
Natural Language Engineering (2019), 25, pp. 519–541
doi:10.1017/S1351324919000238

ARTICLE

Neural embeddings: accurate and readable inferences
based on semantic kernels
Danilo Croce∗, Daniele Rossini and Roberto Basili

Department of Enterprise Engineering, University of Roma, Tor Vergata, Rome, Italy
∗Corresponding author. Email: croce@info.uniroma2.it

Abstract
Sentence embeddings are the suitable input vectors for the neural learning of a number of inferences about
content and meaning. Similarity estimation, classification, emotional characterization of sentences as well
as pragmatic tasks, such as question answering or dialogue, have largely demonstrated the effectiveness of
vector embeddings to model semantics. Unfortunately, most of the above decisions are epistemologically
opaque as for the limited interpretability of the acquired neural models based on the involved embeddings.
We think that any effective approach tomeaning representation should be at least epistemologically coher-
ent. In this paper, we concentrate on the readability of neural models, as a core property of any embedding
technique consistent and effective in representing sentence meaning. In this perspective, this paper dis-
cusses a novel embedding technique (the Nyström methodology) that corresponds to the reconstruction
of a sentence in a kernel space, inspired by rich semantic similarity metrics (a semantic kernel) rather than
by a language model. In addition to being based on a kernel that captures grammatical and lexical seman-
tic information, the proposed embedding can be used as the input vector of an effective neural learning
architecture, called Kernel-based deep architectures (KDA). Finally, it also characterizes by design the KDA
explanatory capability, as the proposed embedding is derived from examples that are both human read-
able and labeled. This property is obtained by the integration of KDAs with an explanation methodology,
called layer-wise relevance propagation (LRP), already proposed in image processing. The Nyström embed-
dings support here the automatic compilation of argumentations in favor or against a KDA inference, in
form of an explanation: each decision can in fact be linked through LRP back to the real examples, that
is, the landmarks linguistically related to the input instance. The KDA network output is explained via
the analogy with the activated landmarks. Quantitative evaluation of the explanations shows that richer
explanations based on semantic and syntagmatic structures characterize convincing arguments, as they
effectively help the user in assessing whether or not to trust the machine decisions in different tasks, for
example, Question Classification or Semantic Role Labeling. This confirms the epistemological benefit
that Nyström embeddings may bring, as linguistically rich and meaningful representations for a variety of
inference tasks.

Keywords: readable inference; semantic kernels; neural embeddings of sentences

1. Introduction
Nonlinear methods such as Deep Neural Networks achieve state-of-the-art performances in sev-
eral semantic NLP tasks (Collobert et al. 2011; Goldberg 2016). The wide spread of Deep Learning
is supported by the impressive results and their feature learning capability (Bengio, Courville,
and Vincent 2013; Kim 2014): input words and sentences are usually modeled as dense embed-
dings (i.e., vectors or tensors), whose dimensions correspond to latent semantic concepts acquired
during an unsupervised pretraining stage. In similarity estimation, classification, emotional char-
acterization of sentences as well as pragmatic tasks, such as question answering or dialogue, they
largely demonstrated their effectiveness to model semantics.

© Cambridge University Press 2019

https://doi.org/10.1017/S1351324919000238 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000238
mailto:croce@info.uniroma2.it
https://doi.org/10.1017/S1351324919000238

520 D Croce et al.

Unfortunately, several drawbacks arise. First, most of the above approaches are epistemo-
logically opaque as for the limited interpretability of the acquired neural models based on the
involved embeddings. Second, injecting linguistic information into an NN without degrading its
transparency properties is still a problem with much room for improvement. Word embeddings
are widely adopted as an effective pretraining approach, although there is no general agreement
about how to provide deeper linguistic information to the NN. Some structured NN models have
been proposed (Hochreiter and Schmidhuber 1997; Socher et al. 2013), although usually tailored
to specific problems. Recursive NNs (Socher et al. 2013) have been shown to learn dense fea-
ture representations of the nodes in a structure, thus exploiting similarities between nodes and
sub-trees. Also, long-short term memory (LSTM) networks (Hochreiter and Schmidhuber 1997)
build intermediate representations of sequences, resulting in similarity estimates over sequences
and their inner subsequences. In general, such intermediate representations are strongly task
dependent: this is beneficial from an engineering standpoint, but certainly controversial from a
linguistic and cognitive point of view. In recent years, many approaches proposed extensions to
the previous methods. Semi-supervised models within the multitask learning paradigm have been
investigated (Collobert et al. 2011). Context-aware dense representations (Pennington, Socher,
and Manning 2014) and deep representations based on sub-words or characters (Devlin et al.
2018; Peters et al. 2018) successfully model syntactic and semantic information. Linguistically
informed mechanisms have been proposed to train the self-attention to attend syntactic informa-
tion in a sentence, granting state-of-the-art results in Semantic Role Labeling (Strubell et al. 2018).
However, in such approaches, the captured linguistic properties are never made explicit and the
complexity of learned latent spaces only exacerbates the interpretability problem. Hence, despite
state-of-the-art performances, such approaches are not a solution for a straightforward under-
standing of the linguistic aspects that are responsible for a network decisions. Attempts to solve
the interpretability problem of NNs have been proposed in computer vision (Erhan, Courville,
and Bengio 2010; Bach et al. 2015), but their extension to the NLP scenario is not straightforward.

We think that any effective approach to meaning representation should be at least epis-
temologically coherent, that is, readable and justified through an argument theoretic lens on
interpretation. This means that inferences based on vector embeddings should also naturally
correspond to a clear and uncontroversial logical counterpart: in particular, neurally trained
semantic inferences should be also epistemologically transparent. In other words, neural embed-
dings should support model readability, that is, to trace back causal connections between the
implicitly expressed linguistic properties of an input instance and the classification output pro-
duced by a model. Meaning representation should thus strictly support the (neural) learning of
epistemologically well-founded models.

In this paper, we concentrate on this readability issue, as a core property of any meaning repre-
sentation. In this view, we propose to provide explicit information regarding semantics by relying
on linguistic properties of sentences, that is, by modeling the lexical, syntactic, and semantic con-
straints implicitly encoded in the linguistic structure. A natural choice, which we will adopt in this
paper, is represented by learning methods based on tree kernels (TKs; Collins and Duffy 2001;
Shawe-Taylor and Cristianini 2004; Moschitti 2012) as the feature space they capture reflects lin-
guistic patterns. Approximation method can then be used to successfully map tree structures into
dense vector representations useful to train a neural network. As suggested in Croce et al. (2017),
the Nyström dimensionality reductionmethod (Williams and Seeger 2001) is of particular interest
as it allows to reconstruct a low-dimensional embeddings of the rich kernel space by computing
kernel similarities between input examples and a set of selected instances, called landmarks. If
methods such as Nyström’s are used over TKs, the projection vectors will encode information
captured by such kernels, which have been proved to incorporate syntactic as well as semantic
materials (Croce, Moschitti, and Basili 2011). Kernels play the role of inner products in complex
(i.e., highly, and possibly infinitely, dimensional) spaces. They suggest linguistically principled
metrics. Although they do not provide directly vector or tensor-like representations, they can be

https://doi.org/10.1017/S1351324919000238 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000238

Natural Language Engineering 521

used to model semantics and train effective algorithms. Moreover, embeddings are a solution to
map them into useful vector representations. Linguistic structures (e.g., parse trees) expressed by
kernels can be used in the training of an NN, that is in form of vectors or tensors, as suggested by
Croce et al. (2017). The resulting vectors can be then used as input of an effective neural learner,
namely a Kernel-based deep architecture (KDA).

KDA has been shown beneficial by Croce et al. (2017) as the Nyström- based low-rank embed-
ding of input sentences has been used as the early layer of a deep feed-forward network, achieving
state-of-the-art results in different semantic tasks, such as Question Classification and Semantic
Role Labeling. While the Nyström-based methodology corresponds to the reconstruction of a
sentence in a kernel space, it must be stressed that it expresses a rich linguistically justified met-
rics (through the underlying semantic kernel) rather than a language model, as most embedding
method tend to do (e.g., Mikolov et al. 2013). Moreover, the proposed embedding corresponds
to a linear combination of a set of randomly chosen independent instances (i.e., the landmarks),
as they are represented in the kernel space. This property also characterizes by design the KDA
ability to explain its decisions: it is obtained by integrating the neural decision carried out with a
model of the activation state of a network, called layer-wise relevance propagation (LRP): this is a
method, proposed in image processing, to explain a neural decision, as the detection of the state
of activation of some components of the network, that is, the contribution of input layers (and
nodes) to the fired output. We can apply the same process to the KDA decision and detect which
components of a Nyström embedding (i.e., the landmarks) are mostly activated. A KDA can auto-
matically compile argumentations in favor or against its inference: each decision is in fact linked
back to the real examples, through LRP, and these are the landmarks most linguistically related to
the input instance. The KDA network output is thus explained via the analogy with the activated
landmarks. Quantitative evaluation of these explanations shows that richer explanations based
on semantic and syntagmatic structures characterize convincing arguments in different tasks,
for example, Question Classification or Semantic Role Labeling, in the sense that they provide
right assistance to the user in accepting or rejecting the system output. This confirms the epis-
temological benefit that Nyström embeddings may bring, as linguistically rich and meaningful
representations for a variety of inference tasks.

