
TPLP 19 (5–6): 654–670, 2019. c© Cambridge University Press 2019

doi:10.1017/S1471068419000115

654

Enhancing Magic Sets with an Application
to Ontological Reasoning

MARIO ALVIANO, NICOLA LEONE, PIERFRANCESCO VELTRI and
JESSICA ZANGARI

Department of Mathematics and Computer Science, University of Calabria, Italy
(e-mail: {alviano,leone,veltri,zangari}@mat.unical.it)

submitted 23 July 2019; accepted 31 July 2019

Abstract

Magic sets are a Datalog to Datalog rewriting technique to optimize query answering. The
rewritten program focuses on a portion of the stable model(s) of the input program which
is sufficient to answer the given query. However, the rewriting may introduce new recursive
definitions, which can involve even negation and aggregations, and may slow down program
evaluation. This paper enhances the magic set technique by preventing the creation of (new)
recursive definitions in the rewritten program. It turns out that the new version of magic sets is
closed for Datalog programs with stratified negation and aggregations, which is very convenient
to obtain efficient computation of the stable model of the rewritten program. Moreover, the
rewritten program is further optimized by the elimination of subsumed rules and by the efficient
handling of the cases where binding propagation is lost. The research was stimulated by a
challenge on the exploitation of Datalog/dlv for efficient reasoning on large ontologies. All
proposed techniques have been hence implemented in the dlv system, and tested for ontological
reasoning, confirming their effectiveness.

KEYWORDS: Datalog; query answering; magic sets; nonmonotonic reasoning; aggregations.

1 Introduction

Datalog is a rule based language for knowledge representation and reasoning suitable

for a natural declaration of inductive definitions and ontological reasoning (Eiter et al.

2012). Several extensions to the core language of Datalog exist, among them default

negation (Gelder 1989; Gelder et al. 1991; Gelfond and Lifschitz 1991) and aggregates

(Simons et al. 2002; Pelov et al. 2007; Liu et al. 2010; Bartholomew et al. 2011;

Ferraris 2011; Gelfond and Zhang 2014). Restrictions on the use of these linguistic con-

structs lead to preserve the existence and uniqueness of the stable model associated with

a knowledge base; specifically, such restrictions essentially enforce a stratification on the

definitions involving negation and aggregates (Faber et al. 2011). The semantics of the

resulting language reached a broad consensus in the knowledge representation and rea-

soning community, as in fact the notions of perfect model, well-founded model, and stable

model coincide for stratified programs (Przymusinski 1989; Gelder et al. 1991).

The stable model of a Datalog program can be constructed bottom-up, starting from

facts in the program, and deriving new atoms from rules whose bodies become true.

Negation and aggregates are handled by partitioning the input program into different

https://doi.org/10.1017/S1471068419000115 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000115
https://orcid.org/0000-0002-2052-2063
https://orcid.org/0000-0002-6418-7711
mailto:{alviano,leone,veltri,zangari}@mat.unical.it
https://doi.org/10.1017/S1471068419000115

Enhancing Magic Sets with an Application to Ontological Reasoning 655

strata, so that the lowest stratum does not contain negation and aggregates, and each

other stratum only negates and aggregates over predicates of lower strata. Such a bottom-

up procedure is very efficient for producing the stable model, but it may be by itself

inefficient for query answering. In fact, the stable model may contain atoms that are not

relevant to answer the given query, and therefore constitute a source of inefficiency for

query answering. In contrast, top-down procedures start from the query, and consider

bodies of the rules defining the query predicate as subqueries. Hence, the computation

focuses on a portion of the stable model that is relevant to answer the query.

The magic sets algorithm is a top-down rewriting of the input program that restricts

the range of the object variables so that only the portion of the stable model that is

relevant to answer the query is materialized by a bottom-up evaluation of the rewrit-

ten program (Bancilhon et al. 1986; Beeri and Ramakrishnan 1991; Balbin et al. 1991;

Stuckey and Sudarshan 1994; Alviano et al. 2012). In a nutshell, magic sets introduce

rules defining additional atoms, called magic atoms, whose intent is to identify relevant

atoms to answer the input query, and these magic atoms are added in the bodies of

the original rules to restrict the range of the object variables. Without going into much

details, consider a typical recursive definition such as the ancestor relation:

ancestor(X,Y) :- parent(X,Y).

ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y).

and a query ancestor(mario,Y) asking for the ancestors of mario. The extension of the

ancestor relation is likely to contain several tuples that are not linked to mario, and are

therefore irrelevant to answer the given query. To eliminate such a source of inefficiency,

magic sets start with m#ancestor#bf(mario), the query seed, which encodes the relevance

of the instances of ancestor(mario,Y); note that the first argument of ancestor is bound

to constant mario, while the second argument is associated with a free variable, hence

the predicate m#ancestor#bf (first argument bound, second argument free). After that,

magic sets modify the rules defining the intentional predicate ancestor, and introduce

magic rules for every occurrence of intentional predicates in the bodies of the modified

rules. The rewritten program is the following:

m#ancestor#bf(mario).

ancestor(X,Y) :- m#ancestor#bf(X), parent(X,Y).

ancestor(X,Y) :- m#ancestor#bf(X), parent(X,Z), ancestor(Z,Y).

m#ancestor#bf(Z) :- m#ancestor#bf(X), parent(X,Z).

and limits the extension of ancestor/2 to the tuples that are relevant to answer the given

query.

Magic sets are sound and complete for the language considered in this paper (actually,

for a broader language; Alviano et al. 2011). However, while on the one hand they are

designed to inhibit the source of inefficiency associated with irrelevant atoms, on the other

hand they may introduce different sources of inefficiencies, and also produce programs

not satisfying the stratification of negation and aggregates. This paper identifies three

of such sources of inefficiency, and propose strategies for their inhibition. Specifically,

the major source of inefficiency is represented by the possible introduction of recursive

definitions in the rewritten program.

https://doi.org/10.1017/S1471068419000115 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000115

656 M. Alviano et al.

Fig. 1. Dependency graphs (defined in Section 2) of programs Π1,Π2,Π3 (solid arcs) and pro-
grams Π′

1,Π
′
2,Π

′
3 (solid and dashed arcs) from Example 1.1. All arcs have weight 0, possibly

with the exception of the arc connecting a and b, which has weight 1 for programs Π2,Π
′
2,Π3,

and Π′
3.

Example 1.1 (Magic sets may introduce recursive definitions)

Consider a query c(0,Y) for the following program Π1:

r1 : a(X,Y) :- edb(X,Y), b(X).

r2 : b(X) :- edb(X,Y).

r3 : c(X,Y) :- a(X,Y), b(Y).

and a possible outcome Π′
1 of the magic sets rewriting:

r4 : m#c#bf(0).

r5 : m#a#bf(X) :- m#c#bf(X).

r6 : m#b#b (Y) :- m#c#bf(X), a(X,Y).

r7 : m#b#b (X) :- m#a#bf(X), edb(X,Y).

r8 : a(X,Y) :- m#a#bf(X), edb(X,Y), b(X).

r9 : b(X) :- m#b#b (X), edb(X,Y).

r10 : c(X,Y) :- m#c#bf(X), a(X,Y), b(Y).

