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ABSTRACT

We determine the optimal robust strategy of an individual who seeks to
maximize the (penalized) probability of reaching a bequest goal when she is
uncertain about the drift of the risky asset and her hazard rate of mortality.
We assume the individual can invest in a Black–Scholes market. We solve two
optimization problems with ambiguity. The first is to maximize the penalized
probability of reaching a bequest goal without life insurance in the market. In
the second problem, in addition to investing in the financial market, the indi-
vidual is allowed to purchase term life insurance to help her reach her bequest
goal. As the individual becomes more ambiguity averse concerning the drift of
the risky asset, she becomes more conservative with her investment strategy.
Also, as she becomes more ambiguity averse about her hazard rate of mortal-
ity, numerical work indicates she is more likely to buy life insurance when the
ambiguity towards the return of the risky asset is not too large.
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1. INTRODUCTION

We determine the optimal robust strategy of an individual who seeks to max-
imize the probability of reaching a bequest goal when she is uncertain about
the drift of the risky asset and her hazard rate of mortality. We assume the
individual can invest in a financial market that consists of one riskless asset
with constant rate of return and one risky asset whose price process follows
a geometric Brownian motion, that is, the financial market is a Black–Scholes
market. We solve two optimization problems with ambiguity. The first is to
maximize the probability of reaching a bequest goal while investing only in the
financial market. In the second problem, in addition to investing in the finan-
cial market, we allow the individual to purchase term life insurance to help her
reach her bequest goal. In both cases, we assume that the individual’s consump-
tion needs are supplied by her income, separate from the wealth we consider
here. We, thereby, extend Bayraktar and Young (2016) by allowing for ambi-
guity in the financial market and for ambiguity in the individual’s hazard rate
of mortality. As the individual becomes more ambiguity averse concerning the
drift of the risky asset, she becomes more conservative with her investment
strategy. As she becomes more ambiguity averse about her hazard rate of mor-
tality, numerical work indicates she is more likely to buy life insurance when
the ambiguity towards the return of the risky asset is not too large.

The work in this paper combines two areas of research. One area is that of
maximizing the probability of reaching a goal. The seminal work of this area
begins with Dubins and Savage (1965, 1976) and continues with the work of
Pestien and Sudderth (1985), Sudderth and Weerasinghe (1989), and Browne
(1997, 1999a,b). In the context of non-life insurance, researchers focus on
minimizing the probability of ruin from the perspective of an insurance com-
pany. See Schmidli (2002) and Promislow and Young (2005) for early papers
in this area. In the life-insurance and life-annuity literature, researchers are
more concerned about the individual’s point of view, and commonly, they con-
sider two goal-seeking criteria. One is to minimize the probability of lifetime
ruin, which was first introduced in Milevsky and Robinson (2000) and ana-
lyzed by Young (2004). A number of papers extend Young’s work by adding
borrowing constraints, stochastic consumption, stochastic volatility, and pur-
chasing life annuities to cover consumption. The other goal-seeking criterion
is to maximize the probability of reaching a bequest goal. Bayraktar et al.
(2014) compute the optimal strategy for purchasing life insurance in order
to reach a bequest goal, in which the individual does not consume from the
investment account and only invests in the riskless asset. Bayraktar and Young
(2016) determine the optimal strategy for investing in a Black–Scholes mar-
ket to reach a bequest goal when life insurance is not available in the market.
Bayraktar et al. (2016) extend these two works by finding the optimal strategies
for both purchasing term life insurance and investing in a Black–Scholes mar-
ket in order to reach a bequest goal. They also allow the individual to consume
from her investment account.
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The second area is related to model uncertainty and ambiguity aversion.
It is well recognized in the portfolio-choice literature that decision-makers
need to take model misspecification into account when determining optimal
strategies. There are good estimates of the volatility of the stock price, but
estimating its drift is almost impossible; see Section 4.2 in Rogers (2013).
It would require centuries of data to obtain a good estimate of the drift. A
number of papers focus on model uncertainty in the framework of portfolio
choice. Anderson et al. (2003) consider a continuous-time asset pricing model
with model misspecification. Maenhout (2004) extends Anderson et al. (2003)
to a dynamic portfolio choice problem with power utility of terminal wealth.
Jaimungal and Sigloch (2012) compute indifference prices in a hybrid model
of default. Yi et al. (2013) study the robust optimal reinsurance-investment
problem under the Heston model for an ambiguity-averse insurer.

Recently, a few papers have included ambiguity in the jump intensity (or
hazard rate). In the context of an insurer who seeks a mean-variance equilib-
rium, Zeng et al. (2016) find the optimal proportional reinsurance policy while
allowing for ambiguity in both the drift of the risky asset in a financial market
and the jump intensity of the insurance claim process. Gu et al. (2017) and Li
et al. (2018) find the optimal robust excess-of-loss reinsurance and investment
strategies for an insurer that is uncertain about the jump intensity of its claim
process; the criterion in both papers is to maximize the expected exponential
utility of terminal wealth of the insurer. Hu et al. (2018) consider a principal-
agent problem between an insurer and a reinsurer; in this problem the reinsurer
is uncertain about the jump intensity of the claim process for which it is offering
reinsurance.

Although research on robust optimization problems has been greatly
increasing in recent years, few of these contributions deal with goal-seeking
problems under model ambiguity. Bayraktar and Zhang (2015) analyze the
optimal robust investment strategy to minimize the probability of lifetime
ruin under ambiguity. Young and Zhang (2016) consider the same objective,
but they assume the individual’s hazard rate of mortality is ambiguous. Li
and Young (2019) determine the optimal per-loss reinsurance for an insurer
facing ambiguity in the Poisson rate of claim occurrence; the optimization cri-
terion is to minimize the expectation of the discounted time of ruin. Luo et al.
(2019) study an optimal robust investment-reinsurance problem to maximize
the probability of reaching a given level of surplus before ruin. They allow the
insurer to purchase proportional reinsurance and to invest in a Black–Scholes
market; they include both ambiguity in the drift of the risky asset, as we do,
and ambiguity of the drift of the claim process, which is assumed to follow
Brownian motion with drift, as in Promislow and Young (2005).

In this paper, we introduce model uncertainty into the bequest-goal prob-
lem and solve two versions of that problem. We call the model considered in
Bayraktar and Young (2016) the reference model, and we assume the indi-
vidual is uncertain about the drift of the stock price process and about her
own hazard rate of mortality. As in the robust control approach developed by
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Maenhout (2004), we penalize the probability that the individual’s wealth at
death reaches her bequest goal, in which the penalization is based on the rela-
tive entropy of the alternative measure with respect to the reference measure.
By solving the corresponding Hamilton–Jacobi–Bellman (HJB) equation, we
derive an explicit expression for the penalized probability and the associated
optimal investment strategy when life insurance is not available in the market,
the first version of our problem.

For the second version of our problem, we assume life insurance is avail-
able in the market, and we show that the penalized probability is related to
the solution of an Abel equation of the second kind. We show that it is opti-
mal to purchase life insurance only when wealth is greater than some level, as
in Bayraktar and Young (2016), and we obtain semi-explicit expressions for
the penalized probability and optimal strategies. For both problems (with and
without life insurance in the market), as the ambiguity-aversion parameter for
the drift of the risky asset increases, the penalized probability and the optimal
amount invested in the risky asset decrease. Also, as the ambiguity-aversion
parameter for the hazard rate of mortality increases, numerical work indicates
she is more likely to buy life insurance when the ambiguity towards the return
of the risky asset is not too large.

The rest of the paper is organized as follows. In Section 2, we present
the financial and insurance market in which the individual invests, and we
also introduce the definition of model uncertainty. We formalize the robust
problems of maximizing the penalized probability of reaching a bequest goal
with and without life insurance. In Section 3, we solve the robust problem of
maximizing the penalized probability of reaching a bequest goal without life
insurance. Section 4 parallels Section 3 when life insurance is available in the
market. We also provide some sensitivity analysis and a numerical example in
this section.

2. MODEL FORMULATION

In this section, we first describe the financial market for the individual. Then,
we formulate the optimization problems our individual faces.

2.1. Financial market

We assume the individual can invest in a financial market consisting of one
riskless and one risky asset, whose prices, respectively, evolve according to the
dynamics

dRt = rRtdt and dSt = μStdt+ σStdBt,

in which μ > r> 0 and σ > 0 are constants. Here, B= (Bt)t≥0 is a standard
Brownian motion on a filtered probability space (�,F , F := (Ft)t≥0, P). In
other words, the individual invests in a Black–Scholes market.
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Let τd denote the time of death of the individual, which is assumed to
be exponentially distributed with parameter λ, that is, Eτd = 1/λ. Although
a constant hazard rate of mortality is unrealistic, we do not feel that this
time independence is a drawback of our model. Indeed, in Section 3, within
our relatively simple market, we obtain an explicit expression for the optimal
investment strategy. Working with simple models helps researchers determine
what properties might be true more generally. Under more realistic models, we
fully expect that our qualitative results to hold, and perhaps the simple strategy
we find will be nearly optimal. For example, Moore and Young (2006) observe
that when minimizing the probability that an individual financially ruins before
dying, investment strategies computed by assuming that the hazard rate is con-
stant are nearly optimal for the case of an exponentially increasing hazard rate.

