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We investigate some properties of solutions of the Degasperis–Procesi equation,
which is an approximation to the incompressible Euler equation in shallow water
theory. Sufficient conditions for wave breaking are found both on an infinite line and
in a periodic domain by the method of characteristics. Moreover, we show that the
solution enjoys the same decay property as the initial data. Finally, the weak and
strong limits, respectively, of the solution as the dispersive parameter goes to zero are
investigated.

1. Introduction

We are interested in the Cauchy problem of the Degasperis–Procesi (DP) equation

ut − utxx + 2κux + 4uux = 3uxuxx + uuxxx, t > 0, x ∈ R, (1.1)

with initial data
u(0, x) = u0(x), (1.2)

where u(t, x) represents the wave’s height above the flat bottom, x denotes distance
in the direction of propagation and t denotes the elapsed time. The parameter κ ∈ R

in (1.1) is related to the critical shallow water speed.
The Degasperis–Procesi equation and the Camassa–Holm (CH) equation are two

recently derived models for shallow water waves. The CH equation was first derived
by Fokas and Fuchssteiner [28] as a bi-Hamiltonian equation, and then, in 1993,
Camassa and Holm [5] derived it physically as a model for water waves. It was
also found independently by Dai [22] as a model for nonlinear waves in cylindrical
hyperelastic rods with u(t, x) representing the radial stretch relative to a prestressed
state (see also [47,48]). Solitary waves in solids are very interesting from the point
of view of applications, as they are easy to detect because they do not change their
shape during propagation and can be used to determine material properties and
to detect flaws [19]. The DP equation is also, in dimensionless space-time variables
(x, t), an approximation to the incompressible Euler equations for shallow water
[16,25,34,35] and its asymptotic accuracy is the same as that of the CH equation.
Both solutions u(t, x) of the CH equation and the DP equation are considered as the
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horizontal component of the fluid velocity at time t in the spatial x-direction, but
are evaluated at the different levels of the fluid domain [16]. It is worth pointing out
that, in the context of the CH equation, continuation of a weak solution past the
time of wave breaking was recently considered by Bressan and Constantin [2,3]. This
continuation is not unique, but can be made unique either as a global conservative
solution [2] or as a global dissipative solution [3].

The DP and CH equations have attracted much attention in recent years due to
their integrable structure and intriguing properties caused by the balance between
dispersion and nonlinearity [6,7,10,27,39,40,42,45,46]. These two equations show a
variety of important properties. It is worth pointing out that, in the absence of linear
dispersion (that is, in the limit case κ → 0), the equations admit peaked solitary
waves or ‘peakons’, which replicate a feature that is characteristic for the waves of
great height (i.e. waves of largest amplitude that are exact solutions of the governing
equations for water waves [14,43]). Peaked solutions are true solitons that interact
via elastic collisions under the CH dynamics, or the DP dynamics, respectively, and
have proved to be orbitally stable in [18, 19, 38]. Another remarkable property of
both equations is the presence of breaking waves (i.e. the solution remains bounded
while its slope becomes unbounded in finite time). Therefore, as mentioned by
Whitham [44], it is intriguing to know which mathematical models for shallow
water waves exhibit both phenomena of soliton interaction and wave breaking.

It is easy to see that the DP equation with κ = 0 is reversible, i.e. invariant
under transformation u �→ −u, t �→ −t. However, it is not Galilean invariant,
i.e. not invariant under u �→ u+κ, t �→ t, x �→ x+κt. It lies in a family of equations
parametrized by the speed κ ∈ R of the Galilean frame, namely (1.1). Note that
(1.1) with the linear dispersion is completely integrable for all κ ∈ R, as it can be
written as a compatibility condition of two linear systems (which is, sometimes,
equivalent to the Lax pair; that is, a pair of matrices or operators L(t) and A(t)
dependent on time and acting on a fixed Hilbert space, such that dL/dt = [L, A],
where [L, A] = LA − AL) [23,24], that is,

(1 − ∂2
x)Φx = µ(y + 2

3κ)Φ,

Φt +
1
µ

Φxx + uΦx − uxΦ = 0,

where y = u − ∂2
xu and the first equation above is the isospectral problem with a

spectral parameter µ which is independent of time t. It is noted that unlike the CH
equation, the isospectral problem of the DP equation is a third differential operator,
which makes the isospectral analysis much more difficult than the case of the CH
equation. It is worth pointing out that this problem was discussed recently in [21].

Constantin and Escher investigated the Cauchy problem for the CH equation on
an infinite line R and on a unit circle S = R/Z in [11] and [12], respectively. Local
well-posedness and some global existence as well as blow-up criteria for solutions of
this family of CH equations were given. Recently, we studied the Cauchy problem
for (1.1) on R and on S in [29] and [30], respectively. The local and global well-
posedness and blow-up scenarios were established. There are similarities to, but
also structural differences from, the limiting case κ = 0, the rest Galilean frame.
The analysis made in [41] showed that there are smooth solitary wave solutions
to (1.1) for all κ > 0. When κ → 0, these smooth travelling-wave solutions to (1.1)
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recover the existing peakon solitons to the DP equation. It is found that the periodic
solution of (1.1) exists at any time if it is small initially in the Sobolev space H3(S)
controlled by the parameter κ. This is very different from the limit case κ = 0, since
the lifespan of the solution in the case κ = 0 is not affected by the smoothness or
size of the initial profiles, but is affected by the shape of the initial profiles [30]. On
the other hand, we showed in [30] that blow-up occurs in finite time if the initial
profiles in L2 are bounded away from zero depending on the parameter κ.

The goal of this paper is to study some properties of the solutions of (1.1) on
the line R and in a periodic domain S. In § 3, using the method of characteristics
and a continuous family of diffeomorphisms of the line associated to (1.1) (see § 3),
which was introduced by Constantin and Escher [8, 13] to study the CH equation,
we present sufficient conditions guaranteeing the development of breaking waves
in finite time on R and S, respectively. Then, in § 4, it is shown that if the initial
profile decays exponentially, the corresponding solution inherits this decay prop-
erty. Finally, based on the global existence, the issue of passing to the limit as
the dispersive parameter tends to zero for the solution of the DP-κ equation is
investigated.

