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We study the influence of hydrodynamic, thermodynamic and interparticle forces
on the diffusive motion of a Brownian probe driven by a constant external force
through a dilute colloidal dispersion. The influence of these microscopic forces on
equilibrium self-diffusivity (passive microrheology) is well known: all three act to
hinder the short- and long-time self-diffusion. Here, via pair-Smoluchowski theory, we
explore their influence on self-diffusion in a flowing suspension, where particles and
fluid have been set into motion by an externally forced probe (active microrheology),
giving rise to non-equilibrium flow-induced diffusion. The probe’s motion entrains
background particles as it travels through the bath, deforming the equilibrium
suspension microstructure. The shape and extent of microstructural distortion is
set by the relative strength of the external force Fext to the entropic restoring force
kT/ath of the bath particles, defining a Péclet number Pe ≡ Fext/(2kT/ath); and
also by the strength of hydrodynamic interactions, set by the range of interparticle
repulsion κ = (ath − a)/a, where kT is the thermal energy and ath and a are the
thermodynamic and hydrodynamic sizes of the particles, respectively. We find that in
the presence of flow, the same forces that hinder equilibrium diffusion now enhance
it, with diffusive anisotropy set by the range of interparticle repulsion κ . A transition
from hindered to enhanced diffusion occurs when diffusive and advective forces
balance, Pe ∼ 1, where the exact value is a sensitive function of the strength of
hydrodynamics, κ . We find that the hindered to enhanced transition straddles two
transport regimes: in hindered diffusion, stochastic forces in the presence of other
bath particles produce deterministic displacements (Brownian drift) at the expense of
a maximal random walk. In enhanced diffusion, driving the probe with a deterministic
force through an initially random suspension leads to fluctuations in the duration of
probe–bath particle entrainment, giving rise to enhanced, flow-induced diffusion. The
force-induced diffusion is anisotropic for all Pe, scaling as D∼ Pe2 in all directions
for weak forcing, regardless of the strength of hydrodynamic interactions. When probe
forcing is strong, D∼Pe in all directions in the absence of hydrodynamic interactions,
but the picture changes qualitatively as hydrodynamic interactions grow strong. In
this nonlinear regime, microstructural asymmetry weakens while the anisotropy of the
force-induced diffusion tensor increases dramatically. This behaviour owes its origins
to the approach toward Stokes flow reversibility, where diffusion along the direction
of probe force scales advectively while transverse diffusion must vanish.
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1. Introduction
Self-diffusion in colloidal dispersions can be hindered or enhanced by entropic and

hydrodynamic forces. In a quiescent solvent, thermal forces acting on a single colloid
induce a random walk with variance characterized by the Stokes–Einstein diffusivity:
Da = kT/6πηa (Einstein 1906). Here, a is the particle radius, kT is the thermal
energy and η is the solvent viscosity. The Stokes–Einstein diffusivity describes
the maximum random walk that thermal forces alone can generate. The presence
of other colloids weakens diffusive Brownian displacements hydrodynamically and
entropically. The former, hydrodynamic hindrance, occurs via a reduction in the
particle mobility: individual displacements in the random walk are diminished as
the wandering particle entrains other nearby no-slip surfaces. The latter, entropic
hindrance, arises during long-time self-diffusion, which has been previously described
as ‘cell jumping’ (Stillinger & Weber 1982; Zwanzig 1983) and ‘cage hopping’
(Rallison & Hinch 1986), during which structural distortion further impedes particle
motion. In consequence, equilibrium self-diffusion is a monotonically decreasing
function of volume fraction φ, eventually approaching zero upon reaching the
maximum packing fraction φm (Kops-Werkhoven & Fijnaut 1982; van Megen,
Underwood & Snook 1986; van Megen & Underwood 1989; Brady 1994). One may
expect, then, that the hindrance of colloidal self-diffusion grows more pronounced as
the dispersion becomes more dense. Such is not the case in the presence of external
forces.

Imposed flows and forces act to enhance diffusion and dispersion, and this
flow-induced migration may become more pronounced with increasing volume fraction.
This behaviour plays a central role in many biological and industrial suspensions:
platelet migration toward artery walls (Tangelder et al. 1985); red blood cells
localizing near the centreline of capillaries (Fåhræus & Lindqvist 1931); and mixing in
fluidized-bed reactors, for example. The particle-scale transport processes underlying
these applications are well characterized; for example, shearing flow can resuspend
settled particles, even in the presence weak inertial forces (Leighton & Acrivos 1986,
1987a,b; Acrivos, Mauri & Fan 1993); pressure-driven tube and pipe flows can lead
to margination (Kumar, Henríquez Rivera & Graham 2014) or particle concentration
toward the tube centre (Phillips et al. 1992; Zhang & Acrivos 1994). Measurement of
such diffusion produced insight regarding the combined influence of flow and particle
interaction: Eckstein, Bailey & Shapiro (1977) measured shear-induced migration and
found that diffusion in the velocity-gradient direction that scales as D ∼ a2γ̇ , where
a is the particle radius and γ̇ is the shear rate. Leighton & Acrivos (1987a) found
a similar advective scaling a2γ̇ of the shear-induced self-diffusion in concentrated
colloidal suspensions, and additionally determined that the volume fraction dependence
should scale as D∼ φ2, revealing the role of three-sphere interactions for permanent
displacements.

In the present study we identify that the unifying feature in systems in which
self-diffusion is not hindered but enhanced is a transition from particle motion
dominated by stochastic processes (thermal forces) to particle motion defined by
deterministic forces (external flow), which in turn influence suspension symmetry.
The interplay between deterministic flows and non-hydrodynamic forces dictate the
magnitude and shape of the distorted, non-equilibrium structure. Suspensions subjected
to strong deterministic forces develop a pronounced non-equilibrium microstructure,
which may exhibit varying degrees of structural symmetry. When hydrodynamic
forces are the only microscopic forces involved, a suspension may be highly distorted
from equilibrium though the structure is spherically symmetric about any given
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Force-induced diffusion in suspensions 741

particle, as in the case of extensional (Batchelor & Green 1972) and sedimentation
(Batchelor 1982) flows. Non-hydrodynamic forces prevent the formation of such a
spherically symmetric structure – evidence that flow-reversibility for deterministic
relative trajectories has been destroyed.

When entropic forces exert even a weak influence, strong deterministic forces and
flow can produce a pronounced non-equilibrium configuration, which can in turn
lead to gradient-driven diffusion. Gadala-Maria & Acrivos (1980) first hypothesized
the development of asymmetric flow-induced structure in sheared non-colloidal
suspensions, in an effort to explain a long-time decrease in the steady-state shear
viscosity. Leighton & Acrivos (1987a) identified the origin of this behaviour as
shear-induced particle migration. Recognizing that particle trajectories should be
flow-reversible even for three-particle and higher encounters, they proposed that
particle roughness is required to drive non-colloids irreversibly off their trajectories
which, in shear flow, destroy closed orbits (Arp & Mason 1977). The resultant loss
of fore–aft symmetry leads to entropic dispersion (Eckstein et al. 1977; Leighton &
Acrivos 1987a; da Cunha & Hinch 1996; Brady & Morris 1997). Surface roughness
in a strongly sheared dispersion thus induces entropic shear-induced diffusion in the
directions along and transverse to flow: D ∼ a2γ̇ φ in all directions (da Cunha &
Hinch 1996; Brady & Morris 1997). Weak thermal motion plays an identical role to
surface roughness and, for perfectly smooth particles, breaks the fore–aft symmetry
of relative trajectories, inducing transverse dispersion of the same magnitude as
longitudinal entropic dispersion (Brady & Morris 1997). Thus, pronounced asymmetry
of the suspension microstructure accompanies strong diffusion enhancement. However,
the degree of structural asymmetry is not mirrored by diffusional anisotropy: only an
O(1) prefactor differentiates diffusion along and transverse to shear flow.

Hydrodynamic diffusion is another important example of enhanced self-diffusion in
shear flow, distinct from the entropic dispersion discussed above in that it does not
require broken fore–aft interaction symmetry. Hydrodynamic diffusion can arise from
velocity fluctuations, one source of which is variable-duration encounters (Acrivos
et al. 1992; Wang, Mauri & Acrivos 1996). Longitudinal flow-induced diffusion
can arise even in the absence of non-hydrodynamic (e.g. interparticle and thermal)
forces; Acrivos et al. (1992) showed that even in the pure hydrodynamic limit, the
longitudinal component of shear-induced self-diffusion (parallel to the flow direction)
scales as O(φ ln φ−1). The authors ascribe this diffusion to hydrodynamic interactions
between pairs of particle pairs that are widely separated. In contrast, the fore–aft
symmetry of pairwise particle encounters prevents net displacements in the directions
normal to flow. As a result, shear-induced self-diffusion in either the velocity gradient
or vorticity directions is imperceptible in the so-called ‘pure hydrodynamic limit’
(Wang et al. 1996; Brady & Morris 1997), where the frequency of three-body and
higher interactions scales as φ2. Three-body interactions are thus essential for net
fore–aft migration in the directions transverse to flow. The anisotropy of the diffusion
tensor in sheared non-colloids thus diverges in the dilute limit, in contrast to the
O(1) anisotropy observed in strongly sheared suspensions interacting via long-range
interparticle repulsion.

Anisotropic hydrodynamic diffusion in a symmetric, non-equilibrium microstructure
also arises in sedimentation of non-colloids. The strength of this anisotropy depends,
as it does in shear flow, on the role played by non-hydrodynamic forces and
concentration. For example, in moderately concentrated dispersions, 0.05 6 φ 6 0.15,
diffusive migration in the flow direction is nearly twice that in the direction transverse
to gravity (Nicolai et al. 1995). As the suspension becomes dilute, anisotropy
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742 N. J. Hoh and R. N. Zia

becomes more pronounced. Indeed, while vertical hydrodynamic dispersion has
been observed in suspensions as dilute as 0.025 6 φ 6 0.10, transverse dispersion is
nearly imperceptible owing to the reversibility of Stokes-flow trajectories (Ham
& Homsy 1988). The dilute experiments of Ham & Homsy showed that the
vertical hydrodynamic dispersivity scales advectively as the mean sedimentation
velocity 〈U〉 and the particle size a, while transverse diffusion is imperceptible.
Only when three-body interactions play a role can transverse diffusion emerge in
sedimentation of smooth non-colloids, but simple pair interactions can produce
longitudinal hydrodynamic diffusion.

Overall then, the only requirement for enhanced diffusion is a non-equilibrium
microstructure – which may or may not be symmetric. The strength and character
of the diffusion depends on the relative importance of hydrodynamic and non-
hydrodynamic forces, specifically on their influence on particle trajectories and
structural symmetry. Surprisingly perhaps, as a non-equilibrium microstructure gains
symmetry, diffusive anisotropy becomes more pronounced. A powerful tool for
understanding this behaviour is the connection between the analysis of particle
pair trajectories and that of microstructural evolution and their clear connections to
transport processes. Sedimentation is ideal for exposing this connection: whereas
isolated particle pairs sediment in tandem in monodisperse suspensions, polydispersity
– either in density or size – produces relative motion. Indeed, O(φ) corrections in
the sedimentation velocity and diffusion can arise from simple pairwise interactions
of smooth non-colloids (Batchelor 1982, 1983).

Falling-ball rheometry is a particularly revealing example of polydisperse
sedimentation, where a heavy sphere sediments through a collection of neutrally
buoyant background particles, and its mean and fluctuating motion are utilized to infer
rheological properties of the suspension. When all such particles are non-colloids, the
falling ball accumulates bath particles (on average) in a radially symmetric distribution
about its surface (Batchelor 1982) hindering the average fall speed but also inducing
velocity fluctuations. The O(φ) correction to the average and variance of sedimentation
speed have been computed as a function of ball size for the pure hydrodynamic limit
(Batchelor 1982; Batchelor & Wen 1982; Davis & Hill 1992); a non-equilibrium
Stokes–Einstein relation between these viscosity and diffusivity corrections was
recently established by Hoh & Zia (2015). The presence of finite surface roughness
produces transverse diffusion as well that scales as O(φ) (Davis 1992; da Cunha &
Hinch 1996), showing that the degree of diffusional anisotropy is intimately tied to
the interaction range of interparticle forces. Experimental observations support these
predictions of anisotropy, size effects and concentration dependence (Nicolai, Peysson
& Guazzelli 1996; Abbott et al. 1998). However, the trajectory analysis utilized in
such theory bars the analytical examination of the role played by stochastic forces, e.g.
Brownian motion and roughness, on such differences. More broadly, understanding
of the influence of entropic forces on diffusion can contribute to emerging questions
regarding the role of particle roughness in suspension rheology. The presence of even
very weak thermal motion transforms falling-ball rheometry to its colloidal analogue,
active microrheology.

The focus of the present work is to discover the role played by entropic and
hydrodynamic forces in force-induced diffusion in suspensions of hydrodynamically
interacting colloids, utilizing active microrheology, where the ‘falling ball’ is now
a colloidal ‘probe’ particle. The theoretical framework for active microrheology in
dilute suspensions is well established (Squires & Brady 2005; Khair & Brady 2006;
Zia & Brady 2010, 2012, 2013; Swan & Zia 2013). The mean motion of the probe
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is utilized to infer the viscosity of the suspension (Squires & Brady 2005; Khair &
Brady 2006; Zia & Brady 2013; Swan & Zia 2013). Fluctuations in probe motion are
enhanced by flow, producing anisotropic force-induced diffusion, studied previously
by Zia & Brady (2010) in the absence of hydrodynamic interactions. Recently Hoh
& Zia (2015) showed that accounting for the effects of hydrodynamic interactions on
probe fluctuations gives, in the absence of thermal motion, hydrodynamic diffusion
that recovers the results of Davis & Hill (1992) for falling-ball rheometry. Recently,
Zia & Brady (2012) showed that a non-equilibrium imbalance between fluctuation and
dissipation (viscous drag and entropic force-induced diffusion) leads to suspension
stress; we thus expect the qualitative role played by hydrodynamic interactions on
these two fundamental quantities to lead to insights in the evolution of suspension
stress. In particular, one can unify observations of hydrodynamic and entropic
diffusion in the many types of flows described above by viewing them through
the lens of microrheology.

The remainder of this paper is organized as follows: in § 2, the model system
of a probe forced through an unbounded, dilute colloidal dispersion is presented,
with a brief review of the relevant two-body hydrodynamic functions. A model
for the interparticle force that adjusts the minimum approach distance, and thus
the strength of hydrodynamic interactions between particles, is given in § 2.2. The
Smoluchowski framework that governs the microstructure is derived in § 3, for both
mean and fluctuating contributions, which are interpreted as an apparent microviscosity
and effective probe diffusivity, respectively. Evaluation of flow-induced diffusivity
requires solution of the Smoluchowski equation, governing the mean and fluctuating
suspension microstructure, which evolves with probe forcing strength Pe and the range
of interparticle repulsions κ; these are presented in § 3.2, and the results are given
in § 4. Comparison of our results to macroscopic flow-induced migration, including
simple shear, sedimentation and falling-ball rheometry, is made in § 5. The study is
concluded with a summary in § 6.

