comparison, a direct mapping of the EFIT polynomials to axisymmetric space is used.
This pair is (Jφ, δBφ), where δBφ is the plasma current generated toroidal magnetic field
(mapping the so-called poloidal current function). This feature pair is essentially (differing
by factors −1, r and μ0) the source term for the A field calculations via (3.6) and (3.7).
The third feature pair has no information about the values of the current density. The pair
of fields used for this control is the indicator, or ‘mask’, function for Jφ and the same
mask function multiplied by 1/r. The mask takes the value 1 for (r, z) inside the last
closed fluxed surface, and 0 otherwise. It is expected that this third feature should carry
significantly less information about the TM events than the other two features. The PCA
dimensionality reduction machinery detailed in § 3.1 is applied independently to these
alternative feature pairs. Each feature set has the same dimensionality (two different sets
of scalar values on a 65-by-65 grid).

For each of the above three sets of features (and the fourth no-signal control), a basic
PCLLR model is fitted with an optimal diagonal regularizer, for a range of PCA cutoffs
n = n1 = n2. This is done for both types of evidence scores (see § 4.1): (i) evaluation of
L1 + L2 and (ii) evaluation of L1 + L2 + L3. The results are shown in figure 11. In the
figure, metric (i) is denoted MAP (maximum a posteriori), and metric (ii) is denoted by
EVDN (evidence). The dashed lines with angled cross-markers show the MAP metric for
the respective feature set. The solid lines with straight cross-markers show the EVDN
metric for the respective feature set.

It can be observed that the J · A based field feature does attain higher MAP and EVDN
scores (for n > 15) than does the standard mapped EFIT field feature (Jφ, δBφ). For
aggressive PCA cutoffs (n < 15), the opposite ordering is seen (green and red traces are
above the blue and orange traces). The MAP scores suggest that n ∼ 50 is a good PCA
cutoff, whereas the EVDN scores seem to suggest that it is justified to go higher to n ∼ 75.
It is important to remember these are heuristics for the PCLLR model, and that the PCLLR
model itself is much less efficient than the nonlinear GBM. There is nothing exact about
such suggested cutoffs. The point of figure 11 is to compare the J · A field feature to a
possible standard alternative, using the computationally efficient PCLLR evidence scores.

The two controls show the expected behaviour. The indicator feature with no access
to continuous values from the EFIT (only the current density support and the inverse
radial coordinate information) is graded far below the other two features with further
information. The no-signal floor value can be defined by the experiments evaluated with
randomly permuted target labels. There should be no added value of using more PCA
components in this case and flat traces independent of n are expected and obtained.

These calculations provide evidence that the (more involved, but physically motivated)
J · A field feature does have some informational advantage, with respect to the TM onset
event, over what is arguably a direct/native EFIT axisymmetric field feature, in the context
of this study.
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FIGURE 11. Comparison of different sets of field features using a basic PCLLR model selection
framework. The dashed lines (with angled cross-markers) show the MAP score and the solid
lines (with straight cross-markers) show the EVDN score for each respective feature set. The
bottom traces are obtained by randomly shuffling the target labels so that there should be no
information about the target in the (any) feature. The indicator feature (‘J support’, see main
text) provides some fitting power, but much less so than for the (Jφ, δBφ) and ( ftor, fpol) features.
The highest evidence scores are obtained with the J · A based field feature. It is also seen that a
PCA cutoff at n ∼ 50 is suggested by the MAP score, whereas the EVDN score flattens out at a
higher cutoff n ∼ 75.

5. Example applications

This section demonstrates two applications of the statistical TM onset hazard function
developed in the previous section. Specifically, the GBM function is used as it is well
calibrated and much more accurate than the PCLLR alternative. The first application is the
pointwise evaluation of the hazard function along time in two example DIII-D discharges.
The second application is the visualization of an apparent database-wide observational
trade-off in plasma performance versus the TM onset rate. The use of a hazard function as
a conditional generator of probabilities can be found in Appendix B, providing additional
clarification of and motivation for these examples.