In particular, rule r6 is produced while processing rule r3 with variable X bound from

the head atom, and considering variable Y bound by atom a(X,Y). This is a common

strategy, as there is no reason to consider an atom b(y) if no instance of a(X,y) is first

computed. However, as shown in Figure 1, while all definitions in Π1 are non-recursive,

Π′
1 has recursive definitions for a/2 and b/1, which may deteriorate the performance of

the subsequent bottom-up evaluation. Following the same strategy, for a program Π2

comprising r2, r3 and

r11 : a(X,Y) :- edb(X,Y), not b(X).

the outcome of the magic sets rewriting Π′
2 comprises rules in Π′

1 \{r8} and the following

rule:

r12 : a(X,Y) :- m#a#bf(X), edb(X,Y), not b(X).

Note that Π′
2 is not stratified with respect to negation. Similarly, for Π3 comprising r2, r3

and

r13 : a(X,Y) :- edb(X,Y), #sum{1 : b(X)} = 0.

the magic sets rewriting Π′
3 comprises rules in Π′

1 \ {r8} and the following rule:

r14 : a(X,Y) :- m#a#bf(X), edb(X,Y), #sum{1 : b(X)} = 0.

Hence, Π′
3 is not stratified with respect to aggregations. �

A second source of inefficiency that magic sets may introduce is represented by multiple

versions of the original rules when the range of variables cannot be eventually restricted.

For example, processing query a(0) and the following rule:

r15 : a(X) :- b(X), a(Y), not c(X,Y).

https://doi.org/10.1017/S1471068419000115 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000115

Enhancing Magic Sets with an Application to Ontological Reasoning 657

necessarily leads to the presence of the following rules in the outcome of magic sets:

r16 : m#a#b(0).

r17 : m#a#f :- m#a#b(X).

r18 : a(X) :- m#a#b(X), b(X), a(Y), not c(X,Y).

r19 : a(X) :- m#a#f, b(X), a(Y), not c(X,Y).

because variable Y is free when a(Y) is processed. Hence, in this case all instances of

a/1 in the stable model of the input program are relevant to answer the query in input.

Nevertheless, when such a situation occurs, magic sets already produced restricted ver-

sions of the original rules, which are likely to decrease the performance of the subsequent

bottom-up evaluation of the rewritten program.

The third source of inefficiency identified in this paper is represented by the possible

presence of several copies of the same rule in the rewritten program, which is mainly

due to different orders of body literals considered during the application of magic sets.

While this fact is peculiar of one of the possible implementations of magic sets, it is

also an opportunity to address a broader source of inefficiency that may already af-

fect the input program, that is, the presence of subsumed rules. In a nutshell, a rule

r subsumes another rule r′ if the ground instances of r′ are included or less general

than the ground instances of r. For example, q(X):- p(X,Y) subsumes q(X):- p(X,a),

whose ground instances are among those of the first rule, and also q(X):- p(X,Y), t(X),

whose ground instances are less general than those of the first rule.

Summarizing the contributions of this paper, the source of inefficiency associated with

the introduction of recursive definitions is inhibited by actively monitoring the depen-

dency graph of the rewritten program, so to avoid the creation of new cycles during

the production of magic rules (Section 3.1). The other two sources of inefficiency are

instead addressed by processing the outcome of magic sets before executing the bottom-

up evaluation. Specifically, if a predicate p is associated with different magic predicates,

one of them with all arguments free, the rewritten program is simplified by removing

all (useless) rules defining p and whose body contains a magic predicate restricting the

range of object variables (Section 3.2). Concerning subsumed rules, they are identified by

means of a backtracking algorithm, whose execution is often prevented by a more efficient

but incomplete check based on hashed values and bitwise operations (Section 3.3). All

the proposed strategies are implemented in dlv (Alviano et al. 2017; Adrian et al. 2018;

Leone et al. 2019; Leone et al. 2019), whose magic sets algorithm can be now applied also

for programs with stratified aggregates, and assessed empirically on domains involving

ontological reasoning (Section 4).

2 Background

Syntax. A term is either a constant or an (object) variable. An atom has the form p(t),

where p is a predicate of arity n ≥ 0, and t is a list of n terms. For a list t, let |t| denote
the length of t, and ti denote the i-th term of t. A literal is an atom possibly preceded

by the (default) negation symbol not ; atoms are positive literals, while atoms preceded

by not are negative literals. An aggregate has the form #sum{t′ : p(t)} � t, where t, t′

are lists of terms, t is a term, and � is a comparator in {<,≤,=, �=,≥, >}. A rule has

the form

α :– �1, . . . , �n, A1, . . . , Am,

https://doi.org/10.1017/S1471068419000115 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000115

658 M. Alviano et al.

where α is an atom, n ≥ 0, m ≥ 0, �1, . . . , �n are literals, and A1, . . . , Am are aggregates.

For such a rule r, define the following notation: H(r) := α, the head of r; B(r) :=

{�1, . . . , �n, A1, . . . , Am}, the body of r; B+(r) := {�i | i ∈ [1..n], �i is a positive literal};
B−(r) := {�i | i ∈ [1..n], �i is a negative literal}; BA(r) := {Ai | i ∈ [1..m]}. Intuitively,
B(r) is interpreted as a conjunction, and we will use α :– S ∧ S′ to denote a rule r with

H(r) = α and B(r) = S∪S′; abusing of notation, we also permit S and S′ to be literals. If
B(r) is empty, the symbol :– is usually omitted, and the rule is called a fact. A program

Π is a set of rules. A predicate p occurring in Π is said extensional if all rules of Π with

p in their heads are facts; otherwise, p is said intentional. For any expression (atom,

literal, aggregate, rule, program) E, let At(E) denote the set of atoms occurring in E.

In the following, all programs are assumed to satisfy safety of rules and stratification of

negation and aggregates, defined next.

Safety of rules. A global variable of a rule r is a variable X occurring in H(r), B+(r),

B−(r), or in an aggregate of the form #sum{t′ : p(t)}�X in BA(r). All other variables

occurring in r are local variables (to the aggregates where they occur). An assignment

variable of a rule r is a variable X such that BA(r) contains an aggregate of the form

#sum{t′ : p(t)} = X. A global variable X of r is safe if X is an assignment variable, or

if X occurs in B+(r). A local variable X in an aggregate #sum{t′ : p(t)}� t of r is safe

if X occurs in t. A rule is safe if all of its variables are safe. A program Π satisfies safety

of rules if all of its rules are safe. All rules so far are safe; an unsafe rule is, for example,

a(X,Y):- b(X), not c(X,Y), #sum{Z : d(X,Y)} > 0, as in fact the global variable Y and

the local variable Z are unsafe.