2. Model system
We consider a collection of Nb rigid, spherical, colloidal bath particles of

hydrodynamic radius a dispersed homogeneously throughout a volume V of
Newtonian solvent of density ρ and dynamic viscosity η. In the absence of external
forces, the colloids take on an equilibrium arrangement defined by a balance of
Brownian and interparticle forces, FB and FP, respectively. A constant external force
Fext drives a ‘probe’ particle, also a rigid sphere of radius a, through the dispersion,
disrupting the equilibrium configuration by setting fluid and particles into motion. The
characteristic velocity U of probe motion sets the Reynolds number: Re≡ ρUa/η� 1,
so the fluid mechanics is governed by the Stokes equations. The volume fraction
φ ≡ (4πa3/3)Nb/V � 1, and thus pair interactions, set the suspension behaviour. We
adopt a relative coordinate system centred on the probe located at a position z where
at any time t a bath particle may be found at a position r relative to the probe
(figure 1). Hydrodynamic coupling during pairwise interactions set particle motion
and are given by well-known pair-mobility functions, which we briefly review next.

2.1. Two-body hydrodynamics
In the absence of an ambient flow field, the translational velocity Uα of particle
α in Stokes flow is a linear combination of the hydrodynamic drag forces FH

β on
each particle β in the suspension (Kim & Karrila 1991). The hydrodynamic mobility
tensor MUF

αβ defines the strength of coupling between the velocity of particle α and the
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FIGURE 1. The microrheology model system with tuneable interparticle interaction range.

hydrodynamic drag on particle β. The velocity of particle α ∈ {1, 2} in a two-sphere
geometry is

Uα =−MUF
α1 ·F

H
1 −MUF

α2 ·F
H
2 . (2.1)

For two identical spheres of hydrodynamic radius a, the hydrodynamic mobility tensor
MUF
αβ has the tensorial form

MUF
αβ =

1
6πηa

[xa
αβ(r/a)r̂r̂+ ya

αβ(I − r̂r̂)], (2.2)

where r=|r| is the distance between particle centres, r̂= r/r is the unit vector parallel
to the line of centres and I is the second-rank identity tensor. The scalar mobility
functions xa

αβ and ya
αβ describe the hydrodynamic coupling between particle motion

and hydrodynamic drag parallel and transverse to the line of centres, respectively.
The configuration geometry completely defines the hydrodynamic mobility tensors.
For same-sized particles, MUF

11 = MUF
22 and MUF

12 = MUF
21 . In addition, xa

αβ and ya
αβ are

fully characterized by the dimensionless centre-to-centre separation r/a. Methods to
compute these pair mobilities in unbounded suspensions as functions of r/a are well
known (Jeffrey & Onishi 1984; Kim & Karrila 1991).

Relative motion arising from an external force on the probe (particle 1) is
characterized by the difference between the probe self-mobility MUF

11 and the entrained
particle mobility MUF

21 , which may be expressed as a linear combination of the
functions xa

αβ and ya
αβ :

MUF
11 −MUF

21 =
1

6πηa
[(xa

11(r/a)− xa
21(r/a))r̂r̂+ (ya

11(r/a)− ya
21(r/a))(I − r̂r̂)]. (2.3)

The same linear combinations of xa
αβ and ya

αβ appear in the relative translational
diffusion tensor Dr:

Dr ≡ kT(MUF
22 −MUF

12 −MUF
21 +MUF

11 ),

= 2Da[(xa
11(r/a)− xa

21(r/a))r̂r̂+ (ya
11(r/a)− ya

21(r/a))(I − r̂r̂)], (2.4)
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where Da = kT/6πηa is the diffusivity of a particle of radius a in pure solvent.
For same-sized particles, the relative mobility in (2.3) is equivalent to the relative
diffusion in (2.4): Brownian flux is simply relative motion arising from equal and
opposite thermal forces on particles 1 and 2 (Batchelor 1976, 1982). In this work,
we follow the notation of Batchelor (1982) to express relative motion and relative
diffusion compactly by the scalar functions G(r/a) and H(r/a), the couplings along
and transverse to the line of centres, respectively:

Dr = 2Da[G(r/a)r̂r̂+H(r/a)(I − r̂r̂)]. (2.5)

Hydrodynamic drag FH
β on a particle β in Stokes flow is exactly balanced by

non-hydrodynamic forces e.g. external forces Fext
β , thermal/Brownian forces FB

β

or interparticle forces FP
β . Interparticle forces are defined by specific interaction

potentials and dictate how closely the probe and bath particle can approach one
another, consequently influencing the strength of hydrodynamic interactions between
them and the strength with which they entrain one another. The role of interparticle
forces is discussed next.

2.2. Interparticle forces and the excluded-annulus model
The central focus of this work is to elucidate the influence hydrodynamic and entropic
forces exert on force-induced diffusion. Hydrodynamic interactions cannot be adjusted
independently of non-hydrodynamic forces: as interparticle entrainment strengthens,
some microscale transport processes are activated while others are suppressed. For
example, Brownian flux toward relatively more mobile configurations emerges in the
presence of radial mobility gradients, while interparticle flux is dampened owing to
weaker relative radial mobility at contact. Contributions to mean and fluctuating probe
motion from each of these forces can be interrogated by adjusting the proximity
with which the no-slip surfaces of the probe and bath particle can approach one
another. The excluded-annulus model (Russel 1984) facilitates the systematic tuning
of hydrodynamic interaction strength by introducing a ‘contact surface’ at r = rmin,
the minimum allowable separation between the probe and bath particle centres. When
rmin� 2a, the hydrodynamic surfaces are always widely separated and hydrodynamic
entrainment is negligible. In this limit, the force-induced diffusion should approach
that computed by Zia & Brady (2010), dominated by interparticle contributions in the
absence of hydrodynamic interactions. The opposite limit, rmin ∼ 2a, permits no-slip
surfaces to approach closely. For rmin/2a → 1, force-induced diffusion comprises
predominantly hydrodynamic and Brownian contributions.

The excluded-annulus model defines the interparticle potential as

V(r)=
{

0, r > rmin,

∞, r< rmin,
(2.6)

where V(r) is made dimensionless by the thermal energy. The interparticle force acting
on a particle β is derivable from this conservative potential, FP

β =−kT ∇βV , where the
derivative is taken with respect to the absolute position xβ of the particle. Additional
frictional or other dissipative interparticle forces could be incorporated into this model
in a straightforward manner, as done in prior studies of hydrodynamic diffusion of
rough, non-colloidal spheres (Davis 1992).
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The flux of particle β due to Brownian diffusion is identical to that generated by an
equivalent ‘thermodynamic’ force FB

β =−kT∇β ln P2 (Batchelor 1972). In the absence
of external forces and ambient flow, the suspension adopts an equilibrium Boltzmann
distribution Peq

2 (r)∼ exp(−V(r)/kT), in which interparticle and Brownian flux balance.
From the interaction potential defined in (2.6), one can show that the equilibrium
distribution Peq

2 is uniform and independent of z and r in all accessible configurations
(r > rmin) with the excluded-annulus potential.

The annular volume defined by rmin describes a region excluded from particle
approach and may extend beyond the particle no-slip surface. The range of such
interparticle repulsion, rmin = 2ath, can be set by e.g. surface asperities, electrostatic
repulsion or grafted polymer hairs, among others, which extend particle size to a
thermodynamic or steric radius ath. The range of this repulsion dictates the degree to
which hydrodynamic interactions influence particle motion and suspension rheology;
for this reason, we define a dimensionless repulsion distance κ as a measure of the
strength of hydrodynamic interactions,

κ = ath − a
a

. (2.7)

The hard-sphere repulsion can vary as 0 6 κ < ∞, corresponding to the strongest
possible hydrodynamic interactions when κ is zero and to negligibly weak
hydrodynamic interactions when κ → ∞, i.e. for long-range repulsion. Long-range
hydrodynamic interactions dampen particle motion when κ ∼ 1, and lubrication
interactions become important for small excluded-annulus thicknesses κ� 1.

3. Theoretical framework
In prior work by Zia & Brady (2010) and Hoh & Zia (2015), expressions for

force-induced diffusivity were developed from the perspective of probe flux. The
former defined force-induced diffusion and studied it in the absence of hydrodynamic
interactions; the latter examined force-induced diffusion in hydrodynamically
interacting particles in the absence of Brownian motion. In this section, we
create a comprehensive model that combines the physics of both studies to obtain
a complete picture of force-induced diffusivity for colloidal, hydrodynamically
interacting particles.

3.1. Flux- and flow-induced diffusivity
Probe motion through the dispersion distorts the mean and fluctuating microstructure,
with many possible distorted arrangements. The pair-probability density P2(z, r; t)
represents the likelihood of any arrangement {z, r} of the probe and a bath particle
at time t. The particle probability flux jα ≡ UαP2(z, r; t) describes the evolution
of microstructural configuration owing to the translational motion of particle α.
The velocity Uα of particle α is expressed in (2.1) as a linear combination of
hydrodynamic drag forces on the probe and bath particle. The hydrodynamic drag FH

β

must exactly balance all non-hydrodynamic forces acting on particle β, which, in the
present study, comprise Brownian, interparticle and external forces, FB

β , FP
β and Fext

β ,
respectively. Brownian and interparticle forces act on all particles in the suspension,
while the external force acts only on the probe (particle 1). The external force on the
probe drives the system from equilibrium by inducing net particle motion Uα, which
advects pair density as defined by the flux jα:

jα =
[

Dα1 ·

(
Fext

kT
−∇z

)
− (Dα2 − Dα1) · ∇r

]
P2, (3.1)
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where Dαβ ≡ kTMUF
αβ and the operators ∇z and ∇r are gradients taken with respect

to the relative coordinates {z, r}. In (3.1), only the non-equilibrium pair probability
P2(z, r; t) explicitly depends on the probe position z; all other quantities depend only
on the relative geometry r.

Mean and fluctuating motions can be interpreted as microviscosity and micro-
diffusivity, respectively (Zia & Brady 2010). These contributions are easily identified
upon taking the Fourier transform of the flux with respect to probe position:

j̃1 = D11(r) ·
(

Fext

kT
− ik

)
P̃2(k, r; t)+ (D11(r)− D21(r)) · ∇rP̃2, (3.2)

where j̃1 and P̃2 are the Fourier transforms of the probe flux and pair-probability
density, respectively, and k is the wave vector.

The long-time self-diffusion is determined by many encounters with bath particles,
so the flux j̃ is averaged over all pair configurations:

〈 j̃1〉 = (US − ikDa)P̃1 +
∫
(D11 − Da) ·

(
Fext

kT
− ik

)
P̃2 dr+

∫
1
2

Dr · ∇rP̃2 dr, (3.3)

where US = Fext/6πηa is the Stokes velocity of the probe through pure solvent,
Da = kT/6πηa I is the bare diffusivity of the probe and P̃1(k; t) ≡ ∫ P̃2(k, r; t) dr
represents the Fourier-transformed probe probability density. The first term on the
right-hand side of (3.3) represents the probe flux through the solvent. The second term
represents how the average presence of bath particles reduces the probe self-mobility
from its motion through pure solvent, consequently altering mean and fluctuating
probe trajectory. The final term represents how the interparticle and Brownian flux
dissipate microstructural gradients and drive the suspension toward equilibrium. The
arrangement of bath particles about the probe is necessary to evaluate these integrals.
Thus, the structure function gk(k, r; t) is defined as (Zia & Brady 2010):

P̃2(k, r; t)≡ nbgk(k, r; t)P̃1(k; t), (3.4)

where nb = 3φ/(4πa3) is the number density of bath particles.
The mean and fluctuating motion of the probe after many encounters with bath

particles occurs over large distances and long times, corresponding to small wave
vectors k. Expansion of the structure function gk in small k gives

gk(r, k; t)= g(r; t)+ ik · d(r; t)+O(|k|2), (3.5)

where i is the imaginary unit. The right-hand side of (3.5) contains both the mean
particle configuration, g(r; t), which describes the likelihood of finding a bath particle
at r with which to interact, and a probability-weighted displacement, or fluctuation
field, d(r; t) which gives the strength and direction of ‘kicks’ from probe–bath
interactions.
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The small-k expansion (3.5) of the structure function is substituted into (3.3) to
yield the ensemble-averaged probe flux:

〈j̃1〉 =
{

Ua + nb

∫
(D11 − Da) ·

(
Fext

kT

)
g dr+ nb

∫
1
2

Dr · ∇rg dr
}

P̃1

− ik ·
{

Da + nb

∫
(D11 − Da) ·

[
gI −

(
Fext

kT

)
d
]

dr− nb

∫
1
2

Dr · ∇rd dr
}

P̃1,

(3.6)

where Dr was defined in (2.4). Note that the dot product with the wave vector k in the
above expression is performed with the second index of the term in braces. The first
quantity in braces in (3.6) represents the mean motion of the probe averaged over all
bath particle configurations, which we define as the effective translational velocity Ueff :

Ueff ≡Ua + nb

{∫
(D11 − Da) ·

(
Fext

kT

)
g dr+

∫
1
2

Dr · ∇rg dr
}
. (3.7)

The second term in braces in (3.6) represents the fluctuations of the probe averaged
over all bath particle configurations, which we define as the effective long-time self-
diffusivity Deff :

Deff ≡ Da + nb

{∫
(D11 − Da) ·

[
gI −

(
Fext

kT

)
d
]

dr−
∫

1
2

Dr · ∇rd dr
}
. (3.8)

As expected, the effective velocity and effective long-time self-diffusivity approach
their corresponding values in pure solvent, Ua and Da, in the limit where the
number density nb of bath particles approaches zero. The two integrals in both
the expressions for the effective translational velocity and the effective long-time
self-diffusivity explicitly preserve the effects of bath particles on probe motion. The
first integrals in both expressions average the hydrodynamic reduction in the probe
particle self-mobility due to the nearby presence of a bath particle over all possible
configurations. The second integrals in each equation describe how gradients in the
microstructure and probability-weighted displacement field create an entropic restoring
force, driving the dispersion back toward an equilibrium configuration.

We pause to connect theory to physical measurements. To obtain the viscosity and
diffusion tensor, the only quantity which must be measured is the total displacement
of the probe over time. The mean and diffusive probe motion described by (3.7) and
(3.8) can be measured in experiments by tracking probe motion and, from this, one
can compute the average speed as 〈U〉 = d〈x〉/dt. The average speed is then utilized
to obtain the microviscosity via the relation

ηmicro

η
= 6πηa

Fext
〈U〉, (3.9)

where Fext is a constant external force applied to the probe and ηmicro is the
microviscosity (Squires & Brady 2005; Khair & Brady 2006). From the total and
mean displacement one may then compute the microdiffusivity as

Dmicro = 1
2

d
dt
〈x′(t)x′(t)〉, (3.10)
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where x′(t) ≡ x(t) − 〈x(t)〉 is the displacement from the mean as a function of time
and the angle brackets signify an average over several realizations (Zia & Brady 2010).
Detailed knowledge of the embedding material is not required.

We place our focus on the extent to which the external force changes probe
diffusion; it is thus instructive to separate the effective diffusivity into equilibrium
and non-equilibrium contributions. To this end, we write the microstructure g(r) and
the displacement field d(r) each in terms of the equilibrium value in the absence of
external forcing, geq(r) and deq(r), and the departure from equilibrium arising from
the external force, gneq(r) and dneq(r):

g(r)= geq(r)+ gneq(r),
d(r)= deq(r)+ dneq(r).

