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We consider transient flow in a box containing an isolated buoyancy source, ventilated
by a windward high-level opening and a leeward low-level opening, so that prevailing
wind acts to oppose buoyancy-driven flow. Hunt & Linden (J. Fluid Mech., vol. 527,
2005, p. 27) demonstrated that two stable steady states can exist above a critical wind
strength: buoyancy-driven displacement ventilation with a two-layer stratification
and wind-driven mixing ventilation with the whole interior contaminated by buoyant
fluid. We present two time-dependent models for this system: a nonlinear ordinary
differential equation (ODE) model following Kaye & Hunt (J. Fluid Mech., vol. 520,
2004, p. 135), assuming ‘perfect’ vertical mixing of fluid within each layer, and a
partial differential equation model assuming zero vertical mixing, following Germeles
(J. Fluid Mech., vol. 71, 1975, p. 601).

We apply these models to an initial-value problem – the filling box with constant
opposing wind. The interface between the upper hot plume fluid and the lower cool
ambient air can dramatically overshoot its final level before relaxing to equilibrium;
in some cases, a fully contaminated transient can occur before the buoyancy-driven
two-layer steady state is reached. However, we find that for an initially completely
uncontaminated box, the system converges to a stable wind-driven steady state
whenever it exists. By analysing phase diagrams of the ODE model for the flow,
we establish a general method of determining which final state is attained and also
explain the hysteresis observed by Hunt & Linden (2005). We confirm these transient
behaviours by conducting salt bath experiments in a recirculating flume tank and
establish quantitative agreement between theory and experiment. Our ‘zero mixing’
model is more accurate than our ‘perfect mixing’ model for our experiments, as the
upper layer remains stratified for a substantial time.

Key words: convection in cavities, plumes/thermals, turbulent mixing

1. Introduction
In many developed countries, a large proportion of final energy consumption

can be attributed to maintaining thermal comfort and air quality within residential
and commercial buildings. In particular, mechanical ventilation systems in large-scale
buildings entail a significant energy cost. In the United Kingdom, as in other countries
with temperate climates, there is considerable scope for relying instead on natural
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ventilation schemes. With growing concern about climate change and consensus over
the need to move towards a low carbon economy (Stern 2007), the energy savings
inherent in the use of natural ventilation mean that it can play a vital part in this
transition.

However, airflow in naturally ventilated buildings is currently poorly understood,
with many such buildings exhibiting unusual and undesirable patterns of thermal
behaviour. Reynolds and Péclet numbers are typically of the order of 104 or higher,
flows are turbulent and confined by complex geometries. Direct numerical simulation
of such flows requires accurate modelling of dynamics over a wide range of length
and time scales, and is thus extremely computationally costly. Hence, many studies
of natural ventilation have attempted to develop reduced models of interior flows
that capture the key flow phenomena relevant to building design (Linden 1999).
To date, most have focused on describing steady states reached in the presence of
steady forcing. In reality, however, heat loads, wind speeds and opening sizes may
all vary with time, and achieving an understanding of the complex time-dependent
phenomena that can occur is vital for design purposes. An instructive example is
that of a lecture theatre with both low-level and high-level air vents (Hunt & Linden
1998; Linden 1999). Were 500 people to enter such an auditorium and sit down, they
would collectively provide a steady heat source that in time might result in a steady
internal stratification. Typical engineering practice is to design according to known
results for the steady-state conditions. However, simple modelling indicates that the
time taken to reach this equilibrium may be as much as an hour. This provides a clear
illustration of why theoretical models need to capture transient behaviour accurately
in order to close the gap to design reality.

Linden et al. (1990) established a paradigm for the study of displacement ventilation
flows. They addressed the case of a room with one floor-level and one ceiling-level
opening, containing a single localised heat source at floor level. To simplify matters,
they considered a cuboidal box containing a point source of pure buoyancy. They
showed that a balance between a plume filling box flow and a draining box flow
results in a two-layer steady state in which an upper layer of warm plume fluid sits
above a lower layer of cool ambient fluid drawn in through the bottom opening
(see figure 1a). Drawing on the classical plume theory of Morton, Taylor & Turner
(1956, henceforth ‘MTT’) as well as the ‘filling box’ studies of Baines & Turner (1969)
and Worster & Huppert (1983), they showed that the steady-state interface height h

is independent of the source buoyancy flux B0. For a box of total height H , ĥ = h/H

satisfies

V =

(
A∗

C3/2H 2

)2

=
ĥ5

(1 − ĥ)
, C =

(
6α

5

)(
9απ2

10

)1/3

, (1.1)

where α is the ‘top-hat’ entrainment constant for a plume, assumed ≈0.1 (see Linden
2000; Turner 2006), A∗ is the ‘effective area’ of the openings and V thus may be
thought of as an appropriate non-dimensional parameter describing the vent area.
(Note that V = 1/µ2 in the notation of Kaye & Hunt 2004 and others.) If the top
opening has area AT , discharge coefficient cT , and the bottom opening has area AB ,
discharge coefficient cB (where each discharge coefficient accounts for the dissipative
losses of flow through the associated opening, dependent on its precise geometry and
the flow pattern around it – see for example Hunt & Holford 2000), then

A∗ =

√
2cBABcT AT√
c2
BA2

B + c2
T A2

T

. (1.2)
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Figure 1. (a) A schematic diagram for displacement ventilation: an ‘emptying filling box’ with
forward flow. (b) Hunt & Linden (2005)’s steady states for opposing wind. The scaled volume
flux out of the top opening QT /QH (where QH is defined in (1.7)) is plotted as a function of
W (as defined in (1.5)) with V = 1 (as defined in (1.1)). A positive flux (forward flow) solution
exists for all values of W . Two negative flux (reverse flow) solutions exist only for W 3V > 27/4;
one is unstable (dashed line) and the other is stable (full line). Dotted vertical lines indicate
the specific cases considered in detail later, whose time-dependent properties are plotted in
figure 3.

If we denote the density of the ambient fluid ρ and that of the upper layer ρ − �ρ,
then at equilibrium, the reduced gravity g′ = g�ρ/ρ in the upper layer is equal to its
value within the plume at a height h above the floor. Thus, we have

g′ = g′
P = C−1B

2/3
0 h−5/3, (1.3)

where we have assumed that the plume properties are determined by the classical
similarity solutions of MTT. The volume flux QT through the top opening balances
the volume flux QP in the plume at height h, so that

QT = A∗[g′(H − h)]1/2 = QP = CB
1/3
0 h5/3, (1.4)

where once again QP is given by the MTT similarity solutions. Linden et al. (1990)
also conducted salt bath experiments, which confirmed the existence of a steady-state
‘displacement ventilation’ flow.

If there is a prevailing wind blowing around a building, depending on the position
of the openings, it can either assist the action of buoyancy (Hunt & Linden 1999,
2001) or oppose it (Hunt & Linden 2000, 2005; Li & Delsante 2001). In the latter
situation, multiple steady states can exist for the same wind forcing, heat load and
room geometry. For the case of an isolated source of buoyancy, Hunt & Linden
(2005, henceforth HL05) showed that a stratified steady state with flow in the
forward (buoyancy-driven) direction theoretically exists for all wind strengths. Since
the reduced gravity in an ideal plume is singular as h → 0 (1.3), if the interface
approaches the floor of the box, the buoyancy of the upper layer can be arbitrarily
large, forcing the fluid out of the top opening irrespective of the strength of the
opposing wind. However, they demonstrated that for sufficiently strong wind, two
wind-driven steady states (one stable and the other unstable) can also exist. In these
states, flow is in the ‘reverse’ direction, with cool ambient air blown into the top
opening and warm air expelled from the bottom one. The interior of the box is fully
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contaminated with plume fluid and assumed to be a single well-mixed layer, leading
to the existence of a steady-state ‘mixing ventilation’ flow.

This multiplicity of solutions is illustrated in figure 1(b), in which we plot volume
flux out of the top opening as a function of wind strength for a single effective opening
area (cf. figure 2 of HL05). We here define the dimensionless opening parameter V

as in (1.1) and the dimensionless wind strength W as

W =
�p/ρ

g′
HH

. (1.5)

(Note that in the notation of HL05, W = Fr2.) Here, �p is the difference in ambient
pressure between the windward and leeward sides of the building, and g′

H is the
reduced gravity in the plume when it first reaches the top of an empty box,

g′
H = g′

P |h=H = C−1B
2/3
0 H −5/3. (1.6)

Volume flux through the top opening is scaled by QH , the volume flux in the plume
when it first reaches the top of an empty box,

QH = QP |h=H = CB
1/3
0 H 5/3. (1.7)

With respect to these newly defined parameters, the condition for the existence of
multiple steady states becomes

W 3V > 27/4. (1.8)

The existence of multiple steady states for a given forcing was confirmed
experimentally by HL05. The state adopted by the system was observed to be
dependent on the time-history of the flow, with the transitions between states
exhibiting hysteresis.

