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Boundary conditions for free surface inlet and
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M. Taroni†, C. J. W. Breward, P. D. Howell and J. M. Oliver

Mathematical Institute, University of Oxford, 24–29 St Giles, Oxford OX1 3LB, UK

(Received 18 April 2012; revised 3 June 2012; accepted 4 June 2012;
first published online 10 August 2012)

We investigate and compare the boundary conditions that are to be applied to free-
surface problems involving inlet and outlets of Newtonian fluid, typically found in
coating processes. The flux of fluid is a priori known at an inlet, but unknown at an
outlet, where it is governed by the local behaviour near the film-forming meniscus. In
the limit of vanishing capillary number Ca it is well known that the flux scales with
Ca2/3, but this classical result is non-uniform as the contact angle approaches π. By
examining this limit we find a solution that is uniformly valid for all contact angles.
Furthermore, by considering the far-field behaviour of the free surface we show that
there exists a critical capillary number above which the problem at an inlet becomes
over-determined. The implications of this result for the modelling of coating flows are
discussed.
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1. Introduction
Free-surface fluid inlet and outlet flows are found in a large number of physical

situations, most notably industrial coating processes, where a thin film of fluid is
coated onto an underlying substrate. Examples include roll coating and screen printing,
shown in figure 1(a,b), with many more described in the literature and reviewed by
Weinstein & Ruschak (2004). The distinction is that at an outlet fluid flows out of
a filled channel and forms a free surface, while at an inlet the fluid flows into a
filled channel and a free surface terminates. A canonical problem that illustrates both
flows is that of a bubble slowly displacing a viscous fluid (figure 1c) considered by
Bretherton (1961).

Coating flows were traditionally modelled using lubrication theory (Savage 1982;
Wilson 1982), but this approach fails near a forming meniscus, where the flow is
essentially two-dimensional (Taylor 1963). More recently, it has become possible to
solve the full two-dimensional coating flow problems numerically (Coyle, Macosko
& Scriven 1990; Gaskell et al. 1995), but lubrication-based models remain popular
because of their simplicity and susceptibility to asymptotic analysis (Carou et al.
2009; Taroni et al. 2012). Furthermore, many of these flows involve a triple contact
line, which can give rise to a number of mathematical and computational issues. In
particular, when a contact line moves with respect to the substrate, this necessarily
leads to a non-integrable stress singularity (Dussan V. & Davis 1974), which must be
regularized, for example by adding slip (Hocking 1977).
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(c)(a) (b)

FIGURE 1. Sketches of (a) forward roll coating and (b) screen printing, examples of coating
processes involving inlets and outlets of fluid thin films. Lubrication theory breaks down near
forming and terminating menisci, which are labelled xf and xt respectively. (c) A canonical
problem exhibiting this behaviour is the Bretherton bubble.

Film-forming or outlet flows are often ‘self-metered’, in the sense that the fluid
flow and geometry combine to determine the thickness of the film, which is a priori
unknown. The question of what boundary conditions to apply within the context
of lubrication theory to determine the film thickness and location of the forming
meniscus has long interested theoreticians. Most of the early approximate theories
were concerned with understanding cavitation in journal bearings and were reviewed
by Savage (1977). A formal approach to the problem using matched asymptotic
expansions was first presented by Ruschak (1982) in the context of roll coating;
this method may be adapted for any film-forming flow but requires solving a local
Stokes flow problem, and so simpler approximations remain desirable.

The analogous problem at a fluid inlet has received considerably less attention in
the literature because in most practical problems the flow is ‘pre-metered’, that is, the
thickness of the film far upstream is known. At first glance, it would therefore appear
that there is one less degree of freedom compared with the outlet problem, leading
to an over-determined system when applying the classical Coyne & Elrod (1970)
boundary conditions at a terminating meniscus (Dowson & Taylor 1979). In practice,
it is often sufficient to ‘patch’ the two lubrication regions on either side (Moriarty
& Terrill 1996): the local behaviour near the meniscus is not crucial in determining
the global behaviour of the system. However, while this argument may be formally
justified in the limit of vanishing capillary number, at higher values lubrication theory-
based models for coating processes and numerical solutions to the full problems have
been found to disagree (Coyle et al. 1990).