The time of death τd is defined on the same probability space as the stock
price and is assumed independent of B. We use Dt := 1{τd≤t} to form the death
indicator process; D= (Dt)t≥0 jumps from 0 to 1 when the individual dies. Let
G= (Gt)t≥0 be the progressive enlargement of the filtration F to include the
information generated by D, specifically, Gt =Ft ∨ σ (Du : 0≤ u≤ t). Assume
F and G have been augmented to satisfy the usual conditions of complete-
ness and right continuity. Under the measure P, D has jump rate λ1{Dt=0}, and
MP

t :=Dt −
∫ t
0 λ1{Du=0}du forms a (P,G)-martingale. We also define the “coffin

state” �, which represents the death of the individual; set � +w= � for all
w ∈R, and all functions evaluated at � equal zero.

Let πt denote the dollar amount invested in the risky asset at time t. In one
version of our problem, we also allow the individual to purchase instantaneous
term life insurance which pays a benefit at time τd . The insurance premium
is paid continuously at the rate of h per unit of death benefit. Let It denote
the amount of death benefit payable at time t if death occurs then. With con-
tinuously paid premium for instantaneous term life insurance, the individual’s
wealth processW = (Wt)t≥0 follows the dynamics{

dWt =
(
rWt + (μ − r)πt − hIt

)
dt+ σπtdBt, 0≤ t< τd ,

Wτd =Wτd− + Iτd .

Also, without life insurance, the individual’s wealth process follows{
dWt =

(
rWt + (μ − r)πt

)
dt+ σπtdBt, 0≤ t< τd ,

Wτd =Wτd−,

that is, no death benefit is payable at time τd . In both cases, we assume that the
individual receives income, separate fromW , which supplies all her consump-
tion needs; such could be the case for a retiree who has amassed wealth that she
wants to invest, with her consumption covered by Social Security and pension
income. If we include consumption in the investment account, then the solu-
tion is more complicated and is not available in closed form; see, for example,
Sections 4 and 5 in Bayraktar and Young (2016).
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2.2. Ambiguity

Bayraktar and Young (2016) maximize the probability of reaching a bequest
goal for an individual who believes the model, described in the previous section,
with certainty; we call this model the reference model, and the probability P is
the reference measure. In this paper, we incorporate model ambiguity, or uncer-
tainty, into the investor’s problem.We assume the investor is ambiguous about
her hazard rate of mortality, namely, the investor’s future life expectancy is
unknown. We also allow for ambiguity in the financial market; specifically, the
individual is uncertain about the drift of the stock price process. Thus, instead
of optimizing under the reference measure P, the individual considers alterna-
tive models, which are characterized by a class Q of probability measures Q
equivalent to P.

A probability measure Q is inQ if it satisfies

dQ
dP

=L∞ = lim
t→∞Lt,

in which

Lt = exp
(

−
∫ t

0
ϕudBu − 1

2

∫ t

0
ϕ2
udu

+
∫ t

0
ln (φu− + 1)dMP

u +
∫ t

0
λ1{Du=0}

(
ln (φu + 1)− φu

)
du
)
,

or

dLt = −Lt−ϕtdBt +Lt−φt−dMP
t , L0 = 1.

Here, (ϕ, φ)= (ϕt, φt)t≥0 are G-progressively measurable processes, under
which L= (Lt)t≥0 is a (P,G)-martingale. Under the measure Q, BQ

t :=Bt +∫ t
0 ϕudu forms a (Q,G)-Brownian motion, and MQ

t :=Dt −
∫ t
0 λ(φu + 1)

1{Du=0}du forms a (Q,G)-martingale.
From the expression for MQ

t we see that the effect of the process φ is to
replace reference hazard rate for mortality λ with λ(φt + 1), a type of propor-
tional hazards transform. An individual who is risk averse will act as if her
hazard rate is at least as large as its actual value, that is, λ(φt + 1)≥ λ, or equiv-
alently, φt ≥ 0. Thus, to model ambiguity in the hazard rate for the problem of
reaching a bequest goal, we restrict φ so that φt ≥ 0 for all t≥ 0.

We say the investment strategy π = (πt)t≥0 is admissible if it is
G-progressively measurable and satisfies

∫ t
0 π 2

u du< ∞, P-almost surely for all
t≥ 0, and an insurance strategy I = (It)t≥0 is admissible if it is a nonnegative,
G-progressively measurable process, independent of τd . Note that we require
It ≥ 0 for all t≥ 0. If we were to allow It < 0, then the resulting product could
be thought of as an instantaneous life annuity with a lump sum payable to the
insurance company upon the death of the individual, as is the case for a reverse
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annuity; see, for example, Pirvu and Zhang (2012). However, because we are
focusing on reaching a bequest goal and do not include income in our model,
we feel it is reasonable to consider only life insurance and, thereby, require
It ≥ 0 for all t≥ 0.

We useAπ to denote the set of all admissible investment strategies andA(π ,I)

to denote the set of all admissible investment and insurance strategies. The
dynamics of W under Q without and with life insurance follow the respective
processes{

dWt =
(
rWt + (μ − σϕt − r)πt

)
dt+ σπtdB

Q
t , 0≤ t< τd ,

Wτd =Wτd−,

and {
dWt = (rWt + (μ − σϕt − r)πt − hIt)dt+ σπtdB

Q
t , 0≤ t< τd ,

Wτd =Wτd− + Iτd .

Note that the effect of the process ϕ is to replace the reference drift μ with
μ − σϕt.

Under Q, we rewrite Lt as follows:

Lt = exp
(

−
∫ t

0
ϕudBQ

u + 1
2

∫ t

0
ϕ2
udu+

∫ t

0
ln (φu− + 1)dMQ

u

+
∫ t

0
λ1{Du=0}

(
(φu + 1) ln (φu + 1)− φu

)
du
)
.

By assuming additional conditions so that the stochastic integral terms are
Q-martingales, the relative entropy of Q with respect to P is given by

EQ

[
ln
dQτd

dPτd

]
=EQ

[
lnLτd

]

=EQ

[
1
2

∫ τd

0
ϕ2
udu+

∫ τd

0
λ1{Du=0}

(
(φu + 1) ln (φu + 1)− φu

)
du
]
.

(2.1)

We use the relative entropy ofQ with respect to P in our measure of ambiguity,
as described below.

In this paper, we solve two optimization problems with ambiguity. The first
is to maximize the probability of reaching a bequest goal while investing only
in the Black–Scholes market; the second allows the individual to buy instan-
taneous term life insurance to help her reach that bequest goal, in addition to
investing in the Black–Scholes market. Let b> 0 denote the bequest goal of the
individual, and define the time of ruin by τ0 = inf{t≥ 0 :Wt ≤ 0}. The individ-
ual invests in order to maximize the probability of having wealth at death of at
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least b without ruining beforehand penalized for the entropic distance between
the measure Q and the reference measure P. More specifically, we analyze the
following robust problem:


(w)= sup
π∈Aπ

inf
Q∈Q

{
Qw(Wτd∧τ0 ≥ b)+ 1

α1
EQ
w

∫ τd∧τ0

0

ϕ2
s

2

(Ws) ds

+ 1
α2

EQ
w

∫ τd∧τ0

0
λ
[
(φs + 1) ln (φs + 1)− φs

]

(Ws) ds

}
,

(2.2)

in whichQw and EQ
w denote the probability and expectation, respectively, under

Q conditional onW0 =w. Here, α1 and α2 are positive constants that measure
the degree of the individual’s ambiguity concerning the drift of the risky asset
and her hazard rate of mortality. When α1 = 0= α2, we obtain the ambiguity-
neutral problem of Bayraktar and Young (2016), and 
 is a true probability.
As α1 or α2 increases, 
 decreases but is always uniformly bounded below by
0; thus, 
 takes values in [0, 1] and can be viewed as a penalized probability,
with the penalty controlled by α1 and α2.

In the second version of this problem, we include life insurance in the mar-
ket; denote the corresponding penalized probability by
i (i for insurance) and,
in its definition, replace supπ∈Aπ with sup(π ,I)∈A(π ,I) .

Remark 2.1. There are three meaningful factors in the integrands of the sec-
ond and third terms in (2.2). The first factor is 1/α1 or 1/α2; the parameters
α1 and α2 are positive constants that measure the level of ambiguity aversion.
A larger value of α1 or α2 means the individual is more ambiguity averse and
believes less in the reference model. As stated above, as α1 and α2 approach 0, the
problem in (2.2) becomes the ambiguity-neutral problem of Bayraktar and Young
(2016). As α1 and α2 approach ∞, the problem corresponds to the worst-case
approach, that is, the individual believes equally in all candidate measures and
optimizes against the worst-case scenario. The second factor is ϕ2

s /2 or λ
[
(φs + 1)

ln (φs + 1)− φs

]
, which equals an integrand in the relative entropy (2.1), a mea-

sure of how far the measureQ lies from the reference measure P. Finally, the third
factor is 
(Ws), a scaling by the penalized probability between now and when the
first of death or ruin occurs. This scaling results in the penalized probability hav-
ing the same functional form as the maximum probability of reaching a bequest
goal, which we will see in Corollary 3.4. As Maenhout (2004) argues, with this
scaling, “robustness will no longer wear off as wealth rises.” Also, see pages 64
and 65 in Jaimungal and Sigloch (2012) for further discussion of this penalty.