If a room contains a distributed rather than localised heat source at floor
level, plume-based displacement ventilation is not possible and it is then often
assumed that the interior is a single zone of uniform temperature regardless of
the direction of flow through it. For this case, the multiplicity of solutions in the
presence of opposing wind was established by Li & Delsante (2001), Li et al.
(2001) and Heiselberg et al. (2004), while time-dependent models for investigating
transitions between them have been developed by Yuan & Glicksman (2007),
Yuan & Glicksman (2008) and Lishman & Woods (2009). Thus far, however, the
more complex transient dynamics of the localised source scenario have not been
investigated.

Kaye & Hunt (2004, henceforth referred to as KH04) examined transient behaviour
in an emptying filling box in the absence of wind. Their model adopts a ‘quasi-steady
approach,’ in which the upper layer of plume fluid is assumed to be of uniform density
at all times. This is effectively an assumption of instantaneous and ‘perfect’ mixing
throughout this upper layer, valid in situations in which the time scale for mixing
(due to diffusion and the secondary flows caused by entrainment into the plume) is
much shorter than the time scale for movement of the interface. They studied the
evolution of the system from an empty box to the steady state predicted by Linden
et al. (1990) and observed that for a sufficiently small dimensionless opening area
(1/µ in their notation, V in ours, as defined in (1.1)), the system is underdamped
and the interface overshoots in equilibrium height. However, they also observed that
while the size of overshoot varies with V , it is at most 3.7 % of the total box height.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

58
47

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010005847
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This overshoot phenomenon would therefore appear to be too small to be of interest
to ventilation engineers. A similar ‘quasi-steady’ approach was employed by Bolster,
Maillard & Linden (2008) and Bower et al. (2008) for investigating the response of
an emptying filling box system at steady state to sudden changes in buoyancy source
strength. In this case, there are again small ‘overshoots’ in interface height before the
reduced gravity of the upper layer reaches its new equilibrium value. The presence
of opposing wind can change matters dramatically, however, as shown later in this
paper.

An alternative approach to modelling transient behaviour is to employ the type
of numerical scheme developed by Germeles (1975). This has been used in the
context of filling flows by Worster & Huppert (1983) and Caulfield & Woods (2002)
and in the context of emptying filling flows by Flynn & Caulfield (2006a), Bolster
et al. (2008) and Bolster & Caulfield (2008). This method assumes that horizontal
surfaces of constant density are advected downward by a vertical bulk return flow
that balances the upward plume volume flux. It therefore assumes that there is no
(vertical) mixing of fluid by diffusion or turbulent eddies, and treats each ‘layer’ of
fluid as a characteristic, whose location is then tracked with time. As such, the ‘perfect
mixing’ model of KH04 and the ‘zero mixing’ model of Germeles (1975) (henceforth
‘KH model’ and ‘Germeles model’ respectively) constitute end members of the possible
class of models for the evolution of density stratification in the interior.

Our aim in this paper is to investigate the transient behaviour of an emptying
filling box flow in the presence of steady opposing wind. We develop two theoretical
models for such a flow. In § 2, we derive a perfect-mixing KH model, which consists
of a coupled pair of nonlinear ordinary differential equations (ODEs) for interface
height and reduced gravity. In § 3, we present a zero-mixing Germeles model, a partial
differential equation (PDE) scheme for plume fluxes and reduced gravity in the hot
layer as a function of both time and vertical position. We apply our models to a
set of initial conditions – an empty box – and present the results in § 4. We discuss
both the transient phenomena seen and the final state reached for all physically
relevant regions of the V –W parameter space, including those in which HL05 have
demonstrated that two stable equilibria exist. A phase space analysis of the equations
governing the KH model is then used to predict which final state is attained for more
general initial conditions. In § 5, we describe the experimental procedures we employ
to simulate these flows. We adopt the ‘salt bath modelling’ approach of Linden et al.
(1990), in which dynamic similarity with ventilation flows is achieved on a reduced
laboratory scale by using water as a working fluid and salinity differences to create the
required buoyancy forces. We also make use of a novel method of flow visualisation
by dye attenuation, in which the apparatus is backlit using an electroluminescent tape
(Dalziel et al. 2008). In § 6, we compare our experimental results with the predictions
of our theoretical models before discussing the overall conclusions in § 7.

2. Perfect-mixing KH model
We extend KH04’s transient model, adapting expressions for flux through openings

to include the effect of wind. As well as the forward (buoyancy-driven) flow regime
(regime A), we also consider two reverse (wind-driven) flow regimes (see figure 2).
In the first reverse flow regime (regime B), the two-layer stratification is maintained.
We assume here that if a cold ambient fluid is blown into the top opening, this
fluid rapidly mixes with and cools the upper layer without overturning the whole
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A B C

Figure 2. Schematic diagrams of the possible flow regimes. A: buoyancy-dominated forward
flow with two-layer stratification. B: wind-dominated reverse flow with two-layer stratification
still intact (note that no steady state can exist in this regime – it is purely transient). C:
wind-dominated reverse flow with a fully contaminated interior.

box. However, if this regime persists for some time, the interface will inevitably
descend to the floor of the box, so that the whole interior becomes contaminated with
plume fluid and warm air is expelled from the bottom opening. Our second reverse
flow regime (regime C), discussed in more detail below, describes the subsequent
evolution of this fully contaminated state. The buoyancy-driven and (stable) wind-
driven steady states shown in figure 1(b) thus correspond to regimes A and C,
respectively.

2.1. Description of the problem

We consider a box of height H and uniform cross-sectional area AC , containing a
point source of pure buoyancy flux of strength B0. The box has one ceiling-level
and one floor-level opening, which together have an ‘effective area’ A∗, as defined in
(1.2). The balance between the ‘filling box’ flow driven by the turbulent plume rising
from the buoyancy source and the ‘emptying’ flow through the openings results in
a two-layer stratification with interface height h. We assume that outside the plume,
each layer is well-mixed, and the only exchange of fluid between the layers occurs
through the plume. The lower layer contains air of ambient density ρ, while the upper
layer is of density (ρ − �ρ). The reduced gravity in the upper layer is g′ = �ρ/ρ. The
terms QP and g′

P are the volume flux and the reduced gravity within the plume at
height h, respectively, and QT is the volume flux out of the top opening. An opposing
wind causes a difference �p in the ambient pressure between the top and bottom
openings.

2.2. Governing equations

For the upper layer, conservation of mass yields

AC

d

dt
[(H − h)] = QP − QT , (2.1)

and similarly conservation of buoyancy yields two equivalent expressions (using
(2.1)):

AC

d

dt
[g′(H − h)] =

{
QP g′

P − QT g′, for QT > 0

QP g′
P , for QT < 0

(2.2a)

AC(H − h)
dg′

dt
=

{
QP (g′

P − g′), for QT > 0

QP (g′
P − g′) + QT g′, for QT < 0.

(2.2b)
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Note that QT > 0 and QT < 0 need to be considered separately, as in one case, hot
buoyant air is expelled through the top opening, while in the other, cold ambient air
is brought in through it.

For the plume, QP and g′
P are given by (1.4) and (1.3), respectively (using the MTT

model). For the top opening, following HL05, we have

QT =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A∗
[
g′(H − h) − �p

ρ

]1/2

, for QT > 0,

−A∗
[
�p

ρ
− g′(H − h)

]1/2

, for QT < 0,

(2.3)

where �p is the difference in external pressure between the two openings due to the
presence of wind. Note that �p > 0 corresponds to ‘opposing wind’.

If the interface descends right to the base of the box, the evolution equation is
somewhat different. In this fully contaminated regime, the interface remains at the
bottom of the box, i.e.

h =
dh

dt
= 0. (2.4)

Conservation of buoyancy yields

ACH
dg′

dt
= QP g′

P − QBg′, QB = A∗
[
�p

ρ
− g′H

]1/2

, (2.5)

where QB is the volume flux out of the bottom opening. Equations (2.1)–(2.5) together
form a set of governing equations which can model flow in each of the regimes shown
in figure 2.

