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Abstract

We prove that a compact subset of full measure on a generic submanifold of an almost complex manifold
is not a pluripolar set. Several related results on boundary behavior of plurisubharmonic functions are
established. Our approach is based on gluing a family of complex discs to a generic manifold along a
boundary arc and could admit further applications.
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1. Introduction

The foundations of the theory of almost complex structures go back to the classical
work of Newlander and Nirenberg (see, for example, [1]), where a complete criterion
of integrability of these structures was established. The modern period of development
began after the famous paper by Gromov in [1], who discovered a deep connection
between the almost complex and the symplectic geometry. Since then the analysis on
almost complex manifolds has become a powerful tool of symplectic geometry.

From an analytic point of view (which is the focus of the present paper), the
analysis on almost complex manifolds has several features not usual for the much
better understood case of integrable almost complex structures. One of them is that
for a ‘generic’ choice of an almost complex structure of complex dimension ≥ 2, the
only holomorphic functions (even locally) are the constant ones. Contrarily, there
are two objects (they can be viewed as dual ones) which always exist, at least, locally:
pseudoholomorphic discs and plurisubharmonic functions. Both of them are important
technical tools of the symplectic geometry. The theory of pseudoholomorphic discs is
(relatively) well elaborated now (although there are many interesting open questions
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remaining). The theory of plurisubharmonic functions on almost complex manifolds
is much younger and its development is rather recent; many quite natural questions
remain open.

The goal of the present paper is to study some boundary properties of
plurisubharmonic functions near real submanifolds of almost complex manifolds. Our
main inspiration is the well-known paper by Sadullaev [16], where he established
several useful results on boundary uniqueness for plurisubharmonic functions as well
as the two-constants-type theorems in Cn. His main technical tool is a construction
(due to Pinchuk [12]) of a local family of holomorphic discs glued along the upper
semicircle to a prescribed generic totally real manifold in Cn. In the present paper
we extend these results to the almost complex case. This first step was done recently
in [17] but here we present considerably more advanced results. We hope that the
almost complex analog of the Pinchuk–Sadullaev gluing disc construction elaborated
in the present paper will have other applications.

The organization of the paper can be seen from the contents. Sections 2 and 3
are preliminary. Section 4 contains the main technical tool (the construction of
pseudoholomorphic discs in the spirit of [12, 16]). The main results are contained
in Section 5.

2. Almost complex manifolds and pseudoholomorphic discs

In this section we recall basic notions of the almost complex geometry making our
presentation more convenient for specialists in analysis. Everywhere throughout this
paper we assume that manifolds and almost complex structures are of class C∞; notice
that the main results remain true under considerably weaker regularity assumptions.

2.1. Almost complex manifolds. Let M be a smooth manifold of dimension 2n. An
almost complex structure J on M is a smooth map which associates to every point
p ∈ M a linear isomorphism J(p) : TpM → TpM of the tangent space TpM such that
J(p)2 = −I; here I denotes the identity map of TpM. Thus, every J(p) is a linear
complex structure on TpM. A couple (M, J) is called an almost complex manifold of
complex dimension n. Note that every almost complex manifold admits the canonical
orientation represented by (e1, Je1, . . . , en, Jen), where (e1, . . . , en) is any complex basis
of (TpM, J(p)).

An important example is provided by the standard complex structure Jst = J(2)
st on

M = R2, which is given in the canonical coordinates of R2 by the matrix

Jst =

(
0 −1
1 0

)
.

More generally, the standard complex structure Jst on R2n is represented by the block
diagonal matrix diag(J(2)

st , . . . , J
(2)
st ) (usually we drop the notation of dimension because

its value will be clear from the context). As usual, setting iv := Jv for v ∈ R2n, we
identify (R2n, Jst) with Cn using the notation z = x + iy = x + Jy for the standard
complex coordinates z = (z1, . . . , zn) ∈ Cn.
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Let (M, J) and (M′, J′) be smooth almost complex manifolds. A C1-map f : M′ →
M is called (J′, J)-complex or (J′, J)-holomorphic if it satisfies the Cauchy–Riemann
equations

d f ◦ J′ = J ◦ d f . (2.1)

Note that a map f : Cn→ Cm is (Jst, Jst)-holomorphic if and only if each component
of f is a usual holomorphic function.

Every almost complex manifold (M, J) can be viewed locally as the unit ball B in
Cn equipped with a small almost complex deformation of Jst. The following statement
is often very useful.

Lemma 2.1. Let (M, J) be an almost complex manifold. Then for every point p ∈
M, every m ≥ 0 and λ0 > 0 there exist a neighborhood U of p and a coordinate
diffeomorphism z : U → B such that z(p) = 0, dz(p) ◦ J(p) ◦ dz−1(0) = Jst, and the
direct image z∗(J) := dz ◦ J ◦ dz−1 satisfies ||z∗(J) − Jst ||Cm(B) ≤ λ0.

Proof. There exists a diffeomorphism z from a neighborhood U′ of p ∈ M onto
B satisfying z(p) = 0; after an additional linear change of coordinates, one can
achieve dz(p) ◦ J(p) ◦ dz−1(0) = Jst (this is a classical linear algebra). For λ > 0,
consider the dilation dλ : t 7→ λ−1t in R2n and the composition zλ = dλ ◦ z. Then
limλ→0 ||(zλ)∗(J) − Jst ||Cm(B) = 0 for every m ≥ 0. Setting U = z−1

λ (B) for λ > 0 small
enough, we obtain the desired statement. �

In what follows we often denote the structure z∗(J) again by J, viewing it as a local
representation of J in the coordinate system (z).

Recall that an almost complex structure J is called integrable if (M, J) is locally
biholomorphic in a neighborhood of each point to an open subset of (Cn, Jst). In the
case of a complex dimension > 1, integrable almost complex structures form a highly
special subclass in the space of all almost complex structures on M.