5.1. Hazard ratio time trace monitoring
A well-calibrated and sufficiently accurate (according to some criteria yet to be defined)
hazard function could, in principle, be used to monitor the instantaneous risk for TM onset
in a plasma in real time. Knowing the main effects of control actuators on the (future)
hazard value may then allow regulation to actively lower the risk in the event that some
unforeseen perturbation has put the tokamak plasma in a state of elevated TM hazard. This
type of reasoning is sometimes known as ‘proximity control’ and is an active research
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topic at DIII-D (Barr et al. 2021). A reactor grade tokamak cannot maintain operation in
a plasma state where a truthful hazard function returns a value comparable to the inverse
discharge time. Control of the actuation effect on the hazard function adds another layer of
complexity in that a model of the future feature state based on the actuation programming
is required, which is beyond the scope of this work. Further details on these types of
applications of a hazard function are found in Appendix B.

To assess the capability of the estimated hazard function in this work for this type of
application, the time-traces for specific experiments can be calculated after-the-fact. For
this purpose, it is convenient to introduce the non-dimensional hazard ratio

H = log (1+ exp(f (z̃(t))))
log (1+ ef0)

, (5.1)

where the denominator is defined as the baseline hazard ĥ0, which is expressed in terms of
the total number of events E and total number of samples N across the database by

ĥ0 = − log
(

1− E
N

)
≈ E

N
≡ p0 (5.2)

with the last relation due to E  N. A hazard ratio of 1 means that the expected rate of
onset at the present time instance is equal to the global database average rate. A hazard
ratio below 1 means that the present time instance is less prone to TM onset compared to
the average rate. A hazard ratio of 2, for example, means that the TM onset rate is elevated
by a factor of 2. And so on.

Figure 12(a,b) shows the time-traces of the predicted hazard ratios (5.1) for the same
example DIII-D experiments that were used in figure 1(a,b). The probability of TM
onset over a segment in time is determined by the integral of the hazard (known as
the cumulative hazard). A short spike of moderately elevated hazard (perhaps due to an
unusually perturbed equilibrium reconstruction) does not matter much for the probabilistic
model. Sustained levels of high hazard are what generate a high probability of TM onset,
according to the model. The baseline rate, H = 1 in the plots, roughly corresponds to
one TM onset every 10 s (database wide average). Here, H = 5 approximately implies one
onset every 2 s. It is critical to realize that these rates are to be interpreted in the sense of
an exponential distribution. Specifically, if the instantaneous hazard is 0.5 s−1, assuming
the plasma is in a steady-state where this value is maintained constant, then the expected
time until a TM onset is 2.0 s. However, the standard deviation of that random time is also
2.0 s. This is a property of the exponential distribution; the ratio of its standard deviation
to its mean is one (its coefficient of variation). Keeping this in mind is essential when
interpreting the hazard (ratio) values in relation to events that happened, seemed like they
should have happened or seemed like they should not have happened. The hazard model
accommodates all these cases flexibly. Only an extremely high value of the instantaneous
hazard is akin to a committed statement that ‘a TM event will happen here and now’.

Note that the only information used for the predictions demonstrated in figure 12(a,b)
are the magnetics only equilibrium reconstructions. So all the trends in these plots must
be due to trends in these reconstructions. The indicated range of predictions (pale blue
lines) indicate the first and third quartiles of the ensemble of predictions, obtained using
an 8-fold outer test set evaluation, repeated 100 times. The GBM model was used for the
predictions.