The paper is laid out as follows. We begin in § 2 by analysing a general outlet
problem, where a meniscus forms, using matched asymptotic expansions following the
example of Ruschak (1982), and extend his analysis to account for a finite contact
angle. In § 3 we study the analogous problem at a fluid inlet, and, by considering the
far-field behaviour of the free surface, we determine the correct number of boundary
conditions that may be imposed. Finally, in § 4 we assess the implications of our
results to coating flows and propose avenues for future research.

2. Local problem near a forming meniscus
2.1. Governing equations and boundary conditions

We consider steady two-dimensional flow of a Newtonian fluid of viscosity η between
two surfaces of length L and arbitrary distance apart H(x) = εLf (x) (ε � 1), where
f (x) varies on an order-one length scale, with the lower surface (assumed flat for
simplicity) moving at speed U in the positive x direction. We assume that a fluid–air
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FIGURE 2. (a) Sketch of a typical outlet problem, with (b) magnified view of the local
problem near the forming meniscus. The motion of the lower surface is reversed for the case
of an inlet.

interface with surface tension γ forms at x = xc, and that the capillary number
Ca = ηU/γ = O(1). A sketch of the problem is given in figure 2(a). Upstream of the
meniscus, the governing Stokes equations may be non-dimensionalized appropriately
and, using standard methods of lubrication theory (see e.g. Ockendon & Ockendon
1995), reduced to the leading-order lubrication equations

u= 1− z

f
+ px

2
z(z− f ), (2.1a)

w= pxx

4

(
z2f − 2z3

3

)
+ z2fx

4

(
px − 2

f 2

)
, (2.1b)

px = 6
f 2
(1− 2Q), (2.1c)

for the velocity field (u,w) and pressure p(x), Q denoting the (constant) horizontal
flux.

The pressure is found by integrating (2.1c) subject to an appropriate upstream
condition. We then require two additional conditions to find the a priori unknown
meniscus position xc and flux Q. Near x = xc the flow is strictly two-dimensional and
the lubrication equations no longer hold. We therefore rescale to an inner region by
setting

x= xc + εx̄, z= f (xc)z̄, u= ū, w= f (xc)w̄/ε, p= εp̄, (2.2)

and for clarity denote all inner variables with an overbar. On this length scale, both
surfaces are flat to leading order, and the full two-dimensional Stokes flow equations
hold in the fluid:

∇p̄=∇2ū, ∇ · ū= 0. (2.3)

The boundary conditions are

ū= 1, w̄= 0 on z̄= 0, (2.4a)
ū= w̄= 0 on z̄= 1 (x̄< 0), (2.4b)

ū ·n= 0, t · σ̄ ·n= 0, n · σ̄ ·n= 1
Ca

h̄x̄x̄

(1+ h̄2
x̄)

3/2 on z̄= h̄(x̄), (2.4c)

h̄= 1, h̄x̄ = tan θ at x̄= 0, (2.4d)
h̄x̄→ 0 as x̄→∞, (2.4e)
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Boundary conditions for free surface inlet and outlet problems 103

where θ is the (prescribed) contact angle, and n and t are the outward unit normal
and unit tangent vectors to the free surface z̄ = h̄(x̄), respectively. (Of course, h̄(x̄) is
not uniquely defined if θ 6 π/2, in which case an arclength parametrization of the free
surface is more appropriate.) A sketch of the local problem is given in figure 2(b).
Finally, matching between the outer lubrication region (2.1) and the inner Stokes flow
region (2.3)–(2.4) leads to the boundary conditions

p= 0, px = 6
f 2
(1− 2q) at x= xc, (2.5)

for the lubrication regime, where the rescaled flux q(Ca, θ) = Q/f (xcL) is uniquely
determined as part of the numerical solution to the inner problem, which we discuss in
§ 2.2. The two boundary conditions (2.5) then allow us to solve (2.1c) for the pressure
and determine the meniscus position xc.

2.2. Numerical solution to inner problem

Equations (2.3)–(2.4) are solved using a finite element arbitrary Lagrangian–Eulerian
(ALE) formulation implemented using the COMSOL software. The procedure for
generating the finite element counterparts for the weak form of (2.3) using an ALE
formulation is well described elsewhere (see e.g. Christodoulou, Kistler & Schunk
1997), and so we only note some key points here.

