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Abstract. A three-dimensional study of the pump depletion and self-focusing
(hot spot) effect on stimulated Raman scattering (SRS) reflectivity is presented
within the paraxial-ray approximation. The reflectivity of SRS is observed to
exhibit a maximum value in the case of optimum SRS gain with pump
depletion. The reflectivity with pump depletion is less than without pump
depletion and is the usual three-wave interaction case. The effect of plasma
temperature on SRS reflectivity is also discussed.

1. Introduction

The reflection of laser light arising from parametric instabilities can be an
important process in laser fusion plasmas. In particular, the Raman
backscattering of laser light in an underdense region can prevent the light from
arriving at the critical density where enhanced absorption occurs. Stimulated
Raman scattering (SRS) is a major instability, which plays a very important
role in laser–plasma interaction. The SRS instability is the resonant decay of
the incident laser wave into a scattered electromagnetic (EM) wave and an
electron plasma wave. This electron plasma wave can have a very high phase
velocity (of the order of the velocity of light), and so can produce very energetic
electrons when it damps (Kruer 1988). Such electrons can preheat the fuel in
laser fusion applications. The Raman instability is of particularly significant
concern because of large reflectivity and high-energy electrons. Control of
laser–plasma instabilities such as SRS is very important for the success of laser
fusion. Much experimental and theoretical work has been devoted to the study
of the SRS instability (Thomson 1978; Karttunen 1980; Antonsen and More
1992; Kolber et al. 1993; Fernandez et al. 1996; Divol and Mounaix 1998;
Tzeng and Mori 1999; Berger et al. 1999; Baker et al. 1999). In spite of the great
deal of interest in SRS, the nonlinear saturation of the Raman process is not yet
fully understood.

Different mechanisms have been proposed to explain the nonlinear saturation
of the SRS process. One of these mechanisms involves competition between
SRS and stimulated Brillouin scattering (SBS). Walsh et al. (1984) observed a
strong correlation between the quenching of an SRS plasma wave and the
initiation of an SBS ion wave. Another possible nonlinear mechanism may arise
from further parametric decay of the SRS Langmuir wave (LW) into an ion
acoustic wave (IAW) and another LW, as has been seen experimentally by
Baker et al. (1996). Self-focusing instability may also be one of the mechanisms
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that may affect the SRS process. When a laser beam of finite size, having non-
uniform intensity distribution along its wave front, propagates in a plasma, it
modifies the background plasma density distribution and undergoes strong self-
focusing (hot spot). Thus the scattering of a laser beam should be strongly
affected by the non-uniformity in the intensity distribution of the laser.
Recently, Russell et al. (1999) used a two-dimensional simulation to study
nonlinear SRS from a laser hot spot when the LW from SRS processes further
decays into another LW and an IAW. They have studied the effect of self-
focusing on SRS reflectivity, and have shown that in the case of self-focusing,
the density profile has a V shape with a strong density gradient in the direction
of beam propagation (denoted by y). Without self-focusing, there is a density
channel resulting from the ponderomotive pressure of LWs, but it has a
relatively flat profile along y. These results predict that the ponderomotive
modification of the density profile appears to significantly lower the reflectivity
by a factor of three. Russell et al. (1999) also found that density-profile
modification and, in the case of higher laser intensity, pump depletion reduced
the reflectivity at T

e
¯ 1 keV. Pump depletion and ponderomotive density-

profile modification can reduce the dependence of the reflectivity on the IAW
damping-to-frequency ratio.

The motivation of the present work is to study nonlinear SRS in three-
dimensional geometry within the paraxial-ray approximation. The main
emphasis here is on the effect of pump depletion on self-focusing of the pump
laser beam, the stimulated backscattered laser beam, and consequently on the
SRS back-reflectivity. It has been demonstrated that the self-focusing effect
modifies the Raman gain through modified intensity and modified density due
to hot spots, and consequently the SRS reflectivity is affected. These two effects
(intensity}density) have the opposite effect on SRS gain, and the optimum
value of the intensity of laser power has been predicted when the gain is
maximum.

This paper is organized as follows. Section 2 describes the theoretical model
of SRS reflectivity in the presence of steady-state pump self-focusing and pump
depletion. Section 3 summarizes the main results from three-dimensional
simulation and the effect of various parameters that affect this reflectivity.

2. Model equation

A Gaussian laser beam is considered to be propagating in a hot, collisionless,
and homogenous plasma along the z direction; the initial intensity distribution
of the beam is given by

E
!
E$

!
r
z=!

¯E#
!!

exp 0®r#

r#
!

1 , (1)

where r is the radial coordinate of the cylindrical coordinate system and E
!!

is
the axial amplitude. The laser beam f-number F is defined as the ratio of the
beam waist r

!
to the laser vacuum wavelength (λ

!
¯ 2π c}ω

!
). To study the

scattering of the laser beam from an electrostatic wave in the plasma, we use
the wave equation

¡#E®¡(E[¡ ln ε)¯
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where ε is the dielectric constant of the plasma and J is the total current density
in the presence of the wave. The total electric field E in the plasma may be
expressed as

E¯E
!
exp (ω

!
t)E

s
exp (ω

s
t), (3)

where E
!

is the electric vector of the pump beam and E
s
is the electric vector

of the scattered wave. In this three-wave interaction (pump wave, plasma
wave, and scattered wave), the phase-matching condition is given by

ω
!
¯ω

s
ω, k

!
¯ k

s
k,

where ω
!