In this paper we deal with standard classes of real submanifolds. A submanifold
E of an almost complex n-dimensional (M, J) is called totally real if at every point
p ∈ E the tangent space TpE does not contain nontrivial complex vectors, that is,
TpE ∩ JTpE = {0}. It is well known that the (real) dimension of a totally real
submanifold of M is not bigger than n; we will consider in this paper only n-
dimensional totally real submanifolds, that is, the case of maximal dimension. A
real submanifold N of (M, J) is called generic if the complex span of TpN is equal
to the whole TpM for each point p ∈ N. A real n-dimensional submanifold of (M, J)
is generic if and only if it is totally real.

Lemma 2.2. Let N be a generic (n + d)-dimensional (d > 0) submanifold of an almost
complex n-dimensional manifold (M, J). Suppose that K is a subset of N of nonzero
Hausdorff (n + d)-measure. Then there exists a (local) foliation of N into a family
(Es), s ∈ Rd of totally real n-dimensional submanifolds such that the intersection
K ∩ Es has a nonzero Hausdorff n-measure for each s from some subset of nonzero
Lebesgue measure in Rd.
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Here the Hausdorff measure is defined with respect to any Riemannian metric on
M; the assumption that K has a positive n-measure is independent of a choice of such
metric.

Proof. Let p be a point of M such that K has a nonzero measure in each neighborhood
of p. Choose local coordinates z near p such that p = 0 and J(0) = Jst. After a
C-linear change of coordinates, one has N = {x j + o(|z|) = 0, j = n − d + 1, . . . , n}.
After a local diffeomorphism with the identical linear part at 0, we obtain that
N = Rd(x1, . . . , xd) × iRn(y). In the new coordinates the condition J(0) = Js still holds
and every slice Es = {z ∈ N : x1 = s1, . . . , xd = sd} is totally real. Now we conclude by
the Fubini theorem. �

A totally real manifold E can be defined as

E = {p ∈ M : ρ j(p) = 0, j = 1, . . . , n}, (2.2)

where ρ j : M→ R are smooth functions with nonvanishing gradients. The condition of
total reality means that for every p ∈ E, the J-complex linear parts of the differentials
dρ j are (complex) linearly independent.

A subdomain

W = {p ∈ M : ρ j(p) < 0, j = 1, . . . , n} (2.3)

is called the wedge with the edge E.

2.2. Pseudoholomorphic discs. Let (M, J) be an almost complex manifold of
dimension n > 1. For a ‘generic’ choice of an almost complex structure, any
holomorphic (even locally) function on M is constant. Similarly, M does not admit
nontrivial J-complex submanifolds (that is, with tangent spaces invariant with respect
to J) of complex dimension > 1. The only (but fundamentally important) exception
arises in the case of pseudoholomorphic curves, that is, J-complex submanifolds of
complex dimension 1: they always exist locally.

Usually pseudoholomorphic curves arise in connection with solutions f of (2.1) in
the special case where M′ has the complex dimension 1. These holomorphic maps
are called J-complex (or J-holomorphic or pseudoholomorphic) curves. Note that we
view here the curves as maps, that is, we consider parametrized curves. We use the
notation D = {ζ ∈ C : |ζ | < 1} for the unit disc in C always assuming that it is equipped
with the standard complex structure Jst. If in the equations (2.1) we have M′ = D, we
call such a map f a J-complex disc or a pseudoholomorphic disc or just a holomorphic
disc when the structure J is fixed.

A fundamental fact is that pseudoholomorphic discs always exist in a suitable
neighborhood of any point of M; this is the classical Nijenhuis–Woolf theorem
(see [1]). Here it is convenient to rewrite the equations (2.1) in local coordinates
similarly to the complex version of the usual Cauchy–Riemann equations.

Everything will be local, so (as above) we are in a neighborhood Ω of 0 in Cn

with the standard complex coordinates z = (z1, . . . , zn). We assume that J is an almost
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complex structure defined on Ω and J(0) = Jst. Let

z : D→ Ω,

z : ζ 7→ z(ζ)

be a J-complex disc. Setting ζ = ξ + iη, we write (2.1) in the form zη = J(z)zξ. This
equation can be in turn written as

zζ − A(z)zζ = 0, ζ ∈ D. (2.4)

Here a smooth map A : Ω→ Mat(n,C) is defined by the equality L(z)v = Av for any
vector v ∈ Cn, and L is an R-linear map defined by L = (Jst + J)−1(Jst − J). It is easy
to check that the condition J2 = −Id is equivalent to the fact that L is C-linear. The
matrix A(z) is called the complex matrix of J in the local coordinates z. Locally the
correspondence between A and J is one-to-one. Note that the condition J(0) = Jst

means that A(0) = 0.
If z′ are other local coordinates and A′ is the corresponding complex matrix of J′,

then, as it is easy to check, we have the following transformation rule:

A′ = (z′zA + z′z)(z
′
z + z′zA)−1

(see [18]).
Recall that for any complex function f ∈ Cr(D), r > 0, the Cauchy–Green transform

is defined by

T f (ζ) =
1

2πi

"
D

f (ω) dω ∧ dω
ω − ζ

. (2.5)

It is classical that the operator T has the following properties:

(i) for every noninteger r > 0, the map T : Cr(D)→ Cr+1(D) is a bounded linear
operator (a similar property holds in the Sobolev scales). Here we use the usual
Hölder norm on the space Cr(D);

(ii) (T f )ζ = f , that is, T solves the ∂-equation in the unit disc;

(iii) the function T f is holomorphic on C \ D.