Notation. Throughout the paper, function spaces are assumed to be over R or S,
and both are dropped in function space notation if there is no ambiguity. We denote
the convolution by ∗. For 1 � p < ∞, the norm in the Lebesgue space Lp is

‖f‖Lp =
( ∫

|f(x)|p dx

)1/p

.

The space L∞ consists of all essentially bounded, Lebesgue measurable functions
f equipped with the norm

‖f‖L∞ = inf
m(e)=0

sup
x∈R(or S)\e

|f(x)|.

For a function f in the classical Sobolev spaces Hs, s � 0, the norm is denoted by
‖f‖s. We write (f̂n) for the Fourier series of f ∈ L2. The inner product in Hs is
denoted by 〈·, ·〉s; in particular, the L2 inner product is denoted by 〈·, ·〉.

2. Preliminaries

In this section, we recall some results on the local/global well-posedness and blow-
up results of (1.1) obtained in [29,30].

Let p(x) := 1
2e−|x|, x ∈ R. Then (1 − ∂2

x)−1f = p ∗ f for all f ∈ L2(R) and
p∗ (u−uxx) = u. It is convenient to rewrite the initial-value problem (IVP) of (1.1)
with the initial data (1.2) on the line R in its formally equivalent integral-differential
form:

ut + uux + ∂xp ∗ ( 3
2u2 + 2κu) = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R.

}
(2.1)

On the other hand, set

G(x) :=
cosh(x − [x] − 1

2 )
2 sinh(1

2 )
,
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where [x] denotes the integer part of x ∈ R. Then (1 − ∂2
x)−1f = G ∗ f for all

f ∈ L2(S) and G ∗ (u − uxx) = u. Using this identity, we can rewrite the periodic
IVP (PIVP) of (1.1) with the initial data (1.2) on S as

ut + uux + ∂xG ∗ ( 3
2u2 + 2κu) = 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R,

u(t, x) = u(t, x + 1), t � 0, x ∈ R.

⎫⎪⎬
⎪⎭ (2.2)

In [29,30], we obtained the following result, which shows that the IVP (2.1) and
the PIVP (2.2) are locally well posed (in Hadamard’s sense: they show existence,
uniqueness and continuous dependence).

Theorem 2.1. Given u0 ∈ Hs, s > 3
2 , there exits a maximal T = T (u0, κ) > 0 and

a unique solution u to the IVP (2.1) or the PIVP (2.2), such that

u = u(·, u0) ∈ C([0, T ); Hs) ∩ C1([0, T ); Hs−1).

Moreover, the flow map is continuous from Hs to the class defined above.

It is shown that the first blow-up can occur only in the form of wave breaking.
More precisely, we have the following result.

Theorem 2.2. Assume u0 ∈ Hs(s > 3
2 ) and T is the existence time of the corre-

sponding solution u to (2.1) (or (2.2)) with the initial data u0. Then blow-up of the
solution u to (2.1) (or (2.2)) in finite time 0 < T < ∞ occurs if and only if

lim inf
t↑T

{
inf

x∈R(or S)
[ux(t, x)]

}
= −∞.

The above result was proved in [29, 30]. Here, for the IVP (2.1) with s � 2, we
give another proof.

Indeed, set the momentum density y = u − uxx. Then (1.1) can be rewritten as

yt + uyx + 3uxy + 2κux = 0, t > 0, x ∈ R. (2.3)

From the identity

‖y‖2
L2 =

∫
R

(u − uxx)2 dx =
∫

R

(u2 + 2u2
x + u2

xx) dx,

we deduce that
‖u‖2

2 � ‖y‖2
L2 � 2‖u‖2

2. (2.4)

Due to (2.3) and integration by parts, we calculate

d
dt

∫
R

y2(t, x) dx = 2
∫

R

yyt dx

= 2
∫

R

y(−uyx − 3uxy − 2κux) dx

= −5
∫

R

uxy2 dx.
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If ux is bounded below, one can deduce that the H2-norm of u is also bounded by
Gronwall’s inequality and (2.4). Since

u(t, x) = p ∗ y =
∫

R

p(x − η)y(η) dη,

taking into account (2.4), we obviously have

‖ux‖L∞ �
∣∣∣∣
∫

R

p(x − η)y(η) dη

∣∣∣∣ � ‖px‖L2‖y‖L2 � ‖u‖2.

This shows that if the H2-norm of u is bounded, then so is ‖ux‖L∞ .
The following L2- and L∞-estimates of (2.1) and (2.2) play very important roles

in studying breaking and permanent waves.

Theorem 2.3. Assume u0 ∈ Hs, s > 3
2 . Let T be the maximal existence time of

the solution u to (2.1) or (2.2) guaranteed by theorem 2.1. Then E(u) =
∫

yv dx is
a conservation law, i.e.∫

y(t, x)v(t, x) dx =
∫

y0(x)v0(x) dx,

where y(t, x) = u(t, x) − uxx(t, x) and v(t, x) = (4 − ∂2
x)−1u. Moreover, for any

t ∈ [0, T ] we have two estimates,

1
4‖u0‖2

L2 � ‖u(t, ·)‖2
L2 � 4‖u0‖2

L2 (2.5)

and

‖u(t, ·)‖L∞(R) � 3(‖u0‖2
L2(R) + |κ|‖u0‖L2(R))t + ‖u0‖L∞(R) (2.6)

or

‖u(t, ·)‖L∞(S) � At + ‖u0‖L∞(S), (2.7)

where

A := 3λ‖u0‖2
L2(S) + 2|κ|λ‖u0‖L2(S) (2.8)

and

λ := coth(1
2 ) =

cosh( 1
2 )

sinh(1
2 )

.

Using a continuous family of diffeomorphisms of the line associated to (2.1) (see
§ 3), we can establish the global existence result.

Theorem 2.4. Suppose that u0 ∈ Hs(R), s > 3
2 , and κ � 0. If m0 = u0 − u0,xx �

− 2
3κ on R, then the IVP (2.1) admits a unique global solution

u ∈ C([0,∞)Hs(R)) ∩ C1([0,∞); Hs−1(R)).

https://doi.org/10.1017/S0308210511000321 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210511000321


810 F. Guo

3. Wave-breaking phenomena

In this section, we shall use the method of characteristics to study the blow-up
phenomena for solutions of the IVP (2.1) and the PIVP (2.2).