}
(3.11)

For a dilute dispersion, the equilibrium microstructure geq(r) is uniform and equal to
unity for all separations r> rmin. From the definitions in (3.11), the effective long-time
self-diffusivity Deff may be separated into equilibrium Deq and force-induced terms
Dflow:

Deff = Deq + Dflow, (3.12)

where

Deq ≡ Da + nb

{∫
(D11 − Da) dr−

∫
1
2

Dr · ∇rdeq dr
}
, (3.13)

and

Dflow ≡ nb

{∫
(D11 − Da) ·

[
gneqI −

(
Fext

kT

)
dneq

]
dr−

∫
1
2

Dr · ∇rdneq dr
}
. (3.14)

Equation (3.13) shows that the equilibrium long-time self-diffusivity of the probe
particle is the sum of its diffusivity in pure solvent Da plus two corrections arising
from the bath particles: the first describes reduction in probe motion owing to
the presence of the equilibrium microstructure; the second describes isotropic
displacements of the probe that are entropic in origin, driving the probe to more
mobile configurations. Note that the first integral contributes both to the short-time
and long-time self-diffusivity of the probe particle as no configurational changes
need to occur – this contribution is strictly hydrodynamic in character. The second
integral contributes only to the long-time self-diffusivity as the probe and bath particle
displace one another from entropically, changing the particle configuration.

Force-induced diffusion depends on both the mean and fluctuating microstructure,
g(r) and d(r). The first term in (3.14) for the force-induced diffusivity shows that
distortion of the microstructure further hinders the probe as the suspension force
thickens. However, the non-equilibrium probability-weighted displacement field and
its gradient enhance the diffusive spread: interactions with bath particles deflect and
scatter the probe particle from its intended trajectory. The expressions governing the
microstructure g(r) and probability-weighted displacement field d(r) are presented
next.

3.2. Microstructure and fluctuation field
The mean and fluctuating suspension microstructure are governed by the Smoluchowski
equation, which reads, at the pair level,

∂P2(z, r; t)
∂t

+∇z · j1 +∇r · (j2 − j1)= 0. (3.15)
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Expressions for the probe flux vector j1 and the relative flux vector j2− j1 for identical
spheres follow from (3.1):

j1 = D11 ·

[
Fext

kT
P2 −∇zP2

]
+ 1

2
Dr · ∇rP2, (3.16a)

j2 − j1 =−
1
2

Dr ·

[
Fext

kT
P2 −∇zP2

]
− Dr · ∇rP2. (3.16b)

In (3.16), the configuration-dependent probe diffusivity D11 = kTMUF
11 and the relative

translational diffusion tensor is given by Dr = 2kT(MUF
11 −MUF

12 ).
The choice of interparticle potential restricts the radial component of relative

particle velocity to be outward at contact: r̂ · (U2 − U1) > 0. Particles can approach
no closer than the minimum approach distance rmin defined by the excluded annulus.
Traditionally, the constraint of no overlap of the excluded annuli is enforced in
the Smoluchowski framework as zero relative flux at every point of contact on
the minimum approach surface. Recently, Hoh & Zia (2015) showed that in the
non-colloidal limit, this boundary condition must be approached with care. The naive
approach of simply assuming interparticle flux can be replaced by zero hydrodynamic
mobility at contact gives an apparent ‘sink’ of particle fluctuations. To resolve this
apparent failure to conserve probability in the analytical solution, one must recognize
that the no-flux condition requires the balancing flux of the hard-sphere force, even in
the pure hydrodynamics limit, as shown by Hoh & Zia (2015). In the present study
of colloidal active microrheology, the finite strength of thermal forces counteracts the
advective influx of bath particle density, automatically enforcing the no-flux boundary
condition at rmin.

The expressions for the probe self-flux and the relative flux (3.16) are substituted
into the pair Smoluchowski equation (3.15). Its Fourier transform reads

∂P̃2(k, r; t)
∂t

+ ik ·
[

D11 ·

(
Fext

kT
− ik

)
P̃2 + 1

2
Dr · ∇rP̃2

]
−∇r ·

[
1
2

Dr ·

(
Fext

kT
− ik

)
P̃2 + Dr · ∇rP̃2

]
= 0. (3.17)

Insertion of P̃2 (3.4) gives, at steady state and to leading order in the concentration
of bath particles,

ik ·
[
(D11 − Da) ·

(
Fext

kT
− ik

)
g+ 1

2
Dr · ∇rg

]
−∇r ·

[
1
2

Dr ·

(
Fext

kT
− ik

)
g+ Dr · ∇rg

]
= 0, (3.18a)

r̂ ·
[

1
2

Dr ·

(
Fext

kT
− ik

)
g+ Dr · ∇rg

]
= 0 at r= 2a, (3.18b)

g→ 1 as r→∞. (3.18c)

The interparticle potential demands zero normal relative flux at contact, and the
structure function approaches the equilibrium distribution at infinite separation. The
equations are made dimensionless by scaling quantities as

r∼ a, Da, D11 ∼Da, Dr ∼ 2Da, Fext ∼ Fext. (3.19a−d)
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Variables and operators are henceforth dimensionless unless otherwise noted. The
expansion (3.5) is inserted into (3.16); from the resulting expression the terms of
order zero in the wave vector govern the steady microstructure g:

∇ · [Pe Dr · F̂g+ Dr · ∇rg] = 0, (3.20a)

r̂ · [Pe Dr · F̂g+ Dr · ∇rg] = 0 at r= 2, (3.20b)
g→ 1 as r→∞, (3.20c)

where the Péclet number is defined as the relative strength of advective to thermal
forces, Pe=Fext/2kT/ath. Alternatively, the Péclet number can be interpreted as a ratio
of time scales:

Pe= Fext

2kT/ath
= τdiff

τadv
, (3.21)

where the advective time scale τadv = ath/US gives the time required for a particle of
size ath and translational velocity US to move a distance given by its thermodynamic
size. The diffusive time scale τdiff = a2

th/2Da gives the time over which a particle will
explore an area set by its entropic size.

The terms proportional to k govern the probability-weighted fluctuation field:

Pe(D11 − I) · F̂g+ 1
2 [Dr · ∇g+∇ · (Drg)] −∇ · [Pe Dr · F̂d+ Dr · ∇rd] = 0, (3.22a)

r̂ · [− 1
2 Drg+ Pe Dr · F̂d+ Dr · ∇rd] = 0 at r= 2, (3.22b)

d→ 0 as r→∞, (3.22c)

where the configuration-dependent probe self-diffusion tensor D11 is given by the
mobility functions:

D11 = xa
11r̂r̂+ ya

11(I − r̂r̂). (3.23)

The detailed solutions for the microstructure and the fluctuation field as a function of
both Pe and κ are described next.

4. Results
The theoretical framework presented in § 3 provides the methodology for computing

microrheological quantities, e.g. the suspension viscosity and probe diffusion, from
the mean and fluctuating suspension microstructure. The microstructural solutions
are presented next in § 4.1. The effective and force-induced probe diffusion are then
computed from the mean and fluctuating microstructure, and are presented in § 4.2.

4.1. The fluctuation field
The Smoluchowski equations (3.20) and (3.22) derived in the previous section govern
the mean and fluctuating suspension microstructure, respectively, where steady-state
behaviour develops under a competition between multiple forces: external, Brownian,
interparticle and hydrodynamic. The Péclet number sets the strength of the external
force and the dimensionless repulsion distance κ ≡ (ath − a)/a sets the strength of
hydrodynamic interactions. The structure, and subsequently the rheology, exhibit
parametric dependence on κ and Pe. In this section, we present solutions for the
fluctuating microstructure d(r; Pe, κ) for asymptotically strong and weak forcing and
hydrodynamics, followed by numerical solution for arbitrary Pe and κ . We begin with
the equilibrium case.
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4.1.1. Equilibrium fluctuations: Pe≡ 0
A balance of interparticle and thermal forces in the absence of external forcing

(Pe≡ 0) defines the equilibrium microstructure. For dilute dispersions interacting via
an excluded-annulus interparticle potential, the equilibrium mean microstructure is
uniform for all accessible configurations, i.e. geq(r > 2)= 1. The equation governing
fluctuations in the equilibrium microstructure deq(r) follows from substituting Pe= 0
and g= geq = 1 into the Smoluchowski equation (3.22).

∇ · [Dr · ∇deq] = 1
2∇ · Dr, (4.1a)

r̂ · [− 1
2 Dr + Dr · ∇deq] = 0 at r= 2, (4.1b)

deq→ 0 as r→∞. (4.1c)

Equilibrium suspension fluctuations depend on only the centre-to-centre separation
vector r; thus the equilibrium fluctuation field has the form deq= d0(r)r̂. The ordinary
differential equation for d0(r) is as follows:

d
dr

[
r2G(s)

dd0

dr

]
− 2H(s)d0 =+1

2
r2W(s), (4.2a)

dd0

dr
=+1

2
at r= 2, (4.2b)

d0→ 0 as r→∞, (4.2c)

where the mobility functions G, H and W are functions of the hydrodynamic centre-
to-centre separation s≡ (1+ κ)r, and we have introduced the definition

∇ · Dr ≡W(s)r̂=
[

2
r
(G(s)−H(s))+ dG

dr

]
r̂ (4.3)

for the divergence of the relative mobility. With the substitution d0(r) = −f1(r)/2
into (4.1a), the system governing the linear-response perturbation to the steady
microstructure f1(r) is identically recovered (cf. Khair & Brady (2006) equations
(4.8a–c)). Thus, for a given excluded-annulus thickness κ , the O(1) displacement field
d0(r) is everywhere equal to the first perturbation to the suspension microstructure
f1(r) scaled by −1/2.

We note that d0(r) is everywhere negative, and thus fluctuations induced by
the equilibrium microstructure entropically hinder probe diffusion, regardless of the
strength of hydrodynamic interactions. This can be understood as follows. Equilibrium
probe fluctuations deq(r) = r̂d0(r) are directed along the line of centres with a bath
particle. Positive and negative values of d0(r) correspond to entropically enhanced and
hindered diffusion, respectively: the sign denotes whether fluctuations tend to scatter
the particle outward from its current location (positive d0) or push the probe position
back toward the origin (negative d0). The equilibrium fluctuation field is proportional
to the negative of the linear-response distortion from equilibrium, d0(r) = −f1(r)/2
(a finding we will utilize to show that the microrheology model generalizes the
Stokes–Einstein relation in § 4.2.1). The linear-response distortion from equilibrium
f1(r) is everywhere positive, indicating that bath particle accumulation and depletion
at weak forcing occur upstream and downstream of the probe, respectively. Thus,
equilibrium fluctuations from probe–bath interactions are restoring in nature. A bath
particle centred at r will ‘kick’ the probe entropically away from it, hindering the
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random walk of the probe. Such inward kicks arise both via hard-sphere repulsion
at the minimum approach distance and via deterministic Brownian drift to separate
particles along their line of centres. Details given in appendix A show that the
magnitude of equilibrium fluctuations, d0(r), decreases for all values of r as no-slip
surfaces are permitted to approach each other more closely (or, equivalently, as the
repulsion range κ setting entropic size decreases). With a weakening fluctuation field,
entropic hindrance lessens, corresponding to a smaller disparity between the short-
and long-time self-diffusion when hydrodynamic interactions are strong.

4.1.2. Fluctuations at weak forcing: Pe� 1
In the limit of weak external forcing, Pe� 1, thermal agitation easily dissipates

disturbances created by the translating probe, and the distortion to the equilibrium
microstructure is weak, suitable for expansion of the microstructure and deflection
field in Pe:

g0(r; Pe� 1)= 1+ Pe F̂ · r̂f1(r)+ Pe2F̂F̂ : [r̂r̂f2(r)+ I h2(r)] + · · ·, (4.4)

d(r; Pe� 1)= r̂d0(r)+ Pe F̂ · [r̂r̂d1(r)+ I c1(r)]
+Pe2 F̂F̂ : [r̂r̂r̂ d2(r)+ r̂I 2c2(r)+ I r̂ b2(r)] + · · ·. (4.5)

These expressions are substituted into the Smoluchowski equation governing the
microstructure (3.20) and the fluctuation field (3.22). A coupled system of equations
for the radial functions f1(r), f2(r), etc. is obtained by matching orders of Pe and
Legendre polynomials. The details of this system of equations, the numerical solution
method and results for the radial functions are given in appendix A. At O(Pe), the
non-equilibrium fluctuation field is monopolar and quadrupolar. Dipole character
in the fluctuation field is required for entropic diffusion: net fluctuations oriented
toward or away from z result in entropic hindrance or enhancement, respectively.
Thus, the contributions d1(r) and c1(r) to the fluctuation field do not result in
entropic diffusion. However, as will be shown in § 4.2.2, the O(Pe) fluctuation field
contributes to hydrodynamic diffusion.

The O(Pe) fluctuation field suggests the first signs of anisotropy. The projection of
the fluctuation field along the line of forcing, the longitudinal fluctuation field, d‖(r)
is:

d‖(r)= d0(r) cos θ + Pe[d1(r) cos2 θ + c1(r)] +O(Pe2). (4.6)

The transverse fluctuation field d⊥(r) is the projection of the fluctuation field normal
to the line of forcing, modulo the azimuthal dependence. That is, d · ex = d⊥(r) cos ϕ
and d · ey = d⊥(r) sin ϕ, where ϕ is the azimuthal angle measured from the positive
x-axis toward the positive y-axis. Through O(Pe), the transverse fluctuation field is:

d⊥(r)= d0(r) sin θ + Pe[d1(r) cos θ sin θ ] +O(Pe2). (4.7)

Inspection of d‖(r) and d⊥(r) reveals that the perturbation function c1(r) contributes
only to longitudinal fluctuations, while the perturbation function d1(r) contributes
equally to both projections. This disparity will be shown to lead to anisotropy in the
force-induced diffusion in § 4.2.2.

The expansion of the fluctuation field becomes singular at O(Pe2). Thus, (4.5) must
be matched to an outer solution at radial distances ρ ≡ Pe r = O(1) where advection
still matters. The details are given in appendix A, where it is shown that the outer
solution does not contribute to flow-induced diffusion until O(Pe4). We will show in
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§ 4.2.2 that d2(r), c2(r) and b2(r) of the inner solution dominate the entropic (thermal
and interparticle) contributions to force-induced diffusion. We briefly look ahead to
the effect of these functions on the diffusion. The flow-induced fluctuations that
contribute entropically (via interparticle and thermal forces) to probe diffusion occur
at O(Pe2). Like the equilibrium fluctuation field, positive and negative values of d2(r),
c2(r) and b2(r) would correspond to entropic diffusion enhancement and hindrance,
respectively. In appendix A, the perturbation function c2(r) is shown to contribute
only to longitudinal probe diffusion, while the functions b2(r) and d2(r) contribute to
probe diffusion in all directions. The O(Pe2) perturbation functions c2(r) and b2(r) are
everywhere positive and enhance probe diffusion at O(Pe2). In addition, the functions
b2(r) and c2(r) are very similar, but not identical to one another. Because c2(r) is
weighted by a factor of 2 in the perturbation expansion for the fluctuation field, the
ratio of longitudinal to transverse entropic probe diffusion should be approximately
3 : 1 by inspection of the perturbation expansion. This 3 : 1 ratio is evident in figure 4,
where the green triangles and the blue diamonds represent the entropic contributions
to flow-induced diffusion at O(Pe2). The sum of the entropic contributions reflects
this approximate 3 : 1 ratio between longitudinal and transverse probe diffusion.