2.3. Non-dimensionalisation – multiple time scales

We define the dimensionless variables

ĥ = h/H and ĝ = g′/g′
H , (2.6)

where g′
H is given by (1.6). Non-dimensionalising time is more subtle, however, as

there are three independent time scales present in this system. Each can be constructed
by dividing the volume of the box by a particular scaling for flow rate. The buoyancy-
driven ‘filling box’ time scale, TBf , the buoyancy-driven ‘draining box’ time scale TBd

and the wind-driven time scale TW are, respectively,

TBf =
ACH

CB
1/3
0 H 5/3

=
AC

CB
1/3
0 H 2/3

, (2.7a)

TBd =
ACH

A∗(g′
HH )1/2

=
ACC1/2H 4/3

A∗B
1/3
0

, (2.7b)

TW =
ACH

A∗(�p/ρ)1/2
. (2.7c)

As we intend to examine the effect of varying opening size A∗ and wind strength
�p while keeping B0 fixed, we choose to non-dimensionalise time with respect to the
filling box time scale, defining t̂ = t/TBf . In doing so, we recover the dimensionless
parameters V and W as defined by (1.1) and (1.5), and now note that each is equal
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to the square of a ratio of time scales:

vent parameter: V =

(
TBf

TBd

)2

=
A2

∗
C3H 4

, (2.8)

wind parameter: W =

(
TBd

TW

)2

=
�p/ρ

g′
HH

. (2.9)

(As already noted, V and W are related to µ as defined by KH04 and the Froude
number Fr as defined by HL05, since V = µ−2 and W = Fr2.)

2.4. Dimensionless governing equations

Our dimensionless governing

−dĥ

dt̂
=

⎧⎪⎨
⎪⎩

ĥ5/3 − |V P |1/2 (A)

ĥ5/3 + |V P |1/2 (B)

0 (C)

(2.10a)

d

dt̂
[ĝ(1 − ĥ)] =

⎧⎪⎨
⎪⎩

1 − |V P |1/2 ĝ (A)

1 (B)

1 − |V P |1/2 ĝ (C),

(2.10b)

where the letters denote the relevant regimes shown in figure 2. Using this scaling, the
direction of the flow is determined by the sign of the quantity P , where

P = ĝ(1 − ĥ) − W. (2.10c)

Here P can be interpreted as a measure of the dimensionless pressure at the top
opening, representing the resulting balance between the competing effects of buoyancy
and wind. Note that P > 0 corresponds to the buoyancy-driven forward flow (QT > 0)
and P < 0 to the wind-driven reverse flow (QT < 0). The three regimes shown in figure
2 can thus be classified in terms of the values of ĥ and P . Regime A, with forward
flow, occurs when ĥ � 0 and P � 0. Regime B has reverse flow but continues to have
stratification and occurs when ĥ > 0 and P < 0. Finally, regime C has reverse flow
with a fully mixed interior and occurs when ĥ = 0 and P < 0. Given a set of initial
conditions, the coupled pair of nonlinear ODEs (2.10) for ĥ and ĝ can be integrated
numerically for any values of V and W , for example using a standard MATLAB
fourth-order Runge–Kutta routine.

2.5. Equilibrium states

If we seek steady solutions to (2.10), we recover the equilibrium states derived by
HL05. From regime A, we obtain the buoyancy-driven steady state which clearly
exists for all values of W :

ĝeq = ĥ−5/3
eq , V =

ĥ10/3
eq[

ĥ
−5/3
eq (1 − ĥeq) − W

] . (2.11)

Solutions in regime C – the wind-driven steady states – correspond to roots of the
following cubic:

ĝ3
eq − Wĝ2

eq + V −1 = 0. (2.12)

A pair of real, positive roots – physical solutions – exists if and only if W 3V > 27/4,
the criterion discussed in § 1.
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3. Zero-mixing Germeles model
If, on the other hand, we do not make the ‘perfect mixing’ approximation inherent

in the KH model, the reduced gravity g′ is a non-trivial function of both time and
vertical position z within the box, with g′(z, t) = 0 for z < h and g′(z, t) > 0 for z >h.
Defining ẑ = z/H , the set of dimensionless governing equations in (2.10) can then be
generalised to give

−dĥ

dt̂
=

⎧⎪⎨
⎪⎩

ĥ5/3 − |V P |1/2 (A)

ĥ5/3 + |V P |1/2 (B)

0 (C)

(3.1a)

d

dt̂

∫ 1

0

ĝ dẑ =

⎧⎪⎨
⎪⎩

1 − |V P |1/2 ĝ|ẑ=1 (A)

1 (B)

1 − |V P |1/2 ĝ|ẑ=0, (C)

(3.1b)

where

P =

∫ 1

0

ĝ dẑ − W, (3.1c)

the natural generalisation of P as defined in (2.10c) to situations where the reduced
gravity is also a function of position in the upper layer. Note that the reduced gravity
of fluid expelled from the top opening ĝ|ẑ = 1 differs from that of any fluid expelled
from the bottom opening ĝ|ẑ=0. (We assume that the openings are infinitesimally thin
and therefore that fluid leaves or enters the box at its very top or bottom. The validity
of this approximation for our experiments is discussed in § 6.) Also, in expressions

involving the total buoyancy in the box, ĝ(1 − ĥ) is replaced by
∫ 1

0
ĝdẑ. In particular,

the volume flux out of the top opening is given by

Q̂T = ±V 1/2

∣∣∣∣
∫ 1

0

ĝ dẑ − W

∣∣∣∣
1/2

= ±|V P |1/2 for P � 0. (3.2)

Now, a model must be developed for the evolution of g′(z, t). As discussed in § 1, we
consider the limit of ‘zero mixing’, in which the plume always rises through any hot
layer to the very top of the box, depositing fluid at ceiling level. The plume volume
flux QP (z, t), specific momentum flux MP (z, t) and specific buoyancy flux BP (z, t)
no longer obey the similarity solution used in (1.4), and therefore must be found by
integrating the general plume equations of MTT:

∂QP

∂z
= 2π1/2αM

1/2
P ,

∂MP

∂z
=

BP QP

MP

,
∂BP

∂z
= −QP

∂g′

∂z
, (3.3)

where α is (for simplicity) the ‘top-hat’ entrainment constant. Local continuity then
dictates that the stratification within the box is advected vertically according to

∂g′

∂t
+ w

∂g′

∂z
= 0, (3.4)

where w(z, t) is the return velocity in the bulk flow required to ensure that the volume
flux through any horizontal plane matches that through the top opening, under the
assumption that the cross-sectional area of the plume is negligible compared with the
cross-sectional area of the room AC:

wAC + QP = QT . (3.5)
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We now define dimensionless plume fluxes Q̂P , M̂P and B̂P :

Q̂P =
QP

QH

=
QP

CB
1/3
0 H 5/3

, M̂P =
MP

MH

=
MP

1

π

(
9α

10
πB0H 2

)2/3
, B̂P =

BP

B0

.
(3.6)

Non-dimensionalising all other variables in the manner set out in § 2.3 and substituting
(3.5) into (3.4), we obtain the following equations:

∂Q̂P

∂ẑ
=

5

3
M̂

1/2
P ,

∂M̂P

∂ẑ
=

4B̂P Q̂P

3M̂P

,
∂B̂P

∂ẑ
= −Q̂P

∂ĝ

∂ẑ
, (3.7)

∂ĝ

∂t̂
+ (Q̂T − Q̂P )

∂ĝ

∂ẑ
= 0. (3.8)

This system is closed by (3.2) for Q̂T and is subject to the boundary conditions
Q̂P (0, t̂) = M̂P (0, t̂) = 0 and B̂P (0, t̂) = 1, for all t̂ .

We can integrate this for general initial conditions ĝ(ẑ, 0) using a numerical scheme
of the type developed by Germeles (1975). We discretise the density field in the bulk
flow (outside the plume) into a finite number of layers and make the assumption
that the time scale for the evolution of this field is much slower than the transit
time for fluid rising through the plume (valid provided that the box is not extremely
tall and narrow). At the start of each time step, we therefore integrate (3.7) over
the whole height of the box, assuming a static (discretised) bulk density field.
After evaluating Q̂P (ẑ, t̂) and Q̂T (t̂), the existing layer boundaries are then adjusted
upward or downward according to (3.8), effectively acting as characteristics for the
density field.