The computational domain is formed by truncating the flow region far upstream and
downstream of the meniscus formation point. To apply the force balances (2.4c) on the
free surface ∂Ωf : y= h(ξ), we follow Ruschak (1980) by integrating by parts over the
free boundary, thus eliminating the explicit appearance of the surface curvature in the
equations: ∫

∂Ωf

φσ ·n ds= 1
Ca

∫
∂Ωf

t
dφ
ds

ds− 1
Ca

[φt]b
a, (2.6)

for a piecewise continuous test function φ, where ∂Ωf ≡ s ∈ [a, b]. The end-point
terms in (2.6) can be interpreted physically as shell forces due to surface tension.
Appropriate velocity boundary conditions at the inflow of our domain are given by
(2.1a,b). At the outflow, zero-force boundary conditions, namely σ · n = 0, were
implemented, which are consistent with plug flow. Here we also specified the slope
of the free surface, while it was left free at z̄ = 0: the correct contact angle was
imposed by solving iteratively for the flux q. Starting on a coarse initial mesh, the
domain (and hence flux) was updated using the computed mesh displacements, and the
process repeated on a finer mesh, with greater refinement near the contact line. After
several successively finer meshes, the solution involved O(106) degrees of freedom and
converged with a relative tolerance of 10−6.

A typical result for the fluid velocity is shown in figure 3, where we see the
flow transition from Couette flow upstream of the forming meniscus to plug flow far
downstream. The calculation was performed for a range of contact angles θ ∈ [0,π]
and capillary numbers Ca ∈ [10−4, 102], and the results for the flux are shown in
figure 4. At higher values of Ca, the free surface develops mesh-sized oscillations.
We believe that these are due to an insufficient mesh refinement away from the
contact point, and possible remedies are discussed in § 2.4. We note that our results
for θ = π/2 agree with those found using a similar finite element implementation by
Hewson (2009) in the range that they investigated, namely Ca ∈ [10−3, 1].
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FIGURE 3. (Colour online) Plot of fluid velocity |ū| near forming meniscus, taking Ca= 1
and θ = π/2.
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FIGURE 4. Main plot: numerical results (full lines) for the flux q(Ca) for contact angle
θ/π = {1/3, 1/2, 2/3, 5/6, 8/9, 17/18}. The asymptotic predictions (2.14) are also shown
(dashed lines). Inset: plot of F(φ) (full line), with its asymptotic behaviour for φ→ 0 and
φ→∞ (dashed lines).

2.3. Small capillary number limit
As Ca→ 0, the free surface is capillary-static to leading order and tangent to
z̄= x̄ tan θ at the contact point, with radius of curvature R= 1/(1+cos θ). By matching
this inner solution to a thin ‘transition’ region in which the Landau–Levich equation
holds (see e.g. Park & Homsy 1984), we find

q∼ ACa2/3

1+ cos θ
, (2.7)

where A≈ 1.337 57 is the usual Landau–Levich constant.
We observe that there is a non-uniformity as θ→ π and the denominator approaches

zero. We therefore consider the distinguished limit where θ = π − Ca1/3φ with
φ = O(1), Ca� 1. In this case the fluid domain is uniformly slender and we can
use the Landau–Levich equation everywhere. Rescaling by setting

h̄= qH, x̄= qCa−1/3(X − X0), (2.8)

for arbitrary X0, we find that (Landau & Levich 1942)

d3H

dX3
= 3(1− H)

H3
, (2.9)
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Boundary conditions for free surface inlet and outlet problems 105

subject to

H = 1
q
,

dH

dX
=−φ at X = X0, (2.10a)

H→ 1 as X→∞. (2.10b)

The Landau–Levich equation (2.9) has a unique solution satisfying the far-field
condition, up to an arbitrary translation, which may be fixed by setting

H ∼ 1+ exp(−31/3X) as X→∞. (2.11)

We can then plot q= F(φ) parametrically by varying X0, as shown in figure 4 (inset).
We know that H ∼ 1

2 AX2 + BX + C as X→−∞, where A is the Landau–Levich
constant. Hence, we get

F(φ)∼ 2A

φ2
as φ→∞, (2.12)

which agrees with (2.7) as θ→ π. At the other extreme we just use the linearization of
(2.11) about H = 1 to find

F(φ)∼ 1− φ

31/3
as φ→ 0. (2.13)

By combining (2.7) and (2.12) we obtain a uniformly valid solution to q as Ca→ 0,
namely

q∼ ACa2/3

(
1

1+ cos θ
− 2

(π− θ)2
)
+ F

(
π− θ
Ca1/3

)
. (2.14)

This is compared with the numerical results in figure 4, showing very good agreement
for Ca . 10−2.