In this paper, we first survey approaches to improve the transparency of neural models in
Section 2. We present the role of linguistic similarity principles as they are expressed by Semantic
Kernels in Section 3.2. TheNyströmmethodology and the KDA architecture are defined in Section
3.3 and Section 4.1, respectively, while the explanation model based on the KDA architecture
is defined in Section 4.3. A method for the quantitative evaluation of explanations is defined
in Section 4.4. The evaluation over two tasks is discussed in Sections 5.1 and 5.2, for perfor-
mance in semantic inference and explanation quality, respectively. Finally, Section 6 summarizes
achievements, open issues, and future directions of this work.

2. Related work on interpretability
Advancements in Deep Learning are allowing the penetration of data-driven models into areas
that have profound impacts on society, as health care services, criminal justice systems, and
financial markets. Consequently, the traditional criticism of epistemological opaqueness of AI-
based systems has recently drawn much attention from the research community, as the ability
for humans to understand models and suitable weight the assistance they provide is a central
issue for the correct adoption of such systems. However, to empower neural models with inter-
pretability property is still an open problem as it even lacks a broad consensus on the definitions
of interpretability and explanation.

In Lipton (2018), Chakraborty et al. (2017) analyzed definitions of interpretability and
transparency found in literature and structured them across two main dimensions: Model

https://doi.org/10.1017/S1351324919000238 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000238

522 D Croce et al.

Transparency, that is, understanding the mechanism by which the model works, and Post-Hoc
Explanability (or Model Functionality), that is, the property by which the system convey to its
users information useful to justify its functioning such as intuitive evidence supporting the out-
put decisions. The latter can be further divided into global explanations, that is, a description of
the full mapping the network has learned, and local explanations, that is, motivations underlying
a single output. Examples of global explanations are methods that use deconvolutional networks
to characterize high-layer units in a CNN for image classification (Zeiler and Fergus 2013) and
approaches that derive an identity for each filter in a CNN for text classification, in terms of the
captured semantic classes (Jacovi, Sar Shalom, and Goldberg 2018).

Some Local Post-Hoc Explanation methods provide visual insights, for example, through a
GAN-generated image to assess the information detail of deep representations extracted from the
input text (Spinks andMoens 2018); however, as thesemethods stemmed from efforts intomaking
neural image classifiers more readable, they are usually designed to trace back the portions of the
network input that mostly contributed to the output decision. Network propagation techniques
are used to identify the patterns of a given input item (e.g., an image) that are linked to the par-
ticular deep neural network prediction as in Erhan, Courville, and Bengio (2010) and Zeiler and
Fergus (2013). Usually, these are based on backward algorithms that layer-wise reuse arc weights
to propagate the prediction from the output down to the input, thus leading to the recreation
of meaningful patterns in the input space. Typical examples are deconvolution heatmaps, used
to approximate through Taylor series the partial derivatives at each layer (Simonyan, Vedaldi,
and Zisserman 2013), or the so-called LRP that redistributes back positive and negative evidence
across the layers (Bach et al. 2015).

Several efforts have been made in the perspective of providing explanations of a neural clas-
sifier, often by focusing into highlighting an handful of crucial features (Baehrens et al. 2010) or
deriving simpler, more readable models from a complex one, for example, a binary decision tree
(Frosst and Hinton 2017), or by local approximation with linear models (Ribeiro et al. 2016).
However, although they can explicitly show the representations learned in the specific hidden
neurons (Frosst and Hinton 2017), these approaches base their effectiveness on the user ability
to establish the quality of the reasoning and the accountability, as a side effect of the quality of
the selected features: this can be very hard in tasks where no strong theory about the decision
is available or the boundaries between classes are not well defined. Sometimes, explanations are
associated with vector representations as in Ribeiro et al. (2016), that is, bag-of-word in case of
text classification, which is clearly weak at capturing significant linguistic abstractions, such as the
involved syntactic relations. When embeddings are used to trigger neural learning the readability
of the model is a clear proof of the consistency of the adopted vectors as meaning representations,
as clear understanding of what a numerical representation is describing allows human inspectors
to assess whether the machine correctly modeled the target phenomena or not. Readability here
refers to the property of a neural network to support linguistically motivated explanations about
its (textual) inference. A recent methodology exploits the coupling of the classifier with some sort
of generator, or decoder, responsible for the selection of output justifications: Lei, Barzilay, and
Jaakkola (2016) propose a generator that provides rationales for a multi-aspect sentiment analysis
prediction by highlighting short and self-sufficient phrases in the original text.

Concerns in the research area of deriving interpretable, sparse representations from dense
embeddings (Faruqui et al. 2015; Subramanian et al. 2018) have recently grown: for example, in
Trifonov et al. (2018) an effective unsupervised approach to disentangle meanings from embed-
ding dimensions as well as automatic evaluation method have been proposed. In this work, we
present a model generating local post-hoc explanations through analogies with previous real exam-
ples by exploiting the LRP extended to a linguistically motivated neural architecture, the KDA,
that exhibits a promising level of epistemological transparency. With respect to the works above,
our proposal holds a few nice properties. First, the instance representations corresponds to the

https://doi.org/10.1017/S1351324919000238 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000238

Natural Language Engineering 523

similarity scores modeled by the semantic tree kernels with real examples, i.e. the landmarks.
These exemplify the general linguistic properties (e.g. trees and lexical embeddings) and the task-
relevant information (i.e., the target class): this allows [...] neural discriminator. Second, it is well
suited to deal with short texts, where it may be difficult to highlight meaningful, yet not triv-
ial, portions of input as justifications, as well as with the classification of segments of longer
text (e.g., multi-aspect sentiment analysis) in a fashion similar to the one described for SRL in
Section 5.1.2. Moreover, it provides explanations that are easily interpretable even by nonexpert
users, as they are inspired and expressed at language level: these are done by entire sentences and
allow the human inspector to implicitly detect lexical, semantic, and syntactic connections in the
comparison, and consequently judge the trustworthiness of the decision, relying only on his/her
linguistic competence. Lastly, the explanation-generation process is computationally inexpensive,
as the LRP corresponds to a single pass of backward propagation. As discussed in Section 4.3, it
provides a transparent and epistemologically coherent view on the system’s decision.

3. Kernel-based learning in semantic inferences
3.1 Kernels as nonlinear feature mappings
Prediction techniques such as support vector machines (SVMs) learn decision surfaces that cor-
respond to hyper-planes in the original feature space by computing inner products between input
examples; consequently, they are inherently linear and cannot discover nonlinear patterns in data.
A possible solution is to use a mapping φ : x ∈Rn �→ φ(x) ∈ F⊆R

N such that nonlinear relations
in the original space become linearly separable in the target projection space, enabling the SVM
to correctly separate the data by computing inner products 〈φ(xi), φ(xj)〉 in the new feature space.
However, such projections can be computationally intense. Kernel functions are a class of func-
tions that allow to compute 〈φ(xi), φ(xj)〉 without explicitly accessing the input representation in
the projection space. Formally, given a feature space X and a mapping φ from X to F, a kernel κ is
any function satisfying

κ(xi, xj)= 〈φ(xi), φ(xj)〉 ∀xi, xj ∈ X (1)

An important generalization result is the Mercer Theorem (Shawe-Taylor and Cristianini 2004),
stating that for any symmetric positive semi-definite function κ there exists a mapping φ such
that 1 is satisfied. Hence, kernels include a broad class of functions (Shawe-Taylor and Cristianini
2004). Research community has been exploring kernel methods for decades and a wide variety of
kernel paradigms have been proposed. In the following subsections, we will illustrate advance-
ments in TKs, as they are well suited to encode formalisms, such as dependency graphs or
grammatical trees, traditionally exploited in the linguistics communities.

3.2 Semantic kernels
Learning to solve NLP tasks usually involves the acquisition of decision models based on complex
semantic and syntactic phenomena. For instance, in Paraphrase Detection, verifying whether two
sentences are valid paraphrases involves rewriting rules in which the syntax plays a fundamen-
tal role. In Question Answering, the syntactic information is crucial, as largely demonstrated in
Croce, Moschitti, and Basili (2011). Similar needs are applicable to the Semantic Role Labeling
task that consists in the automatic discovery of linguistic predicates (together with their corre-
sponding arguments) in texts. A natural approach to such problems is to apply Kernel methods
(Robert Müller, Mika, Rätsch, Tsuda, and Schölkopf 2001; Shawe-Taylor and Cristianini 2004)
that have been traditionally proposed to decouple similarity metrics and learning algorithms in
order to alleviate the impact of feature engineering in inductive processes. Kernels may directly

https://doi.org/10.1017/S1351324919000238 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000238

524 D Croce et al.

Figure 1. Dependency parse tree of “What is the width of a
football field?”.

Figure 2. Grammatical Relation Centered Tree
(GRCT) of “What is the width of a football field?”.

operate on complex structures and then be used in combination with linear learning algorithms,
such as SVMs (Vapnik 1998). Sequence (Cancedda, Gaussier, Goutte, and Renders 2003) or TKs
(Collins and Duffy 2001) are of particular interest as the feature space they capture reflects lin-
guistic patterns. A sentence s can be represented as a parse tree that expresses the grammatical
relations implied by s: parse trees are extracted by using the Stanford Parser (Manning, Surdeanu,
Bauer, Finkel, Bethard, and Mc-Closky 2014). TKs (Collins and Duffy 2001) can be employed to
directly operate on such parse trees, evaluating the tree fragments shared by the input trees. This
operation corresponds to a dot product in the implicit feature space of all possible tree fragments.
Whenever the dot product is available in the implicit feature space, kernel-based learning algo-
rithms, such as SVMs (Cortes and Vapnik 1995), can operate in order to automatically generate
robust predictionmodels. TKs thus allow estimating the similarity among texts, directly from sen-
tence syntactic structures, that can be represented by parse trees. The underlying idea is that the
similarity between two trees T1 and T2 can be derived from the number of shared tree fragments.
Let the set T = {t1, t2, . . . , t|T |} be the space of all the possible substructures and χi(n2) be an
indicator function that is equal to 1 if the target ti is rooted at the node n2 and 0 otherwise. A TK
function over T1 and T2 is defined as follows: TK(T1, T2)=∑

n1∈NT1

∑
n2∈NT2

�(n1, n2) where

NT1 and NT2 are the sets of nodes of T1 and T2, respectively, and �(n1, n2)=∑|T |
k=1 χk(n1)χk(n2)

which computes the number of common fragments between trees rooted at nodes n1 and n2. The
feature space generated by the structural kernels obviously depends on the input structures. Note
that different tree representations embody different linguistic theories and may produce more or
less effective syntactic/semantic feature spaces for a given task.