At the end of each time step, the top and bottom of the box can have new layers of
fluid introduced or existing ones flushed out, depending on the direction and structure
of the flow. Note that the presence of opposing wind necessitates a modification of
the standard Germeles algorithm to account for the three different flow regimes
illustrated in figure 2 and discussed at the beginning of § 2. In regime A (forward flow
with Q̂T � 0, ĥ � 0), a cool ambient fluid with ĝ = 0 is drawn in through the bottom
opening. If a transition from regime (C) has just occurred, a new layer with ĝ =0 is
introduced. Otherwise, the existing bottom layer is enlarged. At the top, if Q̂T > Q̂P ,
then one or more existing layers are swept out of the box. If Q̂T < Q̂P , a new layer
of plume fluid is deposited with ĝ = ĝP (1, t̂). In regime B (reverse flow with a layer
of the ambient fluid in the lower part of the box, Q̂T < 0, ĥ > 0), this bottom layer
decreases in size. At the top of the box, a new layer is introduced with

ĝ =
Q̂P (1, t̂)ĝP (1, t̂)

Q̂P (1, t̂) − Q̂T

. (3.9)

In regime C (reverse flow in which the whole box is contaminated with plume fluid,
Q̂T < 0, ĥ = 0), one or more existing layers with ĝ > 0 are swept out of the bottom
opening. A new layer is introduced at the top of the box in exactly the same manner
as in regime B.

We assume here that any ambient fluid entering the box through the top opening
mixes only with the fluid deposited by the plume in a very thin top layer. It is clear
that this represents the opposite extreme to the ‘perfect mixing’ approach adopted in
our KH model. The merits of each approach are discussed in more detail in § 6. Note
that if Q̂T suddenly becomes more negative, (3.9) results in a less buoyant (lower ĝ)
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Figure 3. (Colour online) Theoretical predictions for (a) ĥ(t̂) and (b) ¯̂g(t̂) when V = 1 and
W = 0 (plotted by black solid lines), W = 1 (red dashed lines), W = 1.5 (green dot-dashed lines)
or W = 2 (blue dotted lines). Thick lines correspond to the results of the perfect-mixing KH
model and thin lines correspond to the results of the zero-mixing Germeles model. Circular
markers indicate points at which transition from reverse to forward flow occurs.

layer being introduced above more buoyant layers. As the Germeles approach does
not incorporate any mechanism for mixing between layers, it may then predict that
this statically unstable stratification persists, clearly a physically unrealistic outcome.
This scenario, which could occur in the event of a sudden increase in W , is also
touched upon in § 6.

4. Theoretical results for box filling with steady opposing wind
Having developed two time-dependent emptying filling box models that incorporate

wind, we now apply these to the simplest possible transient problem – the filling of
a box initially full of ambient fluid in the presence of a constant opposing wind
(constant W ).

4.1. KH model results for V = 1

Following Baines & Turner (1969), we begin with an infinitesimally thin hot layer at
the top of the box,

t̂ = 0 : ĥ = 1, ĝ = 1, (4.1)

and use the perfect-mixing KH model to determine the time evolution of ĥ and ĝ

for different values of V and W . The case W =0 is exactly equivalent to the problem
examined by KH04 – box filling with no wind – and we verify that our numerical
code reproduces their results for all values of V considered. In addition, we verify (for
10−10 <V < 102 and 10−1 <W < 102) that at large times, both ĥ and ĝ asymptotically
approach values corresponding to one of the steady states given in § 2.5. Noting once
again that any overshoots in the zero wind case are extremely small, we now consider
finite W , restricting ourselves at first to a fixed opening size, with V = 1. Figure 3
shows the evolution of ĥ and ĝ for different wind strengths.

The size of the transient overshoot in ĥ increases dramatically with W , i.e. with
non-zero wind. For W = 1, the overshoot is almost half the box height, far greater
than the maximum possible in the absence of wind. It is clear from the plots of ĝ that
early-time behaviour for finite W is qualitatively different from that for W =0. In the
former case, P = ĝ(1 − ĥ) − W < 0 for early times. Recalling § 2.4, this means that the
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system begins in regime B – reverse flow with a stratification maintained. For small
wind strengths (see W = 1 in figure 3), transition to regime C does not occur (i.e. the
interface does not reach the floor) and we can use (2.10b) to show that the system
remains in reverse flow up until

t̂ = W, equivalent to t =
�p/ρ

B/AC

. (4.2)

Thereafter, flow is in the forward direction (regime A) and ĥ and ĝ approach their
buoyancy-driven steady-state values. In figure 3, the point when flow changes direction
for the case W = 1 is clearly seen to be at t̂ = 1. It is important to appreciate that
the time when flow changes direction does not correspond to the time of maximum
overshoot and in general slightly precedes it. However, the lag between these two
times is too small to be discernible for the example shown in figure 3.

For larger wind strengths (see W =1.5 in figure 3), the interface descends right to
the bottom of the box and a fully contaminated transient is observed. After some
time, the box heats up enough for the system to switch to buoyancy-driven flow; a new
interface starts to rise from the floor of the box and eventually the buoyancy-driven
steady state is reached. For yet stronger wind, however (see W = 2 in figure 3), the
system appears to remain fully contaminated and approaches the wind-driven steady
state predicted by HL05.

Note that when W > 0, dĝ/dt̂ is singular at h = 1: an infinitely thin upper layer
can change temperature infinitely quickly, immediately adjusting to a temperature at
which the cooling due to incoming ambient air balances the heating from the plume.
For our numerical simulations, initial layer depth is in fact of order ε ≈ 10−6, and it
can be shown that the initial adjustment of ĝ therefore also occurs on a time scale of
order ε. This effect is clearly visible in figure 3(b). The behaviour of the model in this
region need not be considered too carefully, however. In reality, extremely thin upper
layers will immediately be broken down by opposing wind and thus layers of finite
depth must be considered when quantitative comparison is made with experiments
(discussed in further detail in § 6).

4.2. Zero-mixing Germeles model results for V = 1

We apply the zero-mixing Germeles model to the same problem, starting with an
empty box into which a thin top layer with ĝ = 1 is added in the first time step.
Given that Q̂P (1, 0) = 1 and Q̂T (0) = 0, (3.8) dictates that the thickness of this first
layer is equal to the time-step size �t̂ . Note that V = 0 (no openings) represents the
classical filling box problem of Baines & Turner (1969), investigated using a Germeles
approach by Worster & Huppert (1983). We therefore verify that in this case our
numerical code reproduces the latter’s results for the evolution of the plume fluxes
and reduced gravity profile ĝ(ẑ, t̂). We also examine the same cases as in § 4.1, varying
W for a fixed opening size, V =1, so that we can compare the results with those of
the KH model in figure 3. Note that in figure 3(b), curves plotted for the zero-mixing
Germeles model are of the mean value of ĝ in the upper layer, defined as

¯̂g =

∫ 1

ĥ

ĝ dẑ

(1 − ĥ)
. (4.3)

It is clear that the predictions of the two models are qualitatively very similar: an
increased overshoot for small W , a fully contaminated transient for slightly larger
W , and convergence to the wind-driven steady state for yet larger W . However, there
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are some quantitative differences between the two sets of results. These are best
understood by considering each of the three flow regimes in figure 2 separately.

In regime B, no hot fluid exits the box through either opening. Volume flux through
the openings is determined by the total buoyancy in the box and not its distribution
and thus the predictions of the zero-mixing Germeles model for ĥ and mean ĝ are
identical to the predictions of the perfect-mixing KH model. This is evident in figure 2
for W = 1 (up until transition to regime A), W = 1.5 and W = 2 (up until transition to
regime C). However, in regime A, under the zero-mixing Germeles model, warmer than
average fluid is lost out of the top opening due to the stratification within the upper
layer. Consequently, overall warming is slower than under the KH model. We see in
figure 2 for W = 0, W = 1 (after the change in flow direction) and W = 1.5 (during
final stages) that both ĥ and ĝ adjust more slowly to their equilibrium values under
the zero-mixing Germeles model than they do under the perfect-mixing KH model.
Finally, in regime C, under the zero-mixing Germeles model, cooler than average
fluid is lost out of the bottom opening, and overall warming is thus faster than under
the perfect-mixing KH model. We observe for W = 2 in figure 3(b) that ĝ reaches
its equilibrium value more quickly and for W = 1.5 in figure 3(a) that transition to
forward flow occurs earlier. We discuss the circumstances under which each model is
likely to be more accurate in § 6, when comparison is made with experimental data
for the evolution of both ĥ and the structure of ĝ(ẑ, t̂).