Stratification of negation and aggregates. The dependency graph GΠ of a program Π has

nodes for each predicate occurring in Π, and a weighted arc from p to q if there is a rule r

of Π such that p occurs in H(r), and q occurs in B(r); the arc has weight 1 if q occurs in

B(r) \B+(r), and 0 otherwise. Π satisfies stratification of negation and aggregates if GΠ

has no cycle involving arcs of positive weight. Figure 1 shows the dependencies graphs

of the programs in Example 1.1.

Semantics. The universe UΠ of Π is the set comprising all integers, and the constants

occurring in Π. The base BΠ of Π is the set of atoms constructible from predicates of Π

with constants in UΠ. A substitution σ is a mapping from variables to variables and UΠ;

for an expression E, let Eσ be the expression obtained from E by replacing each variable

X by σ(X). An expression is ground if it contains no global variables. Let ground(Π) be⋃
r∈Π{rσ | σ is a substitution, and rσ is ground}. An interpretation I is a subset of BΠ.

Relation |= is defined as follows: for a ground atom α, I |= α if α ∈ I, and I |= not α

if I �|= α; for an aggregate A := #sum{t′ : p(t)} � t occurring in ground(Π), I |= A if∑
t′σ:p(t)σ∈I t

′
1σ � t; for a ground rule r, I |= B(r) if I |= � for all � ∈ B(r), and I |= r

if I |= H(r) whenever I |= B(r); finally, I |= ground(Π) if I |= r for all r ∈ ground(Π).

The (FLP) reduct of Π with respect to I, denoted ΠI , is the program obtained from Π

by removing rules with false bodies, that is, ΠI := {r ∈ Π | I |= B(r)} (Faber et al.

2011). Given a program Π, the stable model of Π is the unique interpretation I such that

I |= ground(Π), and there is no J ⊂ I such that J |= ground(Π)I ; let SM (Π) denote

the stable model of Π. (The stable model of Π can be computed bottom-up as described

https://doi.org/10.1017/S1471068419000115 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000115

Enhancing Magic Sets with an Application to Ontological Reasoning 659

in the introduction. A formal definition of such a procedure is out of the scope of this

paper.)

Example 2.1

Consider the following program in the context of an online shopping site:

order(o1). item(o1,i1,20). item(o1,i2,20).

order(o2). cancelled(o2).

total_cost(S) :- order(O), not cancelled(O), #sum{P,I : item(O,I,P)} = S.

The stable model of the above program contains facts and total_cost(40), as indeed the

only ground rule with true, nonempty body is the following:

total_cost(40) :- order(o1), not cancelled(o1), #sum{P,I : item(o1,I,P)} = 40.

In particular, note that for σ(O) /∈ {o1, o2} literal order(O)σ is false, for σ(O) = o2 literal

not cancelled(o2) is false, and for σ(O) = o1 and σ(S) �= 40 the aggregate is false. �

Queries and magic sets. A query is an atom q(t). Let answer(q(t),Π) be {tσ | q(t)σ ∈
SM (Π)}, that is, the answer to the query q(t) over the program Π is the set of ground

instances of q(t) in the stable model of Π. The magic sets algorithm aims at transform-

ing program Π into a program Π′ such that answer(q(t),Π) = answer(q(t),Π′), and
SM (Π′) ∩ At(Π) ⊆ SM (Π); in words, the two programs have the same answer to the

query q(t), but the stable model of Π′ only contains atoms that link facts to the query.

The algorithm relies on adornments and magic atoms to represent binding information

that a top-down evaluation of the query would produce.

Definition 2.1 (Adornments and magic atoms)

An adornment for a predicate p of arity k is any string s of length k over the alphabet

{b, f}. The i-th argument of p is bound with respect to s if si = b, and free otherwise,

for all i ∈ [1..k]. For an atom p(t), let ps(t) be the (magic) atom m#p#s(t′), where
m#p#s is a predicate not occurring in the input program, and t′ contains all terms in

t associated with bound arguments according to s.

Definition 2.2 (Sideways information passing strategy; SIPS)

A SIPS for a rule r with respect to an adornment s for H(r) is a pair (≺, bnd), where

≺ is a strict partial order over {H(r)} ∪ B(r), and bnd maps � ∈ {H(r)} ∪ B(r) to the

variables of � that are made bound after processing �. Moreover, a SIPS satisfies the

following conditions:

• H(r) ≺ � for all � ∈ B(r) (binding information originates from head atoms);

• � ≺ �′ and � �= H(r) implies that either � ∈ B+(r) or � is an aggregate with

assignment (new bindings are created only by positive literals and assignments);

• bnd(H(r)) contains the variables of H(r) associated with bound arguments accord-

ing to s;

• bnd(�) = ∅ if � is a negative literal, or an aggregate without assignment variable;

• bnd(�) ⊆ {X} if � is an aggregate with assignment variable X.

Example 2.2 (Magic atoms and SIPS)

According to Definition 2.1, cbf (0,Y) is the magic atom m#c#bf(0). Using the notation

introduced in Definition 2.2, the SIPS for r3 with respect to the adornment bf adopted

https://doi.org/10.1017/S1471068419000115 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000115

660 M. Alviano et al.

Algorithm 1: MS(Q(T): a query atom, Π: a program)

1 Let s be such that |s|=|T|, and si = b if Ti is a constant, and f otherwise, for all i ∈ [1..|s|];
2 Π′ := {Qs(T).}; // rewritten program: start with the magic seed

3 S := {〈Q, s〉}; // set of produced adorned predicates

4 D := ∅; // set of processed (or done) adorned predicates

5 while S �= D do

6 〈q, s〉 := any element in S \D; // select an undone adorned predicate

7 foreach r ∈ Π such that H(r) = q(t) for some list t of terms do

8 Π′ := Π′ ∪ {q(t) :– qs(t) ∧B(r).}; // restrict range of variables

9 Let (≺, bnd) be the SIPS for r with respect to s;

10 foreach � ∈ B(r) such that p(t′) ∈ At(�) and p is an intentional predicate of Π do

11 Let s′ be such that |s′| = |t′|, and s′i = b if t′i is a constant or belongs to

bnd(�′) for some �′ ≺ �, and f otherwise, for all i ∈ [1..|s′|];
12 Π′ := Π′ ∪ {ps′(t′) :– qs(t) ∧ {�′ ∈ B(r) | �′ ≺ �}.}; // add magic rule

13 S := S ∪ {〈p, s′〉}; // keep track of produced adorned predicates

14 D := D ∪ {〈q, s〉}; // flag the adorned predicate as done

15 return Π′;

in Example 1.1 is such that c(X,Y) ≺ a(X,Y) ≺ b(Y), bnd(c(X,Y)) = {X}, {Y } ⊆
bnd(a(X,Y)) ⊆ {X,Y } (i.e., variable Y is bound after processing a(X,Y)), and ∅ ⊆
bnd(b(Y)) ⊆ {Y } (i.e., whether Y is bound after processing b(Y) is irrelevant). �

The magic sets procedure is reported as Algorithm 1. It starts by producing the magic

seed, obtained from the predicate and the constants in the query. After that, the algorithm

processes each produced adorned predicate: each rule defining the predicate is modified

so to restrict the range of the head variables to the tuples that are relevant to answer

the query; such a relevance is encoded by the magic rules, which are produced for all

intentional predicates in the bodies of the modified rules.