The associated Lagrangian scale of (1.1) is established by the Cauchy problem

dq

dt
= u(t, q), t ∈ [0, T ),

q(0, x) = x, x ∈ R,

⎫⎬
⎭ (3.1)

where u = u(·, u0) ∈ C([0, T ); Hs) ∩ C1([0, T ); Hs−1) is the solution of the Cauchy
problem (2.1) or (2.2) with initial data u0 ∈ Hs with s > 3

2 , and T > 0 is the
maximal time of existence. Direct calculation yields qtx(t, x) = ux(t, q(t, x))qx(t, x).
Thus,

qx(t, x) = exp
( ∫ t

0
ux(s, q(s, x)) ds

)
> 0 for all (t, x) ∈ [0, T ) × R, (3.2)

which implies that q(t, ·) : R → R is a diffeomorphism of the line for every t ∈ [0, T ),
and the L∞-norm of any function f(t, ·) ∈ L∞, t ∈ [0, T ), is preserved under this
family of diffeomorphisms, namely

‖f(t, ·)‖L∞ = ‖f(t, q(t, ·))‖L∞ , t ∈ [0, T ).

Furthermore, setting y = u − uxx, we have

(y(t, q(t, x)) + 2
3κ)q3

x(t, x) = y0(x) + 2
3κ for all (t, x) ∈ [0, T ) × R. (3.3)

We note that, in the context of the CH dynamics, use of the q-family of functions
was motivated by the fact that the CH equation can be recast as a geodesic equa-
tion [15, 20], using a similar method to that in which the Euler equation of hydro-
dynamics can be viewed as a geodesic equation [1, 17]. An analogous but slightly
more involved geometric interpretation for the DP equation is given by Escher and
Kolev [26]. More precisely, they show that the periodic Degasperis–Procesi equation
can be regarded as the geodesic flow of a right-invariant symmetric linear connection
on the diffeomorphism group of the circle.

3.1. An infinite line case

We obtain the following blow-up result for the IVP (2.1).

Theorem 3.1. Let ε > 0 and let u0(x) ∈ Hs, s > 3
2 . Suppose that T1 is the smallest

positive root of

2tK(t) = log
(

1 +
2
ε

)
, (3.4)

where

K2(t) = 27
2 (‖u0‖2

L2 + |κ|‖u0‖L2)2t2

+ (9‖u0‖L∞ + 12|κ|)(‖u0‖2
L2 + |κ|‖u0‖L2)t + ( 3

2‖u0‖2
L∞ + 4|κ|‖u0‖L∞).
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Suppose, furthermore, that there exists an x0 ∈ R such that

u′
0(x0) � −(1 + ε)K(T1). (3.5)

The the solution u(t, x) of the IVP (2.1) blows up in a finite time T̃ ∈ (0, T1) in
the sense of wave breaking.

Proof. Using theorem 2.1 and a simple density argument, we need only to con-
sider the case s = 3. Let T > 0 be the maximal time of existence of the solu-
tion u(t, x) to (2.1) with the initial data u0 ∈ H3. By theorem 2.1 we know that
u ∈ C([0, T ); H3) ∩ C1([0, T ); H2).

Define U(t, x) = u(t, q(t, x)) and V (t, x) = ux(t, q(t, x)), respectively, along the
characteristics defined by (3.1). By theorem 2.1, V (t, x) is absolutely continuous
and almost everywhere (a.e.) differentiable on (0, T ) × R.

In view of ∂2
x(p ∗ f) = p ∗ f − f , for any f ∈ L2, differentiating (2.1) with respect

to x yields
utx + uuxx = −u2

x + 3
2u2 + 2κu − p ∗ ( 3

2u2 + 2κu).

Since p ∗ ( 3
2u2)(t, q(t, x)) � 0 and ‖p‖L1 = 1, using the estimate (2.6) and Young’s

inequality, we obtain the a priori differential inequality along the characteristics

dV

dt
= −V 2 + 3

2U2 + 2κU − p ∗ ( 3
2u2 + 2ku)

� −V 2 + 3
2U2 + 2|κ||U | + 2|κ||p ∗ u|

� −V 2 + 3
2U2 + 4|κ||U |

� −V 2 + K2(t) (3.6)

by involving the definition of K(t).
Because u′

0(x) is continuous and zero mean on R, in view of (3.5), for fixed ε > 0
there exists an x̃0 such that

V (0, x̃0) = −(1 + ε)K(T1).

Noting (3.6), V (t) := V (t, x̃0) satisfies

dV

dt
� −V 2(t) + K2(T1) a.e. t ∈ [0, T1] ∩ [0, T ),

V (0) = −(1 + ε)K(T1).

⎫⎬
⎭ (3.7)

Consider another Cauchy problem

dV+

dt
= −V 2

+(t) + K2(T1), t ∈ [0, T1],

V+(0) = −(1 + ε)K(T1).

⎫⎬
⎭ (3.8)

This Cauchy problem has a solution that satisfies

V+(t) + K(T1)
V+(t) − K(T1)

=
V+(0) + K(T1)
V+(0) − K(T1)

e2K(T1)t, t ∈ [0, T1).

https://doi.org/10.1017/S0308210511000321 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210511000321


812 F. Guo

Let t ↑ T1 and recall T1 is the smallest positive root of (3.4). We have

V+(t) + K(T1)
V+(t) − K(T1)

=
ε

2 + ε
e2K(T1)t → 1.

This implies that limt↑T1 V+(t) = −∞, since V+(t) < 0 for t ∈ [0, T1] ∩ [0, T ),
whereas, by the well-known comparison theorem for ordinary differential equations,
from (3.7), (3.8) we get

V (t) � V+(t) < 0 for all t ∈ [0, T1] ∩ [0, T ).

Hence, there exists a T̃ ∈ (0, T1) such that limt↑T̃ V (t) = −∞. The proof is thus
complete.