4.3. Varying V and W : exploring the whole parameter space

In order to gain a clearer picture of the conditions under which each of the
various observed transient behaviours occurs, we explore the wider parameter space
10−1 <W < 102, 10−10 <V < 102. Making the type of assumptions about building
size and heat load discussed in Appendix B of Hunt & Linden (2005), this could
correspond to wind speeds between 5 cm s−1 and 2 m s−1, and effective opening areas
approximately satisfying 10−3 <

√
A∗/H < 1. For each point on a 60 × 120 logarithmic

grid spanning this space, we perform a numerical simulation for the time evolution
of ĥ and ĝ. In particular, we consider three important lengths: the minimum interface
height reached ĥmin, the final equilibrium interface height ĥeq and the difference

between the two – the overshoot ĥeq − ĥmin. These data are presented in figure 4. Note
that as the two models produce qualitatively similar results, we here employ the less
computationally costly KH model.

It is immediately clear from figure 4(c) that very large overshoots can occur in
the presence of wind. In fact, it is theoretically possible to have an arbitrarily large
overshoot – up to the full box height. In practice, our model ceases to be relevant
once opening area approaches the order of the square of the box height (V ≈ 102), but
figure 4(c) illustrates that overshoots representing a significant fraction of the box
height can occur at physically relevant values of V . Figure 4(a) shows that for any
given value of V , as W is increased, the minimum height attained decreases smoothly
down to zero. The black area corresponds to cases where the minimum height is exactly
zero, i.e. those where a fully contaminated state (transient or permanent) is attained.
The edge of this region is marked by a white curve, which is also reproduced in
figures 4(b) and 4(c). Figure 4(b) shows that the final equilibrium height does not
decrease smoothly to zero as V and W increase and is in fact discontinuous along a
straight line in log–log space. To the left of this line (marked in white on all three panels
of figure 4), the box always finishes in the buoyancy-driven steady state (associated
with displacement ventilation, in regime A), to the right of it (the black region) the
box finishes in the wind-driven steady state (HL05’s stable solution, associated with

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

58
47

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010005847


46 I. A. Coomaraswamy and C. P. Caulfield

(a)

V

W

102

10–2

10–6

10–10

(b)
102

10–2

10–6

10–10

(c)
102

10–2

10–6

10–10

10–1 100 101 102

W

10–1 100 101 102

W

1.0

0.8

0.6

0.4

0.2

0
10–1 100 101 102

Figure 4. Colour maps of (a) the minimum interface height ĥmin reached during evolution
to equilibrium, (b) the final equilibrium interface height ĥeq and (c) overshoot size ĥeq − ĥmin,
in each case for 10−1 < W < 102 and 10−10 <V < 102. Regions coloured black correspond (a)
to the interface reaching the floor and (b) and (c) to the final state being well-mixed and hence
wind-driven. White lines demarcating these regions are drawn on all three plots. Circular white
markers indicate three of the four sets of parameters investigated experimentally in § 6, while
the fourth has W = 0 and thus does not appear on these logarithmic axes.

mixing ventilation, in regime C). The region between the straight and curved white
lines represents the set of cases where a fully contaminated transient is observed
(cf. V = 1, W = 1.5 in figure 3). The straight line corresponds to the relationship
W 3V = 27/4, precisely the criterion for the existence of wind-driven steady states
(see (1.8)). This implies that for the particular initial conditions we consider, there
is no ambiguity with regard to which of HL05’s multiple steady states is adopted –
whenever the (stable) wind-driven (regime C) steady state exists, the system locks on
to it.

4.4. Phase diagrams

For constant V and W , the nonlinear dynamical system represented by the equations
laid out in § 2.4 is autonomous – the perfect-mixing KH model’s evolution equations
for ĥ and ĝ have no explicit dependence on t̂ . It is therefore possible to generate
phase diagrams to help understand the behaviour of the system and explain why
HL05’s wind-driven steady state is an attractor for the initial conditions considered.
Figure 5 comprises four such diagrams, for the cases V = 1, W = 0, 1, 1.5, 2. At each
point in the ĝ–ĥ space, a vector is plotted indicating the relative magnitudes and signs
of dĝ/dt̂ and dĥ/dt̂ (which are computed directly from (2.10)). For simplicity, all such
vectors are normalised so that the arrows depicted are of equal length. The dashed
solid line shown on the three plots where W > 0 is the P = 0 curve, which separates
regions of forward and reverse flow. The grey shaded areas hence correspond to
regime A, the unshaded areas to regime B and the horizontal lines ĥ = 0, P < 0 to
regime C (see figure 2). The solid red lines are trajectories corresponding to the initial
conditions ĥ = ĝ = 1, plotted using the results shown earlier in figure 3. These curves
are tangent to the corresponding vector fields at all times (as all system trajectories
must be) and each one terminates at one of the fixed points corresponding to HL05’s
stable equilibrium states (given by (2.11) and (2.12) and shown by solid red circles).

The dotted black line on each diagram in figure 5 corresponds to the curve ĝ = ĥ−5/3,
along which the temperature of fluid in the hot layer is equal to the temperature
of fluid injected into it by the plume. For any W (and indeed any V ), HL05’s
buoyancy-driven equilibrium clearly must lie on the portion of this curve bordering
the grey shaded region. The area above and to the right of this curve corresponds to
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Figure 5. (Colour online) Phase diagrams for V = 1 and (a) W = 0, (b) W = 1, (c) W = 1.5
and (d ) W =2. Our model only applies below and to the left of the thin black line ĝ = ĥ−5/3.
Dashed black lines corresponding to P = 0 separate (shaded) regions of forward flow from
(unshaded) regions of reverse flow. Solid red circles indicate stable equilibria. Solid red lines
are trajectories starting from ĥ = ĝ = 1. The solid green lines on (d ) are trajectories for four
different initial conditions, equivalent to the equilibrium states attained for W =0, 0.5, 1 and
1.5. The hollow red circle on (d ) indicates an unstable equilibrium, while the solid blue line
leading into it represents the separatrix curve.

cases where the fluid being injected by the plume is colder and denser than that in the
upper layer. In such cases, the assumption that the upper layer remains well-mixed is
clearly questionable; it is more probable that the plume will intrude at the interface.
These portions of the phase diagrams shown are not relevant to this study and thus
are ignored. (An interesting extension to our work might be to use the approach of
Bower et al. (2008) to model this ‘intruding regime’ with opposing wind.)

Figure 5(a) shows that in the absence of wind, the buoyancy-driven steady
state is a global attractor. In their investigation of an overshoot criterion, KH04
linearise their system about this fixed point and establish numerically whether or
not the corresponding Jacobian has complex eigenvalues. What they describe as
‘underdamping’ (when overshoot does occur) can now be interpreted in phase space
as the existence of a stable focus, whereas ‘overdamping’ corresponds to a stable
node. A similar analysis demonstrates that in all of the cases illustrated in figure 5,
this steady state is indeed a stable focus.

The trajectories in figures 5(b) and 5(c) illustrate once again that reverse flow
and a fully contaminated transient can occur before the system reaches the
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buoyancy-driven steady state. The phase diagrams clearly indicate that the buoyancy-
driven steady state is still a global attractor. However, in the large wind case (figure
5d ), wind-driven steady states also appear; one is a stable node and the other a
saddle point (unstable), marked by an open red circle. The red trajectory shows that
the initial state ĥ = ĝ =1 lies within the basin of attraction of the wind-driven node
– the system locks on to this equilibrium, as discussed in § 4.3. This remains the case
for all V and W such that W 3V > 27/4.

The grey lines in figure 5(d ) represent other possible system trajectories and illustrate
that for different initial conditions, it is still possible to reach the buoyancy-driven
equilibrium state, even when a wind-driven state exists. The solid blue line leads into
the saddle point and is thus the separatrix curve dividing the basins of attraction of
each stable steady state. We are able to locate this curve using a numerical algorithm
for all relevant values of V and W . As W increases for fixed V , the buoyancy-driven
equilibrium state moves down and to the right along the curve ĝ = ĥ−5/3, while the
stable wind-driven state moves to the left along ĥ = 0. The separatrix also migrates to
the right, thereby reducing the basin of attraction of the buoyancy-driven equilibrium
state and increasing that of the wind-driven one.