Fix a real noninteger r > 1. Let z : D→ Cn be a J-complex disc. Since the operator

ΨJ : z −→ w = z + T A(z)zζ

takes the space Cr(D) into itself, we can write the equation (2.1) in the form
[ΨJ(z)]ζ = 0. Thus, the disc z is J-holomorphic if and only if the map ΨJ(z) : D −→ Cn

is Jst-holomorphic. When the norm of A is small enough (which is assured by
Lemma 2.1), then by the implicit function theorem the operator ΨJ is invertible
and we obtain a bijective correspondence between J-holomorphic discs and usual
holomorphic discs. This easily implies the existence of a J-holomorphic disc in a
given tangent direction through a given point of M, as well as a smooth dependence
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of such a disc on a deformation of a point, a tangent vector and an almost complex
structure; this also establishes the interior elliptic regularity of discs.

Note that global pseudoholomorphic discs (that is, discs which are not contained in
a small coordinate neighborhood) also have similar properties. The proof requires a
considerably more subtle analysis of the integral operator ΨJ; see [19].

Let (M, J) be an almost complex manifold and E ⊂ M be a real submanifold of M.
Suppose that a J-complex disc f : D→ M is continuous on D. With some abuse of
terminology, we also call the image f (D) simply a disc and we call the image f (bD)
the boundary of a disc. If f (bD) ⊂ E, then we say that (the boundary of) the disc f
is glued or attached to E or simply that f is attached to E. Sometimes such maps are
called the Bishop discs for E and we employ this terminology. Of course, if p is a
point of E, then the constant map f ≡ p always satisfies this definition.

3. Plurisubharmonic functions on almost complex manifolds

This section discusses some basic properties of plurisubharmonic functions on
almost complex manifolds.

3.1. Basic definitions. Let u be a real C2 function on an open subset Ω of an almost
complex manifold (M, J). Denote by J∗ du the differential form acting on a vector
field X by J∗ du(X) := du(JX). Given a point p ∈ M and a tangent vector V ∈ Tp(M),
consider a smooth vector field X in a neighborhood of p satisfying X(p) = V . The
value of the complex Hessian (or the Levi form) of u with respect to J at p and V
is defined by H(u)(p,V) := −(dJ∗ du)p(X, JX). This definition is independent of the
choice of a vector field X. For instance, if J = Jst in C, then −dJ∗du = ∆u dξ ∧ dη;
here ∆ denotes the Laplacian. In particular, HJst (u)(0, ∂/∂ξ) = ∆u(0).

Recall some basic properties of the complex Hessian (see, for instance, [6]), as
follows.

Lemma 3.1. Consider a real function u of class C2 in a neighborhood of a point p ∈ M.

(i) Let F : (M′, J′) −→ (M, J) be a (J′, J)-holomorphic map, F(p′) = p. For each
vector V ′ ∈ Tp′(M′), we have HJ′(u ◦ F)(p′,V ′) = HJ(u)(p, dF(p)(V ′)).

(ii) If f : D −→ M is a J-complex disc satisfying f (0) = p, and d f (0)(∂/∂ξ) = V ∈
Tp(M), then HJ(u)(p,V) = ∆(u ◦ f )(0).

Property (i) expresses the holomorphic invariance of the complex Hessian.
Property (ii) is often useful in order to compute the complex Hessian on a given tangent
vector V .

Let Ω be a domain in M. An upper semicontinuous function u : Ω→ [−∞,+∞[
on (M, J) is J-plurisubharmonic (psh) if for every J-complex disc f : D→ Ω, the
composition u ◦ f is a subharmonic function on D. Of course, this definition makes
sense because there are plenty of pseudoholomorphic discs in a neighborhood of each
point of an almost complex manifold.

By Lemma 3.1, a C2 function u is psh on Ω if and only if it has a positive
semidefinite complex Hessian on Ω, that is, HJ(u)(p, V) ≥ 0 for any p ∈ Ω and
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V ∈ Tp(M). A real C2 function u : Ω→ R is called strictly J-plurisubharmonic on
Ω if HJ(u)(p, V) > 0 for each p ∈ M and V ∈ Tp(M)\{0}. Obviously, these notions
are local: an upper semicontinuous (respectively of class C2) function on Ω is J-
plurisubharmonic (respectively strictly) on Ω if and only if it is J-plurisubharmonic
(respectively strictly) in some open neighborhood of each point of Ω. In what follows,
we often write ‘plurisubharmonic’ instead of ‘J-plurisubharmonic’ when an almost
complex structure J is prescribed.

A useful observation is that the Levi form of a function u at a point p in an almost
complex manifold (M, J) coincides with the Levi form with respect to the standard
structure Jst of R2n if suitable local coordinates near p are chosen. Let us explain how
to construct these adapted coordinate systems.

As above, by choosing local coordinates near p we may identify a neighborhood of
p with a neighborhood of the origin and assume that J-holomorphic discs are solutions
of (2.4).

Lemma 3.2. There exists a degree-two polynomial local diffeomorphism Φ fixing the
origin and with linear part equal to the identity such that in the new coordinates the
complex matrix A of J (that is, A from the equation (2.4)) satisfies

A(0) = 0, Az(0) = 0. (3.1)

We conclude this section by several comments on Lemma 3.2.
(1) According to this lemma, by a suitable local change of coordinates one can

remove the terms linear in z in the matrix A. We stress that in general it is impossible
to get rid of first-order terms containing z since this would impose a restriction on the
Nijenhuis tensor of J at the origin.

(2) I have learned this result from unpublished Chirka’s notes; see [6] for the proof.
In [18], it is shown that, in an almost complex manifold of (complex) dimension two,
a similar normalization is possible along a given embedded J-holomorphic disc.

(3) As an example, consider a function u(z) =‖ z ‖2 (we use the Euclidean norm)
in the adapted coordinates (3.1). We conclude that this function is strictly J-
plurisubharmonic near the origin. In particular, each almost complex manifold admits
plenty of strictly J-psh functions locally.

(4) As another typical consequence, consider a totally real manifold E defined by
(2.2). Then the function u =

∑n
j=1 ρ

2
j is strictly J-plurisubharmonic in a neighborhood

of E. Indeed, it suffices to choose local coordinates near p ∈ M according to
Lemma 3.2. This reduces the verification to the well-known case of Jst.