3.2. A periodic domain case

We now turn our attention to PIVP (2.2). In a different form, we have the fol-
lowing blow-up result. As long as the solution u to the PIVP (2.2) is defined, we
consider

m1(t) = min
x∈S

[ux(t, x)], m2(t) = max
x∈S

[ux(t, x)].

Furthermore, we let x1(t) ∈ S and x2(t) ∈ S be points where these extrema are
attained, i.e. mi(t) = ux(xi(t), t), i = 1, 2. We shall make use of the following two
lemmas.

Lemma 3.2 (Constantin and Escher [12,13]). Let [0, T ) be the maximal interval of
existence of the solution u(t) of (2.2) with the initial data u0 ∈ Hs, s > 3

2 , as given
by theorem 2.1. Then the function mi(t), i = 1, 2, is absolutely continuous on (0, T )
with

dmi

dt
= utx(t, xi(t)) a.e. on (0, T ).

Lemma 3.3 (Constantin and Escher [12]). Let g be a monotone function on [a, b].
Furthermore, let f be a real continuous function on [a, b]. Then there exists a ξ ∈
[a, b] such that

∫ b

a

f(s)g(s) ds = g(a)
∫ ξ

a

f(s) ds + g(b)
∫ b

ξ

f(s) ds.

With these two lemmas in hand, we can prove the following blow-up result, which
shows that for an initial profile with an asymmetric hump, the wave may break in
finite time.

Theorem 3.4. For κ ∈ R and δ > 0. Assume u0 ∈ Hs(s > 3
2 ) such that

m1(0)+m2(0) < min{−16|κ|−2
√

3(AT2 +‖u0‖L∞),−4|κ|−2(1+δ)Q(T2)}, (3.9)
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then the solution of (2.2) with the initial data u0 blows up in finite time, and the
maximal time of existence is estimated above by T2, where

T2 =
(

−B +
√

B2 + 3A2 ln2(1 + 2/δ)
6A2

)1/2

,

B = 4|κ|2 + 3‖u0‖2
L∞ ,

Q(t) = (3A2t2 + B)1/2

and A is defined by (2.8).

Proof. As before, we only need to consider the case s = 3. Equation (2.2) can be
rewritten as

ut + uux = −2κ(G ∗ ux) − ∂xG ∗ ( 3
2u2).

By differentiation we obtain that

utx + u2
x + uuxx = −2κ(G ∗ uxx) + 3

2u2 − G ∗ ( 3
2u2).

In view of lemma 3.2 and the definitions of mi(t), i = 1, 2, setting x = xi(t), for
i = 1, 2, we have that

dmi

dt
+ m2

i + 2κ

∫ 1

0
G(y)uxx(xi − y, t) dy

= 3
2u2(xi, t) − 3

2

∫ 1

0
G(xi − y)u2(y, t) dy a.e. on (0, T ), (3.10)

as uxx(xi(t), t) = 0, i = 1, 2.
The function

g(y) = G(y) − 1
2 sinh(1

2 )
, y ∈ R,

is continuous, decreasing on [0, 1
2 ] and increasing on [12 , 1], with g( 1

2 ) = 0, g(0) =
g(1) � 1

2 . Note the spatial periodicity of uxx. We find for i = 1, 2 that∣∣∣∣
∫ 1

0
G(y)uxx(xi − y, t) dy

∣∣∣∣
=

∣∣∣∣
∫ 1

0
g(y)uxx(xi − y, t) dy

∣∣∣∣
�

∣∣∣∣
∫ 1/2

0
g(y)uxx(xi − y, t) dy

∣∣∣∣ +
∣∣∣∣
∫ 1

1/2
g(y)uxx(xi − y, t) dy

∣∣∣∣.
To estimate each of the two integrals on the right-hand side, applying lemma 3.3,
we find that ∣∣∣∣

∫ 1

0
G(y)uxx(xi − y, t) dy

∣∣∣∣ � m2(t) − m1(t), t ∈ [0, T ]. (3.11)

Note that G(y) � 1
2 on R. From (2.5) we may infer that∫ 1

0
G(xi − y)u2(y, t) dy � 1

2

∫
S

u2(y, t) dy = 1
2‖u‖2

L2 � 1
8‖u0‖2

L2 . (3.12)
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Due to the a priori estimate (2.7), we have

u2(xi, t) � [(3λ‖u0‖2
L2 + 2λ|κ|‖u0‖L2)t + ‖u‖L∞ ]2 = (At + ‖u‖L∞)2. (3.13)

Combining (3.10)–(3.13), we deduce, for a.e. t ∈ (0, T ),

dm1

dt
� −m2

1 + 2|κ|(m2 − m1) + 3
2 (At + ‖u0‖L∞)2 − 1

8‖u0‖2
L2 ,

dm2

dt
� −m2

2 + 2|κ|(m2 − m1) + 3
2 (At + ‖u0‖L∞)2 − 1

8‖u0‖2
L2 .

⎫⎪⎪⎬
⎪⎪⎭ (3.14)

Summing these expressions yields

d(m1 + m2)
dt

� −m2
1 − m2

2 + 4|κ|(m1 + m2)

− 8|κ|m1 + 3(At + ‖u0‖L∞)2 − 1
4‖u0‖2

L2 (3.15)

for a.e. t ∈ (0, T ). Hence, if (m1 + m2) � −16|κ| − 2
√

3(AT2 + ‖u‖L∞) initially,
it remains so for all t ∈ (0, T ) ∩ (0, T2]. Indeed, since (m1 + m2) � 0 and m1 �
m2, we have m1 � −8|κ| −

√
3(AT2 + ‖u‖L∞), and the right-hand side of (3.15)

is less than [−m2
1 − 8|κ|m1 + 3(At + ‖u0‖L∞)2 − 1

4‖u0‖2
L2 ], which is negative by

the estimate obtained on m1. Substituting the information obtained into the first
equation of (3.14), we infer that

dm1(t)
dt

� −m2
1 + 2|κ|(m1 + m2) − 4|κ|m1 + 3

2 (At + ‖u0‖L∞)2 − 1
8‖u0‖2

L2

� −m2
1 − 4|κ|m1 + 3

2 (At + ‖u0‖L∞)2 − 1
8‖u0‖2

L2

= −(m1 + 2|κ|)2 + 4|κ|2 + 3
2 (At + ‖u0‖L∞)2 − 1

8‖u0‖2
L2

for a.e. t ∈ (0, T ) ∩ (0, T2]. Let M(t) := m1(t) + 2|κ| for a.e. t ∈ (0, T ) ∩ (0, T2].
Then

dM(t)
dt

� −M2(t) + 4|κ|2 + 3
2 (At + ‖u0‖L∞)2 − 1

8‖u0‖2
L2

� −M2(t) + 3A2t2 + 4|κ|2 + 3‖u0‖2
L∞

� −M2(t) + 3A2T 2
2 + B

= −M2(t) + Q2(T2), (3.16)

by recalling the definition of Q(t). Using this assumption, it is easy to check that

2Q(T2)T2 − ln
(

1 +
2
δ

)
� 0 (3.17)

and
M(0) < −(1 + δ)Q(T2).