Proposition 2.1 (Theorem 5 of Alviano et al. 2011)

Let q(t) be a query for a program Π, and Π′ be the output of MS(q(t),Π). Thus,

answer(q(t),Π) and answer(q(t),Π′) are equal.

3 Improved strategies for the magic sets algorithm

The three sources of inefficiency of magic sets that have been identified in the introduction

are detailed and addressed in this section.

3.1 Inhibit new cycles

Magic sets may introduce new cycles in the dependency graph of the processed program,

as shown in Example 1.1. Such new cycles are due to the binding information passed by

body literals to other body literals, and therefore strictly dependent from the adopted

SIPS. In fact, new cycles can be inhibited by a drastic restriction on all SIPS 〈≺, bnd〉

https://doi.org/10.1017/S1471068419000115 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000115

Enhancing Magic Sets with an Application to Ontological Reasoning 661

Algorithm 2: MS-RS(Q(T): a query atom, Π: a program)

1 Let s be such that |s|=|T|, and si = b if Ti is a constant, and f otherwise, for all i ∈ [1..|s|];
2 Π′ := {Qs(T).}; // rewritten program: start with the magic seed

3 S := {〈Q, s〉}; // set of produced adorned predicates

4 D := ∅; // set of processed (or done) adorned predicates

5 G := GΠ ∪ {〈p,m#p〉 | p is a predicate occurring in Π}; // monitor SCCs

6 while S �= D do

7 〈q, s〉 := any element in S \D; // select an undone adorned predicate

8 foreach r ∈ Π such that H(r) = q(t) for some list t of terms do

9 Π′ := Π′ ∪ {q(t) :– qs(t) ∧B(r).}; // restrict range of variables

10 Let (≺, bnd) be the SIPS for r with respect to s;

11 foreach � ∈ B(r) such that p(t′) ∈ At(�) and p is an intentional predicate of Π do

12 G := G ∪ {〈m#p,m#q〉};
13 B := ∅; // restrict SIPS to preserve strongly connected comp.

14 foreach �′ ∈ B(r) such that �′ ≺ � and p′(t′′) ∈ At(�′) do
15 if {C ∩At(Π) | C ∈ SCCs(G ∪ {〈m#p, p′

〉})} = SCCs(GΠ) then

16 B := B ∪ {�′}; G := G ∪ {〈m#p, p′
〉};

17 Let s′ be such that |s′| = |t′|, and s′i = b if t′i is a constant or belongs to bnd(�′)
for some �′ ∈ {H(r)} ∪B such that �′ ≺ �, and f otherwise, for all i ∈ [1..|s′|];

18 Π′ := Π′ ∪ {ps′(t′) :– qs(t) ∧B.}; // add magic rule

19 S := S ∪ {〈p, s′〉}; // keep track of produced adorned predicates

20 D := D ∪ {〈q, s〉}; // flag the adorned predicate as done

21 return Π′;

enforcing � ⊀ �’ for all �, �′ in B(r): this way, all magic rules would contain only magic

atoms, and therefore no arc from magic predicates to original predicates would be intro-

duced in the dependency graph. However, the drastic restriction is likely to significantly

reduce the benefit of magic sets, as the stronger the restriction on SIPS is, the more

atoms are considered relevant to answer a given query. Hence, the goal of this section is

to introduce a more relaxed restriction on SIPS, which just prevents the creation of new

cycles, but still admit the introduction of new dependencies.

For a graph G and a set of arcs E, let G ∪ E denote the graph obtained from G by

adding each arc in E. Moreover, let SCCs(G) be the set of strongly connected components

(SCC) of G, where a SCC of G is a maximal set C of nodes of G such that G contains

a path from every p ∈ C to every q ∈ C \ {p}. A revised version of magic sets enforcing

a restriction on SIPS is shown as Algorithm 2. Note that lines 5 and 12–16 implement

a restriction of SIPS guaranteeing that no strongly connected components of GΠ are

merged during the application of magic sets. Specifically, a graph G is initialized with

the arcs of GΠ and arcs connecting each predicate p with a representative magic predicate

m#p (line 5). After that, before creating a new magic rule, elements of B(r) that would

cause a change in the strongly connected components of G are discarded (lines 13–16).

Graph G is updated with new arcs involving original predicates and representative magic

predicates, so that it represents a superset of the graph obtained from GΠ′ by merging

all pairs of nodes of the form m#p#s, m#p#s′.

https://doi.org/10.1017/S1471068419000115 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000115

662 M. Alviano et al.

Example 3.1

Consider Π1, query c(0,Y), and SIPS from Example 1.1. Algorithm 2 returns the following

program:

r20 : m#c#bf(0).

r21 : m#a#bf(X) :- m#c#bf(X).

r22 : m#b#f :- m#c#bf(X).

r23 : m#b#b (X) :- m#a#bf(X), edb(X,Y).

r24 : a(X,Y) :- m#a#bf(X), edb(X,Y),b(X).

r25 : b(X) :- m#b#f, edb(X,Y).

r26 : b(X) :- m#b#b(X), edb(X,Y).

r27 : c(X,Y) :- m#c#bf(X), a(X,Y), b(Y).

Note that rule r6 from Example 1.1 is replaced by rule r22, so to avoid the creation of

a cycle involving a and b. Note also that predicate b is now associated with two magic

predicates, which may reduce the performance of a bottom-up evaluation; this source of

inefficiency is addressed in the next section. �

Theorem 3.1

Let q(t) be a query for a program Π, and Π′ be the output of MS(q(t),Π) with restricted

SIPS. Thus, answer(q(t),Π) and answer(q(t),Π′) are equal. Moreover, if C ′ ∈ SCCs(Π′),
then there is C ∈ SCCs(Π) such that C ′ ∩ At(Π) ⊆ C.