3.2. Envelopes of plurisubharmonic functions. It follows from the definitions that
many of the elementary properties of plurisubharmonic functions can be directly
transferred to the almost complex case. We mention here, for example, the maximum
principle as well as the fundamental fact that the plurisubharmonicity is a local
property: a function is plurisubharmonic on M if and only if it is plurisubharmonic
in an open neighbourhood of every point of M.
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Let (M, J) be an almost complex manifold of complex dimension n. Fix a
Riemannian metric on M; all norms and distances will be considered with respect
to this metric. Of course, the results are independent of its choice.

As another typical example, we recall here a construction of an envelope of a family
of plurisubharmonic functions following Bu and Schachermayer [2] (in the almost
complex case, this construction was used in [4]).

Let

P0φ =
1

2πi

∫
bD
φ(ω)

dω
ω

(3.2)

denote the average of a real function φ over bD,

Lemma 3.3. Let v be an upper semicontinuous function on an almost complex manifold
(M, J). Consider the sequence (vm) defined as follows: v0 = v and, for m ≥ 1, for
p ∈ M,

vm(p) = inf
f

P0(vm−1 ◦ f ),

where inf is taken over all J-complex discs f : D→ M such that f (0) = p, f is of
class Cr(D) with some (fixed) noninteger r > 1 and f (D) ⊂ M. Then the sequence (vn)
decreases pointwise to the largest J-plurisubharmonic function DE[v] on M bounded
from above by v.

Proof. We proceed in several steps. Clearly, every vm is correctly defined.
Step 1. The sequence (vm) decreases. Indeed, for every p, the constant disc

f 0(ζ) ≡ p is J-complex, so

vm(p) = inf
f

P0(vm−1 ◦ f ) ≤ P0(vm−1(p)) = vm−1(p).

Step 2. The function DE[v] is upper semicontinuous. We proceed with the proof by
induction on m. For m = 0, the statement is correct. Suppose that the function vm−1 is
upper semicontinuous. Let (pk) ⊂ M be a sequence of points converging to p0 ∈ M.

It follows from [19] that the following holds. Let f : D→ M be a J-complex disc
of class Cr(D) such that f (0) = p0 and f (D) ⊂ M. Then there exists a sequence of
J-complex discs fk : D→ M, of class Cr(D), such that fk(D) ⊂ M, fk(0) = pk for every
k and fk −→ f in Cr(D).

Consider a compact set K containing the union f (D) ∪ (∪k fk(D)). Since vm−1 is an
upper semicontinuous function, it is bounded from above on K by a constant C and

(vm−1 ◦ f )(ζ) ≥ lim sup
k→∞

(vm−1 ◦ fk)(ζ), ζ ∈ D.

So, by the Fatou lemma,

P0(vm−1 ◦ f ) ≥ lim sup
k→∞

P0(vm−1 ◦ fk) ≥ lim sup
k−→∞

vm(pk).

This implies that

vm(p0) = inf
f

P0(vm−1 ◦ f ) ≥ lim sup
k→∞

vm(pk),

which proves the upper semicontinuity of vm.
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Therefore, the function DE[v] also is upper semicontinuous as a decreasing limit of
upper semicontinuous functions.

Step 3. We prove by induction that for any J-plurisubharmonic function φ satisfying
φ ≤ v, we have φ ≤ vn for any n. This is true for m = 0. Suppose that φ ≤ vm−1. Fix an
arbitrary point p0 ∈ M. For every J-complex disc f ∈ Cr(D) and satisfying f (0) = p0,
f (D) ⊂ M,

φ(z0) ≤ P0(φ ◦ f ) ≤ P0(vm−1 ◦ f ).

Hence, vm(p0) ≥ φ(p0).
Step 4. We show that the restriction of DE[v] on a J-complex disc is subharmonic.

Given p0 and f as above,

DE[v](p0) = lim
m→∞

vm(p0) ≤ lim
m→∞

P0(vm−1 ◦ f ) = P0(DE[v] ◦ f )

by the Beppo Levi theorem. This concludes the proof of the lemma. �

We call the function DE[v] the disc envelope of v. As a simple application, consider
any family (uα) of plurisubharmonic functions on (M, J) and the function u = supα uα.
In general, u does not need to be upper semicontinuous, so we consider its upper
regularization

u∗(p) = lim
ε→0+

inf
dist(q,p)≤ε

u(q).

It is classical that u∗ is the smallest upper semicontinuous function satisfying u ≤ u∗.
In order to prove that u∗ is plurisubharmonic on M, consider the disc envelope DE[u∗].
It follows from Lemma 3.3 that uα ≤ DE[u∗] for all α, that is, u ≤ DE[u∗] ≤ u∗. Hence,
DE[u∗] = u∗ and u∗ is plurisubharmonic. Usually u∗ is called the sup-envelope of the
family (uα).

Note that the usual (for M = Cn) proofs of plurisubharmonicity of u∗ do not go
through directly in the almost complex case since they are based on regularization of
plurisubharmonic functions by convolution (see, for example, [5]). This argument
is not available in the general almost complex case because the Cauchy–Riemann
equations (2.4) are only quasi-linear and not linear.

We point out here a difference of the above construction of the disc envelope and
the argument of [2]. In [2], only linear complex discs are used. Of course, this does not
make sense in the almost complex case and we need to consider all pseudoholomorphic
discs. As a consequence, the set of discs under consideration is much larger and, from
this point of view, we are closer to the construction of the disc envelope introduced by
Poletsky [13]. He proved (in the case of Cn) that the iteration process used in the proof
of Lemma 3.3 stops already on the first step, that is, v1 = v2 = · · · = DE[v]. His result
was extended to the case of complex manifolds by Larusson and Sigurdsson [10] and
Rosay [14]. To the best of my knowledge, it remains an open question if this is also
true for almost complex manifolds in any dimension; the case of dimension two was
settled by Kuzman [9].
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3.3. Plurisuperharmonic measure. A function v is called plurisuperharmonic on
M if the function −v is plurisubharmonic on M.