Figure 13(a,b) shows example DIII-D discharges that do not develop any TM event.
Panel (a) shows the evaluation of the hazard ratio across an instance of a class of plasmas
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FIGURE 12. Example time-traces of the hazard ratio H (5.1). Here, H(t) = 1 means that the
instantaneous TM onset rate is deemed to be h(t) ≈ 0.10 s−1. (a,b) Time-traces corresponding
to the respective panels in figure 1. In both these cases, a sustained elevated hazard ratio is
predicted well before the actual events happen (RM onsets in both cases). The (terminating)
dashed vertical line in panel (a) corresponds to the RM signal detection at the 4.0 G threshold
in figure 1(a). Similarly the terminating dashed vertical line in panel (b) corresponds to the RM
signal detection in figure 1(b). Both of these discharges eventually develop LMs.
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FIGURE 13. Example time-traces of the hazard ratio H (5.1). In contrast to the discharges shown
in figure 12, these two discharges did not experience any detected (|n| = 1) TM event throughout.
The discharge in panel (a) is of a type known to have many disruptive TM events. The discharge
in panel (b) is low-powered and is rated as very TM stable by the hazard ratio predictions. The
discharge in panel (a) has significant sawtooth activity (odd RM trace signal) starting around
t ≈ 2.0 s and it does experience a |n| = 2 TM onset (rotating) at t ≈ 2.4 s.
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known to be highly prone to disruptive TM onset events. The hazard ratio is sustained
above the baseline rate across a large fraction of the current flat-top. It seems that an event
could have happened in this discharge. Panel (b) is an evaluation across a low-powered
discharge that appears to be several times less prone to TM onset events compared to the
baseline rate. Taken together, the examples displayed in figures 12 and 13 appear to present
a strong case for the usefulness of the hazard function for time-slice risk assessment.

5.2. Plasma performance versus TM onset hazard ratio
The performance of a tokamak plasma can be measured in many ways. One useful metric
is the ratio

〈p〉VτE

|Ip|a|BT | , (5.3)

where 〈p〉V is the volume averaged plasma pressure, τE is the energy confinement time,
Ip the plasma current, a the plasma minor radius and BT the toroidal magnetic field
(Paz-Soldan 2021). The product of the pressure and the confinement time is a proxy for
fusion power, and the denominator is a penalty for inefficiency (proxy for the cost of the
configuration).

Figure 14 has metric (5.3) on the vertical axis and− log H, from (5.1), on the horizontal
axis. For the green markers, the flat-top averaged quantities are used exclusively. Green
markers indicate single DIII-D experiments (whether it experiences an onset event or
not). The performance increases in the up direction in the plot. Therefore, the most
desired region is the upper-right region (low TM risk, high performance). The standard
confinement time estimate in the DIII-D database is quite volatile, which may explain
some of the scatter in the vertical direction.

The blue vertical line segments connect the first and third quartiles of the distribution
of the green markers at a thin range of hazard ratios (horizontal axis range). The mean
value of this distribution is shown by the short blue horizontal line segment. This short
line segment also indicates the range of hazard ratios used for these statistics. Note that
here the time-variation of the hazard ratio (see previous application example) is collapsed
into a single average value, which would tend to blend events and non-events. Additional
blending of the performance axis is likely due to the non-equivalence of current and
pressure flat-top intervals. Ideally the specific averaging intervals for the performance
should, in general, not be from the start of the current flat-top. However, the trend shown
by the localized blue quartile range (vertical line segment) and localized mean value
(horizontal line segment) indicators is still clear. The DIII-D database operational space
exhibits an observational tendency to higher TM onset rates for the higher performance
discharges (up to some saturation level where the TM risk may be debilitating and
operation becomes inaccessible). The purpose here is not a detailed analysis of this
particular operational space as that would require much refined production of this plot.
Rather the quantification of this intuitive trend using the machine-learned hazard function
suggests its usefulness in tokamak data analysis.