In Section 3, we solve for 
 and the corresponding optimal investment
strategy; in Section 4, we solve for 
i and the corresponding optimal invest-
ment and life-insurance strategies.
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3. REACHING A BEQUEST GOAL WITHOUT LIFE INSURANCE

In this section, we consider the problem of maximizing the probability of reach-
ing a bequest goal without life insurance in the market. We first provide a
verification theorem that we use to compute the penalized probability and cor-
responding optimal investment strategy. We omit the proof of the verification
theorem because it closely follows the proofs of Theorem 6.1 in Bayraktar and
Zhang (2015) and of Lemma 2.1 in Bayraktar and Young (2016).

For any triplet (π , ϕ, φ) ∈R3, define the differential operator Lπ ,ϕ,φ through
its action on a test function f by

Lπ ,ϕ,φf = (
rw+ (μ − σϕ − r)π

)
fw + 1

2
σ 2π 2fww − λ(φ + 1)

(
f − 1{w≥b}

)
+ ϕ2

2α1
f + λ

[
(φ + 1) ln (φ + 1)− φ

]
α2

f .

If wealth at time t is greater than or equal to b, then the individual can
invest all her wealth in the riskless asset so that Wτd ≥Wt ≥ b, and nature can
choose ϕs = 0 and φs = 0 for all s≥ t. Thus, 
(w)= 1 if w≥ b. Also, if wealth
reaches 0, then the individual has ruined, and the “game” ends, which implies
that 
(0)= 0. It follows that we only need to determine 
(w) and the optimal
controls for 0<w< b.

Theorem 3.1 (Verification theorem). Suppose v : [0, b]→ [0, 1], π∗ : (0, b)→R,
ϕ∗ :R× (0, b)→R, and φ∗ :R× (0, b)→R+ are measurable functions satisfying
the following conditions:

(i) v ∈ C2
(
[0, b]

)
is increasing.

(ii) v is a classical solution of{
sup
π∈R

inf
ϕ∈R, φ≥0

Lπ ,ϕ,φ v(w)= 0, 0<w< b,

v(0)= 0, v(b)= 1.
(3.1)

(iii) π∗(w) attains the supremum in (ii) for each w ∈ (0, b), ϕ∗(π ,w) and φ∗(π ,w)
attain the infimum in (ii) for each π ∈R and w ∈ (0, b).

(iv) π∗, ϕ∗ and φ∗ are bounded, and π∗ is Lipschitz continuous.

Then,


 = v,

on [0, b], and π∗(·), ϕ∗(π∗(·), ·), and φ∗(π∗(·), ·) are optimal feedback controls.
In the following, we use Theorem 3.1 to calculate 
. According to Theorem

3.1, if we find an increasing solution of the following boundary-value prob-
lem (BVP) on [0, b], then that solution equals the maximum probability of
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reaching the bequest goal 
, as long as the corresponding optimal controls
satisfy Condition (iv) of that theorem: For 0<w< b,

sup
π

inf
ϕ,φ

{
(μ − σϕ − r)πvw + 1

2
σ 2π 2vww − λ(φ + 1)v+ ϕ2

2α1
v

+λ
[
(φ + 1) ln (φ + 1)− φ

]
α2

v

}
+ rwvw = 0, (3.2)

with boundary conditions v(0)= 0 and v(b)= 1. From the first-order necessary
conditions in (3.2), we obtain

ϕ∗(π ,w)= α1σπ
vw
v
, (3.3)

φ∗(π ,w)= eα2 − 1> 0. (3.4)

Because α1 and α2 are positive, the expression in curly brackets in (3.2) is con-
vex with respect to ϕ and φ; thus, ϕ∗ and φ∗ in (3.3) and (3.4), respectively, yield
the global minimum.

By substituting the expression for ϕ∗ and φ∗ into (3.2), we obtain

λδv= rwvw + sup
π

{
(μ − r)πvw + 1

2
σ 2π 2

(
vww − α1

v2w
v

)}
, (3.5)

in which

δ = eα2 − 1
α2

> 1. (3.6)

The first-order necessary condition for π in (3.5) yields

π∗(w)= − μ − r
σ 2

vw
vww − α1v2w/v

. (3.7)

This expression for π∗ gives the global maximum if vvww − α1v2w < 0, which we
verify after computing v. By substituting π∗ in (3.7) into (3.5), we obtain the
following nonlinear differential equation:

λδv= rwvw −m
v2w

vww − α1v2w/v
, (3.8)

in which

m= 1
2

(
μ − r

σ

)2

. (3.9)

We conjecture that the solution of (3.8) has the form

v(w)=
(w
b

)q
,
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for some positive constant q. Substituting this ansatz into (3.8) yields

q=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2r(1− α1)

[(
r+m+ λδ(1− α1)

)−√(
r+m+ λδ(1− α1)

)2− 4λδr(1−α1)
]
,

if α1 �= 1,

λδ

r+m
, if α1 = 1,

(3.10)
with q> 0 and q(1− α1)< 1, which implies that vvww − α1v2w < 0.

Based on the above discussion, we present the penalized probability 
 in
the next theorem along with the optimal strategies. Because the proof is a
straightforward check of the conditions of Theorem 3.1, we omit it.

Theorem 3.2. The maximum penalized probability of reaching the bequest goal
equals


(w)=
(w
b

)q
, 0≤w≤ b, (3.11)

in which q is given in (3.10). If wealth equals w ∈ (0, b), then the optimal amount
invested in the risky asset is given by

π∗(w)= μ − r
σ 2

w
1− (1− α1)q

, (3.12)

and the minimizing measure is given by the constants

ϕ∗ = μ − r
σ

α1q
1− (1− α1)q

, (3.13)

φ∗ = eα2 − 1. (3.14)

Moreover, φ∗ is a positive constant, and because 1− (1− α1)q> 0, π∗ is a
positive constant proportion of wealth, and ϕ∗ is a positive constant.

The optimal investment strategy is not continuous at w= b; indeed,
limw→b− π∗(w)> 0, but if wealth equals b, then it is optimal to invest all wealth
in the riskless asset to maintain one’s assets. Also, the optimal investment strat-
egy is independent of the bequest goal b as in Bayraktar and Young (2016),
except that b determines the range of values of w.

In the first corollary, we deduce that 
’s game has an equilibrium value
if q is less than 1 (or equivalently, if 
 is concave), that is, if we switch sup
and inf in (2.2), the penalized probability 
 does not change. In other words, it
does not matter which “player” acts first, the individual choosing an investment
strategy {πt} or nature choosing a measure Q via {ϕt} and {φt}. In this case, the
optimal strategies given in Theorem 3.2 are Nash equilibrium strategies for this
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zero-sum, continuous-time differential game. The corollary follows by showing
that the solution in Theorem 3.2 also solves the following BVP:{

inf
ϕ,φ

sup
π

Lπ ,ϕ,φ v(w)= 0, 0<w< b,

v(0)= 0, v(b)= 1.
(3.15)

See Appendix A for the proof of this corollary.

Corollary 3.1. If q in (3.10) is less than 1, then the game embodied in (2.2) has a
value, that is, 
 also equals


(w)= inf
Q∈Q

sup
π∈Aπ

{
Qw(Wτd∧τ0 ≥ b)+ 1

α1
EQ
w

∫ τd∧τ0

0

ϕ2
s

2

(Ws) ds

+ 1
α2

EQ
w

∫ τd∧τ0

0
λ
[
(φs + 1) ln (φs + 1)− φs

]

(Ws) ds

}
.

(3.16)

Moreover, the optimal controls are given in feedback form in (3.12)–(3.14).

Remark 3.1. As observed in Bayraktar and Young (2016), the investment strat-
egy in (3.12) is identical to the one employed by an investor who maximizes
the expected discounted utility of her wealth at death under the utility function
u(w)=wq, in which q is given in (3.10) with q< 1, so that the utility function is
concave. Specifically, the maximum-utility problem is supπ Ew

[
e−ρτd (Wτd )

q
]
, for

some ρ > 0. Thus, if we were to observe an individual investing a constant pro-
portion of her wealth in a risky asset, then we could say she is maximizing the
expected discounted power utility of her wealth at death or maximizing the penal-
ized probability that her wealth at death exceeds a specific bequest goal. This
correspondence is similar to the one found by Bayraktar and Young (2007), in
which they relate the optimal strategies for maximizing the individual’s expected
utility of lifetime consumption and for minimizing her probability of lifetime
ruin.

In the next corollary, we show how the solution in Theorem 3.2 varies with
the ambiguity-aversion parameters α1 and α2. From the definition of 
, we
know that 
 decreases with respect to α1 and α2; however, we do not know
a priori how the optimal controls change with α1 and α2. Recall that ϕ∗ is
the change of measure that reflects ambiguity with respect to the drift of the
risky asset; φ∗, the hazard rate of mortality. See Appendix B for a proof of this
corollary.