These results can be used to explain HL05’s observation that the system has a
hysteretic response to successive increments/decrements in wind strength. The initial
conditions for the four green lines in figure 5(d ) in fact correspond to the buoyancy-
driven equilibrium states for V = 1, W = 0, 0.5, 1 and 1.5 (see figure 5a–c). We see
therefore that while a sudden jump in wind strength from W = 0 or 0.5 to W = 2
would result in transition to a wind-driven equilibrium state, a jump from W = 1 or
1.5 to W = 2 would see buoyancy-driven equilibrium maintained. If wind is increased
in sufficiently small increments, it is theoretically possible to remain in the buoyancy-
driven state indefinitely. However, as the basin of attraction of this state becomes very
small, it becomes unstable to the finite fluctuations seen in any experimental flow and
transition to the wind-driven state is thus observed experimentally. Conversely, if W

is reduced in sufficiently small decrements, the wind-driven state can be maintained
in theory up to the critical point below which it cannot exist (W 3V = 27/4), and in
reality up to a point close to this when its basin of attraction is too small to contain
typical experimental fluctuations.

5. Experimental methods
Experiments are performed in a cuboid Perspex box (internally 29.5 cm long, 15 cm

wide and 25 cm high) with rows of five circular holes (each of diameter 2 cm) cut into
both the windward and leeward faces at high and low levels (20 holes in total). The
total opening area is controlled by blocking some of these holes with rubber bungs.
The effect of wind is recreated by positioning the box within the test section of a
recirculating flume tank (265 cm long, 30 cm wide and 57 cm deep) filled with fresh
water (see figure 6). By controlling the mean speed of flow in the tank, we vary the
dynamic pressure difference �p between the windward and leeward sides of the box,
measured directly using an oil/water manometer. At all flow speeds, �p is observed
to fluctuate by up to 10 % of its mean value (see also HL05).

The buoyancy source is produced by the injection of a salt solution through a
circular nozzle (0.5 cm in diameter) positioned in the centre of the top of the box.
The nozzle used was specifically designed by Dr Paul Cooper to produce turbulent
plumes even at small flow rates by forcing fluid through a chamber containing a
sharp expansion and a fine gauze mesh (see Hunt & Linden 2001 and Cooper &
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Figure 6. A schematic diagram of our experimental set-up, which is based very closely on
that of HL05. Flow generated by the flume is turned by a reflector and passed through a
honeycomb mesh, ensuring a roughly uniform horizontal velocity in the test section where
the box is placed. A peristaltic pump supplies fluid to the plume source and an oil/water
manometer measures the dynamic pressure drop across the box.

Linden 1996 for more details). Note that the Boussinesq approximation is valid, and
so the resulting negatively buoyant saline plume can be used to model a positively
buoyant thermal plume without altering the dynamics of the system. The bottom
of the box now represents the ceiling of a room, and the top face represents the
floor. The distance between the exit point of the nozzle and the bottom of the box is
Hm =23.2 cm and the distance between the centre of the lower holes and the bottom
of the box is dc = 2 cm. As discussed in detail by Hunt & Linden (2001), various
adjustments can be made to the vertical distances in the box to account for the
finite vertical extent of the openings. For simplicity, we choose to ignore these small
corrections.

The apparatus as described thus far was used by Hunt & Linden (2001) and HL05.
Unlike the latter, however, we use a peristaltic pump to supply the salt solution to
the nozzle at a single flow rate of 1.33 cm3 s−1, which is measured using an in-line
flow meter and observed to fluctuate by no more than a few per cent. We also differ
from previous studies by using sodium carbonate instead of sodium chloride as our
solute, as chloride ions were found to cause complications for the flow visualisation
technique we choose to employ. Sodium carbonate has a molecular diffusivity in water
very similar to sodium chloride (∼10−9 m2 s−1) and so its use has no effect on the fluid
dynamics of the experiments undertaken. Note that all mentions made of ‘salt’ and
‘salinity’ with respect to our experiments refer to sodium carbonate and concentration
of the sodium carbonate solution. The density of the solution supplied to the plume
and that of the fresh water in the tank is measured using an Anton Paar DMA5000
density meter. The reduced gravity of the source fluid used is 1.66 m s−2.

To ensure opposing wind (noting that saline plumes are negatively buoyant), all
the holes of the box are permanently blocked by bungs except for two of the lower
holes on the windward side and two of the upper ones on the leeward side. In each
case, the holes left unblocked are those furthest from the centre of the box, so that
any rapid inflow or outflow is less likely to directly disturb the plume. By observing
the rate at which dyed salt solution of a known concentration drains out of the box
when these four bungs are removed (see Linden et al. 1990), we determine that the
effective opening area A∗ = 4.6 cm2 for this configuration. This estimate is consistent
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with that obtained by using the conventional values cB = cT = 0.6 for the discharge
coefficients in (1.2) (see HL05), and implies that the vent parameter V = 0.026.

Flows in the box are visualised by backlighting the apparatus and adding dye
to the saline source fluid. The molecular diffusivities of the salt and dye are both
a few orders of magnitude smaller than the kinematic viscosity ν ≈ 10−6 m2 s−1

and so dye concentration can be used as a surrogate for salt concentration. We
therefore use measurements of light absorption to determine the cross-tank (line-of-
sight integrated) density field in the box at any instant in time, employing techniques
outlined by Cenedese & Dalziel (1998). Following Dalziel et al. (2008), we use
electroluminescent LightTape (Electro-LuminX Lighting Corporation, Chester, VA,
USA) together with the red food colouring ‘Fiesta Red’ (Allura Red AC, E129). A
54 cm × 54 cm panel of tape attached to the rear side of the flume provides uniform
backlighting of approximately 400 cdm−2. Temporal fluctuations in luminosity are
less than 1.5 % and we take care to minimise reflections and the infiltration of light
from any other sources. The small amount of heat generated by the tape does not
cause any significant temperature increase inside the flume due to the large volume of
fluid involved. We choose to use ‘Fiesta Red’ dye because the peak in its absorption
spectrum corresponds quite closely with the near-monochromatic cyan light emitted
by the tape. Very high absorption is thus achieved at high dye concentrations. We find
that this dye forms a dark red precipitate when added to the concentrated sodium
chloride solution. This chemical reaction may complicate the optical properties of
the dye in dilute solutions too. It is for this reason that we choose to use sodium
carbonate solution, for which we observed no such precipitation.

We measure the transmitted light intensity using a Jai CV-M4+CL 1.3 megapixel
video camera fitted with a 135 mm f3.5 Nikon zoom lens, recording a 1380 × 1030
pixel image in 8 bit monochrome at 2 frames s−1. The intensity response of the camera
is linear with a small black offset (b =0.035). To minimise the parallax error, we set the
lens to maximum zoom and we position the camera approximately 3 m in front of the
flume. The image recorded lies within the area illuminated by the tape and a 980 ×
830 pixel portion of it is taken up by the interior of the box. This corresponds to
approximately 0.3 mm pixel−1 spatial resolution of our measurements. Other portions
of it include a region above the box which is never contaminated by dye and a region
where black masking tape on the front of the flume always prevents any light from
reaching the camera. By applying a linear mapping that ensures that the measured
intensities of these last two regions remain constant in time, we eliminate the effect
of the small fluctuations in the LightTape’s luminosity.

We remove the effect of spatial variations in illumination and that of absorption
due to everything other than the dye (the perspex walls of the box as well as the
surrounding fluid-filled flume) by dividing any experimental image I by a reference
image I0 of the whole apparatus filled with fresh undyed water, taking account of the
black offset of the camera as follows:

q =
I − b

I0 − b
. (5.1)

We assume here that the approximately monochromatic behaviour of the dye
when illuminated by the tape permits use of the Lambert–Beer law. We determine
the relationship between dye concentration and log(q) by conducting a series of
calibration images in situ in the flume. As salt concentration may affect absorption
independent of dye concentration, we ensure that the ratio between the two in
the source fluid used for our experiments is maintained throughout this calibration
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procedure. All image processing described in this section and the next is carried out
using DigiFlow (Dalziel Research Partners, Histon, Cambridgeshire, UK).