(ω
s
) and k

!
(k

s
) are the angular frequency and wavenumber of the

incident (scattered) wave respectively, and ω and k are the frequency and
wavenumber of the electron plasma wave. From (2) and (3), one obtains the
following equations governing the pump and scattered laser beam:
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Here N
!

is the background density, modified on account of the transverse
intensity gradients of the pump and scattered beam, and ω

pe
is the plasma

frequency. The transverse intensity gradient generates a ponderomotive force,
which modifies the plasma density profile in the transverse direction. This is
given by
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where

α
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6 k
B
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e
γ
e
m#ω#

!,s

,

N
!!

is the background electron density of the plasma in the absence of the laser
beam, e and m are the electron charge and mass respectively, M is the ion mass,
k
B

is Boltzmann’s constant, γ
e
is the ratio of specific heats for the electron gas,

and is taken equal to 3, and T
e
is the equilibrium plasma temperature. In (4) and

(5), N
e

is the electron density perturbation in the electron plasma wave.
Following the standard technique, one obtains the following equations for the
pump and scattered beam respectively (Kruer 1988):
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Using the paraxial-ray approximation, one can solve these coupled equations
(7) and (8). Writing

E
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substituting these into (7) and (8), respectively, and separating the real and
imaginary parts, the following sets of coupled equations are obtained. Equation
(7) gives
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Similarly, (8) yields
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The solution of (9) and (10) can be written as (Akhmanov et al. 1968)
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Similarly, for the scattered beam, we can get the following equations:
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Here G
srs

is the usual SRS gain for the three-wave interaction case, g
!
and g

s
are

the gain factors of the pump and scattered waves respectively, z«¯L
z
®z, L

z
is

the interaction length (which is approximately 250 times the free-space
wavelength of the laser), and r

s
is the beam width of the seed SRS at z«¯ 0. In

(12) and (13), f
!
and f

s
are dimensionless beamwidth parameters for the pump
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and backscattered laser beams respectively. The differential equations
governing f

!
and f

s
are
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In order to appreciate the effect of self-focusing (hot spot) on SRS
backreflectivity, we have derived an expression for the integrated reflectivity
(over space only). The integrated reflectivity is the ratio of the scattered power
! rE

s
(z«¯ 0r# drv to the input power !rE

!
(z¯ 0r# drv. By using the solution for

the scattered field from (13a–c), one obtains the following expression for the
integrated reflectivity:

R¯
E#

s!
(z«¯ 0)

E#
!!

(z¯ 0) 0
r#
!

r#
s

1 e−#gs(z=!)Lz. (17)

A strategy to minimize SRS is to decrease its spatial gain by decreasing the laser
wavelength and increasing the damping Γ

e
of the Langmuir waves, which

increases with increasing electron temperature or decreasing electron density
(Fernandez et al. 1996). Therefore we have obtained numerical results with
typical laser fusion parameters: the vacuum wavelength of the laser beam is
λ
!
¯ 351 nm, the top hot spot f-number is F¯ 4, the electron temperature is

taken to be T
e
¯ 2±5, 3, 3±5, or 4 keV, and the background density N

!!
¯ 0±2 N

c
,

where N
c
is the critical density. The intensity of the incident laser beam, I

!
is

chosen between 10"& and 10"' W cm−#, commonly encountered values being
(1–4)¬10"& W cm−#. The seed intensity is 10−% times the maximum intensity of
the pump. The results are presented in graphical form in Figs 1–5.

3. Discussion of numerical results

Before proceeding further, we should like to present the dynamical evolution of
the pump laser first, namely the creation of the hot spot. To study this, we have
numerically solved the system (14) and (15), employing the initial conditions
corresponding to a plane wave front of the laser at z¯ 0.

Figure 1 depicts the variation of the dimensionless beam-width parameter f
!

of the pump beam versus the distance of propagation ξ. The solid curve is the
case for the undepleted-pump case, while the dashed curve represents the
pump-depletion case. It shows that the undepleted beam becomes focused at
later ξ. It is obvious from these results that pump depletion affects the self-
focusing process of the pump wave significantly. Similarly, Fig. 2 depicts the
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Figure 1. Variation of dimensionless beam-width parameter f
!
of the pump laser beam versus

the dimensionless distance of propagation ξ (¯ z}R
d!

; R
d!

¯ k
!
r#
!
). The solid line corresponds

to the situation without pump depletion, the dashed line corresponds to pump depletion.
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Figure 2. Variation of dimensionless beam-width parameter f
s
of the scattered laser beam

versus the dimensionless distance of propagation ξ« (¯ z«}R
d!