To summarize, the weakly nonlinear fluctuation fields exhibit anisotropy at O(Pe),
the first deviation from the equilibrium fluctuation field (and thus we expect
flow-induced diffusion to be anisotropic), and becomes singular at O(Pe2). The
outer solution contributes to force-induced diffusion which scales as Pe4, so only the
inner solution is needed.

4.1.3. Fluctuations in the ‘pure hydrodynamic’ limit: Pe−1 = 0, κ = 0
The infinite-Pe limit, Pe−1 ≡ 0, distinct from Pe� 1, was studied by Hoh & Zia

(2015), who found that in the absence of any Brownian motion or particle roughness,
longitudinal fluctuations are enhanced by flow. The key aspects of the study relevant
to the present investigation are summarized here. In this limit, Brownian motion is
absent and the particles are smooth, so the microstructure is governed by advection
alone. As shown by Batchelor (1982), the solution for the mean microstructure
g(r) is spherically symmetric. The relative radial mobility governs the slowdown of
bath particles relative to the probe as they approach; the slower dynamics manifest
microstructurally as relative accumulation of bath particles. Batchelor’s solution is
written here in terms of the relative mobility functions G and H:

g(r)= 1
G(r)

exp
[∫ ∞

r

2
ξ

(
1− H(ξ)

G(ξ)

)
dξ
]
. (4.8)

The spherically symmetric microstructure gives the microviscosity as

ηH
i =−

∫ ∞
2

g(ξ)[xa
11(ξ)+ 2ya

11(ξ)− 3]ξ 2 dξ, (4.9)

which is Newtonian and, for same-sized probe and bath particles, is equal to 2.52.
This limit was approached from the colloidal framework (Hoh & Zia 2015)

by letting Pe grow large, permitting formation of a diffusive boundary layer at
contact that shrinks as Pe−1, during which the microviscosity force thickens to this
limiting infinite-Pe Newtonian plateau (Khair & Brady 2006). This plateau is not
reached as long as the boundary layer persists, i.e. microstructural asymmetry is
required for non-Newtonian rheology. Khair & Brady (2006) found that particle
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density in the diffusive boundary layer scales as Pe0.799, giving force thickening as
ηi = A − BPe−0.201, and showing that Batchelor’s ‘outer’ solution fully defines the
infinite-Pe Newtonian plateau, while the extent of force thickening is governed by the
‘inner’ solution. A naive first approach for force-induced diffusion in the Pe� 1 limit
for hydrodynamically interacting particles would follow their approach and determine
the corresponding ‘outer’ and ‘inner’ solutions for the fluctuation field.

Taking such an approach to the Pe� 1 limit for microstructural fluctuations, Hoh
& Zia (2015) determined the longitudinal and transverse fluctuation fields as governed
by advection alone. The transverse fluctuation field is a single spherical harmonic,

d⊥(r)= d⊥1 (r)P
1
1(cos θ), (4.10)

where Pm
n (cos θ) is the associated Legendre polynomial with argument cos θ of

degree n and order m. The longitudinal fluctuation field comprises an infinitude of
odd Legendre polynomial modes:

d‖(r)=
∑
n odd

d‖n(r)Pn(cos θ), (4.11)

where Pn(cos θ) is the Legendre polynomial with argument cos θ of degree n. The
radial dependence of the degree-one spherical harmonics gives for longitudinal
fluctuations (Hoh & Zia 2015):

d‖1(r)=
(

2
r

)2 1
L(r)

∫ ∞
r

( z
2

)2 [xa
11(z)+ 2ya

11(z)− 3]g(z) dz, (4.12)

and for transverse fluctuations,

d⊥1 (r)=
( r

2

)
g(r)

√
g(r)L(r)

∫ ∞
r

(
2
z

)
xa

11(z)− ya
11(z)

L(z)
√

g(z)L(z)
dz. (4.13)

Unlike the mean microstructure, the longitudinal fluctuations in (4.12) cannot be
matched to leading order to the inner solution governed by a balance of advection
and radial diffusion. The naive approach predicts zero longitudinal and transverse
flow-induced diffusion even in the limit Pe−1 ≡ 0. This apparent paradox is
resolved by careful enforcement of the no-flux boundary condition, recognizing
that non-hydrodynamic forces, including the rigidity of the probe and entropic forces,
must be accounted for in this analytical model, both playing a role even in the pure
hydrodynamic limit (Hoh & Zia 2015). Doing so properly captures fluctuations in
the pure hydrodynamic limit, which are enhanced by flow, recovering precisely the
theoretical results of Davis & Hill (1992) for macroscopic falling-ball rheometry, and
the matching experimental observations of Abbott et al. (1998).

The transition of longitudinal probe diffusion from hindered to enhanced evidently
takes place at some strength of forcing and strength of hydrodynamic interactions
between the two asymptotic limits studied thus far, and requires numerical study of
the intervening, finite-Pe region.
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4.1.4. Arbitrary strength of forcing and hydrodynamic interactions
We now turn our attention to the evolution of the fluctuation field under arbitrary

strength of forcing and hydrodynamic interactions, via numerical solution of the
Smoluchowski equation utilizing a second-order finite difference scheme (details are
given in appendix B). Of particular interest is the region of reversal from hindrance
(in the linear-response regime) to enhancement (for stronger forcing). A sweep across
Pe and κ will reveal when – and why – diffusive fluctuations in probe motion
transition from hindering to enhancing as probe forcing grows, and how it depends
on the range of interparticle repulsion.

Contour plots for the longitudinal and transverse fluctuation fields are shown in
figure 2. At equilibrium (Pe= 0), fluctuations are dipolar, where both longitudinal and
transverse fluctuations push inward. This equilibrium dipole dominates the fluctuation
field when external forcing is present but weak because the first non-equilibrium
fluctuations (monopolar and quadrupolar) are O(Pe) weaker. The transition from
entropically hindering fluctuations to enhancing fluctuations occurs at Pe∼ 1. This is
visually evident in the contour plots in panel (a) for Pe= 1, where regions that were
red (blue) for Pe < 1 are now blue (red); that is, the fluctuation field changes sign,
indicating when fluctuations are oriented inward (hindering) or outward (entropically
enhancing). As forcing grows stronger, moving to the right in each row of each panel,
a boundary layer and wake structure emerge, indicating that the strongest deflections
occur due to interactions very near the probe. In panel (a), fore–aft asymmetry
of longitudinal fluctuations becomes quite pronounced for strong forcing, with the
strongest kicks from the upstream face of the probe. In panel (b), deflections mirrored
across the line of external force are equal in magnitude but opposite in sign. For
Pe 6 1, these red and blue regions indicate that a transverse kick always tends to
push the probe back toward the line of forcing, hindering scattering. The reversal
from hindered to enhanced deflections is evident by Pe= 5, where red and blue have
switched sides, and deflections always tend to scatter the probe off its mean path.

The strength of hydrodynamic interactions also exerts a ‘direct’ influence on the
fluctuation field, particularly as the external force grows. Three values of κ are
shown in the three rows in each of panels (a) and (b) in figure 2; moving down any
given column shows that stronger hydrodynamic interactions lead to a wider, more
diffuse boundary layer structure which remains attached to the probe farther along
its downstream face. This behaviour owes its origin to the monotonic decrease of
the relative mobility functions G and H with decreasing surface separation r, which
illustrates that hydrodynamic coupling slows relative particle motion. For a given
value of Pe, these slower dynamics weaken the accumulation of structure, as well
as its fluctuations, and impede probe–bath particle separation on the downstream
face of the probe, narrowing the wake structure as hydrodynamic interactions grow
stronger. However, this direct effect of apparent reduced relative mobility is not the
full picture.

Hydrodynamic interactions provide a mechanism for particle scattering – distinct
from entropic scattering. As the probe hydrodynamically entrains bath particles, its
motion slows compared to its Stokes velocity US through pure solvent. The duration
of time over which the probe entrains a bath particle depends on how closely the
two can approach one another – which is set by the range of interparticle repulsion,
κ . In consequence, probe velocity fluctuates as the probe moves comparatively fast
through pure solvent pockets and more slowly when towing a nearby bath particle
along. We note that the entrainment trajectory perspective reveals a key aspect
of hydrodynamically induced fluctuations: it accompanies spherically symmetric
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(a) (b)

FIGURE 2. (Colour online) Contour plots of the fluctuation field around a (black) excluded
volume for probe driven to the right, with fluctuations (a) along and (b) transverse to the
line of the external force for a range of Pe and strength of hydrodynamics κ . The colour
scheme for the Pe = 0 column indicates equivalent probability of a kick in the positive
or negative direction. For Pe 6= 0, the colour scheme is as follows: In (a), red regions
correspond to high probability of a strong kick that scatters the probe; blue corresponds
to weak kicks of low probability. In (b), for Pe 6= 0, red indicates high probability of
strong kicks in the positive y direction; blue indicates high probability of strong kicks in
the negative y direction; i.e. the depth of colour indicates the strength of a transverse kick
away from the line of probe forcing.

microstructure. Hiding in the mean and fluctuation microstructure, at any value of
Pe and κ , is a spherically symmetric microstructure, as one of many harmonics.
The strength of this harmonic dictates the strength of hydrodynamic scattering. That
hydrodynamic deflection can arise from spherically symmetric structure stands in
stark contrast to entropically enhanced deflections, which are induced by dipolar –
asymmetric – structure.

To summarize, at weak forcing, the longitudinal and transverse fluctuation fields
are qualitatively and quantitatively similar for all strengths κ of hydrodynamic
interactions, where an O(1) equilibrium diffusive dipole dominates the fluctuation
field; in the next section it will be shown that this acts to entropically hinder probe
diffusion. As the strength of external forcing Pe increases, the upstream fluctuations
compress into a boundary layer region, while downstream, fluctuations extend into
a wake. When no-slip surfaces are able to approach one another closely, κ � 1, a
stronger external force is required to compress the boundary layer. This is a direct
consequence of lubrication interactions slowing particle dynamics, and more energy
is required to squeeze the fluid out between the probe and a bath particle in the
upstream compression region. In addition, the dipole moment of the fluctuation field
changes sign with increasing Pe for all strengths κ of hydrodynamic interaction. We
will see that the sign of the dipole moment is indicative of whether probe diffusion is
entropically hindered or enhanced relative to Brownian diffusion through pure solvent.
However, we will also see that hydrodynamic diffusion is the dominant mechanism
for force-induced diffusion at large Pe and small κ . Predicting whether hydrodynamic
diffusion is hindered or enhanced is not easily inferred from a qualitative examination
of the fluctuation field: as discussed above, multiple spherical harmonics contribute
directly (the presence of bath particles induces velocity fluctuations from US) and
indirectly (hydrodynamic force thickening of the apparent microviscosity implies a
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reduction in short-time self-diffusion). A clearer picture of hydrodynamic diffusion is
obtained when all contributions to Dflow are computed and examined as functions of
forcing strength and hydrodynamic interactions, which is taken up in the next section.

4.2. Effective probe diffusion
Having established the mean and fluctuating suspension microstructure, here we
compute the effective and force-induced probe diffusion, as they vary with the
strength of hydrodynamic interactions κ and the strength of the external force Pe.
The results are separated into four sections: equilibrium diffusion, weakly nonlinear
diffusion, hydrodynamic diffusion in the infinite-Pe limit and diffusion over a sweep
through arbitrary strengths of forcing and hydrodynamic interactions.

4.2.1. Equilibrium diffusion and the Stokes–Einstein relation
The contributions of bath particles to the equilibrium long-time self-diffusivity,

given by (3.13), can be divided into hydrodynamic, Brownian and interparticle
contributions, as follows:

Deq = Da + Deq,H + Deq,B + Deq,P, (4.14)

where each contribution (in dimensional form) is given by

Deq,H =Deq,H I = nb

∫
r>rmin

(D11 − Da) dr, (4.15a)

Deq,B =Deq,BI = nb

∫
r>rmin

1
2
∇r · Drdeq dr, (4.15b)

Deq,P =Deq,PI = nb

∮
r=rmin

1
2

r̂ · Drdeq dr. (4.15c)

The hydrodynamic, Brownian and interparticle contributions to the equilibrium long-
time self-diffusivity are isotropic, and in dimensionless form read:

Deq,H =Daφth

∫ ∞
2
(xa

11(s)+ 2ya
11(s)− 3)r2 dr, (4.16a)

Deq,B =Daφth

∫ ∞
2

W(s)d0(r)r2 dr, (4.16b)

Deq,P =Daφth4G(r= 2)d0(2). (4.16c)

The quantity G(r = 2) in (4.16) is the relative mobility function evaluated at
thermodynamic contact (i.e. at r = 2, corresponding to a dimensionless separation
s = 2(1 + κ)), and describes how readily interparticle forces induce relative motion
of two particles in thermodynamic contact. For a thin excluded annulus (κ � 1),
the relative radial mobility G vanishes linearly as the surface separation κ when the
thermodynamic and hydrodynamic radii are coincident.

The hydrodynamic, Brownian and interparticle contributions to the equilibrium
long-time self-diffusivity are plotted in figure 3(a). All three are negative for all κ ,
indicating that the equilibrium distribution of bath particles always hinders probe
diffusion. As hydrodynamic interactions become weak (κ → ∞), hindrance of
long-time self-diffusion is entropic, arising from collisions at the thermodynamic
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FIGURE 3. (Colour online) (a) Bath particle contributions to the equilibrium long-time
self-diffusivity Deq = (Da + Deq,H + Deq,B + Deq,P)I as a function of the excluded-annulus
thickness κ as computed in this work from (4.16). (b) The O(φth) intrinsic microviscosity
in the limit Pe→ 0 ((b) only, from Khair & Brady (2006), with permission).

surface. In this limit, the diffusivity approaches Da(1− 2φth), recovering the entropic
hindrance of a particle diffusing in a dilute dispersion in the absence of hydrodynamic
interactions (Batchelor 1976; Zia & Brady 2010). As the strength of hydrodynamic
interactions grows (κ decreases), the interparticle contributions weaken as the
relative motion during collisions weakens. This reduced self-mobility, combined
with Brownian flux toward less hindered configurations, causes the hydrodynamic and
Brownian contributions to grow with decreasing κ . The total hindrance approaches
a local minimum for an excluded-annulus thickness κ ≈ 0.6. Particles could thus be
designed to diffuse maximally at a given volume fraction φth, by setting a range of
interparticle repulsion of the order of a particle radius. As lubrication interactions
become important, the total hindrance again increases, reaching a limiting value
of Da(1 − 2.1φth) consistent with passive diffusion in hydrodynamically interacting
suspensions (Batchelor 1976; Rallison & Hinch 1986).