Proof

Equality of answer(q(t),Π) and answer(q(t),Π) is a consequence of the correctness of

magic sets for any choice of SIPS (Proposition 2.1). In fact, the restriction on SIPS

applied by algorithm MS-RS still results into SIPS. For C ′ ∈ SCCs(GΠ′), we shall show

that there is C ∈ SCCs(GΠ) such that C ′ ∩At(Π) ⊆ C. Actually, there is C ∈ SCCs(G)

such that C ′∩At(Π) ⊆ C∩At(Π). Hence, the claim follows from the fact that C∩At(Π) ∈
SCCs(GΠ) is enforced by the condition in line 15 of Algorithm 2.

An immediate consequence of the above theorem is that magic sets with restricted SIPS

are a closed rewriting for the class of programs with stratified negation and aggregations.

3.2 Handle full-free adornments

Adornments containing only fs are produced in presence of predicates whose arguments

are all free. In such cases, all of the extension of the predicate in the stable model of

the input program is relevant to answer the given query. It turns out that the range of

the object variables of all rules defining such predicates cannot be restricted, and indeed

the magic sets rewriting includes a copy of these rules with a magic atom obtained

from the full-free adornment. Possibly, the magic sets rewriting includes other copies

of these rules obtained by different adornments, which can be removed if magic rules

are properly modified. Specifically, magic rules associated with predicates for which a

full-free adornment has been produced have to become definitions of the magic atom

obtained from the full-free adornment. The strategy is summarized in Algorithm 3, and

can be efficiently implemented in two steps: a first linear traversal of the program to

identify predicates of the form m#p#f · · · f and to flag predicate p; a second linear

traversal of the program to remove and rewrite rules with predicate m#p#s, for all

flagged predicates p.

https://doi.org/10.1017/S1471068419000115 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000115

Enhancing Magic Sets with an Application to Ontological Reasoning 663

Algorithm 3: FullFree(Π: a program obtained by executing magic sets)

1 foreach m#p#f · · · f occurring in Π do

2 foreach m#p#s occurring in Π such that s �= f · · · f do

3 remove all rules of Π having m#p#s in their bodies;

4 replace m#p#s(t) by m#p#f · · · f in all rule heads of Π;

5 return Π;

Example 3.2

Consider rule r15 from the introduction, a(X):- b(X), a(Y), not c(X,Y), and its magic

sets rewriting with respect to query a(0):

r16 : m#a#b(0).

r17 : m#a#f :- m#a#b(X).

r18 : a(X) :- m#a#b(X), b(X), a(Y), not c(X,Y).

r19 : a(X) :- m#a#f, b(X), a(Y), not c(X,Y).

Algorithm 3 removes rules r17 and r18 because of m#a#b(X) in their bodies, and replaces

rule r16 with the fact m#a#f. �

Theorem 3.2

Let q(t) be a query for a program Π, and Π′ be the output of FullFree(MS(q(t),Π)).

Thus, answer(q(t),Π) and answer(q(t),Π′) are equal.

Proof

Let I be SM (Π′′). The stable model of Π′ is obtained from I by performing the follow-

ing operation for all m#p#f · · · f occurring in Π′′: replace all instances of m#p#s by

m#p#f · · · f .

3.3 Efficiently detect subsumed rules

A rule r subsumes a rule r′, denoted r � r′, if there is a substitution σ such that

H(r)σ = H(r′) and B(r)σ ⊆ B(r′). Subsumed rules are redundant in the sense that any

atom derivable from r′ is also derived from r if r � r′; indeed, for any substitution θ

and interpretation I such that B(r′)θ is ground and I |= B(r′)θ, it holds that B(r)σθ is

ground, I |= B(r)σθ (because B(r)σθ ⊆ B(r′)θ), and H(r)σθ = H(r′)θ. Hence, r � r′

implies SM (Π) = SM (Π \ {r′}), and therefore all subsumed rules can be removed from

a program before starting its bottom-up evaluation. However, checking subsumption is

NP-complete in general, and therefore computationally expensive if ran for all pairs of

rules in a program.

Algorithm 4: Subsumption(Π: a program)

1 foreach distinct r, r′ ∈ Π such that hash(r) & hash(r′) = hash(r) do

2 if subsumes(r, r′) then remove r′ from Π;

3 return Π;

https://doi.org/10.1017/S1471068419000115 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000115

664 M. Alviano et al.

Function Subsumes(r, r′)

1 S := [
〈
OneWayUnify(H(r), H(r′)), B(r)

〉
];

2 while S �= ∅ do

3 〈σ, B〉 := S.pop();

4 if σ is a function then

5 if B = ∅ then return true;

6 foreach � ∈ B and �′ ∈ B(r′) do S.push(
〈
σ ∪OneWayUnify(�, �′), B \ {�}〉);

7 return false;

Function OneWayUnify(�, �′)

1 if � and �′ have different predicates, or are not both positive literals, negative literals, or

aggregates then return {X �→ 0, X �→ 1};
2 Let t and t′ be the terms in � and �′ (for aggregates, symbol : is considered as a constant);

3 if |t| �= |t′|, or ∃i ∈ [1..|t|] s.t. ti is a constant and ti �= t′i then return {X �→ 0, X �→ 1};
4 return {ti �→ t′i | i ∈ [1..|t|], ti is a variable}; // possibly a function

The number of performed checks is significantly reduced by means of an hash function

that associates each rule with a bit string of fixed length and satisfying the following

invariant:

if hash(r) & hash(r′) �= hash(r), then r �� r′ (1)

where & is the bitwise and operator. Specifically, the hash value associated with a rule

is designed to be a string of 64 bits computed as follows from the less significant bits of

predicate ids and constant ids occurring in the rule: 8 bits for the bitwise or of predicate

ids in H(r) (only one predicate for the language considered in this paper); 8 bits for

the bitwise or of constants ids in H(r); 16 bits for the bitwise or of predicate ids in

B+(r)∪BA(r); 16 bits for the bitwise or of constant ids in B+(r)∪BA(r); 8 bits for the

bitwise or of predicate ids in B−(r); 8 bits for the bitwise or of constants ids in B−(r).
The idea underlying the above hash function is that all constants and predicates oc-

curring in H(r), B+(r)∪BA(r) and B−(r) have to also occur in H(r′), B+(r′)∪BA(r′)
and B−(r′) in order to have r � r′. The invariant (1) eventually detects pairs of rules

not satisfying this property, so to avoid the more expensive backtracking procedure for

them. Algorithm 4 summarizes the strategy implemented for removing subsumed rules

from programs: when the condition on the hash values is satisfied, use backtracking to

build a substitution σ.