Many available linguistic resources are enriched with formalisms dictated by Dependency
grammars and produce a significantly different representation as exemplified in Figure 1. Since
TKs are not tailored to model the labeled edges that are typical of dependency graphs, these latter
are rewritten into explicit hierarchical representations. Different rewriting strategies are possible,
as discussed in Croce, Moschitti, and Basili (2011): a representation that is shown to be effec-
tive in several tasks is the grammatical relation centered tree (GRCT) illustrated in Figure 2: the
PoS-Tags are children of grammatical function nodes and direct ancestors of their associated lex-
ical items. Another possible representation is the Lexical only centered tree (LOCT) shown in
Figure 3, which contains only lexical nodes and the edges reflect some dependency relations.

https://doi.org/10.1017/S1351324919000238 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000238

Natural Language Engineering 525

Figure 3. Lexical only centered tree (LOCT) of “What is the width of a football field?”.

Different TKs can be defined according to the types of tree fragments considered in the
evaluation of the matching structures. Subset of trees are exploited by the subset tree kernel
(Collins and Duffy 2001), which is usually referred to as syntactic tree kernel (STK); they are more
general structures since their leaves can be also nonterminal symbols. The subset trees satisfy
the constraint that grammatical rules cannot be broken and every tree exhaustively represents
a CFG rule. Partial tree kernel (PTK; Moschitti 2006) relaxes this constraint considering partial
trees, that is, fragments generated by the application of partial production rules (e.g., sequences
of nonterminal nodes with gaps). The strict constraint imposed by the STK may be problematic
especially when the training dataset is small and only few syntactic tree configurations can be
observed. Overcoming this limitation, the PTK usually leads to higher accuracy, as shown by
Moschitti (2006).
Capitalizing lexical semantic information in convolution kernels. The TKs introduced in pre-
vious section perform a hard match between nodes when comparing two substructures. In NLP
tasks, when nodes are words, this strict requirement reflects in a too strict lexical constraint that
poorly reflects semantic phenomena, such as the synonymy of different words or the polysemy of
a lexical entry. To overcome this limitation, we adopt Distributional models of Lexical Semantics
(Schütze 1993; Sahlgren 2006; Padó and Lapata 2007) to generalize the meaning of individual
words by replacing them with geometrical representations (also called Word Embeddings) that
are automatically derived from the analysis of large-scale corpora (Mikolov et al. 2013). These
representations are based on the idea that words occurring in the same contexts tend to have
similar meaning: the adopted distributional models generate vectors that are similar when the
associated words exhibit a similar usage in large-scale document collections. Under this per-
spective, the distance between vectors reflects semantic relations between the represented words,
such as paradigmatic relations, for example, quasi-synonymy.a These word spaces allow to define
meaningful soft matching between lexical nodes, in terms of the distance between their repre-
sentative vectors. As a result, it is possible to obtain more informative kernel functions, which
are able to capture syntactic and semantic phenomena through grammatical and lexical con-
straints. Moreover, the supervised setting of a learning algorithm (such as SVM), operating over
the resulting kernel, is augmented with the word representations generated by the unsupervised
distributional methods, thus characterizing a cost-effective semi-supervised paradigm.

The smoothed partial tree kernel (SPTK) described in Croce et al. (2011) exploits this idea
extending the PTK formulation with a similarity function σ between nodes:

�SPTK(n1, n2)= μλσ (n1, n2) , if n1 and n2 are leaves

�SPTK(n1, n2)= μσ (n1, n2)

⎛
⎝λ2 +

∑

I1,
I2:l(
I1)=l(
I2)

λd(
I1)+d(
I2)
l(
I1)∏
k=1

�SPTK
(
cn1

(
i1k

)
, cn2

(
i2k

))⎞⎠ (2)

aIn such spaces, vectors representing the nouns football and soccer will be near (as they are synonyms according to one of
their senses), while football and dog are far.

https://doi.org/10.1017/S1351324919000238 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000238

526 D Croce et al.

Figure 4. Compositional grammatical relation centered tree (CGRCT) of the sentence “What instrument does Hendrix play?”.

In the SPTK formulation, the similarity function σ (n1, n2) between two nodes n1 and n2 can be
defined as follows:

• if n1 and n2 are both lexical nodes, then σ (n1, n2)= σLEX(n1, n2)= τ

vn1 ·
vn2∥∥
vn1∥∥∥∥
vn2∥∥ . It is the

cosine similarity between the word vectors
vn1 and
vn2 associated with the labels of n1 and n2,
respectively. τ is called terminal factor and weighs the contribution of the lexical similarity to
the overall kernel computation.

• else if n1 and n2 are nodes sharing the same label, then σ (n1, n2)= 1.
• else σ (n1, n2)= 0.

The decay factors λ and μ are responsible for penalizing large child subsequences (that can
include gaps) and partial sub-trees that are deeper in the structure, respectively.

Dealing with compositionality in TKs. The main limitations of the SPTK are that (i) lexical
semantic information only relies on the vector metrics applied to the leaves in a context-free fash-
ion and (ii) the semantic compositions between words are neglected in the kernel computation
that only depends on their grammatical labels.

In Annesi, Croce, and Basili (2014), a solution for overcoming these issues is proposed. The
pursued idea is that the semantics of a specific word depends on its context. For example, in
the sentence, “What instrument does Hendrix play?”, the role of the word instrument is fully
captured if its composition with the verb play is taken into account. Such combination of lexical
semantic information can be directly expressed into the tree structures, as shown in Figure 4. The
resulting representation is a compositional extension of a GRCT structure, where the original label
dn of grammatical function nodes n (i.e., dependency relations in the tree) is augmented by also
denoting their corresponding head/modifier pairs (hn,mn).

In CGRCTs, a (sub)tree rooted at dependency nodes can be used to provide a contribution to
the kernel that is a function of the composition of vectors,
h and
m, expressing the lexical seman-
tics of the head h and modifierm, respectively. Several algebraic functions have been proposed in
Annesi et al. (2014) to compose the vectors of h=lh::posh andm=lm::posm into a vector
ch,m repre-
senting the head modifier pair c= 〈lh::posh,lm::posm〉, in line with the research on Compositional
Distributional Semantics (e.g., Mitchell and Lapata 2010). In this work, we investigated the addi-
tive function (according to the notation proposed in Mitchell and Lapata 2010) that assigns to a
head/modifier pair c the vector resulting from the linear combination of the vectors representing
the head and themodifier, that is,
ch,m = α
h+ β
m. Although this compositionmethod is very sim-
ple and efficient, it actually produces very effective kernel functions, as demonstrated in Annesi
et al. (2014) and Filice et al. (2015). According to the CGRCT structures, Annesi et al. (2014)
define the compositionally smoothed partial tree kernel (CSPTK). The core novelty of the CSPTK
is the compositionally enriched estimation of the function σ . The function σ can be applied to
lexical nodes, to POS tag nodes as well as to augmented dependency nodes. In the algorithm the

https://doi.org/10.1017/S1351324919000238 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000238

Natural Language Engineering 527

three cases are defined. For simple lexical nodes, σ consists of a lexical kernel σLEX, such as the
cosine similarity between word vectors (sharing the same POS-tag): this is equivalent to Croce
et al. (2011). For POS nodes σ consists of the identity function that is 1 only when the same POS
is matched and it is 0 elsewhere.

The novelty of CSPTK corresponds to the compositional treatment of two dependency nodes,
n1 =

〈
d1, h1,m1

〉
and n2 =

〈
d2, h2,m2

〉
. The similarity function σ in this case corresponds to a com-

positional function σComp between the two nodes. σComp is not null only when the two nodes
exhibit the same dependency relation, that is, d= d1 = d2, so that also the respective heads and
modifiers share the same POS labels: this allows to exploit, case by case, the suitable contextual
meaning of polysemous words, e.g. bank. In all these cases a compositional metric is applied
over the two involved (hi,mi) compounds. In the simple case, the cosine similarity between
the two vectors
cihi,mi = α
hi + β
mi, i=1,2, is applied. Other metrics correspond to more com-
plex compositions �((
h1,
m1), (
h2,
m2)) that account for linear algebra operators among the four
vectors.