A comparison between the O(φ) reduction in the equilibrium probe diffusion
and the corresponding increase in the Pe → 0 microviscosity reveals that the
Stokes–Einstein equation is valid in suspensions – not just continuum solvents –
when measured via single-particle motion:

Deq = kT
6πη(1+ η0

i φth)a
I +O(φ2

th). (4.17)

This is shown graphically in figures 3(a) and 3(b), the latter showing the O(φth)
microviscosity (Khair & Brady 2006). The two data sets match identically such
that plotting them together would overlay the curves exactly on one another. This
agreement gives the precise connection of fluctuation and dissipation that cannot
be achieved in the corresponding limit of shear flow, where the Einstein correction
η(1+ 5/2φ) does not capture the diffusive motion of a single particle but rather the
response of the suspension as a continuum to a bulk shearing flow. Near equilibrium,
whether a particle moves in response to an instantaneous stochastic or deterministic
force, the resultant impulse is dissipated in identical fashion by the equilibrium
suspension microstructure.
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In summary, the equilibrium microstructure always hinders probe diffusion. The
extent of hindrance varies non-monotonically with the range of interparticle repulsion
(the strength of hydrodynamic interactions) κ . With long-range repulsion, κ → ∞
the hindrance is purely entropic: collisions at the thermodynamic radii result in
fluctuations oriented radially inward, driving the probe toward the origin z. When
the excluded annulus is thin and configurations with nearly touching hydrodynamic
surfaces are permitted, Brownian drift down mobility gradients replaces collision
scattering. This drift is a weaker source of hindrance than interparticle collisions;
thus entropic hindrance is weaker. However, direct hydrodynamic hindrance emerges,
further reducing both the short- and long-time self-diffusion of the probe.

4.2.2. Weak forcing: the first effect of flow
The flow-induced self-diffusivity Dflow given by (3.14) can be separated into

hydrodynamic, Brownian and interparticle contributions as

Dflow,H = nb

∫
(D11 − Da) ·

[
gneqI −

(
Fext

kT

)
dneq

]
dr, (4.18a)

Dflow,B = nb

∫
r>rmin

1
2
∇r · Drdneq dr, (4.18b)

Dflow,P = nb

∮
r=rmin

1
2

r̂ · Drdneq dr. (4.18c)

Inspection of the hydrodynamic contribution, (4.18a), reveals two competing terms:
the first gives the effect of the steady microstructure on probe diffusion, and the
second gives the effects of microstructural fluctuations. The former produces a
hindrance to probe diffusion that becomes more pronounced as flow strength increases.
This is can be understood by recognizing that the probe must diffuse through an ever
more viscous bath as Pe grows, owing to monotonic force thickening of viscosity
with Pe (Khair & Brady 2006). Insertion of (4.4) into (4.18a) shows that this is a
weakly nonlinear effect:

DaφthPe2
∫

r>2

{[
1
5
(3xa

11 + 2ya
11 − 5)f2(r)+ (xa

11 + 2ya
11 − 3)h2(r)

]
F̂F̂

+
[

1
5
(xa

11 + 4ya
11 − 5)f2(r)+ (xa

11 + 2ya
11 − 3)h2(r)

]
(I − F̂F̂)

}
r2 dr. (4.19)

This expression confirms that the mean microstructure serves only to reduce probe
diffusion, regardless of the strength of hydrodynamic interactions, when forcing is
weak. A discussion of the detailed contributions of the structure functions f2(r) and
h2(r) is given in appendix A.

The second contribution in (4.18a) to flow-induced diffusion arises from non-
equilibrium fluctuations, dneq. Insertion of the small-Pe fluctuation field (4.5) into
(4.18a) gives the leading-order direct effect of hydrodynamics at weak forcing:

−2DaφthPe2
∫

r>2

{[
1
5
(3xa

11 + 2ya
11 − 5)d1(r)+ (xa

11 + 2ya
11 − 3)c1(r)

]
F̂F̂

+
[

1
5
(xa

11 − ya
11)d1(r)

]
(I − F̂F̂)

}
r2 dr. (4.20)
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Evaluation of the coefficients in expression (4.20) reveals two important facts: first, it
produces strongly anisotropic diffusion, and second, fluctuations hinder diffusion for
all strengths of hydrodynamics when forcing is weak. A detailed discussion of the
contribution of the coefficients c1 and d1 is given in the appendix A.

The Brownian contribution to the diffusivity, (4.18b), owes its origin to the
configuration-dependent mobility function that drives preferential drift toward
relatively more mobile particle arrangements. Insertion of the small-Pe fluctuation
field (4.5) into (4.18b) gives the leading-order Brownian contribution to flow-induced
diffusion at weak forcing:

DaφthPe2
∫

r>2
r2W(r)

[(
3
5

d2(r)+ 2c2(r)+ b2(r)
)

F̂F̂+
(

1
5

d2(r)+ b2(r)
)
(I − F̂F̂)

]
dr.

(4.21)

In contrast to the hydrodynamic contribution, non-equilibrium Brownian forces
enhance diffusion, regardless of the strength of hydrodynamic interactions.

The interparticle contribution, (4.18c), arises due to collisions with the non-
equilibrium arrangement of bath particles that scatter the probe. Insertion of the
small-Pe fluctuation field (4.5) into (4.18c) gives the leading-order interparticle
contribution to flow-induced diffusion for weak external forcing:

4DaφthPe2G(κ)[( 3
5 d2(2)+ 2c2(2)+ b2(2))F̂F̂+ ( 1

5 d2(2)+ b2(2))(I − F̂F̂)]. (4.22)

As with the Brownian contribution, which is also entropic in origin, the interparticle
force serves to enhance probe diffusion – regardless of the strength of hydrodynamic
interactions.

Each of the three contributions – hydrodynamic, Brownian and interparticle – are
plotted in figure 4, where they are separated into longitudinal (4a) and transverse (4b)
diffusion, and are plotted as a function of the strength of hydrodynamic interactions,
κ . The hydrodynamic diffusion is anisotropic, and always negative: it hinders diffusion
regardless of the strength of hydrodynamics. The hindrance is strongest when the
repulsion distance vanishes; this effect weakens as the repulsion range κ grows and
no-slip surfaces are kept farther apart by longer-ranged interparticle forces.

The Brownian and interparticle contributions are both positive for all ranges
of repulsion κ . While both contributions arise due to entropic effects, Brownian
disturbance flows are solvent-mediated and become weaker as κ grows. In contrast, the
growing excluded volume produces monotonically increasing interparticle diffusion.

The total low-Pe flow-induced diffusion decreases as hydrodynamic interactions
grow stronger. That is, hydrodynamic interactions suppress diffusion when external
forcing is weak. In the limit of strong hydrodynamics, κ → 0, the left end of
the axes, the Brownian contribution dominates with diffusion driven primarily by
variation in the relative radial mobility. In the opposite limit of large κ (weak
hydrodynamics), interparticle contributions dominate, because hydrodynamic surfaces
are widely separated, and relative mobility during a collision is high. The transition
from one limit to the other shows the smooth evolution in the roles of hydrodynamic,
Brownian and interparticle forces. The diffusion is anisotropic for all strengths of
hydrodynamic interactions: the strength of longitudinal relative to transverse diffusion
is approximately 3 : 1 ratio for all ranges of interparticle repulsion.

In summary, flow enhancement of diffusion is O(Pe2), compared to passive
Brownian diffusion of a tracer in a suspension – but overall is still hindered compared
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FIGURE 4. (Colour online) The longitudinal (a) and transverse (b) components of the flow-
induced diffusion in the limit of weak forcing (Pe� 1) as a function of the dimensionless
repulsion distance κ . Here, the flow-induced diffusion is normalized by the isolated probe
diffusivity Da, the thermodynamic volume fraction of bath particles φth and Pe2.

to Brownian diffusion in a pure solvent. The enhancement arises due to entropic
scattering alone, and competes with the suppressive effect of hydrodynamic diffusion.
Both interparticle collisions and Brownian drift contribute to entropic enhancement of
diffusion, with the former playing a more dominant role: collisions at the excluded
annulus are more effective than Brownian drift at scattering the probe, shown by the
monotonic increase in the total flow-induced diffusion in all directions with increasing
excluded-annulus thickness κ . The flow-induced diffusion is anisotropic, showing that
the structure is asymmetric but only weakly so due to the entropic nature of particle
scattering.

4.2.3. Hydrodynamic diffusion and Stokes-flow reversibility: Pe−1 ≡ 0, κ = 0
Here we move to the opposite limit of strong forcing and strong hydrodynamics,

where Brownian motion plays no role at all. Force-induced diffusion in this limit was
studied in our recent work, which we briefly summarize here for completeness (Hoh &
Zia 2015). In this pure hydrodynamics limit, Pe−1≡ 0 and κ→ 0, that is, no Brownian
motion and full hydrodynamics. This regime is, in essence, falling-ball rheometry, for
which detailed solutions for hydrodynamic diffusion via trajectory analysis are well
known (Davis & Hill 1992). We found via microrheology that the probe undergoes
purely hydrodynamic longitudinal diffusion:

Dflow
‖ = 1.26aUSφ, (4.23)

and the transverse hydrodynamic diffusion is identically zero, owing to the fore–aft
symmetry of Stokes flow relative trajectories, in excellent agreement with the
trajectory analysis theory of Davis & Hill, who predicted vertical diffusion Dflow

‖ =
1.33aUSφ, and the falling-ball experiments of Abbott et al. (1998), who measured
vertical diffusion Dflow

‖ = 1.20aUSφ
1.08. However, analysis of probe fluctuation in the

corresponding limit utilizing the microrheology framework leads to several important
outcomes.
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The first outcome is that the microrheology approach enables extension to finite
Pe, i.e. where Brownian motion matters, a regime that cannot be modelled via
deterministic trajectory analysis. This is of particular interest in the study of actively
forced colloidal particles – the subject of the present study. Because the Péclet
number can be defined in terms of the Stokes velocity as Pe ≡ athUS/2Da, our
approach allowed us to recast the hydrodynamic longitudinal diffusion (4.25) in terms
of the Stokes–Einstein diffusion:

Dflow
‖ = 2.52Pe Daφ, (4.24)

showing the advective scaling of flow-induced diffusion when external forcing is
strong. In the next section, we will show how this limit of hydrodynamic diffusion
is approached asymptotically as described by (4.24).

In addition, the trajectory analysis approach cannot predict the emergence of
transverse diffusion with weak thermal motion. In contrast, the microrheology model
developed here captures thermodynamic forces (and particle roughness) and shows
that even very weak Brownian motion produces asymmetry within the diffusive
boundary layer, leading to entropic diffusion. We will see in the next section that
transverse flow-induced diffusion is indeed weak when hydrodynamics and external
forcing are strong, but it does not vanish entirely.

Perhaps the most important outcome of studying the pure hydrodynamics limit
from a microrheological perspective is that it reveals a precise balance between
fluctuation (force-induced diffusion) and dissipation (apparent microviscosity) in far
from equilibrium suspensions:

Dflow
‖ = 1

2η
H
i aUSφ = 1.26aUSφ; (4.25)

that is, diffusion and drag arise from a common microstructural origin even far from
equilibrium.

4.2.4. Arbitrary strength of flow and hydrodynamics, Pe and κ
In this section, the flow-induced diffusion is presented for the full range of external

forcing and strength of hydrodynamic interactions. For any non-zero and finite value
of Pe, Brownian motion destroys structural symmetry; even when Brownian motion
is very weak, Pe� 1, structural asymmetry leads to non-Newtonian rheology. Here
we conduct a sweep from 0 6 Pe 6 1000 and 10−5 6 κ <∞, utilizing the fluctuation
field results presented in § 4.1.4. The longitudinal and transverse components of the
flow-induced diffusion are plotted individually in figure 5. To illustrate qualitative
differences between the dependence of the longitudinal and transverse components on
changes in hydrodynamics strength κ , two rows are shown: in the top row, κ > 0.4,
corresponds to long-ranged interparticle repulsion. In the bottom row (c,d), κ 6 0.4,
corresponds to stronger hydrodynamic interactions.

Beginning with the top row, the longitudinal and transverse diffusion are plotted
in 5(a) and 5(b), respectively, as a function of Pe, where a family of curves is
shown in each plot for 0.4 6 κ <∞. Starting with weak hydrodynamic interactions,
κ → ∞, flow-induced diffusion is enhanced owing entirely to entropic scattering.
As hydrodynamics grow stronger (progressively lighter curves), relative motion (via
both advection and diffusion) becomes more difficult. The radial relative mobility
G(s) decreases more rapidly than transverse relative motion H(s), particularly when
lubrication interactions start to play a role. That is, it becomes easier for a bath
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FIGURE 5. (Colour online) The longitudinal and transverse components of the flow-
induced diffusivity as a function of the forcing strength Pe, for several values of κ =
(ath − a)/a. Top row (a,b): long-range repulsion, κ > 0.4, with (a) longitudinal and (b)
transverse diffusion. Bottom row (c,d): stronger hydrodynamic interactions, κ 6 0.4, with
(c) longitudinal and (d) transverse diffusion.

particle to pass around the probe than to approach it and, in consequence, trajectories
are deflected around the probe, resulting in fewer collisions between probe and bath
particles. This ‘collision shielding’ is the primary origin of the change in particle
interactions and microstructure that leads to suppression of flow-induced diffusion.

Collision shielding can be quantified by measuring the collision frequency, estimated
as the maximum value of the pair-distribution function at probe–bath particle contact,
and tracking how it evolves with the strength of hydrodynamic interactions. This
measure of collision frequency is plotted in figure 6(a), where the number of
collisions gmax ≡ max(g(r; Pe, κ)) along the axis of forcing is plotted as a function
of strength of hydrodynamics, 0.1 6 κ 6 10 and is divided by Pe to give number
of collisions per advective step. Scaling gmax by Pe gives a sensitive measure of
the variation in collision frequency with the strength of hydrodynamic interactions,
owing to the dependence of particle density inside the boundary layer on the strength
of hydrodynamic interactions. In their absence g(2) ∼ Pe (Squires & Brady 2005),
giving way to sublinear scaling as hydrodynamic interactions grow strong (Khair
& Brady 2006); thus a division by Pe clearly reveals decreased collision frequency
as hydrodynamics grow stronger. This trend is clearly seen in the plot: when the
repulsion range is small (left end of the plot, strong hydrodynamics), gmax/Pe is
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FIGURE 6. (Colour online) (a) The maximum value gmax ≡ max(g(r; Pe, κ)) of the
pair-distribution function at large Pe, i.e. when Brownian motion is present but weak,
normalized on Pe, plotted as a function of repulsion range κ . Its value is an estimate for
the frequency of particle collisions at the thermodynamic surfaces. (b–e) Illustration of the
collision-shielding effect, shown here for Pe−1≡ 0 with (b) κ = 10; (c) κ = 1; (d) κ = 0.1;
(e) κ = 0.0001; solid lines are bath particle approach trajectories. Trajectories that collide
at the thermodynamic surface are shaded grey. Trajectories deflected by hydrodynamic
interactions are curved; some make contact (grey region); some do not (white region). As
κ decreases, fewer collisions occur, suppressing entropic scattering. Panels (b–e) from Hoh
& Zia (2015), with permission.

relatively small. Physically, fewer bath particles make contact with the probe at the
minimum approach distance. Fewer collisions means less entropic scattering at large
Pe and, in turn, weakened diffusion.