Clearly,

0 <
M(0) − Q(T2)
M(0) + Q(T2)

= 1 − 2Q(T2)
M(0) + Q(T2)

� 1 +
2
δ
.
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This inequality and (3.16) lead to

1
2Q(T2)

ln
M(0) − Q(T2)
M(0) + Q(T2)

� T2. (3.18)

From (3.9), we obtain M(0) < −(1+δ)Q(T2) < −Q(T2). Therefore, using (3.18) we
can prove that M(t) < −Q(T2) by the argument of continuous deduction. Other-
wise, since M(t) is continuous on [0, T2), there exists some t0 ∈ (0, T2) such that
Q2(T2) < M2(T2) on [0, t0), while Q2(T2) = M2(t0). Thus,

dM

dt
< 0 a.e. t ∈ (0, t0).

Being locally Lipschitz, the function M is absolutely continuous on [0, t0], and
therefore an integration of the previous inequality would lead to

M(t0) � M(0) < −M(T1),

which contradicts our assumption Q2(T2) = M2(t0).
Solving the inequality (3.16) gives

M(0) + Q(T2)
M(0) − Q(T2)

e2Q(T2)t − 1 � 2Q(T2)
M(t) − Q(T2)

� 0.

As

0 <
M(0) + Q(T2)
M(0) − Q(T2)

< 1,

we deduce that there exists a T ∗ satisfying

0 < T ∗ <
1

2Q(T2)
ln

M(0) − Q(T2)
M(0) + Q(T2)

� T2

such that limt↑T ∗ M(t) = −∞ and this leads to blow-up.

Remark 3.5. Using the mollifier, it is not difficult to construct initial data satis-
fying the above blow-up condition. For n � 4, let ρn be the usual mollifier on R,
i.e. ρn(x) = nρ(nx), x ∈ R, where

ρ(x) =

⎧⎪⎨
⎪⎩

α exp
(

− 1
1 − x2

)
, |x| < 1,

0, |x| � 1,

and α > 0 satisfies ∫
R

ρ(x) dx = 1.

Now define the function fn ∈ C∞(S) by

fn(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ρn

(
x +

1
n

)
, x ∈

[
0,

2
n

]
,

0, x ∈
[

2
n

,
1
2

]
,

ρ4(x + 3
4 ), x ∈ [ 12 , 1].
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Then

min
x∈S

fn(x) = −nα

e
, max

x∈S

fn(x) =
4α

e
,

and therefore

m1 + m2 =
(4 − n)α

e

such that for sufficiently large n the blow-up condition is satisfied.

4. A decay property

Himonas et al . studied the persistence properties of the CH equation in [33]. They
proved that a strong solution of the CH equation, initially decaying exponentially
together with its spacial derivative, must be identically equal to zero if it also decays
exponentially at a later time. We shall follow their idea to study the decay property
of solutions of the IVP (2.1). However, we have a different proof by the method of
characteristics here. The main result in this section is as follows.

Theorem 4.1. Let u0(x) ∈ Hs with s > 3
2 , where u ∈ C([0, T ];Hs) is a strong

solution of the IVP (2.1) for some T > 0. If there exists a θ ∈ (0, 1) such that

|u0(x)|, |∂xu0(x)| ∼ O(e−θx) as x ↑ ∞, (4.1)

then

|u(t, x)|, |ux(t, x)| ∼ O(e−θx) as x ↑ ∞ (4.2)

uniformly in [0, T ].

Before proceeding with the proof, a few comments are in order. Firstly, by theo-
rem 2.1, the IVP (2.1) admits a unique strong solution with the initial data u0 ∈ Hs,
s > 3

2 , which inherits at any later time the spatial smoothness of the initial data,
measured on a Sobolev space scale with integer index s. Secondly, for the CH and
DP equations, with κ = 0, the finite propagation speed was established by Con-
stantin [9] and Henry [31], respectively. They claimed that any classical solution of
both equations will have compact support if the initial datum has this property.
Their proof relied on the invariance of the scale y(t, x) associated to (2.1). However,
due to (3.3), (1.1) does not have this property; it seems that any classical solution
of this equation cannot propagate at finite speed. Henry [32] showed that certain
exponential decay properties of the initial data persist as long as the solution of the
IVP (2.1) exists. Note that, for the CH equation with κ = 0, an (inverse scattering
transform) approach which makes great use of the integrability was taken in [37] to
investigate the infinite speed property. Finally, the persistence of decay properties
to the b-family of equations was recently studied in [4].