3.3 Approximating kernel spaces through the Nyströmmethod
Given an input training dataset D of objects oi, i= 1 . . .N, a kernel K(oi, oj) is a similar-
ity function over D2 that corresponds to a dot product in the implicit kernel space, that is,
K(oi, oj)=�(oi) ·�(oj). The advantage of kernels is that the projection function �(o)=
x ∈Rn

is never explicitly computed (Shawe-Taylor and Cristianini 2004). In fact, this operation may be
prohibitive when the dimensionality n of the underlying kernel space is extremely large, as for TKs
(Collins and Duffy 2001). Kernel functions are used by learning algorithms, such as SVM, to oper-
ate only implicitly on instances in the kernel space, by never accessing their explicit definition. Let
us apply the projection function� over all examples oi fromD to derive representations,
xi denot-
ing the ith row of the matrixX. The Grammatrix can always be computed asG=XX�, with each
single element corresponding to Gij =�(oi)�(oj)=K(oi, oj). The aim of the Nyström method
(Drineas and Mahoney 2005) is to derive a new low-dimensional embedding
̃x in a l-dimensional
space, with l� n so that G̃= X̃X̃� and G̃≈G. This is obtained by generating an approximation
G̃ of G using a subset of l columns of the Gram matrix, that is, the kernel evaluations between
all the objects ∈D and a selection of a subset L⊂D of the available examples, called landmarks.
Suppose we randomly sample l columns of G, and let C ∈RN×l be the matrix of these sampled
columns. Then, we can rearrange the columns and rows of G and define X= [X1 X2] such that:

G=XX� =
[

W X�1 X2

X�2 X1 X�2 X2

]
and C=

[
W

X�2 X1

]

whereW=X�1 X1, that is, the subset of G that contains only landmarks and C kernel evaluations
between landmarks and the remaining examples. The Nyström approximation can be defined as

G≈ G̃=CW†C� (3)

where W† denotes the Moore–Penrose inverse of W. The singular value decomposition (SVD)
is used to obtain W† as follows. First, W is decomposed so that W=USV�, where U and V are
both orthogonal matrices, and S is a diagonal matrix containing the (nonzero) singular values of
W on its diagonal. Since W is symmetric and positive definite, it holds that W=USU�. Then,
W† =US−1U� =US− 1

2 S− 1
2U� and Equation (3) can be rewritten as

G≈ G̃=CUS−
1
2 S−

1
2U�C� = (CUS−

1
2)(CUS−

1
2)� = X̃X̃� (4)

https://doi.org/10.1017/S1351324919000238 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000238

528 D Croce et al.

 P
ro

je
ct

io
n

K(x, l1)

K(x, l2)

K(x, ld)

hidden
 layers

classification
layer

landmarks

layer
input
layer

x

Figure 5. Kernel-based deep architecture.

which explicitates the desired approximation ofG in terms of the described decomposition. Given
an input example o ∈D, a new low-dimensional representation
̃x can be thus determined by
considering the corresponding item of C as

̃x =
c US− 1
2 (5)

where
c is the vector whose jth individual component contains the evaluation of the kernel
function between o and the landmark oj ∈ L. Therefore, the method produces l-dimensional
vectors.

4. Explainable neural learners through kernel embeddings
4.1 Kernel-based deep architectures
As discussed in Section 3.3, the Nyström representation
̃x of any input example o is lin-
ear and can be adopted to feed a neural network architecture. We assume a labeled dataset
L= {(o, y) | o ∈D, y ∈ Y} being available, where o refers to a generic instance and y is its
associated class. In this section, we define a multilayer perceptron (MLP) architecture, with a
specific Nyström layer based on the Nyström embeddings of Equation (5). We will refer to this
architecture, shown in Figure 5, as KDA. KDA has an input layer, a Nyström layer, a possibly
empty sequence of nonlinear hidden layers and a final classification layer, which produces the
output.

The input layer corresponds to the input vector
c, that is, the row of the C matrix associated
with an example o. Note that, for adopting the KDA, the values of the matrix C should be all
available. In the training stage, these values are in general cached. During the classification stage,
the
c vector corresponding to an example o is directly computed by l kernel computations between
o and each of the l landmarks.

The input layer is mapped to the Nyström layer, through the projection in Equation (5). Note
that the embedding provides also the proper weights, defined byUS− 1

2 , so that themapping can be
expressed through the Nyström matrixHNy =US− 1

2 : it corresponds to a pretrained stage derived
through SVD, as discussed in Section 3.3. Equation (5) provides a static definition forHNy whose
weights can be left invariant during the neural network training. However, the values of HNy can
be made available for the standard back-propagation adjustments applied for training. Formally,
the low-dimensional embedding of an input example, o, is
̃x=
cHNy =
c US− 1

2 .
The resulting outcome
̃x is the input to one or more nonlinear hidden layers. Each tth hidden

layer is realized through a matrix Ht ∈Rht−1×ht and a bias vector
bt ∈R1×ht , whereas ht denotes
the desired hidden-layer dimensionality. Clearly, given that HNy ∈Rl×l, h0 = l. The first hidden

https://doi.org/10.1017/S1351324919000238 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000238

Natural Language Engineering 529

layer in fact receives in input
̃x=
cHNy, which corresponds to t= 0 layer input
x0 =
̃x and its com-
putation is formally expressed by
x1 = f (
x0H1 +
b1), where f is a nonlinear activation function,
here a Rectified Linear Unit (ReLU). In general, the generic tth layer is modeled as

xt = f (
xt−1Ht +
bt) (6)

The final layer of KDA is the classification layer, realized through the output matrixHO and the
output bias vector
bO. Their dimensionality depends on the dimensionality of the last hidden layer
(called O−1) and the number |Y| of different classes, that is, HO ∈RhO−1×|Y| and
bO ∈R1×|Y|,
respectively. In particular, this layer computes a linear classification function with a softmax
operator so that ŷ= softmax(
xO−1HO +
bO).

In order to avoid overfitting, two different regularization schemes are applied. First, the
dropout is applied to the input
xt of each hidden layer (t≥ 1) and to the input
xO−1 of the final
classifier. Second, a L2 regularization is applied to the norm of each layer.

Finally, the KDA is trained by optimizing a loss function made of the sum of two factors:
first, the cross-entropy function between the gold classes and the predicted ones; second the L2
regularization, whose importance is regulated by a meta-parameter λ. The final loss function is
thus

L(y, ŷ)=
∑

(o,y)∈L
y log(ŷ)+ λ

∑
H∈{Ht}∪{HO}

||H||2

where ŷ are the softmax values computed by the network and y are the true one-hot encoding
values associated with the example from the labeled training dataset L.

4.2 Layer-wise relevance propagation
LRP (presented in Bach et al. 2015) is a framework which allows to decompose the prediction of
a deep neural network computed over a sample, for example, an image, down to relevance scores
for the single input dimensions of the sample such as subpixels of an image.

More formally, let f :Rd→R
+ be a positive real-valued function taking a vector x ∈Rd as

input. The function f can quantify, for example, the probability of x being in a certain class. The
LRP assigns to each dimension, or feature, xd a relevance score R(1)d such that:

f (x)≈∑
dR

(1)
d (7)

Features whose score is R(1)d > 0 or R(1)d < 0 correspond to evidence in favor or against, respec-
tively, the output classification. In other words, LRP allows to identify fragments of the input
playing key roles in the decision, by propagating relevance backwards. Let us suppose to know
the relevance score R(l+1)j of a neuron j at network layer l+ 1, then it can be decomposed into
messages R(l,l+1)i←j sent to neurons i in layer l:

R(l+1)j =
∑
i∈(l)

R(l,l+1)i←j (8)

Hence, it derives that the relevance of a neuron i at layer l can be defined as

R(l)i =
∑

j∈(l+1)
R(l,l+1)i←j (9)

https://doi.org/10.1017/S1351324919000238 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000238

530 D Croce et al.

Note that 8 and 9 are such that 7 holds. In this work, we adopted the ε-rule defined in Bach et al.
(2015) to compute the messages R(l,l+1)i←j :

R(l,l+1)i←j =
zij

zj + ε · sign(zj)R
(l+1)
j

where zij = xiwij and ε > 0 is a numerical stabilizing term and must be small. The informative
value is justified by the fact that the weights wij are linked to the weighted activations of the input
neurons.

If we apply it to a KDA processing linguistic observations, then LRP implicitly traces back the
syntactic, semantic, and lexical relations between the example and the landmarks; thus, it selects
the landmarks whose presences were the most influential to identify the predicted structure in
the sentence. Indeed, each landmark is uniquely associated with an entry of the input vector
c, as
illustrated in Section 4.1.

4.3 KDA embeddings andmodel readability
Justifications for the KDA decisions can be obtained by explaining the evidence in favor or against
a class using landmarks {�} as examples. The idea is to select those {�} that the LRP method pro-
duces as the most active elements in layer 0 during the classification. Once such active landmarks
are detected, an Explanatory Model is the function in charge to compile a linguistically fluent
explanation by using analogies or differences with the input case. The semantic expressiveness of
such analogies makes the resulting explanation clear and increases the user confidence on the sys-
tem reliability. When a sentence s is classified, LRP assigns activation scores rs� to each individual
landmark �: let L(+) (or L(−)) denote the set of landmarks with positive (or negative) activation
score.

Formally, every explanation is characterized by a triple e= 〈s, C, τ 〉 where s is the input sen-
tence, C is the predicted label, and τ is the modality of the explanation: τ =+1 for positive (i.e.,
acceptance) statements, while τ =−1 corresponds to rejections of the decision C. A landmark � is
positively activated for a given sentence s if there are not more than k− 1 other active landmarks
�′ whose activation value is higher than the one for �, that is,

|{�′ ∈L(+):�′ �= �∧ rs�′ ≥ rs� > 0}|< k
Similarly, a landmark � is negatively activated when:

|{�′ ∈L(−):�′ �= �∧ rs�′ ≤ rs� < 0}|< k
where k is a parameter used to make explanation depending on not more than k landmarks,
denoted by Lk. Positively (or negative) active landmarks in Lk are assigned to an activation value
a(�, s)=+1 (− 1). a(�, s)= 0 for all other not activated landmarks.