This behaviour can be understood by examining pair trajectories which highlight the
collision shielding that occurs when particle encounters are deflected by hydrodynamic
interactions, as discussed in our recent work (Hoh & Zia 2015). These trajectories are
reproduced in figure 6(b–e), showing the two types of particle encounters: collisions
and deflections. Collisions are encounters in which particle contact occurs, and
does so at the surface of the excluded annulus. Deflections are encounters in which a
particle trajectory is deflected by hydrodynamic interactions; this is collision shielding.
Fluctuations can arise from collisions only (κ→∞), deflection only (Pe−1= 0, κ = 0)
or a combination of the two. The extent to which such collisions are avoided is set
by the size of the excluded annulus; as κ shrinks, hydrodynamic interactions more
effectively prevent contact. When κ is finite, longitudinal and transverse scattering
can still occur due to both entropic and hydrodynamic encounters, where the relative
influence of the two scattering mechanisms is a sensitive function of κ , as illustrated
in figure 5.

Returning to the flow-induced diffusion in figure 5, the decrease in the force-
induced diffusion with increasing strength of hydrodynamics when κ > 0.4 (top row,
a and b) shows that entropic scattering diminishes in the presence of hydrodynamic
interactions, owing to shielding of the probe from collisions with bath particles. In
the regime of larger κ , entropic scattering is the primary mode of diffusion and
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thus its suppression by collision shielding gives rise to quantitative weakening of
both longitudinal and transverse diffusion in figure 5(a,b). However, as hydrodynamic
interactions grow even stronger, κ 6 0.4 (c,d), a more nuanced picture emerges.

In the bottom row of figure 5, plots (c,d), the interparticle repulsion distance is
κ 6 0.4, where lubrication interactions are accessible. The longitudinal and transverse
flow-induced diffusion are plotted in (c) and (d), respectively, and again a family of
curves is shown, now corresponding to 0.00001 6 κ 6 0.4. For weak forcing, the
left end of the plots, strengthening hydrodynamic coupling exerts only a quantitative
effect. However, for stronger forcing, an interesting transition emerges. Flow-induced
diffusion in this regime transitions from entropic to hydrodynamic in origin, owing
to the increased role played by hydrodynamic interactions. That is, for Pe & 1, the
value κ≈0.4 signifies a marked qualitative transition in the anisotropy of the diffusion
tensor. As indicated by the arrow pointing in the opposite direction, a reversal in
the effect of hydrodynamic interactions emerges: when κ < 0.4, decreases in κ lead
to increased longitudinal diffusion only – but continued decrease in the transverse
diffusion (cf. figure 5c,d). This is a reversal in the trend seen in (a), where for κ>0.4,
decreasing κ results in a reduction in the force-induced diffusion in all directions (cf.
figure 5a,b). This can be understood microstructurally as follows.

Lubrication interactions become important for κ . 0.1. Collision-shielding continues
to dampen transverse force-induced diffusion in this limit: fewer relative trajectories
coincide with the minimum approach surface at rmin. The reversibility of Stokes flow
dictates that transverse force-induced diffusion at O(φth) vanishes in the dual limits
Pe→∞ and κ = 0, the so-called ‘pure hydrodynamic’ limit. The entropic effects of
finite thermal motion or an excluded-volume surface offset from the hydrodynamic
radii both act to break the fore–aft symmetry of relative trajectories. Thus, interparticle
or Brownian forces are necessary for perceptible transverse force-induced diffusion
of O(φth). However, the longitudinal force-induced diffusion increases for small κ
owing to the direct effect of hydrodynamic interactions: when the probe entrains a
bath particle, its velocity deviates from its Stokes velocity US. Randomness in the
background bath particle distribution thence leads to velocity fluctuations. The probe
moves relatively faster through solvent pockets and relatively slower when dragging a
nearby bath particle along with it.

These microscopic dynamics lead to a non-monotonic dependence of longitudinal
diffusion on the strength of hydrodynamics. One can draw analogy to the equilibrium
behaviour, where same competition between entropic and hydrodynamic effects led
to a minimum value of diffusion at the same value of κ . In both cases, at the point
at which entropic scattering diminishes, the effects of hydrodynamic entrainment
on scattering become important. However, the transverse force-induced diffusion
decreases monotonically as κ decreases. In consequence, the anisotropy of the
flow-induced diffusion grows dramatically as κ decreases, i.e. as hydrodynamic
interactions grow stronger. The anisotropy becomes more pronounced at strong
forcing with very short-ranged interparticle repulsions, growing from O(1) when
dominated by entropic scattering to O(Pe) when hydrodynamic diffusion is the
dominant mechanism.

The transition from entropic to hydrodynamic diffusion is highlighted in figure 7
where each of the individual contributions to flow-induced diffusion – hydrodynamic,
Brownian and interparticle – is plotted in two limits, weak and strong hydrodynamics,
κ → ∞ and κ → 0, respectively. In this figure, the flow-induced diffusivity is
normalized by the bare diffusivity Da, the thermodynamic volume fraction of
bath particles φth and forcing Pe. In the limit of weak hydrodynamic interactions,
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FIGURE 7. (Colour online) The hydrodynamic, interparticle and Brownian contributions
to Dflow

‖ as a function of Pe in the limits of weak hydrodynamic interactions (κ →∞)
and strong hydrodynamic interactions (κ→ 0). Diffusion (a) along and (b) transverse to
the line of external force.

the force-induced diffusion is purely entropic in origin regardless of the strength
of external forcing: probe and bath particle collisions at the excluded annulus
scatter the probe from its intended trajectory. In the opposite limit of strong
hydrodynamics, force-induced diffusion at weak forcing is purely entropic in origin.
Brownian drift pushes the probe away from the distorted microstructure toward
relatively more mobile configurations. With strong external forcing, the velocity
fluctuations set by hydrodynamic entrainment of bath particles take over as the
dominant scattering mechanism. The approach to the infinite-Pe limiting value of
the force-induced diffusivity Dflow

‖ = 2.52DaPeφ described by (4.24), is slow: the
asymmetric microstructure (the diffusive boundary layer) persists even when external
forcing is many orders of magnitude stronger than the thermal force. Figure 7
illustrates the fact that by Pe= 103 that the hydrodynamic contribution in the strong
hydrodynamic limit has reached a value of Dflow

‖ ≈ 1.65DaPeφ and is continuing to
climb slowly toward the asymptotic value of Dflow

‖ = 2.52DaPeφ.
The transverse force-induced diffusion normalized by Pe is plotted in figure 7(b).

Transverse diffusion, when normalized by the strength of external forcing, describes
the variance in the trajectory observed on the scale of advective motion; namely, how
the displacements transverse to the applied force compare to the net translation in
the forcing direction. When the interparticle repulsion distance κ is small, transverse
diffusion approaches zero when normalized by Pe, indicating a vanishing variance in
the probe trajectory normal to the external force on the scale of advective motion.
However, small surface asperities, κ > 0, produce transverse entropic diffusion which
scales as

Dflow
⊥ ∼G(2(1+ κ))PeδDaφth, (4.26)

where the contact value of the relative radial mobility, G(2(1 + κ)) ∼ κ , shows
how readily relative motion occurs at the excluded annulus from a collision, and Peδ
represents the magnitude of the asymmetry within the diffusive boundary layer, where
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the exponent δ approaches 0.799 in the limit of short-ranged interparticle repulsion
and strong forcing. As expected, transverse flow-induced diffusion is indeed weak
when hydrodynamics and external forcing are strong, but it does not vanish entirely
until the limit in which particles are smooth and Brownian motion is absent.

With infinitesimal but non-zero Brownian motion, such a fluctuation field leads to
a Brownian contribution to the transverse force-induced diffusion which would scale
as Daφ, which is O(Pe) smaller than (and hence imperceptible compared to) the
leading-order hydrodynamic contributions to the longitudinal force-induced diffusion.
To observe Brownian motion in the strong forcing limit, the time scale for diffusion
becomes increasingly long relative to the advective time scale. That is, one would
have to wait an infinite amount of time to diffuse; one must wait the same amount
of time to observe a Brownian step as to observe a transverse force-induced diffusion
step.

While it is satisfying that the behaviour at large Pe and κ→ 0 asymptotes toward
that of the pure hydrodynamic limit (i.e. enhancement of longitudinal and suppression
of transverse fluctuations as Pe grows asymptotically large), the novel intermediate
regime results presented here afford several new insights. First, the result that
hydrodynamic interactions suppress fluctuations at small Pe emerges clearly as a result
of the colloidal approach. In addition, the numerical value of the particle roughness
κ that triggers the transition from hindered to enhanced diffusion can be identified,
suggesting a frequency and strength of collisions required to appreciably break the
fore–aft symmetry of relative Stokes flow trajectories. Interestingly, three-body and
higher interactions for perfectly smooth particles can lead to transverse displacements
and perhaps can be interpreted through the lens of dilute theory as an effective
roughness κ . Finally, just as the limits Pe= 0 and Pe−1 = 0 give Newtonian rheology
and the colloidal approach can recover these limits, the intervening behaviour – shear
thinning and shear thickening for mean motion, flow-induced diffusion for fluctuations
– are of significant rheological interest.

5. Comparisons to ‘macro’ rheology: shear, sedimentation and falling-ball
rheometry
In the absence of hydrodynamic interactions, flow-induced diffusion enhances

particle scattering entropically. Morris & Brady (1996) determined the long-time self-
diffusivity in a weakly sheared (Pe� 1) dilute dispersion of non-hydrodynamically
interacting colloids:

Ds
∞,macro(κ→∞)=Da[(1− 2φ)I + 46

15φPeÊ + 0.65φPe3/2I +O(φ2, φPe2)]. (5.1)

A particle diffuses with its bare diffusivity in solvent DaI , minus the entropic
hindrance 2DaφI from the equilibrium distribution of colloids (Lekkerkerker &
Dhont 1984; Rallison & Hinch 1986), plus an O(φPe) enhancement valid for any
general linear flow, where Ê is the rate of strain tensor of the imposed flow made
dimensionless on the strain rate γ̇ . In active microrheology, the probe is towed
through an otherwise quiescent dispersion of background bath particles, Ê ≡ 0; thus
there can be no O(φPe) diffusion enhancement in active microrheology. Additionally,
the form of the isotropic O(φPe3/2) diffusion enhancement in (5.1) is specific only
to simple shear – neither microstructural disturbances nor diffusion enhancement of
O(Pe3/2) are observed in active microrheology. Indeed, in their study of force-induced
diffusion of non-hydrodynamically interacting colloids, Zia & Brady (2010) computed
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long-time self-diffusivity of a weakly forced microrheological probe to leading order
in Pe in the limit of weak forcing:

Ds
∞,micro(κ→∞)=Da[(1− 2φ)I + φPe2( 184

45 F̂F̂+ 44
15 I)]. (5.2)

Though the scaling in Pe of macroscopic shear-induced and microscopic force-induced
diffusion differs quantitatively when thermal forces are strong, both are entropic in
origin and arise from distorted (non-equilibrium) suspension microstructures.

Hydrodynamic interactions exert a twofold impact on flow-induced diffusion:
interaction between no-slip surfaces decreases average particle mobility, while pairwise
entrainment causes the (configuration dependent) velocity to fluctuate (somewhat
analogously to velocity fluctuations due to hard-sphere collisions). We interpret this
weaker particle mobility as apparent hydrodynamic shear thickening and, equivalently,
reduced short- and long-time self-diffusion. Hydrodynamically, the apparent viscosity
of sheared colloidal dispersions is known to shear thicken monotonically as a function
of Pe (Bergenholtz, Brady & Vicic 2002). For weak imposed flow, however, shear
thinning is observed: the entropic contributions to the apparent viscosity dominate
at low Pe. For simple shear, Morris & Brady (1996) found that hydrodynamic
interactions between particles reduce the O(φPe) diffusion enhancement and introduce
anisotropy at O(φPe3/2):

Ds
∞,macro(κ→ 0)

=Da[(1− 2.07φ)I + 0.30φPeÊ + (0.13I +Dh +Dp)φPe3/2 +O(φ2, φPe2)], (5.3)

where Dh and Dp are the contributions from the homogeneous and particular
solutions, respectively, for the leading-order microstructural disturbance in the outer
region where advection and diffusion balance, which occurs at particle separations
R ∼ Pe1/2 = O(1)r. As was the case for negligible hydrodynamic interactions, the
O(φPe) diffusion enhancement in (5.3) holds for all general linear flows, but the
form of the O(φPe3/2) contribution is specific for simple shear flows.

In active microrheology, for strong hydrodynamics the outer region in which
advection and diffusion balance occurs at even larger separations R∼ Pe1r=O(1). In
this outer region, the leading-order disturbances to the mean gneq(R) and fluctuating
dneq(R) microstructure scale as Pe3 and Pe2, respectively. The reduction in the
probe self-diffusivity due to the presence of a bath particle, D11 − Da, and the
divergence of the relative diffusivity, ∇ · Dr, scale as Pe4R−4 and Pe5R−5 in this
outer region, respectively. Thus, all hydrodynamic and Brownian contributions to
force-induced diffusion from the outer solution are O(Pe4) small, indicating that the
leading-order O(Pe2) force-induced diffusion is determined solely from the inner
region. Here, thermal motion dominates microstructural evolution. The predominant
role of hydrodynamics is the indirect effect: the apparent microviscosity force thickens
and the diffusion enhancement weakens.

The opposite limit of strong flow (weak thermal forces) reveals the crucial
role of interparticle forces on determining non-Newtonian rheology and diffusion
enhancement. For a strongly sheared suspension, Brady & Morris (1997) utilize a
‘radial balance approximation’ to find a long-time self-diffusivity, (Pe−1 ≡ 0), where
interparticle interactions are governed by short-ranged excluded-annulus repulsions
offset slightly from the hydrodynamic radius, with a scaling

Ds
∞,macro(Pe� 1, κ→ 0)∼ γ̇ a2κ0.22φ. (5.4)
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The contributions in the velocity and velocity-gradient directions were found by
Brady and Morris to be identical, i.e. D11 = D22. The only non-zero ‘off-diagonal’
diffusivity component in simple shear is D12=D21: off-diagonal components involving
the vorticity direction can be shown to be zero via symmetry arguments. da Cunha
& Hinch (1996) employ trajectory analyses for rough spheres to show that the
hydrodynamic diffusion for spheres with dimensionless surface roughness given by
ε ≡ κ is approximately linear in the scaling ε0.4374(ln(1/ε) + 1.347)−0.7012 in the
range 10−4 6 ε6 10−3. The discrepancy in scales arises partially from approximations
required for each of the different solution methods. Regardless of the solution method,
both show persistence of O(φ) diffusion in all directions from an excluded annulus
of non-zero thickness.

Heavy particles sedimenting in Stokes flow under gravity exhibit an overall
reduction in settling velocity, with the nature of the hindrance dependent on the
underlying suspension microstructure. Hindered settling reduces the sedimentation
velocity proportional to USφ

1/3 for cubic lattices (Hasimoto 1959) and proportional
to USφ for randomly arranged dispersions (Batchelor 1972). In addition to hindered
mean fall speed, hydrodynamic dispersion in the direction of body forces has been
observed in suspensions as dilute as 0.0256φ6 0.10 (Ham & Homsy 1988): in their
experiments, vertical hydrodynamic dispersivity was observed to scale advectively,
by the mean sedimentation velocity 〈U〉 and the particle size a. In our study,
we determined the order-φ longitudinal probe diffusivity to scale as DaPe in the
corresponding strong hydrodynamic limit. Converting to advective quantities, the
O(φ) longitudinal force-induced diffusion is proportional to aUS, consistent with the
findings of Ham and Homsy.