Corollary 3.2. As the ambiguity-aversion parameter α1 increases, π∗(w)
decreases for all w ∈ (0, b). If α1 > 1, then π∗(w) decreases with respect to α2, and
if 0< α1 < 1, then π∗(w) increases with respect to α2. If q< 1, then ϕ∗ increases
with respect to α1, but φ∗ is independent of α1 for all values of q> 0. Both ϕ∗ and
φ∗ increase with respect to α2.
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Remark 3.2. As the individual becomes more ambiguity averse about the drift
of the risky asset, Corollary 3.2 shows that she becomes more cautious in her
investment strategy, an intuitively pleasing result. As for how the measure ϕ∗
changes with α1 when q≥ 1, numerical work indicates that if λδ is large relative
to r, then ϕ∗ first increases and then decreases with increasing α1. On the other
hand, if λδ ≤ r, then q< 1 for all values of α1, and Corollary 3.2 implies that ϕ∗
monotonically increases with respect to α1.

Remark 3.3. It makes sense that the measure modifying the hazard rate for mor-
tality, namely, φ∗, increases with respect to α2. The more uncertain the individual
is concerning her rate of dying, the greater her adjusted hazard rate λ(1+ φ∗)
will be. Note that this result is closely linked with the individual’s goal of reaching
a particular bequest. Indeed, if bequest is one’s goal, then dying sooner is worse
than dying later. By contrast, in Young and Zhang (2016), under the goal of min-
imizing the probability of lifetime ruin, the adjusted hazard rate decreases with
increasing ambiguity because dying later is worse than dying sooner when one is
concerned about running out of money before dying.

It also makes sense that φ∗ is independent of α1. Indeed, the randomness in the
stock price process and the randomness of the time of death are independent, so
uncertainty about the drift of the risky asset does not affect φ∗. That said, because
reaching the bequest goal involves investing in the risky asset, uncertainty about
the hazard rate of mortality does affect ϕ∗, the measure modifying the drift of the
risky asset. Corollary 3.2 shows that ϕ∗ increases with respect to α2, which means
that the adjusted drift μ − σϕ∗ decreases with respect to α2. If α1 < 1, then the
individual will compensate for a decreased drift and larger hazard rate due to an
increase in α2 by investing more in the risky asset.

In the next corollary, we examine the limiting cases as αi → 0+ and αi → ∞
for i= 1, 2. The statements concerning α1 → 0+ and α2 → 0+ follow read-
ily from Theorem 3.2 above and from Theorem 3.1 in Bayraktar and Young
(2016), and the statements concerning αi → ∞ follow from Theorem 3.2 above.

Corollary 3.3. As α1 → 0+ and α2 → 0+, the parameter q in (3.10) approaches

q
∣∣
α1=0

= 1
2r

[
(r+m+ λδ)−

√
(r+m+ λδ)2 − 4rλδ

]
∈ (0, 1),

and

q
∣∣
α2=0

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2r(1− α1)

[(
r+m+ λ(1− α1)

)−√(
r+m+ λ(1−α1)

)2− 4λr(1−α1)
]
,

if α1 �= 1,

λ

r+m
, if α1 = 1.
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If α1 → 0 and α2 → 0 simultaneously, then the penalized probability 


approaches the non-penalized maximum probability of reaching the bequest goal
under the reference model, and the optimal investment strategy approaches the
corresponding optimal investment strategy under the reference model.

As α1 → ∞, the parameter q approaches

q
∣∣
α1=∞ = λδ

r
,

the penalized probability
 approaches the worst-case probability of reaching the
bequest goal with hazard rate λδ, namely,
(w)

∣∣
α1=∞ = (w/b)λδ/r, and the optimal

investment strategy is to invest nothing in the risky asset.
As α2 → ∞, the parameter q approaches

q
∣∣
α2=∞ =

⎧⎪⎨
⎪⎩

1
1− α1

, if α1 < 1,

∞, if α1 ≥ 1,

the penalized probability 
 approaches


(w)
∣∣
α2=∞ =

⎧⎨
⎩
(w
b

)1/(1−α1)
, if α1 < 1,

0, if α1 ≥ 1,

and the optimal investment strategy increases to∞ if α1 < 1 and decreases to 0 if
α1 > 1.

Remark 3.4. As α1 → ∞, from the discussion on page 64 of Bayraktar and Zhang
(2015), if the individual takes a worst-case approach concerning the risky asset,
then she will invest nothing in the risky asset because the drift can be arbitrarily
negative if one buys the stock and arbitrarily positive if one shorts the stock. Thus,
wealth at time t equals Wt =wert, and the probability Wt reaches b before dying
equals (w/b)λδ/r.

As α2 → ∞, the modified hazard rate λδ → ∞, which means the individual
dies immediately. Moreover, if α1 → ∞, then the optimal investment strategy is
to invest nothing in the risky asset, and the corresponding penalized probability
equals 0 for wealth less than b.

Of interest is how the probability of reaching the bequest goal changes
with increasing α1 and α2. We know that the penalized probability of reaching
the bequest goal decreases with increasing αi, and the next corollary consid-
ers the un-penalized probability of reaching the bequest goal under measure Q
defined by ϕ∗ and φ∗ in (3.13) and (3.14), respectively, if the individual follows
the investment strategy in (3.12). If we find an increasing classical solution of
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the following BVP, then that solution equals the probability of reaching the
bequest goal:{

λ(φ∗ + 1)v= (
rw+ (μ − σϕ∗ − r)π∗(w)

)
vw + 1

2 σ 2
(
π∗(w)

)2
vww, 0<w< b,

v(0)= 0, v(b)= 1.

The following corollary gives us the solution of this BVP.

Corollary 3.4. Under measure Q defined by (3.13) and (3.14), the probability of
reaching the bequest goal when the individual follows the investment strategy in
(3.12) equals

ζ (w)=
(w
b

)q′
, 0≤w≤ b, (3.17)

in which q′ > 0 is given by

q′ = 1
2m

[(
2mq−m− r

(
1− (1− α1)q

)2)

+
√(

2mq−m− r
(
1− (1− α1)q

)2)2 + 4mλeα2
(
1− (1− α1)q

)2 ]
.

(3.18)

Moreover, q′ > q if α1 > 0 and α2 > 0,

q′∣∣
α1=0,α2=0

= q
∣∣
α1=0,α2=0

,

as α1 → ∞,

q′∣∣
α1=∞ = λeα2

r
,

and as α2 → ∞,

q′∣∣
α2=∞ =

⎧⎪⎨
⎪⎩
1+ α1

1− α1
, if α1 < 1,

∞, if α1 ≥ 1.

Numerical work indicates that if we fix α2, q′ first increases from q
∣∣
α1=0

and
then decreases towards λeα2/r as α1 increases from 0 to ∞ if λ is large enough.
If λ is small enough, then numerical work indicates that q′ strictly increases
from q

∣∣
α1=0

to λeα2/r as α1 increases from 0 to ∞. If we fix α1 and if α1 < 1, then
numerical work shows that q′ first increases from q′∣∣

α2=0
and then decreases

towards (1+ α1)/(1− α1) as α2 increases from 0 to ∞. If α1 ≥ 1, then numerical
work shows that q′ increases from q′∣∣

α2=0
to ∞ as α2 increases from 0 to ∞.
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4. REACHING A BEQUEST GOAL WITH LIFE INSURANCE WHEN q< 1

In this section, we add life insurance to the market and show that comput-
ing the penalized probability 
i is related to solving an Abel equation of the
second kind; see Section 1.3 of Polyanin and Zaitsev (2003). We restrict our
attention to the case for which q< 1, with q given in (3.10), because in that
case, the bequest-goal problem without life insurance has a value, as shown in
Corollary 3.1. Inequality q< 1 is equivalent to m> α1(λδ − r), and we assume
these inequalities hold throughout the remainder of this section, and we remind
the reader regularly of this assumption.

If wealth is large enough, greater than or equal to the so-called safe level
ws (s for safe), the individual can invest all her wealth in the riskless asset with
the interest income sufficient to cover the insurance premium for a death ben-
efit of b−ws. That is, the safe level ws generates interest of rws = h(b−ws), or
equivalently,1

ws = hb
r+ h

. (4.1)

Thus, if w≥ws, 
i(w)= 1. Also, 
i(0)= 0 because ruin has occurred.
For completeness, we state the verification theorem for this problem, using

the following differential operator Dπ ,I ,ϕ,φ for any quadruple (π , I , ϕ, φ) ∈R4

with I , φ ≥ 0:

Dπ ,I ,ϕ,φf = (
rw+ (μ − σϕ − r)π − hI

)
fw + 1

2
σ 2π 2fww − λ(φ + 1)

(
f − 1{w+I≥b}

)
+ ϕ2

2α1
f + λ

[
(φ + 1) ln (φ + 1)− φ

]
α2

f .

Theorem 4.1 (Verification theorem). Suppose v : [0,ws]→ [0, 1], π∗ : (0,ws)→
R, I∗ : (0,ws)→R+, ϕ∗ :R×R+ × (0,ws)→R, and φ∗ :R×R+ × (0,ws)→R+
are measurable functions satisfying the following conditions:

(i) v ∈ C2
(
[0,ws]

)
is increasing.