Given the explanation e= 〈s, C, τ 〉, a landmark � whose (known) class is C� is consistent (or
inconsistent) with e according to the fact that the following function:

δ(C�, C) · a(�, q) · τ
is positive (or negative, respectively), where δ(C′, C)= 2δkron(C′ = C)− 1 and δkron is the
Kronecker delta. The explanatory model is then a functionM(e,Lk) which maps an explanation e,
a subset Lk of the active and consistent landmarks L for e into a sentence f in natural language.
Note that the value of k determines the amount of consistent landmarks and hence it regulates
the trade-off between the capacity of the system to produce an explanation at all and the adher-
ence of such explanation to the machine inference process: low values of k grant that the Model
generates explanations using landmarks with high activation scores only; however, they may also
result in the Model being unable to produce any explanation for some decisions, that is, when no
consistent landmark is available.

https://doi.org/10.1017/S1351324919000238 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000238

Natural Language Engineering 531

Of course several definitions forM(e,Lk) are possible. A general explanatory model would be

M(e,Lk)=M(〈s, C, τ 〉,Lk)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

“s is C since it recalls me of �”
∀� ∈L+k if τ > 0

“s is not C since it does not recall me of
� which is C”
∀� ∈L−k if τ < 0

“s is C but I don’t know why”
if L≡∅

where L+k and L−k are the partition of landmarks with positive and negative relevance scores in
Lk, respectively.
Here we defined three explanatory models we used during experimental evaluation:

(Basic Model) The first model is the simplest. It returns an analogy only with the (unique)
consistent landmark with the highest positive score if τ = 1 and lowest negative when τ =
−1. In case no active and consistent landmark can be found, the Basic model returns a
phrase stating only the predicted class, with no explanation. For example, given the triple
e1 = 〈‘Put this plate in the center of the table’, THEMEPLACING, 1〉, that is an explanation for the
Argument Classification task, the model would produce the following sentence:

I think “this plate” is THEME of PLACING in “Robot PUT this plate in the center of the table”
since it reminds me of “the soap” in “Can you PUT the soap in the washing machine?”.

(Multiplicative Model) In a second model, denoted as multiplicative, the system makes refer-
ence to up to k1 ≤ k analogies with positively active and consistent landmarks. Given the above
explanation e1, and k1 = 2, it would return:

I think “this plate” is THEME of PLACING in “Robot PUT this plate in the center of the table”
since it reminds me of “the soap” in “Can you PUT “the soap” in the washing machine?” and it
also reminds me of “my coat” in “HANG my coat in the closet in the bedroom”.

(ContrastiveModel) The last proposedmodel ismore complex since it returns both a positive anal-
ogy (whether τ = 1) and a negative (τ =−1) analogy by selecting, respectively, themost positively
relevant and the most negatively relevant consistent landmark. For instance, it could return:

I think “this plate” is the THEME of PLACING in “Robot PUT this plate in the center of the
table” since it reminds me of “the soap” which is in “Can you PUT the soap in the washing
machine” and it is not the GOAL of PLACING since different from “on the counter” in “PUT
the plate on the counter”.

All three models find their foundations, from an argumentation theory perspective, in the argu-
ment by analogy schema (Walton, Reed, and Macagno 2008): as such a kind of arguments gains
strength proportionally to the linguistic plausibility of the analogy, a user exposed to it will implic-
itly gauge the evidences from the linguistic properties shared between the input sentence (or
its parts) and the one used for comparison as well their importance with respect to the output
decision, hence endowing a different amount of trust in the machine verdict accordingly.

https://doi.org/10.1017/S1351324919000238 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000238

532 D Croce et al.

4.4 Using information theory for validating explanations
In general, judging the semantic coherence of an explanation is a very difficult task. In this sec-
tion, we propose an approach which aims at evaluating the quality of the explanations in terms
of the amount of information that a user would gather given an explanation with respect to a
scenario where such explanation is not made available. More formally, let P(C|s) and P(C|s, e)
be, respectively, the prior probability of the user believing that the classification of s is correct
and the probability of the user believing that the classification of s is correct given an explana-
tion. Note that both indicate the level of confidence the user has in the classifier (i.e., the KDA)
given the amount of available information, that is, with and without explanation. Three kinds of
explanations are possible:

• Useful explanations: these are explanations such that C is correct and P(C|s, e)> P(C|s) or
C is not correct and P(C|s, e)< P(C|s)

• Useless explanations: they are explanations such that P(C|s, e)= P(C|s)
• Misleading explanations: they are explanations such that C is correct and P(C|s, e)< P(C|s)
or C is not correct and P(C|s, e)> P(C|s)

The core idea is that semantically coherent and exhaustive explanations must indicate correct
classifications, whereas incoherent or nonexistent explanations must hint toward wrong classifi-
cations. Given the above probabilities, we canmeasure the quality of an explanation by computing
the Information Gain (Kononenko and Bratko 1991) achieved: the posterior probability is expected
to grow w.r.t. to the prior one for correct decisions when a good explanation is available against
the input sentence while decreasing for bad or confusing explanations. The intuition behind
Information Gain is that it measures the amount of information (provided in number of bits)
gained by the explanation about the decision of accepting the system decision about an incoming
sentence s. A positive gain indicates that the probability amplifies toward the right decisions and
declines with errors. We will let users to judge the quality of the explanation and assign them a
posterior probability that increases along with better judgments. In this way, we have a measure
of how convincing is the system about its decisions as well as how weak is the system to clar-
ify erroneous cases. To compare the overall performance of the different explanatory models M,
the Information Gain is measured against a collection of explanations generated by M and then
normalized throughout the collection’s entropy E as follows:

Ir = 1
E

1
| Ts |

|Ts|∑
j=1

I(j)= Ia
E

(10)

where Ts is the explanations collection and I(j) is the Information Gain of explanation j.

5. Experimental investigations
To assess the effectiveness of our approach on both discriminative power and interpetability
improvement, we focused on two common tasks in semantic inferences: Question Classification
(QC) and the Argument Classification (AC) step in the Semantic Role Labeling chain. Whereas
performances in semantic inferences have been evaluated by the classic metrics, that is, accu-
racy, we devised the qualitative evaluation of generated explanations as a human manual task,
which will be well described in Section 5.2. In fact, even if some automatic evaluation approaches
have been proposed, as in Trifonov et al. (2018), the interpretability measurement problem is still
controversial and no consensus on machine-executable methodology has been reached.

As details on performances will be illustrated in the following section, here we would like
to stress that the proposed approach is fully scalable: (i) the computational intensive SVD has

https://doi.org/10.1017/S1351324919000238 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000238

Natural Language Engineering 533

reduced cost as it needs to be performed over the l landmarks only, resulting in O(l2) with l� n,
whereas the cost of a single Nystrom projection isO(kl+ l2), which can be reduced toO(kl) with
k being the number of operations for a single kernel computation. (ii) Both the network compu-
tations and the operations for reconstructing the projection vector
c can be parallelized. (iii) The
computation of relevance attributes of input dimension has a cost comparable to a single forward
pass throughout the network.

5.1 Training the KDA for complex semantic inferences
We conducted an extensive experimental investigation in order to demonstrate that the proposed
KDA is an effective solution for combining the expressiveness of kernelmethods with the powerful
learning capabilities of Deep Learning. Furthermore, we will show that the KDA is very efficient
and that it can easily scale to large datasets. Finally, we investigated the impact of linguistic infor-
mation on the performance reachable by a KDA by studying the benefits that different kernels
(each characterized by a growing expressive power) can bring to the accuracy in semantic infer-
ence tasks. We adopted the same architecture, without major differences, for both tasks, that is,
QC and AC, and the good performances obtained in these rather different tasks clearly confirm
that the proposed framework is a general solution with an extremely large applicability.
General experimental settings: the Nyström projector has been implemented in the
KeLP framework (Filice et al. 2018). The neural network has been implemented in Tensorflow,b
with two hidden layers whose dimensionality corresponds to the number of involved Nyström
landmarks. The ReLU is the nonlinear activation function in each layer. The dropout has been
applied in each hidden layer and in the final classification layer. The values of the dropout param-
eter and the λ parameter of the L2-regularization have been selected from a set of values via
grid-search. The Adam optimizer with a learning rate of 0.001 has been applied to minimize the
loss function, with a multi-epoch (500) training, each fed with batches of size 256. We adopted
an early stop strategy, where the best model was selected according to the performance over
the development set. Every performance measure is obtained against a specific sampling of the
Nyström landmarks with fixed sizes. Results averaged against 5 such samplings are always here-
after reported. In the following experiments, the only difference in the KDA configuration is the
adopted kernels that will be described specifically for each task.

5.1.1 Semantic inferences: Question classification
QC is the task of mapping a question into a closed set of answer types in a Question Answering
system. The adopted UIUC dataset (Li and Roth 2006) includes a training and test set of 5, 452
and 500 questions, respectively, organized in six classes (like ENTITY or HUMAN). TKs resulted very
effective, as shown in Croce, Moschitti, and Basili (2011) and Annesi, Croce, and Basili (2014).

A first experiment aims at understanding the impact of different kernels into the proposed
KDA framework. The input vectors for the KDA are modeled using the Nyström method (with
different kernels) based on a number of landmarks ranging from 100 to 1000. We tried different
kernels with increasing expressiveness:

• BOWK: a liner kernel applied over bag-of-words vectors having lemmas as dimensions. It
provides a pure lexical similarity.

• PTK: the partial tree kernel over the GRCT representations. It provides a lexical and syntactic
similarity.