Proof. We introduce the notation

F (u) = 3
2u2 + 2κu (4.3)
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and the weight function

φN (x) =

⎧⎪⎨
⎪⎩

1, x � 0,

eθx, 0 < x < N,

eθN , x � N,

(4.4)

where N is a positive integer. Obviously,

0 � φ′
N (x) � θφN (x) for a.e. x ∈ R. (4.5)

Along the characteristic defined by (3.1), set

Ũ(t) = u(t, q(t, x))φN (q(t, x)) (4.6)

and

Ṽ (t) = ux(t, q(t, x))φN (q(t, x)). (4.7)

A direct calculation shows that there exists a c0 > 0, which depends only on θ,
such that, for any positive integer N ,

φN (x)
∫ ∞

−∞
e−|x−y| 1

φN (y)
dy � 2c0 =

4
1 − θ

. (4.8)

Thus, for any appropriate function f we have

|φN∂xp ∗ f2(x)| =
∣∣∣∣ 1
2φN (x)

∫ ∞

−∞
sgn(x − y)e−|x−y|f2(y) dy

∣∣∣∣
� 1

2φN (x)
∫ ∞

−∞
e−|x−y| 1

φN (y)
φN (y)f(y)f(y) dy

� 1
2

(
φN (x)

∫ ∞

−∞
e−|x−y| 1

φN (y)
dy

)
‖φNf‖L∞‖f‖L∞

� c0‖φNf‖L∞‖f‖L∞ (4.9)

and
|φN∂xp ∗ f(x)| � c0‖φNf‖L∞ . (4.10)

Noting (4.3), multiplying φN on both side of (2.1) gives

utφN + uuxφN = −φN∂xp ∗ F (u).

By (3.1) and (4.6), we calculate

dŨ

dt
= utφN + uxqtφN + uφ′

Nqt

= utφN + uuxφN + u2φ′
N

= −φN∂xp ∗ F (u) + u2φ′
N .

In view of (4.3) and (4.5), by (4.10) we have∣∣∣∣dŨ

dt

∣∣∣∣ � ( 3
2c0M + 2|κ|c0 + θM)‖φNu‖L∞ � c1‖φNu‖L∞ ,
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where M = supt∈[0,T ] ‖u(t, ·)‖s. In the remainder of the proof, let ci, i = 2, 3, . . . ,
be the positive constants depending on M , κ, c0, θ and T . Therefore,

‖Ũ(t)‖L∞ � c1

∫ t

0
‖uφN (s)‖L∞ ds + ‖Ũ(0)‖L∞ . (4.11)

Differentiating (2.1) with respect to x and multiplying by φN , and noting that
∂2

x(p ∗ f) = p ∗ f − f for any f ∈ L2(R), yields

utxφN + uuxxφN = −u2
xφN + F (u)φN − p ∗ F (u)φN .

With (3.1), from (4.7) and the above identity we deduce that

dṼ

dt
= uxtφN + uxxqtφN + uxφ′

Nqt

= uxtφN + uxxuφN + uuxφ′
N

= uuxφ′
N − u2

xφN + F (u)φN − p ∗ F (u)φN .

Then ∣∣∣∣dṼ

dt

∣∣∣∣ � c2(‖uφN‖L∞ + ‖uxφN‖L∞)

and

‖Ṽ (t)‖L∞ � c2

∫ t

0
(‖uφN‖L∞ + ‖uxφN‖L∞)(s) ds + ‖Ṽ (0)‖L∞ . (4.12)

Combining (4.11) and (4.12) leads to

‖Ũ(t)‖L∞ + ‖Ṽ (t)‖L∞

� c3

∫ t

0
(‖uφN‖L∞ + ‖uxφN‖L∞)(s) ds + ‖Ũ(0)‖L∞ + ‖Ṽ (0)‖L∞ .

Gronwall’s inequality shows that

‖Ũ(t)‖L∞ + ‖Ṽ (t)‖L∞ � (‖Ũ(0)‖L∞ + ‖Ṽ (0)‖L∞)ec3t for all t ∈ [0, T ],

or, equivalently,

‖uφN‖L∞ + ‖uxφN‖L∞ � ec3T (‖u0 max{1, eθx}‖L∞ + ‖u0,x max{1, eθx}‖L∞).

Since q(t, ·) : R → R is a diffeomorphism of the line for every t ∈ [0, T ], letting
N → ∞ yields

‖ueθx‖L∞ + ‖uxeθx‖L∞ � ec3T (‖u0 max{1, eθx}‖L∞ + ‖u0,x max{1, eθx}‖L∞),

which is the desired result.

5. Limit behaviour as κ → 0

In this final section, based on the global existence result (theorem 2.4), we shall
study the weak- and strong-limit behaviour of the solutions to the IVP (2.1) as κ →
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0, respectively. In the following, let uκ be the solution of the IVP (2.1) corresponding
to κ in Hs(R) with s > 3

2 . We get the following result concerning the weak limit of
the solutions to the IVP (2.1).

Theorem 5.1. Suppose that u0 ∈ Hs(R), s > 3
2 , and κ � 0. If y0 = u0 − u0,xx �

− 2
3κ on R, then, for any fixed T > 0,

sup
t∈[0,T ]

‖(uκ1 − uκ2)(t, ·)‖L2 → 0 as κ1, κ2 → 0. (5.1)

To prove this theorem, we recall Kato and Ponce’s result [36] on estimating
commutators.

Lemma 5.2. Let Λs = (1 − ∂2
x)s/2. If s � 0, 1 < p < ∞, f, g ∈ S(Rn), then there

exists a constant C = C(s, n, p) such that

‖[Λs, f ]g‖Lp � C(‖∇f‖Lp1 ‖Λs−1g‖Lp2 + ‖Λsf‖Lp3 ‖g‖Lp4 ) (5.2)

and

‖Λ(fg)‖Lp � C(‖f‖Lp1 ‖Λsg‖Lp2 + ‖Λsf‖Lp3 ‖g‖Lp4 ), (5.3)

where 1 < p2, p3 < ∞ and 1/p = 1/p1 + 1/p2 = 1/p3 + 1/p4.

Proof of theorem 5.1. Since y0 + 2
3κ remains non-negative on R, according to the-

orem 2.4, the IVP (2.1) admits a unique global strong solution. Throughout this
section, fix T > 0, and let C denote generic positive constants depending only on
T and ‖u0‖s (but not on κ), whose meaning may change from line to line. Since
κ → 0, we restrict our proof to the case 0 < κ � 1.

The proof will completed in three steps.

Step 1. We first prove that, for any t ∈ [0, T ],

‖ux(t, ·)‖L∞ � C. (5.4)

Indeed, from the relation u = p ∗ y, we deduce that

u(t, x) + 2
3κ = 1

2e−x

∫ x

−∞
eη(y(t, η) + 2

3κ) dη + 1
2ex

∫ ∞

x

e−η(y(t, η) + 2
3κ) dη

and

ux(t, x) = − 1
2e−x

∫ x

−∞
eη(y(t, η) + 2

3κ) dη + 1
2ex

∫ ∞

x

e−η(y(t, η) + 2
3κ) dη.