Example 3.3

Consider the following rules from the introduction:

r : q(X) :- p(X,Y). r′ : q(X) :- p(X,a). r′′ : q(X) :- p(X,Y), t(X).

and the following predicate and constant ids: id(q) = 01, id(p) = 10, id(t) = 11, id(a) =

01, where for simplicity only 2 bits are used. The hash values of the rules above (using

only 2 bits for each portion of the hash value) are the following:

• hash(r) = 010010000000;

• hash(r′) = 010010010000;

• hash(r′′) = 010011000000.

https://doi.org/10.1017/S1471068419000115 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000115

Enhancing Magic Sets with an Application to Ontological Reasoning 665

Note that hash(r′) & hash(r′′) = 010010000000 �= hash(r′), and in fact r′ �� r′′. On the

other hand, hash(r) & hash(r′) = 010010000000 = hash(r), and r � r′. �

Theorem 3.3

Invariant (1) is satisfied by the proposed hash function.

Proof

Let hash(r) & hash(r′) �= hash(r). Hence, there is i ∈ [1..64] such that hash(r) = 1 and

hash(r′) = 0. If i ∈ [1..8], then predicate ids of H(r) and H(r′) disagree on their less

significant 8 bits, and therefore they are necessarily different predicates; thus, r �� r′

holds. If i ∈ [9..16], then H(r) contains a constant whose (i− 8)-th less significant bit is

1, while no constant in H(r′) has this property; it turns out that H(r) has a constant

not occurring in H(r′), and therefore r �� r′ holds also in this case. The remaining cases

are similar.

4 Experiment

The proposed enhancements are implemented in i-dlv 1.1.4, and compared against the

performance of the previous magic sets rewriting implemented in i-dlv 1.1.3. Binaries are

available at https://github.com/DeMaCS-UNICAL/I-DLV/releases. The experiment

comprises synthetic instances from Example 1.1 with facts edb(0..1000000*size), where

size ranges in [1..10], to show the potential impact of the prevention of new cycles. Ad-

ditional instances are obtained from LUBM (http://swat.cse.lehigh.edu/projects/

lubm/) by generating instances with 50*size universities, where size ranges in [1..20],

with the aim to measure the impact of the hashing technique to prevent subsumption

checks. All tests were run on a Dell server with 8 CPU Intel Xeon Gold 6140 2.30GHz,

RAM 297GB, and HDD 3.29TB 7200rpm. Each test was limited to 1200 seconds of

execution time and 250GB of memory consumption.

Concerning the scalability tests, time and memory usage are plotted on Figure 2. For

program Π1, the execution time of the new rewriting is around 62% of the execution time

of the previous rewriting on average; similarly, the new rewriting only used around 68% of

the memory required by the previous rewriting. These results confirm that the proposed

restriction to SIPS may lead computational advantages also for positive programs. The

advantage is much more evident for program Π2, that is, the one for which negative

cycles may be introduced by magic sets. Indeed, in this case the new rewriting only

needs around 12% of the execution time and around 16% of the memory required by the

previous rewriting on average. Finally, concerning program Π3, the previous rewriting

could not be tested because it introduced recursive aggregates, as expected; the new

rewriting, instead, performed as for Π2, with an average execution time of 4.5 seconds

and an average memory consumption of 1.4 GB.

As for LUBM, its Datalog encoding consists of 132 rules and 83 predicate names, which

become 382 rules and 216 predicate names after running magic sets as implemented in

i-dlv 1.1.3. Within i-dlv 1.1.4, instead, the magic sets rewriting comprises 210 rules

and 118 predicate names. In fact, several rules and predicate names are removed be-

cause of full-free adornments. A few additional rules, precisely 17, are filtered out by the

subsumption checks. Within this respect, it is interesting to observe that the number of

subsumption checks to perform without the hashing technique presented in Section 3.3 is

https://doi.org/10.1017/S1471068419000115 Published online by Cambridge University Press

https://github.com/DeMaCS-UNICAL/I-DLV/releases
http://swat.cse.lehigh.edu/projects/lubm/
http://swat.cse.lehigh.edu/projects/lubm/
https://doi.org/10.1017/S1471068419000115

666 M. Alviano et al.

Fig. 2. Scalability results with respect to time (left) and memory (right)

37 600, in contrast to a significantly smaller number of 1 159 checks actually performed;

the hashing technique reduced by around 97% the number of subsumption checks. Finally,

concerning execution time, both versions scale almost linearly, with a slight advantage

of the new magic sets: i-dlv 1.1.3 reported an average execution time of around 529 sec-

onds, with a minimum of around 42 seconds and a maximum of around 1060; i-dlv 1.1.4

reported an average execution time of around 502 seconds, with a minimum of around

40 seconds and a maximum of around 1027.

5 Related work

Magic sets were originally introduced for Datalog programs (Bancilhon et al. 1986),

and applied among other contexts to bottom-up analysis of logic programs (Codish and

Demoen 1995) and BDD-Based Deductive DataBases (Whaley et al. 2005). Extending

the technique to Datalog programs with stratified negation was nontrivial, as the perfect

model semantics is not applicable to the rewritten program if recursive negation is in-

troduced by magic sets. Several semantics were considered in the literature to overcome

the limitation of perfect model semantics. Among them, some authors defined ad-hoc

semantics for rewritten programs (Kerisit and Pugin 1988; Balbin et al. 1991; Behrend

2003), while Kemp et al. (1995) and Ross (1994) considered well-founded semantics, and

showed that the well-founded model of any rewritten program obtained from a Datalog

program with stratified negation is two-valued.

https://doi.org/10.1017/S1471068419000115 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000115

Enhancing Magic Sets with an Application to Ontological Reasoning 667

A similar semantic issue arises for aggregations (Mumick et al. 1990; Furfaro et al.

2002), as there is no general consensus for recursive aggregates (Alviano and Faber 2018).

This fact explains why dlv did not support (dynamic) magic sets (Alviano et al. 2012)

for programs with aggregates, even if their correctness was shown also for programs

with some form of aggregation (Alviano et al. 2011). In fact, even if techniques to pro-

cess programs with recursive aggregates are known (Gebser et al. 2009; Alviano et al.

2015; 2016), they are in general less efficient than those for stratified aggregates; for

example, shared aggregate sets (Alviano et al. 2018) are currently implemented in wasp

(Dodaro et al. 2011; Alviano et al. 2019) only in the stratified case.

Magic sets were applied to other extensions of Datalog, in particular to disjunctive

Datalog under stable model semantics (Greco 2003; Greco et al. 2005). For disjunctive

Datalog, dynamic magic sets push the optimization on all phases of the computation of

stable models (Alviano et al. 2012), and are shown to be correct for a semantic class

known as super-coherent programs (Alviano and Faber 2011; Alviano et al. 2014). The

restriction on SIPS applied in Section 3.1 necessarily limits the optimization of dynamic

magic sets to the grounding phase, which is anyhow the only computation phase for

the language considered in this paper. On the other hand, the restriction on SIPS pre-

sented in this paper does not inhibit the application of magic sets to programs char-

acterized by multiple stable models: magic sets would still optimize the grounding of

those programs, so that other highly optimized techniques for computing cautious con-

sequences of propositional programs can be employed (Alviano et al. 2014; Alviano et al.