The red markers are located at the average performance metric operating point but their
hazard ratio coordinate is not the mean for the plasma but its value at the timestamp of
the event. A red marker is only added for plasmas that did experience a TM onset event.
It is clear that the final hazard value at the time of the event generally is higher (as can be
understood by the time traces in the previous application example) and that many event
locations in this space are dangerously far (to the left in the plot) away from mean values.
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FIGURE 14. Flat-top average plasma performance is shown on the vertical axis. The negative
logarithm of the flat-top average (green markers) hazard ratio prediction is shown on the
horizontal axis. The mean and quartile range for thin vertical slices of the scattered data (for
green markers) are marked by the blue line segments. The most desirable operating point is the
upper-right region, with high performance and low modelled rate of tearing onset events. Even
in this simple plot (see text for discussion), an intuitive database-wide trend can be observed;
higher performing shots tend to have higher rates of TM onset. Actual TM events are shown as
red markers at the hazard ratio value, at the time of the event.

6. Discussion

This study combines many elements of tokamak database analysis and improvements
can be envisioned at every stage in its pipeline. In what follows, a set of limitations will
be listed, combined with ideas for possible improvements. This section ends with a brief
concluding paragraph.

Compared to earlier work, the inclusion of both LM and RM detectors is a critical
improvement, allowing the approximation of more complete statistics on TM onsets
and hence to learn a useful hazard function. Nevertheless, the RM and LM detectors
would benefit from further analysis to identify possibly systematic fault modes. The
threshold values were fixed in this work, set to reasonable levels, as discussed in § 2.3.
Sensitivity studies driven by variations of these thresholds could be useful to increase
confidence in the statistical regularity of the results, but such studies would carry a high
computational cost (and seem unlikely to matter greatly). Probably more important is to
check specifically the RM detector, which is suspected to experience cross-talk between its
odd–even categorization in some cases. More advanced RM analyses are possible (Hole &
Appel 2007; Olofsson et al. 2014) and would be worth the additional effort required if the
quality of labelling can be shown to improve significantly. Although not done here, it is
straightforward to extend the machine learning formulation to model the expected flavour
of TM onset, RM or LM, in addition to the total hazard. That might be useful in some
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applications, but without explicit information about plasma rotation in the features, this
type of onset event sub-classification seems ill-posed.

One limitation of the PCA in this work is that the toroidal and poloidal feature
fields are analysed and reduced independently. This is a simplification which makes the
implementation easier. However, in principle, there should be a joint reduction of these
features into a single latent space vector. A natural way to handle this, still using standard
numerical linear algebra, is to employ canonical correlation analysis (CCA) of the pair
of toroidal and poloidal feature vectors. Other alternatives for dimensionality reduction
include non-negative matrix factorization (Hastie et al. 2009), and so-called ‘robust’
PCA (Candès et al. 2011). Both these alternatives use sparsity promoting optimization
techniques, in contrast to classical PCA (and CCA).

The GBM modelling approach has been used for its simplicity and efficiency. It might
be possible to improve the modelling further using neural network (NN) structured
models. Convolutional NNs could operate directly on the feature fields as image
processing systems; however, it is unclear if there is enough information in the standard
magnetics-only equilibrium reconstructions to justify such a brute-force approach.

One of the largest limitations of the study is arguably the exclusive usage of
magnetics-only equilibrium reconstructions. The internal details of the current density are
not well resolved. It is also generally accepted that these reconstructions do not provide
high-resolution details of the edge current density. This prevents physics conclusions about
detailed onset conditions to be drawn. At this time, there is no DIII-D database-wide
coverage of a high fidelity kinetic equilibrium reconstruction constrained by internal
diagnostics. This is expected to change in the future and the analysis presented here
can then be refined. The limitation to magnetics-only features should be regarded as a
necessary first step to establish the fundamental toolkit and its basic performance.