Let Ω be a smoothly bounded domain in M with the boundary bΩ. For α ≥ 1 and
q ∈ bΩ, set Aα(q) = {p ∈ Ω : dist(p, q) ≤ αdq(p)}. Here dist denotes the distance on
M and dq(p) denotes the distance from p to the tangent plane Tq(bΩ) to bΩ at q. In
the case where M = Cn with the standard Euclidean distance, this is the intersection
of Ω with a cone with vertex at w. In the general case Aα(q) is a region of Ω which
approaches bΩ nontangentially at q.

Let u be a plurisuperharmonic function on Ω. Denote by u∗ its nontangential lower
boundary extension, which is defined as

u∗(q) = u(q), q ∈ Ω,

u∗(q) = inf
α>1

(lim inf
Aα(q)3p→q

u(p)), q ∈ bΩ.

Let K be a compact subset of Ω. Denote by P(K) the class of all functions u
plurisuperharmonic on Ω and such that u(q) ≥ 0 for each q ∈ Ω and u∗(q) ≥ 1 for
each q ∈ K. The plurisuperharmonic measure of K with respect to Ω or simply the
P-measure is the function

ω∗(p,K,Ω) = lim inf
q→p

ω(q,K,Ω),

where

ω(q,K,Ω) = inf
u∈P(K)

u(q).

Of course, in the one-variable case ω∗ coincides with the usual harmonic measure.
Following [16], consider some basic properties of the P-measure. Recall that a

subset E ⊂ Ω is called pluripolar if there exists a plurisuperharmonic on Ω function
u nonidentically equal to +∞ and such that u|E = +∞. It follows from the results of
Harvey and Lawson [7] that a pluripolar set is of measure zero.

Proposition 3.4. We have the following results.

(i) 0 ≤ ω∗(p,K,Ω) ≤ 1 for every p ∈ Ω.
(ii) The function p 7→ ω∗(p,K,Ω) is plurisuperharmonic on Ω.
(iii) If Ω1 ⊂ Ω2 and K1 ⊂ K2, then ω∗(p,K1,Ω1) ≤ ω∗(p,K2,Ω2).
(iv) If ω∗(p0,K,Ω) = 0 for some p0 ∈ Ω, then ω∗(p,K,Ω) = 0 for all p ∈ Ω.
(v) Let K ⊂ Ω be a pluripolar subset of some open neighborhood Ω̃ of Ω. Then

ω∗(p,K,Ω) = 0 for all p ∈ Ω.

The property (i) is obvious (the second inequality follows because the constant
function u = 1 belongs to P(K)). The property (ii) follows from Section 3.2. The
property (iii) is obvious; (iv) follows by the maximum principle. For the property
(v), suppose that there exists a function u plurisuperharmonic on Ω̃ and which is not
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equal to +∞ identically such that u|K = +∞. One can assume that u ≥ 0 on Ω. For
m = 1, 2, . . ., the function

vm(p) = min(u(p)/m, 1)

is superharmonic on Ω and belongs to the class P(K). Hence,

ω(p,K,Ω) ≤ v(p) = lim
m→∞

vm(p).

But v(p) = 0 when u(p) , +∞ and v(p) = 1 when u(p) = +∞. Therefore, the lower
regularization ω∗(p,K,Ω) vanishes identically.

As the first application, let us prove the following version of the two-
constants theorem. Denote by u∗ the upper nontangent boundary extension of a
plurisubharmonic function u, that is,

u∗(q) = u(q), q ∈ Ω,

u∗(q) = sup
α>1

(lim sup
Aα(q)3p→q

u(p)), q ∈ bΩ.

Similarly to [16], we have the following result.

Proposition 3.5. Let u be a plurisubharmonic function bounded above by C on a
smoothly bounded domain Ω in (M, J). Suppose that for some compact subset K ⊂ Ω,
we have u∗(p) ≤ c < C for every p ∈ K. Then

u(p) ≤ cω∗(p,K,Ω) + C(1 − ω∗(p,K,Ω)).

For the proof, it suffices to note that ω∗(p,K,Ω) ≤ (C − u(p))/(C − c) because the
function on the right-hand side is of class P(K).

4. Construction of complex discs

This section presents our main technical tool. We fill a wedge W with a totally real
edge E by a family of complex discs glued to the edge E along the upper semicircle.
We apply the approach developed in [17], which requires some refinement suitable for
our goals.

We will proceed in several steps.
(a) First consider the model case where M = Cn with J = Jst and E = iRn = {x j =

0, j = 1, . . . ,n}. Denote by W the standard wedge W = {z = x + iy : x j < 0, j = 1, . . . ,n}.
Consider the family of linear complex maps

l : (c, t, ζ) 7→ (ζ, ζt + ic). (4.1)

Here ζ ∈ C; the variables c = (c2, . . . , cn) ∈ Rn−1 and t ∈ Rn−1
+ = {t = (t2, . . . , tn) ∈ Rn−1 :

t j > 0}) are viewed as parameters. Denote by V the wedge V = Rn−1 × Rn−1
+ . Also, let

Π = {Re ζ < 0} be the left half-plane; its boundary bΠ coincides with the imaginary
axis iR. The following properties of the above family are easy to check.
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(a1) The images l(c, t)(bΠ) form a family of real lines in iRn = E. For every fixed
t ∈ Rn−1

+ , these lines are disjoint and

∪c∈Rn−1 l(c, t)(bΠ) = E.

In other words, for every t this family (depending on the parameter c) forms a
foliation of E by parallel lines.

(a2) One has
∪(c,t)∈V l(c, t)(Π) = W.

(a3) For every fixed t ∈ Rn−1
+ ,

∪c∈Rn−1 l(c, t)(Π) = Et = {z ∈ Cn : Re (z j − t jz1) = 0, j = 2, . . . , n} ∩W

and the union is disjoint. Every Et is a real linear (n + 1)-dimensional half-space
contained in W and bEt = E.