While the theoretical results presented in § 4 assume an ideal plume source, our
experiments clearly involve a source with finite volume and momentum flux. Before
making any comparison between the two, we apply an asymptotic virtual origin
correction (see Caulfield 1991; Caulfield & Woods 1995; Hunt & Kaye 2001): a
source of buoyancy flux alone positioned at a height zv above the experimental plume
nozzle would behave in the same way as the observed plume at sufficiently large
distances from the source. In this case, we determine that zv = 1.2 cm. Including
this adjustment, we find H = Hm + zv = 24.4 cm. It is this value that we use when
calculating the scalings g′

H , QH , MH and TBf . In particular, we find that the filling box
time scale TBf = 61 s. (Note that the zero-mixing Germeles model can be adjusted to
deal with a non-ideal source without recourse to a virtual origin correction, requiring
only the new boundary conditions Q̂P (0, t̂) = 0.0076, M̂P (0, t̂) = 0.0023 for (3.7).) The
‘dead’ layer – the region of the box below the lower holes – is very small in our
experiments and thus we choose not to include any correction for this effect.

With the box and flume initially filled with fresh water, we begin experiments by
supplying saline fluid to the plume source. Approximately 30 s later, once a plume has
descended to the bottom of the box and (after some initial spreading and ‘sloshing’)
deposited a 3–4 cm thick layer of fluid, we switch on the recirculation mechanism in
the flume. We record the subsequent flow in the box for a period of 20–30 min. This
time interval is long enough for an equilbrium state to be reached while not long
enough for significant contamination of the ambient by recirculated saline fluid.

6. Experimental results and comparison
We present experimental results for four different values of W , which we refer to

as ‘zero wind’ (W =0), ‘small wind’ (W = 2.29), ‘medium wind’ (W = 3.98) and ‘large
wind’ (W = 7.46). In all cases, V = 0.026 and TBf =61 s, as mentioned in § 5. Note
that all experimental data and images presented in this paper are vertically inverted
to ease comparison with both theoretical results and real building ventilation flows.
As saline fluid is thus observed to rise towards the top of the box, we refer to it as
‘hot’ relative to the ‘cold’ fresh fluid. In addition, because the configuration of two
pairs of holes used in our experiments behaves equivalently to a combination of one
high and one low opening with the same total effective opening area A∗, we refer to
one pair of holes collectively as the top opening and the other pair as the bottom
opening. This again eases comparison with our theoretical findings.

In the zero wind case, we observe behaviour of the type reported in KH04. After
an initial period in which the saline plume spreads out and splashes back off the sides
of the box, a sharp horizontal interface is formed between the layer of the plume
fluid and the fresh water in the box. Small wave-like disturbances of the interface are
observed as it evolves and remain after it reaches its equilibrium level. Little mixing
is seen at the interface and thus the only interchange of fluid between the two layers
is via the plume. Ambient fluid is drawn in through the bottom opening and hot fluid
leaves through the top opening.

In the other three cases, as soon the flume is switched on, wind blows cold fluid
in through the top opening. For small and medium wind, this descends and mixes
into the hot layer. For large wind, the momentum of the inflow is seen to have a
considerable effect on the flow structure within the hot layer, but it does not cause
the breakdown of this layer or overturning of the box. Our modified ‘emptying filling’
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theoretical modelling approach is therefore appropriate for all the wind strengths
considered.

We note from figure 5 that the small, medium and large wind cases lie in regions of
the V–W parameter space for which our theoretical models predict a large overshoot
in interface height, a fully contaminated transient and a wind-driven final state
respectively. In each case, we find that the qualitative type of behaviour predicted is
indeed observed experimentally.

Note that in our experiments, reduced gravity g′(z, t) clearly cannot exceed g′
P (0, t),

the fixed (finite) reduced gravity of the source fluid. We therefore deal henceforth with

c(z, t) =
g′(z, t)

g′
P (0, t)

, (6.1)

the concentration of ‘heat’ (in reality of source fluid) at a given vertical position in the
box. With this scaling, c = 1 at the source and c = 0 in the initially uncontaminated
ambient fluid.

Our optical measurements yield data for the variation in c with respect to the
horizontal as well as vertical position within the box. To obtain values of c(z, t)
appropriate for the bulk flow, we must take some sort of horizontal average over
regions of the box that are away from the openings and the plume. We choose
two regions, each the full height of the box and roughly one sixth of its width,
one equidistant from the centreline of the plume and the left wall of the box, the
other equidistant between the centreline and the right wall. In figure 7, we present
experimental measurements of the evolution of cL(z, t) (for the left region) and
cR(z, t) (for the right region) in the form of a set of colour time-series images. Curves
corresponding to the predictions of both the perfect-mixing KH and the zero-mixing
Germeles models for these cases are superimposed on the time-series images. The
most significant source of error in the parametrisation of the theoretical models is
a 10 % uncertainty in experimental measurements of pressure drop (see § 5) and
therefore in W for all but the zero wind case. We hence plot curves in figure 7 using
values of W 10 % above and below the mean measured values to illustrate the ranges
of behaviour consistent with our models.

We see in figure 7 that in contrast to shadowgraph or direct density measurement
techniques, our method of flow visualisation not only elucidates the evolution of the
interface position ĥ but also provides good spatial and temporal resolution of cL

and cR within the hot layer. In the three cases where a buoyancy-driven final state
is reached (zero wind, small wind and medium wind), we observe that the interface
between the hot plume and cold ambient regions is blurred over a depth of 5 %–10 %
of the box height. There is slightly more blurring on the right-hand side than on the
left. Since ambient air is drawn in from the right, this can be accounted for by the
fact that secondary flows within the lower region have higher velocities on this side
and there is therefore greater shear of the interface here. We see that the theoretical
equilibrium ĥ (upon which the choice of model and 10 % variations in W have only
a small effect) corresponds well with the centre of the blurred interface region in all
these three cases, especially in the medium wind case.

Notably, there is also good agreement between theory and experiment for the
transient evolution of ĥ. With the perfect-mixing KH model, we incorporate the fact
that there is a short delay to allow a layer of plume fluid to form before wind is
switched on in our experiments (see § 5) by modelling an initial interval of box filling
without wind. We cannot do the same with the zero-mixing Germeles model, however,
as switching on wind after a delay results in the prediction of a statically unstable
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ẑ

(e)

0 0.06c

200 400 600 800 1000 12000

0.2

0.4

0.6

0.8

1.0( f )

0 0.06c

200 400 600 800 1000 12000

0.2

0.4

0.6

0.8

1.0

ẑ
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Figure 7. Colour time-series images of the experimentally determined horizontally averaged
concentration cL (left, from a region to the left of the plume) and cR (right, from a region to
the right of the plume) for experiments with V = 0.026, TBf = 61 s and: (a) and (b) zero wind,
W = 0; (c) and (d ) small wind, W = 2.29; (e) and (f ) medium wind, W = 3.98; and (g) and
(h) large wind, W = 7.46. Solid black lines represent the perfect-mixing KH model results and
dashed black lines represent the zero-mixing Germeles model results, plotted for W ±10% of
each mean measured value.
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stratification (see § 3). Consequently, we see that the perfect-mixing KH model predicts
the initial descent of the interface more accurately in all cases. However, for both
small and medium winds, it appears that the best overall agreement would be achieved
by using the zero-mixing Germeles model with a value of W close to the upper limit
of its error bounds. For zero, small and medium winds (particularly the latter two),
we observe significant vertical variation in cL and cR within the hot layer while
the system evolves towards equilibrium. This again suggests that the zero-mixing
Germeles model may be more appropriate in these cases. As we would expect, there
is little difference in this structure between the left- and right-hand sides. For medium
wind, the momentum of the wind-driven inflow seen at early times possibly pushes
plume fluid towards the right at the top of the box, resulting in very slightly higher
concentration on this side, i.e. cR > cL.

For large wind, our theoretical models again accurately predict the initial descent
of the interface to floor level. Thereafter, the box appears to remain well-mixed across
its full depth, except for a band of fluid near the top of the box on the right-hand
side in which cR is significantly higher than elsewhere. Videos of this experiment
reveal that wind blows a strong jet of fluid in through the top opening and across
the top of the box, sweeping plume fluid towards the top right and ‘trapping’ some
of it there. The assumption that the inflow and plume are isolated from each other
is inaccurate in this circumstance, though because the inflow is not strong enough
to drive a fully overturning circulation in the whole box, we still see some transient
vertical stratification.