(ii) v is a classical solution of⎧⎨
⎩

sup
π∈R,I≥0

inf
ϕ∈R,φ≥0

Dπ ,I ,ϕ,φ v(w)= 0, 0<w<ws,

v(0)= 0, v(ws)= 1.
(4.2)

(iii) π∗(w) and I∗(w) attain the supremum in (ii) for each w ∈ (0,ws), and
ϕ∗(π , I ,w) and φ∗(π , I ,w) attain the infimum in (ii) for each π ∈R, I ≥ 0,
and w ∈ (0,ws).

(iv) π∗, I∗, ϕ∗, and φ∗ are bounded, and the first two are Lipschitz continuous.
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Then,


i = v

on [0,ws], and π∗(·), I∗(·), ϕ∗(π∗(·), I∗(·), ·), and φ∗(π∗(·), I∗(·), ·) are optimal
feedback controls.

As in Section 3 of Bayraktar et al. (2016), which corresponds to the case
for which α1 = 0= α2, we hypothesize that there exists a so-called buy level
wb ∈ (0,ws) such that when wealth w is less than wb, it is optimal not to buy
life insurance, and when w≥wb, it is optimal to buy life insurance of b−w.
Let ξ denote the penalized probability under this life-insurance strategy. Via
a verification theorem similar to Theorem 4.1, if we find a classical solution of
the following BVP, with bounded (Lipschitz continuous as necessary) feedback
controls, then that solution equals ξ ; therefore, we use ξ when stating the BVP:

0= (
rw− h(b−w)1{w≥wb}

)
ξw (4.3)

+ sup
π

inf
ϕ,φ

{
(μ − σϕ − r)πξw + 1

2
σ 2π 2ξww − λ(φ + 1)

(
ξ − 1{w≥wb}

)+ ϕ2

2α1
ξ

+ λ
[
(φ + 1) ln (φ + 1)− φ

]
α2

ξ

}
,

with boundary conditions ξ (0)= 0 and ξ (ws)= 1. After we impose the first-
order necessary conditions as in Section 3, we obtain

ϕ∗(π ,w)= α1σπ
vw
v
, (4.4)

and

φ∗(π ,w)=
{
eα2 − 1> 0, 0<w<wb,
0, wb ≤w<ws.

(4.5)

Because α1 and α2 are positive, the expression in the curly brackets in (4.3) is
convex with respect to ϕ and φ; thus, ϕ∗ and φ∗ in (4.4) and (4.5), respectively,
yield the global minimum.

For 0<w<wb, after substituting for ϕ∗ and φ∗, the HJB equation in (4.3)
becomes

λδξ = rwξw + sup
π

{
(μ − r)πξw + 1

2
σ 2π 2

(
ξww − α1

ξ 2
w

ξ

)}
, (4.6)

in which δ is given in (3.6). The first-order necessary condition for π in (4.6)
yields

π∗(w)= − μ − r
σ 2

ξw

ξww − α1ξ 2
w/ξ

, (4.7)
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as in (3.7). This expression for π∗ gives the global maximum if ξξww − α1ξ
2
w <

0. By substituting π∗ in (4.7) into (4.6), we obtain the following nonlinear
differential equation:

λδξ = rwξw −m
ξ 2
w

ξww − α1ξ 2
w/ξ

,

which is identical to (3.8). Thus, we hypothesize

ξ (w)= κ

(
w
wb

)q

, (4.8)

for 0≤w<wb, for some positive constant κ, with q given in (3.10). Because
q< 1, ξ is concave and satisfies ξξww − α1ξ

2
w < 0.

For wb <w<ws, after substituting for ϕ∗ and φ∗ and obtaining the same
expression for π∗ as in (4.7), the HJB equation in (4.3) becomes

λξ = λ + (
(r+ h)w− hb

)
ξw −m

ξ 2
w

ξww − α1ξ 2
w/ξ

, (4.9)

with boundary conditions ξ (ws)= 1, ξ (wb)= κ, and ξw(wb)= κq/wb. The buy
level wb solves

λ
(
1+ (δ − 1)ξ (wb)

)= h(b−wb)ξw(wb), (4.10)

which ensures that ξ is twice continuously differentiable if ξ and ξw are contin-
uous. After we substitute ξ (wb)= κ and ξw(wb)= κq/wb into (4.10), we obtain
the following relationship between the unknown proportionality constant κ

and the unknown buy level wb:

λ
(
1+ (δ − 1)κ

)
wb = h(b−wb)κq. (4.11)

Define the variable x and the function ν by x= ln (ws −w) and ν(x)=
ξ
(
ws − ex

)
, respectively; then, the differential equation (4.9) becomes

λν = λ + (r+ h)νx −m
ν2
x

νxx − νx − α1ν2
x/ν

, (4.12)

with lim
x→−∞ ν(x)= 1. Note that x only appears in (4.12) via derivatives with

respect to x.
Finally, define the function z on the range of ν, namely, [κ, 1], by z(ν)=

νx; in defining z, we assume that ν is strictly decreasing with respect to x. By
differentiating z(ν)= νx with respect to x, we obtain zννx = νxx or zzν = νxx,
which implies that the differential equation (4.12) becomes

λν = λ + (r+ h)z−m
z

zν − 1− α1z/ν
, (4.13)
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or equivalently

zν = 1+ α1z
ν

+ mz
(r+ h)z+ λ(1− ν)

, (4.14)

an Abel equation of the second kind for z= z(ν).
To obtain a boundary condition for z, we hypothesize that ξw approaches

0 as wealth approaches the safe level; this hypothesis is inspired by the cor-
responding result in Bayraktar et al. (2016) for the α1 = 0= α2 case. Now,
lim
w→ws

ξw(w)= 0 implies that z(1)= 0 because lim
x→−∞ ν(x)= 1; thus, z(1)= 0 gives

us a boundary condition at ν = 1. On the other hand, this boundary condition
implies that the differential equation (4.14) has a singularity at the boundary
point (ν, z)= (1, 0), which can be difficult to work with numerically, but does
not present a problem analytically, as we show in the following proposition.
See Appendix C for its proof.

Proposition 4.1. Fix ε ∈ (0, 1). Then, there exists β ∈ (
λ

r+h , p
)
such that there is a

continuously differentiable solution z= z(ν) of (4.14) on [ε, 1] with z(1)= 0 and

− p(1− ν)< z(ν)< −β(1− ν), (4.15)

for all ν ∈ [ε, 1), in which p is given by

p= 1
2(r+ h)

[(
r+ h+m+ λ

)+
√(

r+ h+m+ λ
)2 − 4(r+ h)λ

]
> 1. (4.16)

Moreover, if ε is small enough and if q< 1, then we can choose β so that

β ≥ λ − (
rq− λ(δ − 1)

)
ε

(r+ h)(1− ε)
. (4.17)

Consider the free boundary, that is, ν = κ. If we define xb by xb = ln (ws −
wb), then we have ν(xb)= κ and

νx(xb)= − exbκq
ws − exb

.

These expressions, together with the relationship in (4.11), give us a boundary
condition for z at ν = κ in terms of the unknown buy level wb or unknown
proportionality constant κ, namely,

z(κ)= − (ws −wb)κq
wb

= − λ − (
rq− λ(δ − 1)

)
κ

r+ h
. (4.18)

Thus, if we find the point of intersection between z= z(ν) and the line y=
− λ−(rq−λ(δ−1))ν

r+h for 0< ν < 1, then the abscissa of that point gives us κ. In the
following proposition, we prove that z intersects that line at a unique point if
q< 1. See Appendix D for the proof.
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Proposition 4.2. If q< 1, then the solution z of (4.14) for 0< ν ≤ 1, with
boundary condition z(1)= 0, intersects the line

y(ν)= − λ − (
rq− λ(δ − 1)

)
ν

r+ h
(4.19)

for a unique value of ν ∈ (0, 1). Denote that value by κ.

The bounds on z in Proposition 4.1 lead to easily computable bounds
on κ, the abscissa of intersection of z= z(ν) and the line y= − λ−(rq−λ(δ−1))ν

r+h ;
see Proposition 4.2. Thus, we have the following corollary.

Corollary 4.1. If β in Proposition 4.1 satisfies inequality (4.17), then we have the
following bounds on κ :

(r+ h)β − λ

(r+ h)β − λ + (λδ − rq)
< κ <

(r+ h)p− λ

(r+ h)p− λ + (λδ − rq)
. (4.20)

Moreover, the upper bound in (4.20) holds regardless of whether β satisfies
inequality (4.17).

Because (r+ h)p> λ and λδ > rq, the upper bound in (4.20) is less than 1,
so it is a meaningful bound.

Inequality (4.17) ensures that (r+h)β−λ

(r+h)β−(rq−λ(δ−1)) ≥ ε, that is, the lower bound
is within the domain of comparison between z= z(ν) and y= −β(1− ν). To
get tight bounds, it is best to obtain the largest value of β = β(ε) possible,
that is, β = β0(ε), and choose ε such that β0(ε) satisfies (4.17) with equality.
Specifically, choose

β = 1
2(r+ h)

[(
r+ h+m+ λ − α1(λδ − rq)

)

+
√(

r+ h+m+ λ − α1(λδ − rq)
)2 − 4(r+ h)λ

]
, (4.21)

and

ε = (r+ h)β − λ

(r+ h)β − (
rq− λ(δ − 1)

) . (4.22)

If q< 1, then m− α1(λδ − rq)> 0, which implies that β in (4.21) is real.