For dilute dispersions, the fore–aft symmetry of relative pair trajectories in
Stokes flow prevents velocity variance transverse to mean motion. At moderate
volume fraction, three-body and higher-order interactions break symmetry and induce
perceptible horizontal dispersivity in non-Brownian suspensions. Anisotropy favours
dispersion in the direction of gravity, with vertical fluctuations observed to be nearly
twice horizontal fluctuations for semidilute dispersions where 0.056φ6 0.15 (Nicolai
et al. 1995). Koch & Shaqfeh (1991) showed that three-body and higher-order
interactions lead to a so-called ‘screening’ mechanism, which one might extend to
suggest that the longitudinal force-induced probe diffusion could decrease in the
moderately concentrated regime with increasing volume fraction: the presence of a
third particle can destabilize the tandem motion of a probe entraining a bath particle
directly along the axis of forcing, reducing the duration of the entrainment event.

The dual limits of asymptotically weak thermal motion (Pe−1≡ 0) and a vanishingly
thin excluded annulus (κ ≡ 0) defines the ‘pure hydrodynamic’ limit, a highly singular
regime studied in detail in our recent work (Hoh & Zia 2015) where we compared it
to macroscopic falling-ball rheometry (Davis & Hill 1992; Abbott et al. 1998). In this
regime, force-induced diffusion is scaled on advective quantities, namely the Stokes
velocity US and the hydrodynamic probe radius a. Physically, diffusion proportional to
aUSφ is perceptible diffusion on the scale of deterministic motion: the mean-squared
displacement from the fluctuating motion is comparable to the square of the net
displacement itself. Force-induced diffusion that scales as Da is imperceptible relative
to the mean motion in the limit Pe−1 ≡ 0.

6. Summary and concluding remarks
We have quantified the effects of hydrodynamic interactions on the fluctuating

motion of a microrheological probe and on its long-time self-diffusion, utilizing a
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statistical mechanics framework to formulate the mean and fluctuating contributions
to the probe probability flux, which then reveal the probe velocity and effective
diffusivity. The Smoluchowski equation conserves bath particle probability density and
defines governing equations for the mean and fluctuating suspension microstructure,
as it evolves with flow strength Pe and range of interparticle repulsion (strength
of hydrodynamic interactions), set by the excluded-annulus parameter κ . The
Smoluchowski equations for the mean and fluctuating microstructures were solved
analytically in the limits of weak and strong forcing, and numerically in between.
It was shown that hydrodynamic, Brownian and interparticle forces act to hinder
equilibrium probe diffusivity and enhance the flow-induced diffusion away from
equilibrium.

Bath particle contributions to the equilibrium probe self-diffusion comprise
hydrodynamic (short time) and entropic (long time) hindrances. For a dilute colloidal
suspension, the overall reduction in probe self-diffusion is linear in φth, the volume
fraction of bath particles based on their thermodynamic or excluded-volume size.
When interparticle repulsion is long ranged (κ� 1) the hydrodynamic no-slip surfaces
of the probe and bath particle are widely separated. In this weak hydrodynamics limit,
the reduction in probe self-diffusion is entirely entropic: bath particle collisions at the
minimum approach surface rmin impede the random walk of the probe uniformly in all
directions. The equilibrium probe self-diffusion in this limit approaches Da(1− 2φth),
in agreement with prior studies of entropically hindered diffusion (Lekkerkerker
& Dhont 1984; Rallison & Hinch 1986; Zia & Brady 2010). When interparticle
repulsion is short ranged (κ � 1) the no-slip surfaces are permitted to approach one
another closely. In this strong hydrodynamics limit, the equilibrium distribution of
no-slip surfaces reduces the short-time self-diffusion of the probe as Da(1− 1.83φth).
The hydrodynamic reduction in the short-time self-diffusion acts in conjunction with
Brownian drift to entropically hinder the long-time self-diffusion of Da(1 − 2.1φth).
The strong hydrodynamics limit agrees with the findings of Batchelor (1983) for
hindered diffusion of sedimenting spheres.

We propose that a perhaps more precise view of this process of equilibrium
hindrance is that long-time self-diffusion produces local density fluctuations which
are in turn smoothed by Brownian drift. Brownian drift, initially described by Ermak
& McCammon (1978) and Fixman (1978), effectively drives particles toward less
hindered configurations. We have shown that these temporary local mobility gradients
introduce deterministic character to otherwise stochastic motion. This deterministic
motion arises at the expense of weakened long-time self-diffusion.

Brownian drift scales with the thermal energy kT , with the divergence of the relative
mobility ∇ · MUF, when made dimensionless, setting the strength of deterministic
forces. One could interpret this quantity as a sort of ‘thermal’ Péclet number. As
∇ · MUF is a vector field, the Péclet number is thus configuration dependent. In
the absence of external forces, it measures the deterministic response to a density
fluctuation in the microstructure. It is a maximum when two particles are in contact,
but the pairwise mobility functions reveal that this quantity is never greater than unity.
We showed that this leads to hindrance of diffusive motion, and that deterministic
forces must be larger than thermal forces for diffusive probe scattering to be enhanced.
In another interpretation, a fixed energy kT is imparted by the suspension to any
given test particle. In the absence of other particles, the entirety of this energy acts
to maximize the random walk of the test particle. In the presence of other particles
however, part of this thermal energy is utilized to drive a closely spaced pair apart,
deterministically, leaving less energy to produce variance in particle position. The
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proportion of energy supporting deterministic motion versus stochastic motion is, in
a sense, a purely thermal Pe.

The utility of active microrheology in connecting probe fluctuations to energy
dissipation is first apparent in the linear-response regime. Through active micro-
rheology, the equilibrium probe self-diffusion is related to the linear-response apparent
microviscosity via the Stokes–Einstein relation. We showed that, modulo a constant,
the Smoluchowski equations governing the equilibrium fluctuation field and the
linear-response mean microstructure are identical for all excluded-annulus parameters.
Equivalency of the linear-response microstructure and equilibrium fluctuation field
implies that the bath particle contributions to both the equilibrium long-time
self-diffusion of the probe and the linear-response apparent microviscosity are identical
for all strengths of hydrodynamic interactions. This must be so: active microrheology
is the measurement by which one can extend the fluctuation-dissipation relation to
suspensions. The probe–bath interactions that dissipate energy from a deterministic
external force Fext via Stokes drag are identical to the interactions that hinder probe
fluctuations and diffusion from thermal forces.

Asymptotic expansions of the mean and fluctuating microstructure in Pe revealed
that the first contributions to force-induced probe diffusion scale as DaPe2φth for
all strengths of hydrodynamic interactions. Entropic contributions (Brownian and
interparticle) to force-induced diffusion arise from dipolar fluctuation fields. Positive
and negative dipole moments in the fluctuation field correspond respectively to
displacements oriented radially outward, enhancing diffusion by driving the probe
away from its current position in all directions, and radially inward, hindering the
random walk of the probe. Both the analytical and numerical solution reveal this
approximate 3 : 1 anisotropy in the force-induced diffusion holds for all strengths of
hydrodynamic interactions, at low Pe.

Also in this weakly nonlinear regime, the hydrodynamic contributions to force-
induced diffusion at O(Pe2) were found to be more nuanced than entropic fluctuations.
An apparently more viscous suspension dissipates more energy from an external
force and impedes probe motion; consequently, the indirect effect of hydrodynamic
interactions on force-induced diffusion is a reduction due to hydrodynamic force
thickening. These contributions are fully dictated by the mean microstructure: isotropic
accumulations of bath particles (monopolar disturbances) and redistribution of bath
particles from the sides to the front and back of the probe (quadrupolar disturbances)
lead to force thickening in the apparent microviscosity and, subsequently, hindered
diffusion. The direct effect of hydrodynamic interactions comes from natural variations
in the suspension: the probe moves relatively faster through solvent pockets, while it
slows down when entraining a nearby bath particle. Diffusive (stochastic) trajectories
arise from such velocity fluctuations, so the direct effect of hydrodynamics is to
enhance probe diffusion. When the external forcing is weak compared to thermal
motion, the probe cannot entrain a bath particle for too long before Brownian drift
separates the pair. Thus, the direct entrainment effect does not last long enough to
counteract the O(Pe2) force thickening in the apparent microviscosity. The overall
effect of hydrodynamic interactions at weak external forcing dampens force-induced
diffusion, and the trend is monotonic in the range of interparticle interactions rmin:
diffusion enhancement weakens as the no-slip surfaces are permitted to approach one
another more closely.

The limit Pe� 1 corresponds to external forcing much greater than thermal forces.
For finite κ , the no-slip surfaces of the probe and bath particle are permitted to
approach closer to one another. Force-induced diffusion weakens with decreasing κ
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for κ & 0.4, corresponding to a ‘collision-shielding’ effect: the frequency of entropic
collisions at the minimum approach distance decreases as long-ranged hydrodynamic
interactions deflect relative trajectories away from the thermodynamic surfaces.
Lubrication interactions become important for κ . 0.4. Collision shielding continues
to dampen transverse force-induced diffusion in this limit as fewer relative trajectories
coincide with the minimum approach surface at rmin. The reversibility of Stokes flow
dictates that transverse force-induced diffusion at O(φ) vanishes in the dual limits
Pe−1=0 and κ=0, the so-called ‘pure hydrodynamic’ limit as confirmed in our recent
work (Hoh & Zia 2015) and shown for falling-ball rheometry (Davis & Hill 1992).
The entropic effects of finite thermal motion or an excluded-volume surface offset
from the hydrodynamic radii both act to break the fore–aft symmetry of relative
trajectories. Thus, interparticle or Brownian forces are necessary for perceptible
transverse force-induced diffusion of O(φ). The longitudinal force-induced diffusion
increases for small κ because of the direct effect of hydrodynamic interactions:
when the probe entrains a bath particle, its speed deviates from its Stokes velocity
US. Random variation of the background bath particle distribution leads to velocity
fluctuations. The probe moves relatively faster through solvent pockets and relatively
slower when dragging a nearby bath particle along with it. Longitudinal force-induced
diffusion is thus non-monotonic in the range of interparticle repulsions, so the
degree of anisotropy in force-induced diffusion becomes more pronounced with very
short-ranged interparticle repulsions.

Connections were made to the non-Newtonian ‘macro’rheology of colloidal
dispersions, which is intimately tied to asymmetry in suspension microstructures
(Brady & Morris 1997; Bergenholtz et al. 2002). The same holds true for micro-
rheology: the evolution of asymmetric boundary layer and wake structures accompanies
force thinning and subsequently force thickening in the apparent microviscosity (Khair
& Brady 2006). In the absence of entropic (Brownian and interparticle) forces, these
asymmetric structures cannot form. Instead, bath particle accumulation is spherically
symmetric about the probe (Batchelor 1982) and the apparent microviscosity is
Newtonian, depending only on the relative size of the probe compared to the bath
particles (Davis & Hill 1992; Almog & Brenner 1997). Interparticle and Brownian
forces are thus sources of non-Newtonian rheology and force-induced diffusion. These
entropic forces act to break fore–aft symmetry of relative probe–bath trajectories by
hindering the ability of bath particles to approach the probe. Thermal forces lead to
Brownian drift, which is purely repulsive: the probe and bath particle tend toward
more mobile configurations as dictated by the divergence of the relative mobility,
which is monotonic in the radial separation r. Likewise, hard-sphere repulsions
offset from the hydrodynamic radius act to filter incoming bath particle density,
pushing the particles off of the trajectory defined by hydrodynamics alone. Entropic
forces thus break Stokes-flow symmetry by causing bath particles to pass the probe
farther from the line of forcing than the approach on the upstream face. It is this
symmetry breaking that leads to appreciable transverse force-induced diffusion. Indeed,
perceptible O(φ) transverse diffusion has been observed experimentally in falling-ball
rheometry (Abbott et al. 1998), where surface roughness has been proposed as one
possible source of transverse diffusion (Davis 1992).

Looking forward, the interparticle force need not be purely repulsive or conservative,
two factors which could lead to surprising changes in rheology and diffusion,
particularly in the limit of very weak Brownian motion. The former, attractive
interparticle forces, break symmetry inversely to excluded-annulus repulsions: bath
particles would be pulled off of relative trajectories closer to the probe, and would
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exit downstream to the probe along trajectories closer to the line of forcing than their
approach. Attractive forces could thus shift the spherically symmetric microstructure
to have a wake of relative bath particle accumulation, with relative depletions in front
of the probe. The latter, dissipative or frictional interparticle forces, could lead to
apparent force thickening even in the absence of thermal forces. The rate of frictional
energy dissipation is a function of the energy input; for microrheology, the energy
input is simply the applied external force. Thus, with larger energy inputs, bath
particles near contact would dissipate more energy. A larger external force would
not then proportionately increase the mean motion of the probe as predicted by
a Newtonian viscosity and Stokes drag, precisely the definition of apparent force
thickening. Fortunately, the theoretical framework developed in this work is easily
extended to both of these cases and can verify the above predictions.

Future work can address such a range of interparticle forces, connecting with, for
example, diffusive migration in colloidal gels (Zia, Landrum & Russel 2014) along
with the effects of unequal sizes of bath particle probe. A small probe forced through
a dilute dispersion of larger colloids will be slowed down more significantly during
entrainment events, so the magnitude of velocity variations should increase with
increasing relative bath particle size. Conversely, the velocity of a large probe forced
through a dilute dispersion of small bath particles will not fluctuate as greatly when
entraining a bath particle, and so the suspension resembles an effective continuum.
However, the criterion for applying a dilute theory approach is more stringent for
large probes: φ� b/a where b and a are the bath and probe radii, respectively (Zia
& Brady 2010). We expect a monotonic increase in the force-induced diffusion with
increasing relative size of the bath particles, converging on the falling-ball rheometry
predictions of Davis & Hill (1992) in the absence of thermal motion.

Finally, moving beyond the dilute limit, the fore–aft symmetry of pairwise
trajectories is broken owing to long-ranged hydrodynamic interactions with the
rest of the suspension. Thus, each pairwise encounter between the probe and a bath
particle should impart some transverse displacement, even when φ is somewhat dilute.
The dilute theory in this study can be extended to more concentrated suspensions by
determining the effective transverse ‘irreversibility’ per encounter, or an equivalent
value of the dimensionless repulsion distance κ that faithfully captures the amount
by which fore–aft symmetry is broken per pairwise encounter. Perceptible transverse
force-induced diffusion in more concentrated, hydrodynamically interacting systems
could be extended from the dilute theory in this study by interpreting curves
with a larger κ . Indeed, our preliminary Stokesian dynamics simulations of active
microrheology have shown that the transverse force-induced diffusion of hard spheres
in semi-dilute to concentrated dispersions collapses onto the dilute theory predictions
of particles with effective roughness κ of O(0.1) (Su, Chu & Zia 2015a; Su et al.
2015b).