We end this section by noting that, for π − θ � 1, the pressure at the meniscus,
given in inner variables by p̄= 1/R, is comparable to the upstream lubrication pressure
once the reduced capillary number Ca/ε3 = O(1). In this case (2.5) no longer holds,
and we may instead patch lubrication regions on either side of x = xc together by
applying continuity of pressure and flux, as in Moriarty & Terrill (1996).

2.4. Large capillary number limit
For large Ca, our numerical results suggest that q(Ca)→ q0 = O(1) as Ca→∞,
with q0 being independent of θ . This agrees with our expectation that the influence
of surface tension is felt only in a vanishingly small region close to the meniscus,
and similar results have been found for related problems (see e.g. Giavedoni & Saita
1997). However, better numerical results reaching higher values of Ca are required to
understand this limit. In particular, it may be preferable to use a boundary element
method, which would allow a finer discretization of the free surface.

3. Local problem near a terminating meniscus
3.1. Small capillary number limit

We now reverse the direction of the flow by setting x 7→ −x (or, equivalently, reverse
the direction of the moving boundary) and thus consider an inlet problem in which
a fluid–air interface terminates at x = xc. Although in many coating applications the
meniscus reattaches to a moving substrate at x = xc, leading to a dynamic contact line,
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here this is not the main point of interest. Indeed, we may circumvent it entirely by
considering a free surface that terminates without a contact line, as is the case at the
rear of a Bretherton bubble, for example.

The important distinction between an inlet problem and its analogous outlet problem
is that the flux Q (which is the quantity of interest in many applications) is assumed to
be determined by the flow far upstream. In the low-Ca limit, this is easily explained by
linearizing the Landau–Levich equation (2.9) about H = 1, which leads to

H ∼ 1+ C1 exp(−31/3X)+ C2 exp(31/3X/2) cos(35/6X/2+ C3), (3.1)

for constants Ci. It is therefore clear that the far-field condition H→ 1 eliminates two
free parameters at +∞, but only one at −∞, and so, when performing an asymptotic
analysis akin to § 2.3, we should be able to impose the flux in the inlet case, but not in
the outlet case considered in § 2. It is, however, not obvious how this result generalizes
for Stokes flow problems with arbitrary capillary number, and we investigate this in
§ 3.2.

3.2. Far-field analysis
We consider the canonical problem of steady Stokes flow of a Newtonian fluid
between a flat substrate y = 0 moving at unit speed and a free surface y = h(x).
We introduce a streamfunction ψ defined by

u= ∂ψ
∂z
, w=−∂ψ

∂x
, (3.2)

which satisfies the problem

∇4ψ = 0 for 0< z< h(x), (3.3a)
ψ = 0, ψz = 1 on z= 0, (3.3b)

u ·n= 0, t · σ ·n= 0, n · σ ·n= 1
Ca

hxx

(1+ h2
x)

3/2 on z= h(x). (3.3c)

We now linearize about plug flow by seeking solutions of the form

ψ = z+ εf (z) exp(mx), h= 1+ ε exp(mx), (3.4)

where ε� 1 and m ∈ C. The biharmonic equation and boundary conditions (3.3b) are
satisfied for

f (z)= Az sin(mz)+ B (sin(mz)− mz cos(mz)) , (3.5)

for constants A and B, and then upon application of the conditions (3.3c) at z = h(x)
we find that there are no non-trivial solutions unless

g(m)≡ 1
Ca
(cos m sin m− m)+ 2(m2 − cos2m)= 0. (3.6)

In figure 5 we plot the contours of Re(g), Im(g) = 0 for different values of Ca,
showing how the roots of (3.6) evolve. The far-field behaviour of the solution to the
free-surface problem (3.3) is determined by the solutions of (3.6) with smallest real
part. Although (3.6) was reported by Reinelt & Saffman (1985), they only considered
the behaviour of the negative real root; here we concentrate on the roots with positive
real part.

Taking the limit Ca→ 0 we find that the smallest roots approximately satisfy

m3 ∼−3Ca, (3.7)
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FIGURE 5. (Colour online) Contours of Re(g) = 0 (blue full lines) and Im(g) = 0 (red
dashed lines) of the function g(m) for various Ca: (a) Ca = 0.01; (b) Ca = 0.1; (c) Ca = 0.3;
(d) Ca= 1/π; (e) Ca= 0.4; and (f ) Ca= 5. The roots of g(m) are marked ‘•’.

which reproduces the thin-film scenario (3.1), in which there are two roots with
positive real part and one with negative real part. However, as Ca→∞ we find that

g(m)∼ 2(m2 − cos2m), (3.8)

and so the roots are symmetric about Re(m) = 0. This is to be expected since Stokes
flow without surface tension is completely reversible.