Remark 4.1. Now that we have z= z(ν) for κ ≤ ν ≤ 1, then we get x from z via
the integral expression

x(ν)= xb +
∫ ν

κ

dν̃
z(ν̃)

, (4.23)

in which xb = ln (ws −wb), with wb obtained from κ via (4.11).
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In the solution of z= z(ν) in Proposition 4.1, we see that z(ν)< 0 for ν < 1;
therefore, x= x(ν) in (4.23) is strictly decreasing with respect to ν on [κ, 1). It
follows that we can invert x= x(ν) to get ν = ν(x), from which we obtain ξ (w)=
ν(x), with w=ws − ex for wb ≤w≤ws.

In the following theorem, we show that ξ = ξ (w) obtained as described in
Remark 4.1 for wb ≤w≤ws and as hypothesized in (4.8) for 0≤w<wb satisfies
the conditions of Theorem 4.1; hence, it equals the penalized probability
i. See
Appendix E for the proof of this theorem.

Theorem 4.2. If q< 1, then the penalized probability 
i equals ξ on [0,ws], in
which ξ is given by

ξ (w)=
⎧⎨
⎩κ

(
w
wb

)q

, 0≤w<wb,

ν
(
ln (ws −w)

)
, wb ≤w≤ws,

(4.24)

with κ given in Proposition 4.2, wb given by

wb = hqκ

λ + (
hq+ λ(δ − 1)

)
κ
b, (4.25)

and ν = ν(x) equal to the functional inverse of x= x(ν) given in (4.23).
If wealth equals w ∈ (0,ws), then the optimal amount invested in the risky asset

equals

π∗(w)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ − r
σ 2

w
1− (1− α1)q

, 0<w<wb,

2(ws −w)
μ − r

[
(r+ h)+ λ

1− ν(x)
νx(x)

]
x=ln (ws−w)

, wb ≤w<ws,
(4.26)

the optimal amount of life insurance equals

I∗(w)=
{
0, 0<w<wb,

b−w, wb ≤w<ws,
(4.27)

and the minimizing measures equal

ϕ∗ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ − r
σ

α1q
1− (1− α1)q

, 0<w<wb,

− 2α1σ

μ − r

[
(r+ h)

νx(x)
ν(x)

+ λ
1− ν(x)

ν(x)

]
x=ln (ws−w)

, wb ≤w<ws,

(4.28)
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and

φ∗ =
{
eα2 − 1, 0<w<wb,
0, wb ≤w<ws.

(4.29)

Remark 4.2. When it is optimal not to buy life insurance, that is, when 0<

w<wb, the optimal investment strategy π∗ is identical to the strategy found in
Section 3 when life insurance is not available in the market. (Recall that this
investment strategy is independent of the specific goal, as observed in the dis-
cussion following Theorem 3.2. Thus, when wealth is less than the buy level wb,
the individual invests in order to reach wb so that she can buy life insurance and,
thereby, reach her bequest goal.) We see a similar phenomenon for the optimal
measure ϕ∗. Other goal-seeking problems demonstrate similar myopia; see the
extended discussion in Angoshtari et al. (2015).

In the first corollary of Theorem 4.2, parallel to Corollary 3.1, we deduce
that 
i’s zero-sum, differential game has an equilibrium value because 
i is
concave, that is, if we switch sup and inf in (4.2), the penalized probability 
i

does not change. The proof of the corollary follows that of Corollary 3.1, so
we omit it.

Corollary 4.2. If q< 1, then the game embodied in (4.2) has a value, that is, 
i

also equals


i(w)= inf
Q∈Q

sup
(π ,I)∈A(π ,I)

{
Qw(Wτd∧τ0 ≥ b)+ 1

α1
EQ
w

∫ τd∧τ0

0

ϕ2
s

2

i(Ws) ds

+ 1
α2

EQ
w

∫ τd∧τ0

0
λ
[
(φs + 1) ln (φs + 1)− φs

]

i(Ws) ds

}
.

Moreover, the optimal controls are given in feedback form as in Theorem 4.2.

In the next corollary, parallel to Corollary 3.2, we show how the solution in
Theorem 4.2 varies with the ambiguity-aversion parameters α1 and α2. From
the definition of 
i, we know that 
i decreases with respect to α1 and α2;
thus, in this corollary, we show how π∗ changes with respect to α1 and α2.
See Appendix F for the proof of this corollary.

Corollary 4.3. As the ambiguity-aversion parameter α1 increases, π∗(w)
decreases for all w ∈ (0,ws). When w ∈ (wb,ws), π∗(w) is independent of α2. When
w ∈ (0,wb), if α1 > 1, then π∗(w) decreases with respect to α2, and if 0< α1 < 1,
then π∗(w) increases with respect to α2.

Remark 4.3. Corollaries 3.2 and 4.3 show that the optimal amount invested in
the risky asset decreases with increasing ambiguity towards the drift of the risky
asset both when life insurance is available and when it is not. Uncertainty about

https://doi.org/10.1017/asb.2019.34 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2019.34


REACHING A BEQUEST GOAL WITH LIFE INSURANCE 209

the financial market leads to less investment in that market, regardless of whether
the individual buys life insurance.

In the final corollary, parallel to Corollary 3.3, we examine limiting cases of
the ambiguity parameter α1, specifically, α1 → 0+ and α1 → ∞. In both cases,
we have explicit expressions for the solution. The case for which α1 → 0+ with
α2 > 0 is identical in form to the solution in Section 3 of Bayraktar et al. (2014)
when α1 = 0= α2.

Corollary 4.4. As α1 → 0+, the penalized probability 
i is given by


i(w)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p(1− q)
p− q

(
w
wb

)q

, 0≤w<wb,

1− q(p− 1)
p− q

(
ws −w
ws −wb

)p

, wb ≤w≤ws,

in which q= q
∣∣
α1=0

and p is given in (4.16). The buy level wb equals

wb = 1− q
p− q

ws,

and the optimal investment strategy equals

π∗(w)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ − r
σ 2

w
1− q

, 0≤w<wb,

μ − r
σ 2

ws −w
p− 1

, wb ≤w≤ws.

Because q increases with respect to α2, it is easy to see that wb decreases with
respect to α2.

If λδ ≤ r, then as α1 → ∞, the parameter q approaches λδ/r, the penalized
probability
i approaches the worst-case probability of reaching the bequest goal,
namely, (w/ws)λδ/r, the optimal investment strategy is to invest nothing in the risky
asset, and the optimal strategy for purchasing life insurance is not to buy life
insurance until wealth reaches the safe level.2

Analytical results concerning how π∗ changes with respect to wealth and
how wb changes with respect to the ambiguity parameters α1 and α2 are diffi-
cult to obtain. However, we present numerical examples for which π∗ decreases
with respect to wealth when the individual buys life insurance, that is, when
wb <w<ws, which matches the case for which α1 = 0= α2; see Figures 1
through 5. In other numerical work, not shown here, we found that π∗ increases
with respect to wealth for wealth near w=wb when λ > r+ h and q is close to
1. In all cases, when q< 1, eventually π∗ decreases to 0 as wealth approaches
the safe level ws.
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FIGURE 1: Graph of the optimal investment strategy for various levels of ambiguity of the drift of the risky
asset. For this figure, r= 0.01, μ = 0.05, σ = 0.10, λ = 0.04, h= 0.06, b= 10, and α2 = 0.1.

We interpret these results concerning how π∗ changes with wealth as fol-
lows. When the individual optimally does not purchase life insurance, that is,
when her wealth is less than wb, she invests more with increasing wealth in
order to reach the buy level wb so that she can “afford” life insurance and,
thereby, cover her bequest goal. If her ambiguity towards the drift of the
risky asset increases, then she invests less in the risky asset when her wealth
is below wb (although that amount still increases with increasing wealth), and
she anticipates a lower return in the market. The modified drift is μ − σϕ∗
which decreases with increasing α1 for 0<w<wb. Because her anticipated drift
decreases and because she invests less in the risky asset, she requires greater
wealth in order to afford life insurance, that is, the buy level increases with α1.

As noted above, when wealth is greater than wb, in this example, the indi-
vidual invests less in the risky asset as her wealth increases towards the safe
level ws. In Figures 1 through 5, we see that the decrease is nearly linear;
when α1 = 0= α2, then the decrease is exactly linear, as found in Bayraktar
et al. (2016). Young (2004) observes a similar linearly decreasing investment
strategy when minimizing the probability of lifetime ruin under a constant
rate of consumption. It is as if, when purchasing life insurance, the individ-
ual invests conservatively in order to avoid hitting the buy level wb, so that she
can continue to be able to purchase life insurance.

Figure 1 confirms that π∗ decreases with increasing ambiguity towards the
risky asset, which we proved in Corollary 4.3. Also, Figure 1 indicates that
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FIGURE 2: Graph of the optimal investment strategy for various levels of ambiguity of the hazard rate for
mortality. For this figure, r= 0.01, μ = 0.05, σ = 0.10, λ = 0.04, h= 0.06, b= 10, and α1 = 0.9.

wb increases with increasing ambiguity towards the drift of the risky asset;
intuitively, as α1 increases, the individual needs more wealth in order to justify
purchasing life insurance because her investment returns are expected to be
smaller.