Then

u(t, x) + ux(t, x) + 2
3κ = ex

∫ ∞

x

e−η(y(t, η) + 2
3κ) dη

and

u(t, x) − ux(t, x) + 2
3κ = e−x

∫ x

−∞
eη(y(t, η) + 2

3κ) dη.
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Since y0 + 2
3κ � 0, it follows from (3.3) that y + 2

3κ � 0 on R for all t ∈ [0, T ]. It
follows from the combination of the two identities above that

−u(t, x) − 2
3κ � ux(t, x) � u(t, x) + 2

3κ for all (t, x) ∈ [0, T ) × R.

In view of the L∞-estimate (2.6), we then get

|ux(t, x)| � |u(t, x)| + 2
3κ

� 3(‖u0‖2
L2 + κ‖u0‖L2)t + ‖u0‖L∞ + 2

3κ

� 3(‖u0‖2
L2 + ‖u0‖L2)T + ‖u0‖L∞ + 2

3 for all (t, x) ∈ [0, T ] × R.

Step 2. We next prove that, for any t ∈ [0, T ], the solution u(t, x) of (2.1) remains
bounded in the space Hs(R), s > 3

2 .
Indeed, taking the Hs inner product with u on both sides of (2.1) gives

d
dt

‖u(t)‖2
s = −〈u, (u2)x〉s − (3 + 4κ)〈u, ∂xp ∗ (u2)〉s.

Note that, by (5.4), applying lemma 5.2 and the Schwarz inequality, we obtain the
estimates

|〈u, (u2)x〉s| = |2〈u, uux〉s|
= |2〈Λs(uux), Λsu〉|
� 2|〈uΛsux, Λsu〉| + |〈[Λs, u]ux, Λsu〉|
� C(‖ux‖L∞‖u‖2

s + ‖[Λs, u]ux‖L2‖Λsu‖L2)

� C‖ux‖L∞(‖u‖2
s + ‖Λsu‖2

L2) � C‖u‖2
s (5.5)

and

|〈u, ∂xp ∗ (u2)〉s| � ‖u‖s‖∂xp ∗ (u2)‖s � ‖u‖s‖u2‖s−1 � C‖u‖2
s. (5.6)

The combination of (5.5) and (5.6) yields

d
dt

‖u(t, ·)‖2
s � C‖u(t, ·)‖2

s.

Gronwall’s inequality guarantees that there exists a constant K(‖u0‖s, T ) > 0 such
that

‖u(t, ·)‖s � K for all t ∈ [0, T ]. (5.7)

Step 3. Finally, we prove that ‖(uκ1 − uκ2)(t, ·)‖L2 → 0 uniformly for all t ∈ [0, T ],
as κ1, κ2 → 0. For simplicity, set u = uκ1(t, x) and v = uκ2(t, x) and w = u − v.
Then w satisfies

wt = −uwx − vxw − 2κ1∂xp ∗ w − 2(κ1 − κ2)∂xp ∗ v − 3
2∂xp ∗ ((u + v)w).

We multiply the above equation by w and integrate over R with respect to x.
Integration by parts, Hölder’s and Young’s inequalities, yield, by the estimate (2.5)
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and (5.4), that

1
2

d
dt

‖w‖2
L2 = −

∫
R

uwwx dx −
∫

R

w2vx dx − 2κ1

∫
R

w∂xp ∗ w dx

− 2(κ1 − κ2)
∫

R

w∂xp ∗ v dx − 3
2

∫
R

w∂xp ∗ (w(u + v)) dx

= 1
2

∫
R

uxw2 dx −
∫

R

w2vx dx − 2κ1

∫
R

w∂xp ∗ w dx

− 2(κ1 − κ2)
∫

R

w∂xp ∗ v dx − 3
2

∫
R

w∂xp ∗ (w(u + v)) dx

� C(‖ux‖L∞‖w‖2
L2 + ‖vx‖L∞‖w‖2

L2 + ‖w‖L2‖∂xp ∗ (w(u + v))‖L2

+ ‖w‖L2‖∂xp ∗ w‖L2 + |κ1 − κ2|‖w‖L2‖∂xp ∗ v‖L2)

� C(‖ux‖L∞‖w‖2
L2 + ‖vx‖L∞‖w‖2

L2 + ‖w‖L2‖w(u + v)‖L1‖∂xp‖L2

+ ‖w‖2
L2‖∂xp‖L1 + |κ1 − κ2|‖w‖L2‖v‖L2‖∂xp‖L1)

� C(‖ux‖L∞‖w‖2
L2 + ‖vx‖L∞‖w‖2

L2 + ‖w‖2
L2‖u + v‖L2‖∂xp‖L2

+ ‖w‖2
L2‖∂xp‖L1 + |κ1 − κ2|‖w‖L2‖v‖L2‖∂xp‖L1)

� C(‖w‖2
L2 + |κ1 − κ2|2).

Therefore, by Gronwall’s inequality, we obtain

‖u − v‖2
L2 = ‖w‖2

L2 � C|γ1 − γ2|2,

which implies that {uκ} is a Cauchy sequence in L2 as κ → 0, uniformly with
respect to t ∈ [0, T ].

We now consider the strong-limit behaviour as κ → 0. Using theorem 5.1, as
κ → 0, it is claimed that the Cauchy sequence of solutions of (2.1) locally strongly
converges to the solution of the Cauchy problem of the DP equation.

We thus consider the corresponding Cauchy problem for the DP equation, namely,

ut − utxx + 4uux = 3uxuxx + uuxxx, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈ R.

}
(5.8)

Theorem 5.3. Under the assumptions of theorem 5.1, uκ converges to the solution
of the Cauchy problem (5.8) in Hs(R) as κ → 0.

Proof. According to theorem 5.1, {uκ} is a Cauchy sequence in L2 as κ → 0. Let
u� = limκ→0 uκ in L2. We now prove that u� is the strong solution of (5.8).