In conclusion, this study shows the development and testing of a suite of analysis tools,
capable of associating the calibrated observational rate of TM onset to reconstructed
axisymmetric equilibrium field quantities, across a large portion of the available DIII-D
dataset. The event signal is derived from non-trivial processing of large amounts
of non-axisymmetric magnetics fluctuation diagnostics data. Standard model selection
machinery, applied to this particular statistical modelling problem, suggests that the
energy-density feature gives a better model compared to the native source term from
the equilibrium reconstruction. The toolset was demonstrated in multiple types of
machine-learning enabled analyses. Many improvements can be envisioned.
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Appendix A

Because of the assumption of the Coulomb gauge, ∇ · A = 0, the vector potential A is
now also a solenoidal field, and thereby can be expressed in terms of a stream function
Φ ≡ rΘ as follows:

A = ∇Φ ×∇φ + ψ∇φ, (A1)

where φ is the usual toroidal coordinate and ψ is the flux function from above. This is
a dimensional augmentation of the usual description of the magnetic field in terms of a
stream function ψ : B = ∇ψ ×∇φ + rBφ∇φ. The parallel construction, given by (A1),
then provides the following analogues: Φ : ψ ,Θ : Aφ and Bφ : μ0Jφ (note the expressions
on the left side have units that carry an extra factor of length compared to the expression
on the right.)

Taking the curl of (A1) gives the usual poloidal component of the magnetic field in
terms of the flux function ψ : Bp = (1/r)∇ψ × φ̂ as well as a new second-order equation
analogous to (3.7):

Δ∗Φ = −rBφ, (A2)

which can be recast as

Δ∗(rΘ) = −μ0Iz

2π
, (A3)

where Ampére’s law was used for the right-hand-side.

Appendix B

In this Appendix, it is demonstrated how a truthful hazard function can be used in
the context of proximity control. Making this link explicit strengthens both the general
motivation for an event hazard function and the specific motivation of the hazard
monitoring application example in the main text of the paper.

Since the single time-step survival (no event) probability is exp(−�h), it follows that
the survival probability for multiple time-steps n is

Pr (N ≥ n) =
n∏

k=0

exp (−�hk) , (B1)

where N is a stochastic event step index. This is a uniform discretization of the
continuous-time analogue (stochastic event time T)

Pr (T ≥ t) = exp
(
−

∫ t

0
dτh(τ )

)
, (B2)
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where, according to the present model, h(t) = h(x(t)) (the time dependence of the hazard
is due to the time evolution of the state x). In this context, time t is relative to the present
time, meaning t = 0 is ‘now’ and t > 0 is in the future. From (B2), it is now clear how the
hazard model h(·) can be combined with another model f (·) that dictates the evolution
of the state variable. With model f , the state evolution can be written ẋ = f (x,u), where
u(t) is the trajectory of actuators. Therefore, h and f together comprise a device that
allows the calculation of future survival probabilities Pr(T ≥ t | x(0),u(τ )) conditioned
on future actuator trajectories (0 ≤ τ ≤ t) and the current state. This type of ‘decoupled’
probability model is by construction applicable in the context of proximity control. The
conditional future probabilities can be used in various ways (for example, used as weights
on a performance metric in receding-horizon feedback control), but the main points are (i)
to detect trajectories that rapidly increase the cumulative hazard

∫ t
0 dτh(τ ) and (ii) ability

to parametrize future trajectories by control actuation.
The decoupling of the survival (or event) probability, as explained above, is not typically

done in tokamak prediction problems. The following thought experiment illustrates a
problem that can arise. Suppose an ML model is trained on available observational data to
give the probability of tearing occurring within 200 ms into the future, given the present
state (the finite time survival is one minus this probability). Suppose further that the ML
model is deployed in the experiment to initiate some (effective) action when the survival
probability is deemed too low. In the long run, the original ML model that the feedback
decision is based on will become statistically invalid under the new distribution it generates
(since the state-to-future-event association has been modified).

The issue is that the future survival depends on the current state and the future actuator
programming jointly, and 200 ms is long enough that future actions matter. Using a
state-dependent hazard function as a probability generator is one way to account for these
dependencies. Deploying a system that takes action based on the hazard function does not
make the same hazard function statistically invalid.
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