(a4) The family (Et), t ∈ Rn−1
+ , is disjoint in W and its union coincides with W.

Let K ⊂ E be a compact subset of nonzero Hausdorff n-measure (one can consider
it with respect to the standard metric). Consider the set Σt of c ∈ Rn−1 such that the real
line l(c, t)(bΠ) intersects K in a subset of nonzero 1-measure. It follows by (a1) and
the Fubini theorem that for every t ∈ Rn−1

+ , the set Σt has a nonzero (n − 1)-measure.
Again by the Fubini theorem and (a3), the set ∪c∈Σt l(c, t)(Π) is a subset of Et of nonzero
(n + 1)-measure. Finally, by (a4):

(a5) ∪t∈Rn−1
+
∪c∈Σt l(c, t)(Π) is a subset of W of nonzero 2n-measure.

In what follows, we will use these properties locally, that is, in a neighborhood of
the origin. It is convenient to reparametrize the family of complex half-lines l(c, t) by
complex discs.

We represent the family of discs (4.1) (after suitable reparametrization) as a general
solution of an integral equation.

Let

Sφ(ζ) =
1

2πi

∫
bD

ω + ζ

ω − ζ
φ(ω)

dω
ω

(4.2)

denote the Schwarz integral. In terms of the Cauchy transform

K f (ζ) =
1

2πi

∫
bD

f (ω) dω
ω − ζ

,

we have the following relation: S = 2K − P0. As a consequence, the boundary
properties of the Schwarz integral are the same as the classical properties of the Cauchy
integral.

For a noninteger r > 1, consider the Banach spaces Cr(bD) and Cr(D) (with the
usual Hölder norm). It is classical that K and S are bounded linear mappings in
these classes of functions. For a real function φ ∈ Cr(bD), the Schwarz integral
Sφ is a function of class Cr(D) holomorphic in D; the trace of its real part on the
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boundary coincides with φ and its imaginary part vanishes at the origin. In particular,
every holomorphic function f ∈ Cr(D) satisfies the Schwarz formula f = S Re f + iP0 f
(recall that P0 is defined by (3.2)).

We are going to fill W by complex discs glued to iRn along the (closed) upper
semicircle bD+ = {eiθ : θ ∈ [0, π]}; let also bD− := bD \ bD+.

Fix a smooth real function φ : bD→ R such that φ|bD+ = 0 and φ|bD− < 0.
Consider now a real 2n-parameter family of holomorphic discs z0 = (z0

1, . . . , z
0
n) :

D→ Cn with components

z0
j(c, t)(ζ) = x j(ζ) + iy j(ζ) = t jSφ(ζ) + ic j, j = 1, . . . , n. (4.3)

Here t j > 0 and c j ∈ R are parameters, t = (t2, . . . , tn), c = (c2, . . . , cn); in (4.3) we
formally set t1 = 1 and c1 = 0.

Obviously, every z0(c, t)(D) is a subset of l(c, t)(Π) and z0(bD+) = l(c, t)(bΠ). Thus,
the family z0(c, t) is a (local) biholomorphic reparametrization of the family l(c, t). As
a consequence, the properties (a1)–(a5) also hold for the family z0(c, t). Notice also
the following obvious properties of this family:

(a6) for every j, one has x j|bD+ = 0 and x j(ζ) < 0 when ζ ∈ D (by the maximum
principle for harmonic functions);

(a7) the evaluation map Ev0 : (c, t, ζ) 7→ z0(c, t)(ζ) is one-to-one from V × D to W.

Now we construct an analog of this family in the general case.
(b) In order to write an integral equation defining a required family of discs, we need

to employ an analog of the Schwarz formula and to choose suitable local coordinates.
We have the following Green–Schwarz formula (see the proof, for example, in [18],

although, of course, it can be found in the vast list of classical works). Let f = φ + iψ :
D→ C be a function of class Cr(D). Then, for each ζ ∈ D,

f (ζ) = Sφ(ζ) + iP0ψ + T fζ(ζ) − T fζ(1/ζ).

Here we use the integral operators (2.5), (3.2) and (4.2). Note that because of the
‘symmetrization’ the real part of the sum of two terms containing the Cauchy–Green
operator T vanishes on the unit circle. Notice also that the last term is holomorphic on
D.

Now let (M, J) be an almost complex manifold of complex dimension n and E be a
totally real n-dimensional submanifold of M. We assume that E and W are given by
(2.2) and (2.3), respectively.

First, according to Section 2, we choose local coordinates z such that p = 0 and the
complex matrix A of J satisfies (3.1). For every τ > 0 small enough and C > 0 big
enough, the functions

ρ̃ j := ρ j − τ
∑
k, j

ρk + C
n∑

k=1

ρ2
k

are strictly J-plurisubharmonic in a neighborhood of the origin and the ‘truncated’
wedge Wτ = {ρ̃ j < 0, j = 1, . . . , n} is contained in W. After a C-linear (with respect
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to Jst) change of coordinates, one can assume that ρ̃ j = x j + o(|z|). Consider now a
local diffeomorphism

Φ : z = x j + iy j 7→ z′ = x′j + iy′j = ρ̃ j + iy j.

Then Φ(0) = 0, dΦ(0) = 0 and, in the new coordinates ρ̃ j = x j (we drop the primes),
E = iRn and Wτ = {x j < 0, j = 1, . . . , n}. We keep the notation J for the direct image
Φ∗(J). Then in the chosen coordinates the complex matrix of J still satisfies A(0) = 0.
Note also that the coordinate functions x j are strictly plurisubharmonic for J.

Finally, similarly to the proof of Lemma 2.1, for λ > 0 consider the isotropic
dilations dλ : z 7→ λ−1z and the direct images Jλ := (dλ)∗(J). Denote by A(z, λ) the
complex matrix of Jλ.