Since uκ is the solution of (2.1), we may infer that

uκ(t) = Sκ(t)u0 +
∫ t

0
Sκ(t − τ)G(uκ) dτ, (5.9)

where
Sκ(t)v =

1
2π

∫
R

ei(ξx−κξt)v̂(ξ) dξ,

G(v) = −vvx − ∂xp ∗ ( 3
2v2 + 2κv).

⎫⎬
⎭ (5.10)

Moreover, Sκ(t) satisfies ‖Sκ(t)v‖s = ‖v‖s for all v ∈ Hs, s � 0.
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For t ∈ [0, T ] and τ ∈ [0, t], by (5.4) and (5.7) we may infer that

|Sκ(t − τ)G(uκ)| � ‖Sκ(t − τ)G(uκ)‖s−1

= ‖G(uκ)‖s−1

= ‖ − uκuκ
x − ∂xp ∗ ( 3

2 (uκ)2 + 2κuκ)‖s−1

� ‖uκ‖∞‖uκ
x‖s−1 + ‖ 3

2 (uκ)2 + 2κuκ‖s−2

� ( 5
2‖uκ‖∞ + 2κ)‖uκ‖s

� CK.

Let κ → 0 in (5.9). In view of the above estimate, it follows from the Lebesgue
dominated convergence theorem that

u�(t) = S(t)u0 +
∫ t

0
S(t − τ)G(u�) dτ,

where S(t)v = S0(t)v. Hence, u� ∈ L∞([0, T ];L2) is the solution of (5.8). However,
by theorem 2.1, we know that (5.8) admits a unique solution in C([0,∞); Hs), s > 3

2 .
This implies that u� is the strong solution of (5.8) and completes the proof.
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applications à l’hydrodynamique des fluides parfaits. Annales Inst. Fourier 16 (1966),
319–361.

2 A. Bressan and A. Constantin. Global conservative solutions of the Camassa–Holm equa-
tion. Arch. Ration. Mech. Analysis 183 (2007), 215–239.

3 A. Bressan and A. Constantin. Global dissipative solutions of the Camassa–Holm equation.
Analysis Applic. 5 (2007), 1–27.

4 Y. Cai and H. J. Gao. On the persistence of decay properties to the b-family of equations.
Adv. Nonlin. Studies 11 (2011), 633–651.

5 R. Camassa and D. D. Holm. An integrable shallow water equation with peaked solitons.
Phys. Rev. Lett. 71 (1993), 1661–1664.

6 G. M. Coclite and K. H. Karlsen. On the well-posedness of the Degasperis–Procesi equation.
J. Funct. Analysis 233 (2006), 60–91.

7 G. M. Coclite and K. H. Karlsen. On the uniqueness of discontinuous solutions to the
Degasperis–Procesi equation. J. Diff. Eqns 234 (2007), 142–160.

8 A. Constantin. Existence of permanent and breaking waves for a shallow water equation:
a geometric approach. Annales Inst. Fourier 50 (2000), 321–362.

https://doi.org/10.1017/S0308210511000321 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210511000321


Solutions of the Degasperis–Procesi equation 823

9 A. Constantin. Finite propagation speed for the Camassa–Holm equation. J. Math. Phys.
46 (2005), 023506.

10 A. Constantin. The trajectories of particles in Stokes waves. Invent. Math. 166 (2006),
523–535.

11 A. Constantin and J. Escher. On the Cauchy problem for a family of quasilinear hyperbolic
equations. Commun. PDEs 23 (1998), 1449–1458.

12 A. Constantin and J. Escher. On the structure of a family of quasilinear equations arising
in shallow water theory. Math. Annalen 312 (1998), 403–416.

13 A. Constantin and J. Escher. Wave breaking for nonlinear nonlocal shallow water equations.
Acta Math. 181 (1998), 229–243.

14 A. Constantin and J. Escher. Particle trajectories in solitary water waves. Bull. Am. Math.
Soc. 44 (2007), 423–431.

15 A. Constantin and B. Kolev. Geodesic flow on the diffeomorphism group of the circle.
Comment. Math. Helv. 78 (2003), 787–804.

16 A. Constantin and D. Lannes. The hydrodynamical relevance of the Camassa–Holm and
Degasperis–Procesi equations. Arch. Ration. Mech. Analysis 192 (2009), 165–186.

17 A. Constantin and H. P. McKean. A shallow waer equation on the circle. Commun. Pure
Appl. Math. 52 (1999), 949–982.

18 A. Constantin and L. Molinet. Orbital stability of solitary waves for a shallow water equa-
tion. Physica D157 (2001), 75–89.

19 A. Constantin and W. A. Strauss. Stability of peakons. Commun. Pure Appl. Math. 53
(2000), 603–610.

20 A. Constantin, T. Kappeler, B. Kolev and P. Topalov. On geodesic exponential maps of
the Virasoro group. Annals Global Analysis Geom. 31 (2007), 155–180.

21 A. Constantin, R. I. Ivanov and J. Lenells. Inverse scattering transform for the Degasperis–
Procesi equation. Nonlinearity 23 (2010), 2559–2575.

22 H. H. Dai. Model equations for nonlinear dispersive waves in a compressible Mooney–Rivlin
rod. Acta Mech. 127 (1998), 193–207.

23 A. Degasperis and M. Procesi. Asymptotic integrability. In Symmetry and perturbation
theory (ed. A. Degasperis and G. Gaeta), pp. 23–37 (World Scientific, 1999).

24 A. Degasperis, D. D. Holm and A. N. W. Hone. A new integral equation with peakon
solutions. Theoret. Math. Phys. 133 (2002), 1463–1474.

25 H. R. Dullin, G. A. Gottwald and D. D. Holm. An integrable shallow water equation with
linear and nonlinear dispersion. Phys. Rev. Lett. 87 (2001), 4501–4504.

26 J. Escher and B. Kolev. The Degasperis–Procesi equation as a non-metric Euler equation.
Math. Z. 269 (2011), 1137–1153.

27 J. Escher, Y. Liu and Z. Y. Yin. Global weak solutions and blow-up structure for the
Degasperis–Procesi equation. J. Funct. Analysis 241 (2006), 457–485.

28 A. S. Fokas and B. Fuchssteiner. Symplectic structures, their Bäcklund transformations
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