• SPTK: the smoothed partial tree kernel over the GRCT representations. It improves the
reasoning of the PTK by including the semantic information derived by word embeddings.

bhttps://www.tensorflow.org/

https://doi.org/10.1017/S1351324919000238 Published online by Cambridge University Press

https://www.tensorflow.org/
https://doi.org/10.1017/S1351324919000238

534 D Croce et al.

0,75

0,80

0,85

0,90

0,95

100 200 400 600 800 1000

A
cc

ur
ac

y

of landmarks

BOWK

PTK

SPTK

CSPTK

Figure 6. QC task—accuracy measure curves w.r.t.
the number of landmarks.

• CSPTK: the compositionally smoothed partial tree kernel over the GRCT representations. It
adds the semantic compositionality to the SPTK.

In the SPTK and CSPTK, we used 250-dimensional word vectors generated by applying the
Word2vec tool with a Skip-gram model (Mikolov et al. 2013) to the entire Wikipedia. The TKs
have default parameters (i.e., μ= λ= 0.4).

Figure 6 shows the impact of different kernels in the proposed KDAmodel, whereas the differ-
ent plots are based to a varying number of landmarks in the Nyström formulation. The increasing
complexity of the investigated kernels directly reflects on the accuracy achieved by the KDA. The
BOWK is the simplest kernel and obtains poor results: it needs 800 landmarks to reach 85% of
accuracy.

The contribution of the syntactic information provided by TKs is straightforward. The PTK
achieves about 90% of accuracy starting from 600 landmarks. These results are significantly
improved by SPTK and CSPTK when the semantic information of the word embeddings is
employed: even when only 100 landmarks are used, the KDA using these kernels can obtain 90%
of accuracy and overcomes 94% with more landmarks. These achievements demonstrate that the
KDA results directly depend on the involved kernel functions and that the improvement guaran-
teed by using a more expressive kernel cannot be obtained by the nonlinear learning of the Neural
Network.

We also performed a second set of experiments to show that (i) the proposed KDA is far more
efficient than a pure kernel-based approach, and (ii) the powerful nonlinear learning provided
by the neural networks is necessary to take the best from the Nyström embeddings and achieve
higher accuracies. In this case, we focused on the most accurate kernel, that is, the CSPTK. The
kernel-based SVM formulation by Chang and Lin (2011), fed with the CSPTK (hereafter SVMker),
is here adopted to determine the reachable upper bound in classification quality, that is, a 95% of
accuracy, at higher computational costs. It establishes the state-of-the-art over the UIUC dataset.
The resulting model includes 3,873 support vectors: this corresponds to the number of kernel
operations required to classify any input test question.

To justify the need of the Neural Network, we compared the proposed KDA to an efficient
linear SVM that is directly trained over the Nyström embeddings. This SVM implements the Dual
Coordinate Descent method (Hsieh et al. 2008) and will be referred as SVMlin.

Results are reported in Table 1: computational saving refers to the percentage of avoided ker-
nel computations with respect to the application of the SVMker to classify each test instance. We
also measured the performance of the Convolutional Neural Networkc (CNN) of Kim (2014) that

cThe deep architecture presented in Kim (2014) outperforms several NN models, including the Recursive Neural Tensor
Network or Tree-LSTM presented in Socher et al. (2013) and Tai, Socher, and Manning (2015) which presents a semantic
compositionality model that exploits parse trees. A higher result is shown in Zhang, Lee, and Radev (2016) where a CNN is
combined with a Recursive Neural Networks in the so-called DSCNN, leading to an accuracy of 95.4%: unfortunately, this
last work is not evaluated using the official train/test split and a direct comparison is not easily feasible.

https://doi.org/10.1017/S1351324919000238 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000238

Natural Language Engineering 535

Table 1. Results in terms of accuracy and saving in the QC task. In brackets, accuracy scores of the linear classifier SVMlin

Model #Land. Accuracy Saving

CNN (Kim 2014) − 93.6% −
. .

LSTM (Zhou et al. 2015) − 93.2% −
. .

BiLSTM (Zhou et al. 2015) − 93.0% −
. .

C-LSTM (Zhou et al. 2015) − 94.6% −

SVMker − 95.0% 0.0%

100 88.5% (84.1%) 97.4%
.. .

200 92.2% (88.7%) 94.8%
.. .

400 93.7% (91.6%) 89.7%
.. .

KDA (SVMlin) 600 94.3%(92.8%) 84.5%
. .

800 94.3% (93.0%) 79.3%
.. .

1,000 94.2% (93.6%) 74.2%

Notes: Accuracy scores of the linear classifier SVMlin are given in brackets.

achieves the remarkable accuracy of 93.6%. Zhou et al. (2015) report results from a different ver-
sion of LSTM, including a Bidirectional LSTM (BiLSTM) and the combination of a Convolutional
and a Recurrent Neural Network (namely C-LSTM) that leads to an Accuracy of 94.6%.

Note that the linear classifier SVMlin operating over the approximated kernel space achieves the
same classification quality of the CNN when only 1000 landmarks are considered. KDA improves
these results, achieving 94.3% accuracy even with fewer landmarks (only 600), showing the effec-
tiveness of nonlinear learning over the Nyström input. Although SVMker improves to 95%, KDA
provides a saving of more than 84% kernel computations at classification time. This result is
straightforward as it confirms that (1) linguistic information encoded in a tree is important in the
analysis of questions, (2) Nyström vectors correspond to very expressive sentence embeddings, and
(3) they can be used effectively in the pretraining stage of anMLP. Moreover, even if the application
of the KDA does not outperform the results obtained by the C-LSTM (even if the results are very
close), it is worth noting that the proposed classifier is a very simple multilayered feed-forward
network applied in a very informative space. Further extensions which use more complex archi-
tectures in such spaces represent an important research direction. Figure 7 shows the accuracy
curves according to various approximations of the kernel space, that is, number of landmarks.

5.1.2 Semantic inferences: Argument Classification in Semantic Role Labeling
Semantic role labeling (SRL; Palmer, Gildea, and Xue 2010) consists in detecting the semantic
arguments associated with the predicate of a sentence and their classification into their specific
roles (Fillmore 1985). For example, given the sentence “Bring the fruit onto the dining table”, the
task would be to recognize the verb “bring” as evoking the BRINGING frame, with its roles, THEME
for “the fruit,” and GOAL for “onto the dining table”. AC corresponds to the subtask of assigning
labels to the sentence fragments spanning individual roles.

As proposed in Moschitti, Pighin, and Basili (2008), SRL can be modeled as a multi-
classification task over each parse tree node n, where argument spans reflect sub-sentences covered
by the tree rooted at n. Consistently with Croce, Moschitti, and Basili (2011), in our experiments
the KDA has been empowered with an SPTK, operating over GRCT derived from dependency
grammar, as shown in Figure 9.

https://doi.org/10.1017/S1351324919000238 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000238

536 D Croce et al.

80%

85%

90%

95%

100 200 300 400 500 600 700 800 900 1000

A
cc

ur
ac

y

of landmarks

KDA

SVMker

SVMlin

Figure 7. QC task—accuracy curves w.r.t. the number of
landmarks.

Figure 8. A dependency graph associated with “Carry the
book to my nightstand”.

Figure 9. GRCT of the command “Carry the book to my nightstand”.

We used the HuRIC dataset (Bastianelli et al. 2014; Bastianelli et al. 2016), including over 650
annotated transcriptions of spoken robotic commands, organized in 18 frames and about 60 argu-
ments. We extracted single arguments from each HuRIC example, for a total of 1300 instances.
We run experiments with a methodology similar to the one described in Section 5.3, but due to
the limited data size we performed extensive 10-fold cross-validation, optimizing network hyper-
parameters via grid-search for each test set. We generated Nyström representation of a equally
weighted linear combination of SPTK function with default parameters μ= λ= 0.4 and of linear
kernel function applied to sparse vector representing the instance frame. With these settings, the
KDA accuracy was 96.1%.

5.2 Experimental evaluation of explanatory models
The effectiveness of the proposed approach has been measured against two different semantic
processing tasks, that is, QC and AC in semantic role labeling. The KDA evaluated in Section
5.1 is here adopted and extended with LRP. For evaluating our explanation method, we defined
five quality categories and associated them with values for the posteriori probability P(C|s, e),
as shown in Table 2. We gathered into explanation datasets hundreds of explanations from the
three models for each task and presented them to a pool of annotators (further details in related
subsections) for independent labeling. During the annotation process, annotators are exposed to
examples classified by the KDA with an explanation and they are asked to label the explanation
with one of the following classes: Very Good if the provided explanation is clearly convincing,
Good if the explanation is convincing but it is not completely related to the input example so
that some doubts about the system decision still remain, Weak if the explanation is not useful
to increase the confidence of the user with respect to the system decision, Bad if the explanation

https://doi.org/10.1017/S1351324919000238 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000238

Natural Language Engineering 537

Table 2. Posterior probabilities w.r.t. quality categories

Category P(C|s, e) 1− P(C|s, e)

V.Good 0.95 0.05
.. .

Good 0.8 0.2
.. .

Weak 0.5 0.5
.. .

Bad 0.2 0.8
.. .

Incoher. 0.05 0.95

Table 3. Weights for the Cohen’s kappa κw statistics

Class Incoher. Bad Weak Good V.Good

Incoher. 1.00 0.83 0.50 0.16 0.00
.. .

Bad 0.83 1.00 0.66 0.33 0.16
.. .

Weak 0.50 0.66 1.00 0.66 0.50
.. .