For λ > 0 small enough, we are looking for the solutions z : D→ Cn of the Bishop-
type integral equation

z(ζ) = h(z(ζ), c, t, λ) (4.4)

with
h(z(ζ), c, t, λ) = tSφ(ζ) + ic + T A(z, λ)zζ(ζ) − T A(z, λ)zζ(1/ζ),

where t = (t2, . . . , tn), t j > 0 and c ∈ Rn−1 as well as λ are viewed as real parameters.
Of course, we assume implicitly that all parameters are close to the origin.

Note that the first and the last terms in the right-hand side are holomorphic on D.
Therefore, any solution of (4.4) satisfies the Cauchy–Riemann equations (2.4), that is,
is a J-complex disc. Furthermore, x j(ζ) vanishes on bD+ (that is, z(bD+) ⊂ E) and
is negative on bD−. Since the function z 7→ x j is strictly J-plurisubharmonic, by the
maximum principle the image z(D) is contained in Wτ.

The existence of solutions follows by the implicit function theorem. Note that for
λ = 0, the equation (4.4) admits the solution (4.3). Consider the smooth map of Banach
spaces

H : Cr(D) × Rn−1 × Rn−1 × R −→ Cr(D)
H : (z, c, t, λ) 7→ h(z(ζ), c, t, λ).

Obviously, the partial derivative of H in z vanishes: (DzH)(z0, c, t, 0) = 0, where
z0 is a disc given by (4.3). By the implicit function theorem, for every (c, t, λ) close
enough to the origin, the equation (4.4) admits a unique solution

(c, t, ζ) 7→ z(c, t)(ζ) (4.5)

of class Cr(D), smoothly depending on the parameters (c, t) (as well as λ, of course).
Fixing λ > 0, consider the smooth evaluation map

Evλ : (c, t, ζ) 7→ z(c, t)(ζ)

which associates to each parameter a point of the corresponding disc. Note that
for λ = 0, we obtain the linear mapping Ev0(c, t)(ζ) that appeared already in (a7)
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for the model case of the standard structure. Indeed, in this case the family (4.5)
coincides with the family (4.3) (by the uniqueness of solutions assured by the implicit
function theorem). Notice also that when t = 0 for every λ > 0 and every c ∈ Rn−1, the
equation (4.4) has the unique solution z0(c, 0)(ζ) = (ζ, ic) (compare with (4.3)). Hence,
Evλ(c, 0)(ζ) = Ev0(c, 0)(ζ).

By (a7), Ev0(V × D) coincides with Wτ in a neighborhood of the origin.
Furthermore, Evλ({(c, t) : c ∈ Rn−1, t = 0} × bD+) = E for λ > 0. Also, for α > 0 the
‘truncated’ wedge Wα = {x j − α

∑
k, j xk < 0} with the edge E is contained in Wτ. The

faces of the boundary of Wα are transversal to the face of Wτ. Since this property is
stable under small perturbations, we conclude that Wα ⊂ Evλ(V) for all λ small enough.
In terms of the initial defining functions ρ j, we have {z : ρ j − δ

∑
k, j ρk < 0} ⊂Wε when

τ + ε < δ.
Concerning the regularity of manifolds and almost complex structures, it suffices to

require the class Cr with real r > 2 and the argument goes through. We skip the details.
Fix δ > 0. Since the properties of linear discs (a1)–(a5) are stable under small

perturbations, the obtained family of discs admits similar properties. For the reader’s
convenience, we list them.

(b1) The images z(c, t)(bD+) form a family of real curves in E. For every fixed
t ∈ Rn−1

+ , these curves are disjoint and

∪c∈Rn−1 z(c, t)(bD+) = E.

In other words, for every t this family (depending on the parameter t) forms a
foliation of E. Furthermore, every disc is contained in W.

(b2) One has

Wδ =

{
z : ρ j − δ

∑
k, j

ρk < 0
}
⊂ ∪(c,t)∈Vz(c, t)(D).

(b3) For every fixed t ∈ Rn−1
+ , the union

Et := ∪c∈Rn−1 z(c, t)(D) ⊂ W

is a real (n + 1)-dimensional manifold with boundary bEt = E.
(b4) The family (Et), t ∈ Rn−1

+ , is disjoint and its union contains Wδ.

Similar to (a5):

(b5) let K ⊂ E be a compact subset of nonzero Hausdorff n-measure. The discs z(c, t)
whose boundaries intersect K in a set of positive 1-measure fill a subset of Wδ of
nonzero Hausdorff 2n-measure.

Consider now the important special case where a totally real n-dimensional
manifold E of the form (2.2) is contained in the boundary bΩ of a domain Ω. We
assume that bΩ is a smooth real hypersurface defined in a neighborhood of a point
p ∈ E ⊂ bΩ by bΩ = {ρ = 0}, where ρ is a smooth real function with nonvanishing
gradient; one can assume also that Ω = {ρ < 0}. Then we can always choose a wedge
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W of the form (2.3) such that W ⊂ Ω and its faces {ρ j = 0} are transverse to bΩ. Then
each complex disc from the family constructed above also is transverse to bΩ. More
precisely, we have the following property.

(b6) Every disc from the family (4.5) is nontangent to bΩ at every boundary point.

5. Boundary behavior of plurisubharmonic functions

Now we are able to prove our main results.

Theorem 5.1. Let Ω be a smoothly bounded domain in an almost complex n-
dimensional manifold (M, J). Suppose that E ⊂ bΩ is a generic submanifold and that
K ⊂ E is a subset with nonempty interior (with respect to E). Then ω∗(p,K,Ω) does
not vanish identically.

Here the Hausdorff measure is considered with respect to any Riemannian metric
on M; as we already have pointed out, the condition of nonvanishing of the Hausdorff
measure of K is independent of a choice of the Riemannian metric.