Appendix A. Low Péclet perturbation expansion
Here we present the method for numerically solving the low Péclet fluctuation field

d. The method follows that of Khair & Brady (2006) for the steady microstructure at
low Péclet number in active microrheology, and we extend it to the fluctuation field.
We solve the Smoluchowski equations when Pe� 1 for the steady microstructure g(r):

∇ · [Pe Dr · F̂g+ Dr · ∇g] = 0, (A 1a)

r̂ · [Pe Dr · F̂g+ Dr · ∇g] = 0 at r= 2, (A 1b)
g→ 1 as r→∞, (A 1c)
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and for the fluctuation field d(r):

Pe(D11 − I) · F̂g+ 1
2 [Dr · ∇g+∇ · (Drg)] −∇ · [Pe Dr · F̂d+ Dr · ∇rd] = 0, (A 2a)

r̂ · [− 1
2 Drg+ Pe Dr · F̂d+ Dr · ∇rd] = 0 at r= 2, (A 2b)

d→ 0 as r→∞. (A 2c)

Recall from § 4.1.2 that the steady microstructure g(r) and fluctuation field d(r) may
be expanded in the Péclet number:

g0(r; Pe� 1)= 1+ Pe F̂ · r̂f1(r)+ Pe2 F̂F̂ : (r̂r̂f2(r)+ Ih2(r))+ · · ·, (A 3)

d(r; Pe� 1) = r̂d0(r)+ Pe F̂ · (r̂r̂d1(r)+ Ic1(r))

+Pe2 F̂F̂ : (r̂r̂r̂d2(r)+ r̂I2c2(r)+ I r̂b2(r))+ · · ·. (A 4)

The ordinary differential equation and boundary conditions governing f1(r) are
obtained by substituting (A 3) into (A 1) and grouping terms of O(Pe) and angular
dependence F̂ · r̂:

d
dr

[
r2G

df1

dr

]
− 2Hf1 =−r2W, (A 5a)

df1

dr
=−1 at r= 2, (A 5b)

f1→ 0 as r→∞, (A 5c)

where the function W ≡ dG/dr + 2(G − H)/r describes the radial component of the
divergence of the relative mobility. The ordinary differential equation and boundary
conditions governing f2(r) are obtained by substituting (A 3) into (A 1) and grouping
terms of O(Pe2) and angular dependence F̂F̂ : r̂r̂:

d
dr

[
r2G

df2

dr

]
− 6Hf2 =−r2Wf1 − r2G

df1

dr
+ rHf1, (A 6a)

df2

dr
=−f1 at r= 2, (A 6b)

f2→ 0 as r→∞. (A 6c)

The ordinary differential equation and boundary conditions governing h2(r) are
obtained by substituting (A 3) into (A 1) and grouping spherically symmetric terms
of O(Pe2):

d
dr

[
r2G

dh2

dr

]
=−2Hf2 − rHf1, (A 7a)

dh2

dr
= 0 at r= 2, (A 7b)

h2→ 0 as r→∞. (A 7c)

The solutions to the microstructure perturbation functions can then be utilized in
solution of the low Péclet fluctuation field (A 4). The ordinary differential equation
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and boundary conditions governing d0(r) are obtained by substituting (A 3) and (A 4)
into (A 2) and grouping terms of O(Pe0) and angular dependence r̂:

d
dr

[
r2G

dd0

dr

]
− 2Hd0 =+1

2
r2W, (A 8a)

dd0

dr
=+1

2
at r= 2, (A 8b)

d0→ 0 as r→∞. (A 8c)

Making the substitution d0(r) = −f1(r)/2 in (A 8), shows that the system governing
f1 (equation (A 5)) is identically recovered. Thus, the O(Pe0) displacement field d0(r)
for a given value of the excluded-annulus thickness κ is everywhere equal to the
first perturbation to the suspension microstructure f1(r) multiplied by −1/2. The
differential equation and boundary conditions governing d1(r) and c1(r) are obtained
by substituting (A 3) and (A 4) into (A 2) and grouping terms of O(Pe1) and angular
dependence F̂ · r̂r̂ and F̂, respectively. For d1(r), this gives

d
dr

[
r2G

dd1

dr

]
− 6Hd1 = r2Wf1 + 3

2

(
r2G

df1

dr
− rHf1

)
+ r2(xa

11 − ya
11), (A 9a)

dd1

dr
=+f1 at r= 2, (A 9b)

d1→ 0 as r→∞. (A 9c)

For c1(r), we find:

d
dr

[
r2G

dc1

dr

]
=−2Hd1 + 3

2
rHf1 + r2(ya

11 − 1), (A 10a)

dc1

dr
= 0 at r= 2, (A 10b)

c1→ 0 as r→∞. (A 10c)

The singular nature of the perturbation expansion emerges at O(Pe2) for the
fluctuation field. The far-field boundary conditions for the displacement field functions
d2(r), c2(r) and b2(r) do not decay to zero as r→∞ but rather approach constant
values of d∞2 , c∞2 and b∞2 , respectively which match to the outer solution, which
in turn decays to zero at infinite separation. The differential equation and boundary
conditions governing d2(r), c2(r), and b2(r) are thus:

d
dr

[
r2G

dd2

dr

]
− 12Hd2 =−r2Wd1 − r2G

dd1

dr
+ 2rHd1

+ 1
2

r2Wf2 + r2G
df2

dr
− 2rHf2 + r2(xa

11 − ya
11)f1, (A 11a)

dd2

dr
=+1

2
f2 − d1 at r= 2, (A 11b)

d2→ d∞2 as r→∞. (A 11c)
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For c2(r), we find:

2
(

d
dr

[
r2G

dc2

dr

]
− 2Hc2

)
=−4Hd2 − r2Wc1 − r2G

dc1

dr
− rHd1

+ 2rHf2 + r2(ya
11 − 1)f1, (A 12a)

dc2

dr
=−1

2
c1 at r= 2, (A 12b)

c2→ c∞2 as r→∞, (A 12c)

and for b2(r),

d
dr

[
r2G

db2

dr

]
− 2Hb2 =−2Hd2 − rHd1 + 1

2
r2Wh2 + r2G

dh2

dr
, (A 13a)

db2

dr
= 1

2
h2 at r= 2, (A 13b)

b2→ b∞2 as r→∞. (A 13c)

At large separations the leading-order expansions for the mobility functions are given
by

G= 1− 3
2(1+ κ)r

−1 +O(r−3), (A 14a)

H = 1− 3
4(1+ κ)r

−1 +O(r−3), (A 14b)

W = 15
2(1+ κ)4 r−5 +O(r−7), (A 14c)

xa
11 − ya

11 =−
15

4(1+ κ)4 r−4 +O(r−6), (A 14d)

ya
11 − 1=O(r−6). (A 14e)

Insertion of the mobility functions (A 14) into the (A 5), combined with a far-field
power series solution for f1(r) gives, to O(r−4):

f1(r� 2)= f∞1 r−2

+
[

3
8(1+ κ)r

−3 + 9
20(1+ κ)2 r−4

] (
3f∞1 −

5
(1+ κ)3

)
+O(r−5). (A 15)

The far field requires an adjustable parameter f∞1 denoting the leading-order dipole
strength. Far-field expressions may be found in a similar manner for the remaining
steady microstructure and fluctuation field perturbation functions.

The microstructure and deflection field can then be obtained numerically for all
separations r utilizing the ode45 solver in MATLAB. The scalar mobility functions
G, H, W, xa

11 and ya
11 are evaluated numerically: for separation distances (1 + κ)r >

1.01, the twin-multipole expansions of Jeffrey & Onishi (1984) are evaluated through
the first 300 terms, while for separation distances (1 + κ)r < 1.01 the lubrication
approximations from Kim & Karrila (1991) are utilized.
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FIGURE 8. (Colour online) (a) The O(Pe) microstructure perturbation function f1(r), and
(b) the O(Pe2) microstructure perturbation functions f2(r) and (c) h2(r) plotted as functions
of r for several values of the excluded-annulus thickness κ = (ath − a)/a. Curves darken
with increasing κ . The dashed curves are the limiting behaviour as κ→∞.
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FIGURE 9. (Colour online) (a) The O(1) fluctuation field perturbation function d0(r),
and (b) the O(Pe) fluctuation field perturbation functions d1(r) and (c) c1(r) plotted as
functions of r for several values of the excluded-annulus thickness κ = (ath− a)/a. Curves
darken with increasing κ . The dashed curves are the limiting behaviour as κ→∞.

In the absence of hydrodynamic interactions (κ→∞) at asymptotically small Péclet,
the fluctuation field d has the analytical solution found by Zia & Brady (2010):

d(r; Pe� 1) = r̂(−2r−2)+ Pe F̂ ·
(
r̂r̂
[
3r−1 − 28

3 r−3
]+ I

[− 7
3 r−1 + 28

9 r−3
])

+Pe2 F̂F̂ :
(
r̂r̂r̂
[− 5

4 + 26
3 r−2 − 44

3 r−4
]+ r̂I

[
13
6 − 272

45 r−2 + 88
15 r−4

]
+ I r̂

[
5
4 − 14

5 r−2 + 44
15 r−4

])+ · · ·. (A 16)

These analytical solutions, along with the numerical solutions for the steady
microstructure and deflection field for finite excluded-annulus thicknesses κ , are
plotted in figures 8–10. These numerical solutions for the steady microstructure and
fluctuation field in the perturbation expansions are required to compute the equilibrium
hindrance Deq and the asymptotic O(Pe2) behaviour of the force-induced diffusivity
Dflow for weak forcing.

As shown in figure 8, the microstructural perturbation function h2(r) is positive
for all excluded-annulus thicknesses. Positive values of h2(r) indicate spherically
symmetric accumulation of bath particle density at O(Pe2). The probe experiences an
O(1) reduction in its self-mobility from the presence of a bath particle, so the overall
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FIGURE 10. (Colour online) The O(Pe2) deflection field functions d2(r) (a), c2(r) (b), and
b2(r) (c) plotted as functions of r for several values of the excluded-annulus thickness κ=
(ath−a)/a. Curves darken with increasing κ . The dashed curves are the limiting behaviour
as κ→∞.

hydrodynamic force thickening effect is the product of the O(Pe2) bath particle
accumulation and the O(1) reduction in probe speed per bath particle encounter.
The perturbation function f2 simply reflects additional accumulation or depletion of
bath particle density preferentially along the line of forcing; negative values of f2
imply additional O(Pe2) depletion of particles along the line of forcing relative to the
regions transverse to the line of forcing. This preferential depletion of particles along
the axis of forcing leads to anisotropic diffusion. However, of these two effects, the
hindering monopolar effect dominates owing to a slightly larger scalar prefactor. This
h2 prefactor is identical in both the longitudinal (F̂F̂) and transverse ((I − F̂F̂)) terms
in (4.19); that is, the hindrance is isotropic.

The O(Pe2) accumulation of bath particle density hinders longitudinal and transverse
diffusion isotropically, as the contribution described by h2(r) in (4.19) is identical for
both the F̂F̂ and (I− F̂F̂) components. Slight anisotropy is evident in the flow-induced
diffusion from the redistribution of bath particles from the axis of forcing to the
sides of the probe as described by f2(r). At the level of bath particle redistribution,
transverse diffusion is affected more strongly by the probe mobility normal to the
line of centres ya

11(r) while longitudinal diffusion depends more strongly on the probe
mobility along the line of centres xa

11(r).

Appendix B. Finite difference method

Computation of the effective probe diffusion Deff for arbitrary strength of forcing
Pe and hydrodynamics κ requires numerical solution of (3.20) and (3.22) governing
the mean microstructure g and the fluctuation field d. To carry this out, we employ
a second-order finite difference solution of the Smoluchowski equation. To illustrate
this method, we present here the finite difference scheme applied to the longitudinal
fluctuation field. The numerical method for determining the transverse fluctuation
field is identical. For Pe > 1, radial gradients in the microstructure and fluctuation
field become appreciable and require careful treatment. The radial coordinate is
stretched via the transformation y=Pe(r− 2) to concentrate grid points in this region
as a boundary layer forms. In a spherical polar coordinate system with the polar
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angle θ measured from Fext (cf. figure 1), the Smoluchowski equation for the steady
microstructure g is expressed in terms of y and θ as:

Pe W(s) cos θg+ Pe2 G(s) cos θ
∂g
∂y
− Pe H(s)

sin θ
r
∂g
∂θ

+G(s)
(

Pe2 ∂
2g
∂y2
+ Pe

[
2
r
+ d ln G

dr

]
∂g
∂y

)
+ H(s)

r2

(
∂2g
∂θ 2
+ cot θ

∂g
∂θ

)
= 0, (B 1)

where s≡ (1+ κ)r. The corresponding boundary conditions are:

cos θg+ ∂g
∂y
= 0 at y= 0, (B 2a)

g→ 1 as y→∞. (B 2b)

The Smoluchowski equation for the longitudinal fluctuation field d‖ is expressed in
terms of y and θ as:

Pe W(s) cos θd‖ + Pe2 G(s) cos θ
∂d‖

∂y
− Pe H(s)

sin θ
r
∂d‖

∂θ

+G(s)
(

Pe2 ∂
2d‖

∂y2
+ Pe

[
2
r
+ d ln G

dr

]
∂d‖

∂y

)
+ H(s)

r2

(
∂2d‖

∂θ 2
+ cot θ

∂d‖

∂θ

)
= W(s)

2
cos θg+ Pe G(s) cos θ

∂g
∂y
−H(s)

sin θ
r
∂g
∂θ

+Pe ((xa
11(s)− ya

11(s)) cos2 θ + (ya
11(s)− 1))g, (B 3)

with boundary conditions:

cos θd‖ + ∂d‖

∂y
= Pe−1 1

2
cos θg at y= 0, (B 4a)

d‖→ 0 as y→∞. (B 4b)

The semi-infinite domain y ∈ [0,+∞) is mapped to the finite domain t ∈ [0, 1] via
the transform:

t= exp
(
−
[
ω+ 1−ω

1+ y

]
y
)
, (B 5)

where the distribution of grid points in real space y are tuned using the adjustable
parameter ω. The Smoluchowski equations for the steady microstructure and
fluctuation field are discretized with a central difference scheme.

For prescribed values of the excluded-annulus parameter κ ≡ rmin/2a − 1 and the
strength of forcing Pe≡ Fexta(1+ κ)/2kT the discretized Smoluchowski equation for
the steady microstructure g is first solved for a given discretization in t and θ – in
this article we present results with 1200 uniformly spaced grid points in θ and 1200
logarithmically spaced grid points in t. The solution for g is obtained utilizing the
LAPACK iterative banded solver in MATLAB. The partial derivatives ∂g/∂θ and ∂g/∂t
are then evaluated numerically at each point in the grid to determine the forcing
function on the right-hand side of the Smoluchowski equation for the fluctuation
field d‖. The Smoluchowski equation for the fluctuation field d‖ is then solved on an
identical grid to the steady microstructure g for the same values of Pe and κ . These
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solutions for g and d‖, along with the hydrodynamic mobility functions, comprise the
integrands for the equilibrium and flow-induced diffusion Dflow

‖ , which are integrated
numerically over the entire domain outside of the probe’s excluded volume utilizing
first-degree Newton–Cotes quadrature.
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