2018), among them those based on unsatisfiable core analysis (Alviano and Dodaro 2016;

Alviano and Dodaro 2017).

6 Conclusion

Magic sets aim at optimizing query answering, but they may introduce recursive defini-

tions that possibly deteriorate the performance of a bottom-up evaluation of the rewritten

program. Previous works in the literature noted the problem for programs with stratified

negation, and proposed several solutions to the associated semantic issue. By imposing

some restriction on SIPS, this paper provides a simple solution to semantic issues arising

for programs with stratified negation and aggregations, which also inhibits the creation

of new positive recursive definitions (Section 3.1). The role of magic atoms is to restrict

the range of variables in the original rules of the processed program. When all arguments

of a predicate have to be considered free, a full-free adornment is generated. Any other

adornment associated with such a predicate only introduces overhead in the evaluation of

the rewritten program. This paper proposes a post-processing of the rewritten program to

purge full-free adornments, in contrast to more complex unroll procedures (Section 3.2).

Further overhead is associated with subsumed rules. Their identification is nontrivial and

addressed by a backtracking algorithm. Even if there are few branching points, actually

only if there are multiple occurrences of the same predicate in rule bodies, running the

backtracking algorithm for all pairs of rules in the rewritten program is expensive. The

hashing technique given in Section 3.3 provides a drastic reduction on the number of

checks.

https://doi.org/10.1017/S1471068419000115 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000115

668 M. Alviano et al.

Acknowledgments

This work has been partially supported by MIUR under project “Declarative Reasoning

over Streams” (CUP H24I17000080001) – PRIN 2017, by MISE under project “S2BDW”

(F/050389/01-03/X32) – “Horizon2020” PON I&C2014-20, by Regione Calabria under

project “DLV LargeScale” (CUP J28C17000220006) – POR Calabria 2014-20, and by

GNCS-INdAM.

References

Adrian, W. T.,Alviano, M.,Calimeri, F.,Cuteri, B.,Dodaro, C., Faber, W., Fuscà, D.,
Leone, N., Manna, M., Perri, S., Ricca, F., Veltri, P., and Zangari, J. 2018. The ASP
system DLV: advancements and applications. KI 32, 2-3, 177–179.

Alviano, M., Amendola, G., Dodaro, C., Leone, N., Maratea, M., and Ricca, F.

2019. Evaluation of disjunctive programs in WASP. In M. Balduccini, Y. Lierler, and
S. Woltran (Eds.), Logic Programming and Nonmonotonic Reasoning - 15th International
Conference, LPNMR 2019, Philadelphia, PA, USA, June 3-7, 2019, Proceedings, Volume
11481 of Lecture Notes in Computer Science, pp. 241–255. Springer.

Alviano, M., Calimeri, F., Dodaro, C., Fuscà, D., Leone, N., Perri, S., Ricca, F.,
Veltri, P., and Zangari, J. 2017. The ASP system DLV2. In M. Balduccini and T. Jan-

hunen (Eds.), Logic Programming and Nonmonotonic Reasoning - 14th International Con-
ference, LPNMR 2017, Espoo, Finland, July 3-6, 2017, Proceedings, Volume 10377 of Lecture
Notes in Computer Science, pp. 215–221. Springer.

Alviano, M. and Dodaro, C. 2016. Anytime answer set optimization via unsatisfiable core
shrinking. Theory and Practice of Logic Programming 16, 5-6, 533–551.

Alviano, M. and Dodaro, C. 2017. Unsatisfiable core shrinking for anytime answer set opti-
mization. In C. Sierra (Ed.), Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25, 2017, pp. 4781–
4785. ijcai.org.

Alviano, M., Dodaro, C., Järvisalo, M., Maratea, M., and Previti, A. 2018. Cautious
reasoning in ASP via minimal models and unsatisfiable cores. Theory and Practice of Logic
Programming 18, 3-4, 319–336.

Alviano, M., Dodaro, C., and Maratea, M. 2018. Shared aggregate sets in answer set
programming. Theory and Practice of Logic Programming 18, 3-4, 301–318.

Alviano, M., Dodaro, C., and Ricca, F. 2014. Anytime computation of cautious conse-
quences in answer set programming. Theory and Practice of Logic Programming 14, 4-5,
755–770.

Alviano, M. and Faber, W. 2011. Dynamic magic sets and super-coherent answer set pro-
grams. AI Commun. 24, 2, 125–145.

Alviano, M. and Faber, W. 2018. Aggregates in answer set programming. KI 32, 2-3, 119–124.

Alviano, M., Faber, W., and Gebser, M. 2015. Rewriting recursive aggregates in answer
set programming: back to monotonicity. Theory and Practice of Logic Programming 15, 4-5,
559–573.

Alviano, M., Faber, W., and Gebser, M. 2016. From non-convex aggregates to monotone
aggregates in ASP. In S. Kambhampati (Ed.), Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016,
pp. 4100–4194. IJCAI/AAAI Press.

Alviano, M., Faber, W., Greco, G., and Leone, N. 2012. Magic sets for disjunctive datalog
programs. Artif. Intell. 187, 156–192.

Alviano, M., Faber, W., and Woltran, S. 2014. Complexity of super-coherence problems in
ASP. Theory and Practice of Logic Programming 14, 3, 339–361.

https://doi.org/10.1017/S1471068419000115 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000115

Enhancing Magic Sets with an Application to Ontological Reasoning 669

Alviano, M., Greco, G., and Leone, N. 2011. Dynamic magic sets for programs with mono-
tone recursive aggregates. In J. P. Delgrande and W. Faber (Eds.), Logic Programming
and Nonmonotonic Reasoning - 11th International Conference, LPNMR 2011, Vancouver,
Canada, May 16-19, 2011. Proceedings, Volume 6645 of Lecture Notes in Computer Science,
pp. 148–160. Springer.

Balbin, I., Port, G. S., Ramamohanarao, K., and Meenakshi, K. 1991. Efficient bottom-up
computation of queries on stratified databases. J. Log. Program. 11, 3&4, 295–344.

Bancilhon, F., Maier, D., Sagiv, Y., and Ullman, J. D. 1986. Magic sets and other strange
ways to implement logic programs. In A. Silberschatz (Ed.), Proceedings of the Fifth ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems, March 24-26, 1986, Cam-
bridge, Massachusetts, USA, pp. 1–15. ACM.

Bartholomew, M., Lee, J., and Meng, Y. 2011. First-order semantics of aggregates in an-
swer set programming via modified circumscription. In Logical Formalizations of Common-
sense Reasoning, Papers from the 2011 AAAI Spring Symposium, Technical Report SS-11-06,
Stanford, California, USA, March 21-23, 2011. AAAI.

Beeri, C. and Ramakrishnan, R. 1991. On the power of magic. J. Log. Program. 10, 3&4,
255–299.