To investigate further the clear persistence of stratification in the upper layer, in
figure 8, we compare experimentally determined concentration profiles c(z, t) (plotted
at 20 s time intervals, taking the mean of cL and cR in figure 7) with the corresponding
predictions of our Germeles model. We note again that while the final states observed
are close to two-layer or fully well-mixed profiles, there is significant vertical variation
in c before these states are attained. In the experimental data, we see blurred first fronts
rather than the sharp interfaces assumed theoretically, reminiscent of the diffusive
profiles recently considered by Kaye et al. (2009). The final interface positions and hot
layer concentrations for low and medium winds appear to be consistent with slightly
higher values of W than those used to generate the theoretical profiles. Note that in
the discussion of figure 7, we also conclude that values of W 5 %–10 % larger than
the mean experimentally determined values yield the best fits for the evolution of ĥ.
This suggests that the actual pressure difference between the two openings is slightly
larger than that which is measured. A possible explanation for this inaccuracy is the
fact that each free end of our manometer tubing must be positioned some 2–3 cm
away from an opening in order to avoid disturbing the flow passing through it. The
slightly lower-than-predicted final concentration in the bulk of the box for large wind
is also consistent with an underestimation of W (given that equilibrium c decreases
with increasing W for reverse flow), but could also be caused by the clearly visible
region of hot plume fluid ‘trapped’ by the inflow, which our theory does not account
for.

For zero wind, we observe the late-time development of an anomalous region of
high concentration near the top of the box. As the flume’s recirculation mechanism
remains switched off in this case, contaminated fluid leaving the box is not swept
around and diluted across the full volume of ambient fluid in the tank, instead mostly
remaining in the test section of the tank (see figure 5). In the last stages of our 20 min
experiment, the resulting layer of the contaminated ambient fluid becomes deep
enough to affect our optical measurements of c over a small part of the box’s depth.
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Figure 8. Experimentally determined concentration profiles c(z, t) (left) and the theoretical
predictions of the zero-mixing Germeles model (right), for V =0.026, TBf =61 s, and (a) and
(b) zero wind, W = 0; (c) and (d ) small wind, W = 2.29; (e) and (f ) medium wind, W =3.98;
and (g) and (h) large wind, W =7.46.
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Overall, however, the transient evolution of c(z, t) is captured well by the zero-
mixing Germeles model. One feature of note is the form of profiles corresponding to
times shortly after the transition to forward flow in the low and especially medium
wind cases. The Germeles model accurately predicts that as the interface starts to rise
from its minimum level, an inflection point in the concentration profile (caused by
the switch from inflow to outflow at the top opening) propagates down from the top
of the box. In our theoretical models, we make the idealised assumption that inflow
and outflow occur at the very top and bottom of the box. In our experiments and
of course in real buildings, the finite height of the openings mean that, for instance,
hot air starts to be expelled from the bottom opening before the interface reaches
all the way to the floor. This complication of the transition from regime B to regime
C can explain the slight discrepancy between theory and experiment in figure 7 as ĥ

approaches zero for medium and large winds.
Further complications arise during transitions from either regime B or C to regime

A. We have assumed that flow through each opening is unidirectional at all times.
However, when the dimensionless pressure P driving the flow (see (2.10c) and (3.1c))
is close to zero, exchange flow can occur though one or both openings. A close
observation of our medium wind experiment reveals that exchange flow does occur
but only intermittently over a period of less than 15 s. This does not significantly
affect the overall dynamics of the system. However, in situations in which the two
openings are larger and/or of different sizes, extended periods of exchange flow may
indeed alter flow dynamics. For a detailed discussion of the circumstances under
which exchange flow occurs in an emptying box, see Hunt & Coffey (2010).

When the flow rate QT is less than the finite volume flux of the plume source
QP (0, t), it is also theoretically possible to have a ‘blocked’ flow regime in which
fluid is expelled from both openings (see Woods, Caulfield & Phillips 2003; Flynn &
Caulfield 2009). Flynn & Caulfield (2009) explained why this regime cannot be
accessed in reverse-to-forward (i.e. P increasing through zero) flow transitions such
as those seen in our experiments. If, on the other hand, one wished to examine
situations where gradual forward-to-reverse (decreasing P ) transitions occur, perhaps
as a result of gradually increasing W , then our models would need to be adapted
to take transient blocking into account. Flynn & Caulfield (2006b) identified that
blocking can cause a transient fully contaminated state in one chamber of a multi-
chamber ventilation system forced by a buoyancy source with finite volume flux. We
stress here that the fully contaminated state we observe is not due to blocking in this
sense – it is wind-driven and (importantly for application to real buildings) can arise
in the presence of ideal sources of buoyancy.

7. Conclusions
We have investigated the transient dynamics of emptying filling box flows driven

by opposing wind and buoyancy. We have developed two theoretical models for the
evolution of dimensionless interface height ĥ and reduced gravity ĝ in such flows,
in which opening area and wind strength are characterised by the dimensionless
parameters V and W , respectively. The perfect-mixing KH model, defined by (2.10),
assumes instantaneous mixing within regions of the hot plume fluid and consists of
a couple pair of nonlinear ODEs, while the zero-mixing Germeles model, defined by
(3.2), (3.7) and (3.8), assumes zero vertical mixing and consists of a system of PDEs
for ĝ as a function of both vertical position and time. We have identified that three
distinct flow regimes can occur and have therefore taken account of these in our
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models. Regime A has ‘forward’ (buoyancy-driven) displacement ventilation, regime
B has reverse (wind-driven) flow with a two-layer stratification and regime C has
reverse flow with a fully contaminated interior.

Applying our models to the scenario of an initially empty box, we have
demonstrated that transient behaviour in the presence of steady opposing wind
is qualitatively different from that seen without wind by KH04. Transient reverse
flow can cause very large overshoots in ĥ and even a transient fully contaminated
state (in which hot fluid is ejected from the bottom opening) before the two-layer
equilibrium state of HL05 is attained. We have identified the regions of the V–W

parameter space in which we expect these transients to occur. In regions where HL05
showed that both a buoyancy-driven and a wind-driven stable equilibrium can exist,
we have established that the latter state is always attained (by an initially empty box).
We have used phase space analysis of the KH model to explain why this is the case
for these initial conditions but not certain others, determining the basin of attraction
of each equilibrium state.

We have confirmed our theoretical predictions by means of an analogous salt
bath laboratory study. For this, we have used an experimental set-up very similar
to HL05 but employed the novel method of flow visualisation developed by Dalziel
et al. (2008), in which electroluminescent tape provides the backlighting for optical
measurements of dye concentration. As we observed precipitation of the dye (‘Fiesta
Red’ food colouring) in highly concentrated sodium chloride solution, we have used
sodium carbonate as our salt instead. These techniques have enabled us to achieve
significantly better spatial and temporal resolution of the density distribution within
the upper layer than previous experimental studies have managed.

By investigating four different values of W for a fixed value of V , we have established
the experimental existence of each of the qualitatively different types of flow
behaviour predicted theoretically. Furthermore, we have achieved good quantitative
agreement between theory and experiment for the evolution of both ĥ and ĝ(ẑ, t̂).
Despite wind-driven inflow of cold fluid at the top opening causing some mixing
within the hot layer, the zero-mixing Germeles model is seen to be more appropriate
than the perfect-mixing KH model for the cases considered. We believe that this
is not a general result, but depends on the extent to which the plume, once it
arrives at the ceiling of the box, retains substantial momentum. In our experiments,
little overturning (and vertical mixing) was observed as the plume spread to the full
horizontal extent of the box and interacted with the sidewalls. However, as noted
by Baines & Turner (1969) and investigated by Hunt, Cooper & Linden (2001) and
Kaye & Hunt (2007), substantial overturning can occur in different geometries and
with different source conditions.

We conclude by discussing the implications of our findings for the design of building
ventilation schemes, noting that scenarios in which prevailing wind and buoyancy
forces act in opposition to one another are not uncommon. If wind strength is
large enough for multiple equilibria to exist, our analysis can be used to determine
unambiguously which state is attained for given initial conditions. If ambient air is at
a pleasant temperature, it may be desirable to establish buoyancy-driven displacement
flow with the interface above the level of room occupants, whereas if ambient air is
much colder than the target occupant temperature, wind-driven mixing ventilation
may ensure greater thermal comfort. In either case, our analysis can be used to develop
control strategies that ensure adoption of the preferred state. If the filling box time
TBf (defined in (2.7)) for a space is sizeable (for instance 10 min or longer), occupant
thermal comfort during transient phases must also be considered. Of significance
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here are our findings that similar buoyancy-driven final states can have qualitatively
different approaches to equilibrium. Merely ensuring that the equilibrium interface
height is above the level of all occupants is thus not sufficient to guarantee a good
displacement ventilation system, as the layer of hot (and contaminated) air may
descend even as far as the floor before settling at its desired level.
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