Good 0.16 0.33 0.66 1.00 0.83
.. .

V.Good 0.00 0.16 0.50 0.83 1.00

Table 4. Information gains for the three explanatorymodels applied to the
SRL-AC and QC datasets. kw is the weighted Cohen’s kappa κw

Basic Multiplicative Contrastive accuracy κw

QC 0.548 0.514 0.576 0.926 0.667
.. .

SRL-AC 0.669 0.663 0.667 0.961 0.783

makes the annotator believe that the system decision is not correct, while Incoherent corresponds
to the case where the explanation is clearly inconsistent with the input example and suggests a
clear error of the system in providing its answer. Annotators had no information of the correct-
ness of the system emissions but just knowledge about the dataset entropy. We addressed their
consensus by measuring a weighted Cohen’s Kappa (adopting the weights reported in Table 3).

5.3 Evaluating question classification
We generated the Nyström representation of the CSPTK (Annesi, Croce, and Basili 2014) function
with default parameters μ= λ= 0.4. Using 500 landmarks, the KDA accuracy was 92.6%.

A group of three annotators evaluated an explanation dataset of 300 explanations (perfectly
balanced between correct and not correct classification), composed of 100 explanations for each
model. Performances are shown in Table 4: all three explanatory models were able to gain more
than half the required information in order to ascertain the correctness of the classification. As an
example, consider:

I think “What year did Oklahoma become a state ?” refers to a NUMBER since it reminds me of
“The film Jaws was made in what year ?”

The model provided an evidently coherent analogy, but this is a easy case due to the occurrence
in both questions of very discriminative words, i.e “what year.” However, the system is also able to
capture semantic similarities when both syntactic and lexical features are different. For example:

https://doi.org/10.1017/S1351324919000238 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000238

538 D Croce et al.

I think “Where is the Mall of the America ?” refers to a LOCATION since it reminds me of “What
town was the setting for The Music Man ?”.

This is an high-quality explanation since the system provided an analogy with a landmark request-
ing the same fine-grained category but with little sharing of lexical and syntactic information
(note, for example, the absence in the landmark of the very discriminative word “where”). Let us
now consider the case of wrong classification:

I think “Mexican pesos are worth what in U.S. dollars ?” refers to a DESCRIPTION since it reminds
me of “What is the Bernoulli Principle ?”

The system provided an explanation that is not possible to easily interpret: indeed, it was labeled
as [Incoherent] by all the annotators.

However, the system suffers for two issues. First, in the case of negative modality and correct
classification, explanations, albeit coherent, can be trivial and do not actually help in reducing
uncertainty about the correct target class. For example,

I think “What is angiotensin ?” does not refer to a NUM since different from “What was Einstein ’s
IQ ?”.

Here the explanation is correct but obvious; instead, a negative analogy with a very likely class, that
is, ENTITY or DESCRIPTION, would have provided some disambiguation. Moreover, some ques-
tions are inherently ambiguous due to the lack of a broader context. This can lead to prediction
errors and as well as to user actually being misled by the explanation, for example,

I think “What is the sales tax in Minnesota ?” refers to a NUMBER since it reminds me of “What is
the population of Mozambique ?” and does not refer to a ENTITY since different from “What is
a fear of slime ?”.

In this example, the explanation makes NUMBER to appear as a more likely target for the question
than ENTITY, although seemingly correct this is not the right label. Here the lack of contextual
information in the question itself is the case.

5.3.1 Evaluating Argument Classification in Semantic Role Labeling
As discussed in Section 5.1.2, the KDA architecture has been successfully applied to the task of
AC in semantic role labeling (Palmer et al. 2010), The underlying dataset is the HuRIC corpus, on
which the KDA achieves 96.1% accuracy.

Among the available examples, we sampled 692 explanations equally balanced among true
positives, false positives, false negatives, and true negatives. Due to the required balanced rep-
resentation of all classes, the prior probability of the sample thus corresponds to an entropy of
0.998. In order to limit any bias, two annotators were exposed in a partition almost identically
distributed among the three explanatory models.

Results are shown in Table 4. In this task, all models were able to gain more than two thirds of
needed information. The alike scores of the three models are probably due to the narrow linguistic
domain of the corpus and the well-defined semantic boundaries between the arguments.

In a scenario such as domotic Human Robotic Interfaces, the quality of individual explanatory
models is very important as the robot is made capable of using explanation in a dialogue with the
user. Let us consider the following examples obtained by the contrastive model:

I think “the washer” is the CONTAINING OBJECT of CLOSURE in “Robot can you OPEN
the washer?” since it reminds me of “the jar” in “CLOSE the jar” and it is not the THEME of
BRINGING since different from “the jar” in “TAKE the jar to the table of the kitchen”.

https://doi.org/10.1017/S1351324919000238 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000238

Natural Language Engineering 539

This argumentation is very rich. It must be observed that it is not just the result of a text sim-
ilarity metrics, that is, the kernel. In the example, the lexical overlap between the command and
the explanation is very limited. Rather, the explanation is strictly dependent on the model and on
the instance. The command cited is the activated one, that is the one that has been found useful in
the inference. This is a dynamic side effect of the KDA model. It has thus a dynamic nature that
changes across the different situations, that is, cases. In the situation

I think “me” is the BENEFICIARY of BRINGING in “I would like some cutlery can you GET
me some?” since reminds me of “me” in “BRING me a fork from the press.” and it is not the
COTHEME of COTHEME since different from “me” in “Would you please FOLLOW me to the
kitchen?”.

the role of grammatical information is more explicit also in the counterargument regarding the
sentenceWould you please FOLLOW me to the kitchen?’

Both the above commands have limited lexical overlap with the retrieved landmarks.
Nevertheless, the retrieved analogies make the explanations quite effective: an explanatory model
such as the contrastive one seems to successfully capture semantic and syntactic relations among
input instances and closely related landmarks that are meaningful and epistemologically clear.

6. Conclusion
This paper discusses the role of semantic kernels in the definition of vector embeddings that are
able to support the explanation of quantitative linguistic inferences, such as those provided by
neural networks. We focused on two aspects. First, through dimensionality reduction methods we
propose to use the Nyström reconstruction as an embedding method. This approach capitalizes,
through the notion of kernel, the lexical semantic and grammatical knowledge implicitly repre-
sented by parse trees and dependency graphs by giving rise to meaningful vectors. Second, it has
been shown how theNyström reconstruction vectors can be straightforwardly used to compile flu-
ent linguistic expressions that explain the inferences carried out by a trained model. By exploiting
the notion of landmark, Nyström vectors map input instances into weighted linear combinations
of similarity scores with the landmarks, that is, concrete and labeled examples. These examples
are retrieved as input nodes activated by the network decision: they thus correspond to mean-
ingful examples that contributed positively to the final classification or negatively with negative
activations. The resulting process allows to generate epistemologically transparent and linguisti-
cally fluent explanations as combination of positively activated examples or negatively weighted
counterexamples.

In this work, a novel evaluation methodology based on Information Theory is then provided
to evaluate the impact of the explanations made available. In particular, performances correspond
to increase in the information gain, that is decrease in entropy. Empirical investigations have
been discussed for the QC and the AC tasks, which are typical examples of semantically complex
inferences. The outcomes show how explanatorymodels provide helpful contribution to the confi-
dence of the user in the network decision: the explanation augment confidence in correct decisions
and lower down the confidence for the network errors. This clearly shows for two independent
tasks that explanations are made possible over a KDA-like neural network. Given that KDA and
in particular the proposed Nyström embeddings can be largely used for epistemologically clear
neural learning in natural language processing, we think that they correspond to meaningful
embeddings with huge potential for better neural learning models. First, they promote language
semantics in a natural way and create associations between input instances and decisions that are
harmonic with respect human (logical) intuition. In a sense, linguistic inferences are explained
without necessarily moving out of the language level. Second, they are mathematically solid mod-
els for different levels of language semantics according to different kernel formulations. In this

https://doi.org/10.1017/S1351324919000238 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000238

540 D Croce et al.

way, the embeddings can be fine tuned to tasks, without impacting on the learning architecture
but only by modeling different aspects of language syntax and semantics in the kernel function.
Finally, the explanations proposed in this paper correspond just to an early stage of the research.
In fact, there are many ways in which activated landmarks can be made useful in the explanation
process and we are in a very early stage of such an exploration. For example, argumentation the-
ory, as applied to the landmarks active in a decision and the source input example, can provide
very rich ways to compile justification, that is, short texts that argue for a decision.

References
Annesi P., Croce D. and Basili R. (2014). Semantic compositionality in tree kernels. CIKM. ACM.
Bach S., Binder A., Montavon G., Klauschen F., Müller K.-R., Samek W. and Suárez Ó.D. (2015). On pixel-wise

explanations for nonlinear classifier decisions by layer-wise relevance propagation. PloS One 10, 1–46.
Baehrens D., Schroeter T., Harmeling S., Kawanabe M., Hansen K. and Müller K.-R. (2010). How to explain individual

classification decisions. Journal of Machine Learning Research 11, 1803–1831.
Bastianelli E., Castellucci G., Croce D., Iocchi L., Basili R. and Nardi D. (2014). Huric: a human robot interaction corpus.