We find that the transition from there being two smallest roots with Re(m) > 0 to
just one occurs at the critical value

Cac = 1
π
. (3.9)

The local behaviour of the relation (3.6) near this critical value is approximated by the
cubic

(m− 1
2π)

3 ∼− 3
4π

2
(Ca− Cac), (3.10)

from which we see that a real root crosses π/2 as Ca crosses Cac. This is illustrated
in figure 5(d), where we see how at Ca = Cac the two complex roots with smallest
positive real part coalesce with a real root, which then takes over as the smallest root
for Ca> Cac.

3.3. Discussion
The result presented in the previous section explains the disappearance of capillary
waves at the rear meniscus of a Bretherton bubble, found numerically for ‘values of
Ca larger than 0.3’ (Giavedoni & Saita 1999). Furthermore, it shows that we may no
longer consider only the smallest eigenvalues to get the correct asymptotic behaviour
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as x→∞. Once the roots coalesce, we lose a degree of freedom: if only the smallest
eigenvalue is considered, for Ca > Cac the far-field solution for a terminating free
surface is uniquely determined up to translation (but different from the corresponding
solution at a forming meniscus for finite Ca).

For the Bretherton problem, for example, this suggests that we can no longer treat
the front and rear menisci separately, feeding in the leading-order flux from the front
meniscus to the rear one. The shape of the rear meniscus will depend on exponentially
small corrections from the front meniscus, and this suggests a weak dependence of
the flux–pressure relationship upon the length of the bubble. Numerical results in the
literature are inconclusive in this respect: Fujioka & Grotberg (2004) reported a weak
dependence on the bubble length at Ca = 0.4, but Campana et al. (2007) claimed
the opposite. Given that both sets of authors investigated relatively short bubbles, we
believe that a more detailed asymptotic and numerical study is required to understand
this phenomenon more fully.

For more general coating problems, we argue that a naive lubrication-type approach,
patching across terminating menisci and requiring only the local behaviour near
forming menisci to determine the global flux (and hence thickness of deposited film),
is no longer justified once Ca > Cac, since the local problem near a terminating
meniscus becomes over-determined. Instead, the flux should be found through a global
analysis of the entire coating process.

This result is consistent with our intuition that surface tension influences a
vanishingly small region as Ca → ∞. Indeed, when solving coating problems
numerically, the contact angle can eventually be allowed to select itself (Christodoulou
et al. 1997). Although it is perhaps surprising that the transition occurs at such a
low value of Ca, we note that even in the limit of vanishing capillary number the
inlet problem is significantly more delicate than the outlet one and can give rise to
a complicated asymptotic structure (Wilson & Jones 1983). Furthermore, numerical
evidence for a change in behaviour at moderate values of Ca was given for the case of
roll coating by Coyle et al. (1990), who found that xt and xf move closer together as
Ca increases, so that lubrication theory is no longer valid for the fluid between them.

4. Conclusions

The formation of a thin liquid film is a problem of great interest, as the flow
in the vicinity of the meniscus determines the fluid flux far downstream, which is
crucial in many coating applications. The correct procedure to analyse this problem
was first performed by Ruschak (1982) in the context of roll coating, but it is time-
consuming and needs to be adapted according to the exact geometry. Approximate
boundary conditions such as those by Reynolds (1886), Coyne & Elrod (1970) and
more recently Hewson, Kapur & Gaskell (2009) are thus likely to remain popular,
as they often give sufficiently accurate results. While we have extended the classical
result that the flux q ∼ Ca2/3 as Ca→ 0 to account for the contact angle, a full
understanding of the limit Ca→∞ remains open and warrants further attention.

Inlet problems involving a terminating fluid–air interface are generally less
interesting, as in most practical situations the local flow does not affect the global
behaviour of the system. However, we find that there is a critical value of the capillary
number above which the local problem appears to become over-determined, indicating
that it may no longer be treated in isolation. In such situations, we believe that a naive
decomposition of the problem using lubrication theory is no longer justified, and the
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full problem must be solved numerically, with the flux found globally as part of the
solution.
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