Behrend, A. 2003. Soft stratification for magic set based query evaluation in deductive
databases. In F. Neven, C. Beeri, and T. Milo (Eds.), Proceedings of the Twenty-Second
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 9-12,
2003, San Diego, CA, USA, pp. 102–110. ACM.

Codish, M. and Demoen, B. 1995. Analyzing logic programs using “PROP”-ositional logic
programs and a magic wand. J. Log. Program. 25, 3, 249–274.

Dodaro, C., Alviano, M., Faber, W., Leone, N., Ricca, F., and Sirianni, M. 2011. The
birth of a WASP: preliminary report on a new ASP solver. In F. Fioravanti (Ed.), Pro-
ceedings of the 26th Italian Conference on Computational Logic, Pescara, Italy, August 31 -
September 2, 2011, Volume 810 of CEUR Workshop Proceedings, pp. 99–113. CEUR-WS.org.

Eiter, T., Ortiz, M., Simkus, M., Tran, T., and Xiao, G. 2012. Query rewriting for horn-
shiq plus rules. In J. Hoffmann and B. Selman (Eds.), Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence, July 22-26, 2012, Toronto, Ontario, Canada.
AAAI Press.

Faber, W., Pfeifer, G., and Leone, N. 2011. Semantics and complexity of recursive aggre-
gates in answer set programming. Artif. Intell. 175, 1, 278–298.

Ferraris, P. 2011. Logic programs with propositional connectives and aggregates. ACM Trans.
Comput. Log. 12, 4, 25.

Furfaro, F., Greco, S., Ganguly, S., and Zaniolo, C. 2002. Pushing extrema aggregates
to optimize logic queries. Inf. Syst. 27, 5, 321–343.

Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. 2009. On the implementation
of weight constraint rules in conflict-driven ASP solvers. In P. M. Hill and D. S. Warren

(Eds.), Logic Programming, 25th International Conference, ICLP 2009, Pasadena, CA, USA,
July 14-17, 2009. Proceedings, Volume 5649 of Lecture Notes in Computer Science, pp. 250–
264. Springer.

Gelder, A. V. 1989. Negation as failure using tight derivations for general logic programs. J.
Log. Program. 6, 1&2, 109–133.

Gelder, A. V., Ross, K. A., and Schlipf, J. S. 1991. The well-founded semantics for general
logic programs. J. ACM 38, 3, 620–650.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Comput. 9, 3/4, 365–386.

Gelfond, M. and Zhang, Y. 2014. Vicious circle principle and logic programs with aggregates.
Theory and Practice of Logic Programming 14, 4-5, 587–601.

https://doi.org/10.1017/S1471068419000115 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000115

670 M. Alviano et al.

Greco, G., Greco, S., Trubitsyna, I., and Zumpano, E. 2005. Optimization of bound
disjunctive queries with constraints. Theory and Practice of Logic Programming 5, 6, 713–
745.

Greco, S. 2003. Binding propagation techniques for the optimization of bound disjunctive
queries. IEEE Trans. Knowl. Data Eng. 15, 2, 368–385.

Kemp, D. B., Srivastava, D., and Stuckey, P. J. 1995. Bottom-up evaluation and query
optimization of well-founded models. Theor. Comput. Sci. 146, 1&2, 145–184.

Kerisit, J. and Pugin, J. 1988. Efficient query answering on stratified databases. In FGCS,
pp. 719–726.

Leone, N., Allocca, C., Alviano, M., Calimeri, F., Civili, C., Costabile, R., Cuteri,

B., Fiorentino, A., Fuscà, D., Germano, S., Laboccetta, G., Manna, M., Perri, S.,
Reale, K., Ricca, F., Veltri, P., and Zangari, J. 2019. Large scale DLV: preliminary
results. In A. Casagrande and E. G. Omodeo (Eds.), Proceedings of the 34th Italian Con-
ference on Computational Logic, Trieste, Italy, June 19-21, 2019., Volume 2396 of CEUR
Workshop Proceedings. CEUR-WS.org.

Leone, N., Allocca, C., Alviano, M., Calimeri, F., Civili, C., Costabile, R.,
Fiorentino, A., Fuscà, D., Germano, S., Laboccetta, G., Cuteri, B., Manna, M.,
Perri, S., Reale, K., Ricca, F., Veltri, P., and Zangari, J. 2019. Enhancing DLV
for large-scale reasoning. In M. Balduccini, Y. Lierler, and S. Woltran (Eds.), Logic
Programming and Nonmonotonic Reasoning - 15th International Conference, LPNMR 2019,
Philadelphia, PA, USA, June 3-7, 2019, Proceedings, Volume 11481 of Lecture Notes in Com-
puter Science, pp. 312–325. Springer.

Liu, L., Pontelli, E., Son, T. C., and Truszczynski, M. 2010. Logic programs with abstract
constraint atoms: The role of computations. Artif. Intell. 174, 3-4, 295–315.

Mumick, I. S., Pirahesh, H., and Ramakrishnan, R. 1990. The magic of duplicates and
aggregates. In D. McLeod, R. Sacks-Davis, and H. Schek (Eds.), 16th International Con-
ference on Very Large Data Bases, August 13-16, 1990, Brisbane, Queensland, Australia,
Proceedings., pp. 264–277. Morgan Kaufmann.

Pelov, N., Denecker, M., and Bruynooghe, M. 2007. Well-founded and stable semantics
of logic programs with aggregates. Theory and Practice of Logic Programming 7, 3, 301–353.

Przymusinski, T. C. 1989. On the declarative and procedural semantics of logic programs. J.
Autom. Reasoning 5, 2, 167–205.

Ross, K. A. 1994. Modular stratification and magic sets for datalog programs with negation.
J. ACM 41, 6, 1216–1266.

Simons, P., Niemelä, I., and Soininen, T. 2002. Extending and implementing the stable
model semantics. Artif. Intell. 138, 1-2, 181–234.

Stuckey, P. J. and Sudarshan, S. 1994. Compiling query constraints. In V. Vianu (Ed.),
Proceedings of the Thirteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, May 24-26, 1994, Minneapolis, Minnesota, USA, pp. 56–67. ACM Press.

Whaley, J., Avots, D., Carbin, M., and Lam, M. S. 2005. Using datalog with binary decision
diagrams for program analysis. In K. Yi (Ed.), Programming Languages and Systems, Third
Asian Symposium, APLAS 2005, Tsukuba, Japan, November 2-5, 2005, Proceedings, Volume
3780 of Lecture Notes in Computer Science, pp. 97–118. Springer.

https://doi.org/10.1017/S1471068419000115 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068419000115

	Introduction
	Background
	Improved strategies for the magic sets algorithm
	Inhibit new cycles
	Handle full-free adornments
	Efficiently detect subsumed rules

	Experiment
	Related work
	Conclusion
	References