In view of Lemma 2.2, without loss of generality one can assume that E is totally
real. Consider the family (4.5) of discs for E constructed in Section 4; recall that these
discs are not tangent to the boundary bΩ in view of (b6). Since the construction is local
and K has a nonempty interior in E, one can assume that K = E. Using the properties
(b4) and (b6), we see that the discs fill an open subset X of Ω. Each disc f intersects
K along bD+; hence, for every ζ ∈ D with Im ζ > 0,

ω( f (ζ),K,Ω) ≥ ω(ζ, bD+,D) ≥ c > 0,

where c is a universal constant. We obtain that ω(p,K,Ω) ≥ c > 0 for each p ∈ X. We
conclude that ω∗(p,K,Ω) > 0 on X; that is, it does not vanish identically.

The next result is the following uniqueness principle.

Theorem 5.2. Let Ω be a smoothly bounded domain in an almost complex n-
dimensional manifold (M, J). Suppose that E ⊂ bΩ is a generic submanifold and
that K ⊂ E is a compact subset of nonzero n-Hausdorff measure. Assume that u is
a bounded from above plurisubharmonic function in Ω such that u∗(p) = −∞ for each
p ∈ K. Then u ≡ −∞.

Indeed, for every disc f from the family (4.5) the composition u ◦ f is an upper
bounded subharmonic function in D. Notice again that the boundary of every disc is
transverse to bΩ (see (b6)). Consider now the discs f from these families intersecting
K along a subset l f ⊂ bD of positive measure. For each disc f and ζ ∈ D,

ω( f (ζ),K,Ω) ≥ ω(ζ, l f ,D) > 0.

The above discs fill a subset X of Ω of positive 2n-measure and with nonempty interior
in Ω according to (b5). By applying to every u ◦ f the two-constants theorem for
subharmonic functions, we conclude that u ◦ f ≡ −∞. Since these discs fill a set of
positive measure in Ω, we conclude that u ≡= −∞.
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In particular, we obtain the following far-reaching generalization of one of the
results of Rosay [15].

Corollary 5.3. Let E be a totally real n-dimensional submanifold of an almost
complex n-dimensional manifold (M, J). Suppose that K is a closed subset of E of
nonzero Hausdorff n-measure. Then E is not contained in a pluripolar set.

We need some additional properties of discs (4.5) constructed in Section 4. We use
the notation from that section.

(a) Once again we begin with the standard case where M = Cn with J = Jst and
E = iRn = {x j = 0, j = 1, . . . , n}. Consider the family l(c, t) of the form (4.3) (that is,
(4.1) after a reparametrization); these complex maps attach the left half-plane Π to E
along the imaginary axis. Our goal is to study more carefully those maps from this
family whose boundary does not touch the origin in iRn. This means that c j , 0 for at
least one j ∈ {2, . . . ,n}. Each point z = x + iy ∈W = {x j < 0, j = 1, . . . ,n} belongs to the
disc l(c, t) with t j = x1/x j > 0 and c j = y j − y1x1/x j. For each j = 2, . . . , n, consider a
real smooth hypersurface Γ j = {z ∈W : y jx j − y1x1 = 0} in W. We obtain the following
result.

(a8) The discs (4.1) whose boundaries do not touch the origin fill an open dense subset
W \ ∪n

j=2Γ j of W.

Now we pass to the general case.
(b) Assume that E is contained in the boundary of a smoothly bounded domain Ω

and consider discs (4.5) such that (b6) holds. Since the property (a8) is stable under
perturbation, its analog holds for the family of pseudoholomorphic discs (4.5). We
consider only nonconstant discs with t ∈ Rn

+.

(b7) The discs z(c, t) of the family (4.5) whose boundary does not touch a point p ∈ E
fill an open dense subset X of Wδ.

(b8) In particular, under the assumptions of (b6), the closure X of X contains any
nontangential region Aα(p) in a domain Ω.

The following property that we need is obvious as well.

(b9) Under the assumptions of (b7), the arcs z(c, t)(bD−) fill a compact subset Y ∈Wδ.

Our next result is inspired by the work of Khurumov [8]. Another motivation
arises from the work by Levenberg et al. [11]. They proved that the direct analog
of the Lindelöf–Chirka principle [3] fails for bounded from above plurisubharmonic
functions in complex dimension > 1. The following results can be viewed as a
partial analog of the two-constants theorem and the Lindelöf–Chirka principle for
plurisubharmonic functions.

Theorem 5.4. Let Ω be a smoothly bounded domain in an almost complex n-
dimensional manifold (M, J) and let E ⊂ Ω be a smooth totally real n-dimensional
manifold. Suppose that a function u is plurisubharmonic on Ω and u∗|E\{p} ≤ C for
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some p ∈ E ∩ bΩ. Then for every ε > 0 there exists a neighborhood U of p such that
u ≤ C + ε on Aα(p) ∩ U for every α > 1.

Proof. For the proof, it suffices to use properties (b7)–(b9) of the family (4.5) and to
apply the two-constants theorem to the restriction of u on every disc. �

Corollary 5.5. Let Ω be a smoothly bounded domain in an almost complex n-
dimensional manifold (M, J) and let E ⊂ Ω be a smooth totally real n-dimensional
manifold. Suppose that a function u is plurisubharmonic and bounded from above on
Ω and lim supE3q→p u∗(q) = −∞ for some p ∈ E ∩ bΩ. Then, for every α > 1, one has
limAα(p)3q→p u(q) = −∞.

Finally, we have the following result.

Corollary 5.6. Let Ω be a smoothly bounded domain in an almost complex n-
dimensional manifold (M, J) and let L ∈ Ω be a generic (n + 1)-dimensional manifold
with the totally real boundary N ⊂ bΩ. Suppose that a function u is plurisubharmonic
and bounded above on Ω and lim supL3q→N u(q) = −∞. Then u ≡ −∞.

Indeed, for any point p ∈ N, consider a totally real n-dimensional manifold E ⊂
L ∪ {p} containing p and apply Corollary 5.5.
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