LREC. ELRA.
Bastianelli E., Croce D., Vanzo A., Basili R. and Nardi D. (2016). A discriminative approach to grounded spoken language

understanding in interactive robotics. IJCAI.
Bengio Y., Courville A. and Vincent P. (2013). Representation learning: A review and new perspectives. IEEE Transactions

on Pattern Analysis and Machine Intelligence 35(8), 1798–1828.
Cancedda N., Gaussier É., Goutte C., and Renders J.-M. (2003). Word-sequence kernels. Journal of Machine Learning

Research 3, 1059–1082.
Chakraborty S., Tomsett R., Raghavendra R., Harborne D., Alzantot M., Cerutti F., Srivastava M.B., Preece A.D., Julier

S.J., Rao R.M., Kelley T.D., Braines D., Sensoy M., Willis C.J. and Gurram P. (2017). Interpretability of deep learning
models: A survey of results. SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI.

Chang C.-C. and Lin C.-J. (2011). Libsvm: A library for support vector machines. ACM Transactions on Intelligent Systems
and Technology 2(3), 27:1–27:27.

Collins M. and Duffy N. (2001). Convolution kernels for natural language. NIPS 625–632.
Collobert R., Weston J., Bottou L., Karlen M., Kavukcuoglu K. and Kuksa P. (2011). Natural language processing (almost)

from scratch. Journal of Artificial Intelligence Research 12, 2493–2537.
Cortes C. and Vapnik V. (1995). Support-vector networks.Machine Learning 20(3), 273–297.
Croce D., Filice S., Castellucci G. and Basili R. (2017). Deep learning in semantic kernel spaces. ACL.
Croce D., Moschitti A. and Basili R. (2011). Structured lexical similarity via convolution kernels on dependency trees.

EMNLP.
Devlin J., ChangM.-W., Lee K. and Toutanova K. (2018). Bert: Pre-training of deep bidirectional transformers for language

understanding. arXiv:1810.04805.
Drineas P. andMahoneyM.W. (2005). On the nyströmmethod for approximating a grammatrix for improved kernel-based

learning. Journal of Machine Learning Research 6, 2153–2175.
ErhanD., Courville A. andBengio Y. (2010). Understanding representations learned in deep architectures. Technical Report

1355, Montreal, QC, Canada: Université de Montréal/DIRO.
Faruqui M., Tsvetkov Y., Yogatama D., Dyer C. and Smith N.A. (2015). Sparse overcomplete word vector representations.

ACL-IJCNLP.
Filice S., Castellucci G., Croce D. and Basili R. (2015). Kelp: a kernel-based learning platform for natural language

processing. ACL System Demonstrations. 1, 19–24.
Filice S., Castellucci G., Martino G.D.S., Moschitti A., Croce D., and Basili R. (2018). Kelp: a kernel-based learning

platform. Journal of Machine Learning Research 18(191), 1–5.
Fillmore C.J. (1985). Frames and the semantics of understanding. Quaderni di Semantica 6(2).
Frosst N. and Hinton G. (2017). Distilling a neural network into a soft decision. Proceedings of the First International

Workshop on Comprehensibility and Explanation in AI and ML 2017 co-located with 16th International Conference of the
Italian Association for Artificial Intelligence (AI*IA 2017), Bari, Italy, November 16th and 17th, 2017.

Goldberg Y. (2016). A primer on neural network models for natural language processing. Journal of Artificial Intelligence
Research 57, 56–65.

Hochreiter S. and Schmidhuber J. (1997). Long short-term memory. Neural Computation 9(8), 1735–1780.
Hsieh C.-J., Chang K.-W., Lin C.-J., Keerthi S.S. and Sundararajan S. (2008). A dual coordinate descent method for large-

scale linear svm. ICML. ACM.
Jacovi A., Sar Shalom O. and Goldberg Y. (2018). Understanding convolutional neural networks for text classification. In

Proceedings of the 2018 EMNLPWorkshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. ACL.

https://doi.org/10.1017/S1351324919000238 Published online by Cambridge University Press

https://arxiv.org/abs/1810.04805
https://doi.org/10.1017/S1351324919000238

Natural Language Engineering 541

Kim Y. (2014). Convolutional neural networks for sentence classification. EMNLP.
Kononenko I. and Bratko I. (1991). Information-based evaluation criterion for classifier’s performance. Machine

Learning 6(1), 67–80.
Lei T., Barzilay R. and Jaakkola T. (2016). Rationalizing neural predictions. EMNLP. ACL.
Li X. andRothD. (2006). Learning question classifiers: the role of semantic information.Natural Language Engineering 12(3),

229–249.
Lipton Z.C. (2018). The mythos of model interpretability. Queue 16(3), 30:31–30:57.
Manning C.D., Surdeanu M., Bauer J., Finkel J., Bethard S.J. and McClosky D. (2014). The Stanford CoreNLP natural

language processing toolkit. In Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System
Demonstrations. Baltimore, Maryland. pp. 55–60.

Mikolov T., Chen K., Corrado G. and Dean J. (2013). Efficient estimation of word representations in vector space.
CoRR abs/1301.3781.

Mitchell J. and Lapata M. (2010). Composition in distributional models of semantics. Cognitive Science 34(8), 161–199.
Moschitti A. (2006). Efficient convolution kernels for dependency and constituent syntactic trees. ECML.
Moschitti A. (2012). State-of-the-art kernels for natural language processing. ACL (Tutorial Abstracts). Association for

Computational Linguistics, p. 2.
Moschitti A., Pighin D. and Basili R. (2008). Tree kernels for semantic role labeling. Computational Linguistics 34, 193–224.
Padó S. and Lapata M. (2007). Dependency-based construction of semantic space models. Computational Linguistics 33(2),

161–199.
Palmer M., Gildea D. and Xue N. (2010). Semantic Role Labeling. IEEE Morgan & Claypool Synthesis eBooks Library. San

Rafael, CA, USA: Morgan & Claypool Publishers.
Pennington J., Socher R. and Manning C.D. (2014). Glove: Global vectors for word representation. EMNLP.
Peters M.E., Neumann M., Iyyer M., Gardner M., Clark C., Lee K. and Zettlemoyer L. (2018). Deep contextualized word

representations. NAACL.
Ribeiro M.T., Singh S. and Guestrin C. (2016). “Why should I trust you?”: Explaining the predictions of any classifier.

CoRR abs/1602.04938.
Robert Müller K., Mika S., Rätsch G., Tsuda K. and Schölkopf B. (2001). An introduction to kernel-based learning

algorithms. IEEE Transactions on Neural Networks 12(2), 181–201.
Sahlgren M. (2006). The Word-Space Model. PhD Thesis, Stockholm University.
Schütze H. (1993). Word space. Advances in Neural Information Processing Systems, Vol. 5. Burlington, MA, USA: Morgan-

Kaufmann.
Shawe-Taylor J. and Cristianini N. (2004). Kernel Methods for Pattern Analysis. New York, NY, USA: Cambridge University

Press.
Simonyan K., Vedaldi A. and Zisserman A. (2013). Deep inside convolutional networks: Visualising image classification

models and saliency maps. CoRR abs/1312.6034.
Socher R., Perelygin A., Wu J., Chuang J., Manning C.D., Ng A. and Potts C. (2013). Recursive deep models for semantic

compositionality over a sentiment treebank. EMNLP.
Spinks G. and Moens M.-F. (2018). Evaluating textual representations through image generation. In Proceedings of the 2018

EMNLPWorkshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. ACL.
Strubell E., Verga P. andor D., Weiss D. and McCallum A. (2018). Linguistically-informed self-attention for semantic role

labeling. EMNLP.
Subramanian A., Pruthi D., Jhamtani H., Berg-Kirkpatrick T. and Hovy E.H. (2018). Spine: Sparse interpretable neural

embeddings. AAAI.
Tai K.S., Socher R. and Manning C.D. (2015). Improved semantic representations from tree-structured long short-term

memory networks. ACL-IJCNLP.
Trifonov V., Ganea O.-E., Potapenko A. and Hofmann T. (2018). Learning and evaluating sparse interpretable sentence

embeddings. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for
NLP.

Vapnik V.N. (1998). Statistical Learning Theory. New York, NY, USA: Wiley-Interscience.
WaltonD., Reed C. andMacagno F. (2008).Argumentation Schemes. Cambridge, England, UK: Cambridge University Press.
Williams C. K.I. and Seeger M. (2001). Using the Nyström method to speed up kernel machines. NIPS.
Zeiler M.D. and Fergus R. (2013). Visualizing and understanding convolutional networks. CoRR abs/1311.2901.
Zhang R., Lee H. and Radev D.R. (2016). Dependency sensitive convolutional neural networks for modeling sentences and

documents. NAACL-HLT.
Zhou C., Sun C., Liu Z. and Lau F.C.M. (2015). A C-LSTM neural network for text classification. CoRR abs/1511.08630.

Cite this article: Danilo C, Rossini D and Basili R. Neural embeddings: accurate and readable inferences based on semantic
kernels. Natural Language Engineering 25, 519–541. https://doi.org/10.1017/S1351324919000238

https://doi.org/10.1017/S1351324919000238 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000238
https://doi.org/10.1017/S1351324919000238

https://doi.org/10.1017/S1351324919000238 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324919000238

	Neural embeddings: accurate and readable inferences based on semantic kernels
	Introduction
	Related work on interpretability
	Kernel-based learning in semantic inferences
	Kernels as nonlinear feature mappings
	Semantic kernels
	Approximating kernel spaces through the Nyström method

	Explainable neural learners through kernel embeddings
	Kernel-based deep architectures
	Layer-wise relevance propagation
	KDA embeddings and model readability
	Using information theory for validating explanations

	Experimental investigations
	Training the KDA for complex semantic inferences
	Semantic inferences: Question classification
	Semantic inferences: Argument Classification in Semantic Role Labeling

	Experimental evaluation of explanatory models
	Evaluating question classification
	Evaluating Argument Classification in Semantic Role Labeling

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