Figures 2 and 3 indicate that wb decreases with increasing ambiguity
towards the hazard rate for mortality when α1 < 1. This monotonicity in
the buy level wb makes sense because, for a fixed premium h, life insurance
becomes more attractive as the individual becomes more uncertain about her
future expected lifetime. We also know that when 0< α1 < 1 (which is true for
Figures 2 and 3), π∗ increases with increasing α2 when the individual is not
purchasing life insurance, that is, when wealth is less than wb, and we also see
this in Figures 2 and 3. Intuitively, if the individual is more uncertain about
the value of her hazard rate, then, when she is not purchasing life insurance,
she wants to get her wealth greater than wb sooner and the only way to do that
is to invest more in the risky asset.

Figures 4 and 5 indicate that wb increases with increasing ambiguity
towards the hazard rate for mortality when α1 > 1. We also know that when
α1 > 1 (which is true for Figures 4 and 5), π∗ decreases with increasing α2 when
the individual is not purchasing life insurance, that is, when wealth is less than
wb, and we also see this in Figures 4 and 5.

In Figure 6, we graph the penalized probabilities 
 and 
i to demonstrate
the gain in (robust) probability due to the presence of life insurance in the
market.
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FIGURE 3: Enlargement of Figure 2 in order to see that wb decreases with increasing α2 when α1 = 0.9.
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FIGURE 4: Graph of the optimal investment strategy for various levels of ambiguity of the hazard rate for
mortality. For this figure, r= 0.01, μ = 0.05, σ = 0.10, λ = 0.04, h= 0.06, b= 10, and α1 = 1.5.
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FIGURE 5: Enlargement of Figure 4 in order to see that wb increases with increasing α2 when α1 = 1.5.
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FIGURE 6: Graph of 
 versus 
i. For this figure, r= 0.01, μ = 0.05, σ = 0.10, λ = 0.04, h= 0.06, b= 10,
α1 = 0.5, and α2 = 0.1.
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NOTES

1. Recall that h is the premium rate per unit of death benefit for term life insurance.
2. See Proposition 3.2 of Bayraktar et al. (2014).
3. Note that this integration is proper because F(ν, z) is bounded on [ε, 1]. Indeed, from (4.15),

the problematic term in F(ν, z) is bounded as follows:

0<
m

r+ h− λ

p

≤ m

r+ h+ λ
1− ν

z

≤ m

r+ h− λ

β

< ∞.
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APPENDIX A. PROOF OF COROLLARY 3.1

The differential equation in (3.15) equals

inf
ϕ,φ

sup
π

{
(μ − σϕ − r)πvw + 1

2
σ 2π2vww − λ(φ + 1)v+ ϕ2

2α1
v+ λ

[
(φ + 1) ln (φ + 1)− φ

]
α2

v

}

+ rwvw = 0.
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The first-order necessary condition for π yields

π∗(ϕ,w)= − μ − σϕ − r

σ 2

vw
vww

,

which gives the global maximum if vww < 0 (which holds for v= 
 if q< 1). When we
substitute this expression for π∗ into the differential equation, we obtain

inf
ϕ,φ

{
− 1

2

(
μ − σϕ − r

σ

)2 v2w
vww

+ ϕ2

2α1
v− λ(φ + 1)v+ λ

[
(φ + 1) ln (φ + 1)− φ

]
α2

v

}

+ rwvw = 0,

and the first-order necessary conditions for ϕ and φ yield, respectively,

ϕ∗(w)= μ − r
σ

α1v2w/v

α1v2w/v− vww
, and φ∗(w)= eα2 − 1,

which gives the global minimum if vvww−α1v
2
w

vww
> 0 (which holds for v= 
 if q< 1). When we

substitute these expressions for ϕ∗ and φ∗, we obtain the differential equation

λδv= rwvw −m
v2w

vww − α1v2w/v
,

which is identical to (3.8), and 
 given in Theorem 3.2 solves this equation, with the bound-
ary conditions. Moreover, after we substitute for v= 
, π∗, ϕ∗, and φ∗ above equal the
corresponding optimal controls in Theorem 3.2.

APPENDIX B. PROOF OF COROLLARY 3.2

We begin this proof by determining how q in (3.10) changes with respect to α1 and α2. q is
the smaller root of the quadratic equation

r(1− α1)q
2 − (

r+m+ λδ(1− α1)
)
q+ λδ = 0; (B.1)

thus, by differentiating this quadratic equation and by simplifying the result via (3.10), we
obtain

∂q
∂α1

= (λδ − rq)q√(
r+m+ λδ(1− α1)

)2 − 4λδr(1− α1)
, (B.2)

which is positive if and only if λδ − rq> 0, which is straightforward to demonstrate. Thus, q
increases with respect to α1. As an aside, note that this implies 
 decreases with increasing
α1, as expected.

From the definition of δ in (3.6), we have

∂δ

∂α2
= 1

α2
2

{
(α2 − 1)eα2 + 1

}
> 0. (B.3)
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Again, by differentiating (B.1) with respect to δ, by simplifying the result via (3.10), and by
(B.3), we obtain

∂q
∂α2

= ∂q
∂δ

∂δ

∂α2
= λ

(
1− (1− α1)q

)
√(

r+m+ λδ(1− α1)
)2 − 4λδr(1− α1)

∂δ

∂α2
> 0.

Thus, q also increases with respect to α2. Again, as an aside, note that this implies 


decreases with increasing α2, as expected.
Also, from (3.12) and (B.2), we deduce

∂π∗(w)
∂α1

∝ ∂

∂α1

(
(1− α1)q

)= −q+ (1− α1)
∂q
∂α1

∝ −
√(

r+m+ λδ(1− α1)
)2 − 4λδr(1− α1)+ (1− α1)(λδ − rq),

which is automatically negative for α1 ≥ 1 because λδ − rq> 0. Thus, suppose 0< α1 < 1;
then, after substituting for the square-root term via (3.10), we see that the above inequality
is equivalent to

r(1− α1)q< r+m,

which is straightforward to demonstrate. Thus, we have shown that π∗(w) decreases with
respect to α1 for all 0<w< b.

Moreover, by taking the derivative of π∗(w) with respect to α2, we have

∂π∗(w)
∂α2

∝ (1− α1)
∂q
∂α2

∝ 1− α1.

Hence, if α1 > 1, π∗(w) decreases with respect to α2; if 0< α1 < 1, π∗(w) increases with
respect to α2.

Next,

∂ϕ∗
∂α1

∝ (
1− (1− α1)q

) ∂(α1q)
∂α1

− α1q
(

− ∂q
∂α1

+ ∂(α1q)
∂α1

)

= q(1− q)+ α1
∂q
∂α1

,

which is positive if q< 1, and

∂ϕ∗
∂α2

= ∂ϕ∗
∂q

∂q
∂α2

∝ (
1− (1− α1)q

)+ (1− α1)q= 1> 0.

Finally, it is clear that φ∗ = eα2 − 1 is independent of α1 and increases with α2.

APPENDIX C. PROOF OF PROPOSITION 4.1

To prove this proposition, we rely on the following comparison lemma.
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Lemma C.1 (Comparison lemma on [ε, 1)). Define the operator F by

F(ν, f )= 1+ α1 f
ν

+ mf
(r+ h)f + λ(1− ν)

. (C.1)

Fix ε ∈ (0, 1). If f and g are differentiable functions on [ε, 1), continuous on [ε, 1], such that
f (1)≤ g(1) and fν − F(ν, f )> gν − F(ν, g) on [ε, 1), then

f < g

on [ε, 1).

Proof. First, if the maximum of f − g occurs at ν = 1, but not at any point in [ε, 1), then
f < g on [ε, 1) because f (1)− g(1)≤ 0. Second, if f − g attains a strictly negative maximum
on [ε, 1), then we also have f < g on [ε, 1).

Third, if f − g attains a nonnegative maximum at ν0 ∈ [ε, 1), then f (ν0)− g(ν0)≥ 0 and
fν (ν0)− gν (ν0)≤ 0. Thus, fν − F(ν, f )> gν − F(ν, g) on [ε, 1) implies that

0≥ fν (ν0)− gν (ν0)> F
(
ν0, f (ν0)

)− F
(
ν0, g(ν0)

)≥ 0,

a contradiction. The last inequality follows because F increases with respect to its second
argument. We have shown that f < g on [ε, 1).

Proof of Proposition 4.1. Observe that

d
dν

(− p(1− ν)
)− F

(
ν,−p(1− ν)

)= α1p(1− ν)
ν

,

which is positive for ν ∈ [ε, 1). Thus, −p(1− ν) is a sub-solution of fν = F(ν, f ) and, by
Lemma C.1, is less than a possible solution of fν = F(ν, f ). To show that there exists β ∈(

λ
r+h , p

)
, such that −β(1− ν) is a super-solution of fν = F(ν, f ) on [ε, 1], it is enough to find

β such that d
dν

(− β(1− ν)
)− F

(
ν,−β(1− ν)

)
< 0 for all ν ∈ [ε, 1), which is equivalent to

β − 1+ α1β

(
1
ε

− 1
)

<
mβ

(r+ h)β − λ
. (C.2)

Define the function f by

f (χ )= mχ

(r+ h)χ − λ
− χ + 1− α1χ

(
1
ε

− 1
)
. (C.3)

It is straightforward to show that f decreases from positive infinity to −α1p
(
1
ε

− 1
)

< 0 as

χ increases from λ
r+h to p. Thus, there exists a unique value of β0 between λ

r+h and p such

that f (β0)= 0. If we choose any value of β between λ
r+h and β0, then inequality (C.2) holds.