). The solid line corresponds to
the situation without pump depletion; the dashed line corresponds to pump depletion.

variation of the dimensionless beam-width parameter f
s

of the backscattered
beam versus the distance of propagation ξ«. It is obvious that the beam first
becomes focused and then defocused. The pump-depleted and the undepleted
beam exhibit the same behaviour, but their beam widths are different. It is
apparent that the effect of pump depletion on the focusing of the scattered wave
is significant. This effect of pump depletion on f

!
and f

s
can be understood as

follows. The dimensionless beam widths of the pump and scattered beam
depend on the diffraction (the first term in (14) and (15)) and nonlinear
coupling term (the second term in (14) and (15)). For the initially given beam
widths of the pump and scattered beams, the diffraction term is not changed
much, but the nonlinear coupling term with and without pump depletion
changes significantly. Therefore, f

!
and f

s
, which depend on the combined effects

of diffraction and nonlinear coupling, are affected accordingly.

https://doi.org/10.1017/S0022377800008898 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377800008898


Effect of pump depletion and self-focusing on SRS 619

40.1

30.1

20.1

10.1

0.1

4.1

3.1

2.1

1.1

0.1
1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Gsrs

R(%)

Figure 3. Variation of the integrated reflectivity R versus G
srs

for T
e
¯ 2±5 keV and N

!!
¯

0±2 N
c
: D, pump depletion; *, without pump depletion; ^, three-wave interaction. The

pump-depletion case has also been enlarged in the inset.

In Fig. 3, we summarize the SRS reflectivity calculated from (17) with
varying SRS gain G

srs
at T

e
¯ 2±5 keV for the three-wave interaction case and

the self-focusing dominated case with and without pump depletion. The results
show that the SRS reflectivity increases with G

srs
for three-wave interaction

(triangles) and without pump depletion (squares). The pump-depletion case
(circles) has the potential to reduce the SRS reflectivity for gain exponents of
more than 6 by a significant factor in this regime. The reason for the maximum
reflectivity at an optimum G

srs
can be explained as follows. The integrated

reflectivity depends upon the gain of the scattered beam g
s
, (13d). But g

s

depends upon the background density as modified by the beam owing to the
ponderomotive force and the beam intensity. If, as a result of self-focusing
effects, the beam intensity increases and this increased intensity leads to a
greater reduction in the background density by the ponderomotive force, then
the gain first increases with increasing beam intensity, but later the reduction
in density is so large that it decreases the gain. Figure 4 shows the same
variation of SRS reflectivity with G

srs
, but at a higher temperature T

e
¯

3±5 keV. It is interesting to note here that the SRS reflectivity decreases by a
significant factor (of about 3) at higher temperature (R¯ 36% at T

e
¯ 2±5 keV,

while R¯ 11% at T
e
¯ 3±5 keV). Our numerical results support the exper-

imental results found by Fernandez et al. (1996) and presented in their Fig. 1.
Next, we present numerical results for SRS reflectivity at different kλ

d
(i.e.

different temperatures T
e
¯ 2±5, 3, 3±5, and 4 keV) for a peak hot-spot intensity

of 3¬10"& W cm−# and N
!!

¯ 0±2 N
c
. The increases in kλ

d
lead to an increase in

the Landau damping factor Γ
e

and a decrease in the SRS reflectivity. These
results are presented in Fig. 5.

In order to compare the effects of self-focusing on SRS reflectivity found by
ourselves and by Russell et al. (1999), we should like to mention here that, in
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Figure 4. Variation of the integrated reflectivity R versus G
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for T
e
¯ 3±5 keV and N
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¯

0±2 N
c
: D, pump depletion; *, without pump depletion; ^, three-wave interaction. The

pump-depletion case has also been enlarged in the inset.
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Figure 5. Variation of the integrated reflectivity R versus kλ
d

for a peak hot-spot
intensity of 3¬10"& W cm−# and N

!!
¯ 0±2 N

c
.

the latter study, they neglected the nA
!
term in the pump-wave equation and

the rA
!
r# term in the density equation. This eliminates the density response due

to the self-focusing of the laser light and trapping of the light in the
ponderomotive channel, and raises the reflectivity by a factor of 3. In our
study, we have not neglected these terms; we have studied the SRS reflectivity
in the self-focusing case and the three-wave interaction case when no self-
focusing is taken into account in the modified density and intensity of the laser
beam. Our results show that self-focusing and pump depletion reduce the SRS
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reflectivity by a factor of about 3 at the optimum value of G
srs

. But, in the case
of self-focusing without pump depletion, the SRS reflectivity is greater than in
the three-wave interaction case and the pump depletion case. Therefore,
modified intensity and density modification due to a hot spot play very
important roles in affecting the SRS gain and consequently the SRS back-
reflectivity.

In summary, we have seen that pump depletion and hot-spot formation
affect SRS reflectivity significantly. An optimum value for the reflectivity has
also been predicted at about 3¬10"& W cm−#, and turns out to be RE 4% for
an electron temperature T

e
¯ 2±5 keV.
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