Let Z denote the set of upper-semi-continuous sub-solutions of fν = F(ν, f ). Note that
−p(1− ν) ∈ Z . Define the function z by

z(ν)= sup
{
ẑ(ν)

∣∣∣ − p(1− ν)≤ ẑ(ν)≤ −β(1− ν) and ẑ ∈ Z
}
. (C.4)

By following the proof of Proposition 4.2 in Bayraktar and Zhang (2015), one can show
that z defined in (C.4) is a continuous viscosity solution of fν = F(ν, f ) with z(1)= 0. Also,
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as in Bayraktar and Zhang (2015), one can extend the comparison lemma, Lemma C.1, to
viscosity sub- and super-solutions; therefore, we conclude that z defined in (C.4) is the unique
continuous viscosity solution.

Next, to show that z is continuously differentiable on [ε, 1), note that we can integrate
F(ν, z) to get a continuously differentiable function ζ , specifically, ζ (ν)= − ∫ 1

ν F(y, z(y))dy
for ν ∈ [ε, 1).3 Because z is the unique viscosity solution of fν = F(ν, f ) with z(1)= 0, it fol-
lows that z= ζ , and z is continuously differentiable. Moreover, we can repeat this argument
to prove that z is infinitely continuously differentiable on [ε, 1).

To be able to choose β such that inequality (4.17) holds, we need β0 to satisfy that
inequality. Because f in (C.3) strictly decreases with χ , β0 satisfies inequality (4.17) if and
only if f evaluated at χ = λ−(rq−λ(δ−1))ε

(r+h)(1−ε) is nonnegative, or equivalently g(ε)≥ 0, in which g
is given by

g(ε)= λ − (
rq− λ(δ − 1)

)
ε

ε(λδ − rq)

(
m− α1(λδ − rq)

)− λ − (
rq− λ(δ − 1)

)
ε

1− ε
+ (r+ h). (C.5)

We assert that g strictly decreases from +∞ to −∞ as ε increases from 0 to 1. Thus, we
can choose ε small enough so that β0 satisfies inequality (4.17). The assertion concerning
g’s behavior with respect to ε relies on m− α1(λδ − rq)> 0, which holds if and only if q< 1.
Indeed, rewrite q’s quadratic equation in (B.1) as

λδ − rq= mq
1− (1− α1)q

;

thus, m> α1(λδ − rq) if and only if

m>
α1mq

1− (1− α1)q
,

or, because 1− (1− α1)q> 0 generally, if and only if q< 1.

APPENDIX D. PROOF OF PROPOSITION 4.2

From Proposition 4.1, we can choose ε and β such that inequality (4.17) holds, which implies
that z(ε)< −β(1− ε)≤ y(ε). Also, z(1)= 0> − λδ−rq

r+h = y(1). Thus, z(ν)= y(ν) for some ν ∈
(0, 1).

Let κ denote any value in (0, 1) such that z(κ)= y(κ); κ is unique if we show that zν (κ)>
yν (κ)= rq−λ(δ−1)

r+h . By setting ν = κ in the differential equation for z in (4.14), we obtain

zν (κ)= 1+ α1z(κ)
κ

+ mz(κ)
(r+ h)z(κ)+ λ(1− κ)

= 1+ α1y(κ)
κ

+ my(κ)
(r+ h)y(κ)+ λ(1− κ)

= 1
κ(r+ h)

{
κ(r+ h)+

(
m

λδ − rq
− α1

) (
λ − (

rq− λ(δ − 1)
)
κ
)}

.
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This expression is greater than rq−λ(δ−1)
r+h if and only if

κ
(
h+ λ(δ − 1)

)+ λ
(
1+ (δ − 1)κ

) ( m
λδ − rq

− α1

)
> 0.

From the proof of Proposition 4.1, we know that m− α1(λδ − rq)> 0 if q< 1 (recall that
λδ − rq> 0 and δ > 1 generally); thus, zν (κ)> yν (κ). It follows that z and y intersect at a
single point.

APPENDIX E. PROOF OF THEOREM 4.2

By construction, ξ in (4.24) is a continuously twice differentiable, increasing function that
solves the differential equation (4.3) with boundary conditions ξ (0)= 0 and ξ (ws)= 1. The
optimal investment strategy π∗ in (4.26) comes from (4.7). This expression for π∗ gives the
global maximum if ξξww − α1ξ

2
w < 0, which is clear for w<wb and which is equivalent to

zν − 1− α1z/ν > 0 for w≥wb. The latter inequality is equivalent to
mz

(r+h)z+λ(1−ν) > 0, which
is true because z< 0 and (r+ h)z+ λ(1− ν)< 0 for κ ≤ ν < 1.

To show that ξ satisfies the HJB equation in (4.2), it remains to show that

λ
(
1+ (δ − 1)ξ

)− h(b−w)ξw(w)≥ 0

if and only if w≥wb. If ξ is concave, then we are done because this inequality holds with
equality at w=wb, and the left side will be increasing with w. Clearly, ξ is concave for w<wb
because q< 1, so consider ξ for w≥wb: ξww < 0 for w≥wb if and only if νxx − νx < 0 for
x≤ xb, which is equivalent to zν > 1 for κ ≤ ν ≤ 1, or

α1

ν
+ m

(r+ h)z+ λ(1− ν)
< 0,

or z(ν)> �(ν) in which � is the line defined by

�(ν)= − λ

r+ h
(1− ν)− mν

α1(r+ h)
. (E.1)

We know that z(ν)≥ − λ−(rq−λ(δ−1))ν
r+h for κ ≤ ν ≤ 1 (strictly unless ν = κ); thus, if we show

that

�(ν)< − λ − (
rq− λ(δ − 1)

)
ν

r+ h
,

for κ ≤ ν ≤ 1, then we are done. This inequality holds if and only if

m− α1(λδ − rq)> 0,

which is true from the proof of Proposition 4.1. Thus, Conditions (i), (ii), and (iii) of
Theorem 4.1 hold.

Clearly, I∗, ϕ∗, and φ∗ are bounded, and I∗ is Lipschitz continuous. From the bounds
for z in (4.15), we deduce that π∗ is bounded because

1− ν

νx
= 1− ν

z
∈
[
− 1

β
, − 1

p

]
, (E.2)
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for κ ≤ ν ≤ 1 and for some β ∈
(

λ
r+h , p

)
. Also, clearly π∗ is Lipschitz continuous for w<wb.

To show that π∗ is Lipschitz continuous for w≥wb, it is enough to show that π∗ has a
bounded first derivative on [wb,ws]. To that end, differentiate π∗ to obtain

dπ∗(w)
dw

= 2
μ − r

{
λ − r− h+ α1λ(1− ν)

ν
+ mλ(1− ν)

(r+ h)z+ λ(1− ν)

}
,

and from (E.2), we deduce that this expression is bounded on [κ, 1].

APPENDIX F. PROOF OF COROLLARY 4.3

For 0<w<wb, π∗(w) in (4.26) equals π∗(w) in (3.12), which (from Corollary 3.2) we know
decreases with respect to α1. Thus, consider π∗(w) for wb ≤w<ws, namely,

π∗(w)= 2(ws −w)
μ − r

[
(r+ h)+ λ

1− ν(x)
νx(x)

]
x=ln (ws−w)

.

This expression decreases with respect to α1 if and only if

1− ν

z(ν)
= 1− 
i(w)

z(ν)
, (F.1)

decreases with respect to α1. We know that the numerator of (F.1) increases with respect to
α1, but z(ν) is negative, so

1
z(ν)

∂
(
1− 
i(w)

)
∂α1

< 0.

Because the numerator of (F.1) is positive, to show that (F.1) decreases with respect to α1
it is enough to show that the denominator z increases with α1. To that end, we use the
comparison lemma, Lemma C.1, to show that z increases with α1.

Let 0< a1 < a2, and write zi to denote the solution z of (4.14) corresponding to α1 =
ai for i= 1, 2. Similarly, write Fi for F in (C.1) and κi for κ in Proposition 4.2, in which
we set α1 = ai for i= 1, 2. Note that z1(1)= z2(1)= 0, and z′1(ν)− F1(ν, z1)= 0; thus, from
Lemma C.1, to show that z1(ν)< z2(ν) for all ε ≤ ν < 1, in which ε ∈ (

0, min [κ1, κ2]
]
, it is

enough to show that z′2(ν)− F1(ν, z2)< 0 for ε ≤ ν < 1:

z′2(ν)− F1(ν, z2)=
(
z′2(ν)− F2(ν, z2)

)+ (
F2(ν, z2)− F1(ν, z2)

)= (a2 − a1)z2(ν)
ν

< 0,

in which the inequality holds because z2(ν)< 0 and a1 < a2. Thus, we have shown that π∗(w)
decreases with respect to α1 for wb ≤w<ws.

The statements concerning how π∗(w) changes with α2 follow readily from the expres-
sion of π∗(w) in (4.26) and from Corollary 3.2.
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