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Transport and buckling dynamics of an elastic
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We study, using both experiment and theory, the coupling of transport and shape
dynamics for elastomeric fibres moving through an inhomogeneous flow. The cellular
flow, created electromagnetically in our experiment, comprises many identical cells
of counter-rotating vortices, with a global flow geometry characterized by a backbone
of stable and unstable manifolds connecting hyperbolic stagnation points. Our
mathematical model is based upon slender-body theory for the Stokes equations,
with the fibres modelled as inextensible elastica. Above a certain threshold of the
control parameter, the elasto-viscous number, transport of fibres is mediated by
their episodic buckling by compressive stagnation point flows, lending an effectively
chaotic component to their dynamics. We use simulations of the model to construct
phase diagrams of the fibre state (buckled or not) near stagnation points in terms of
two variables that arise in characterizing the transport dynamics. We show that this
reduced statistical description quantitatively captures our experimental observations.
By carefully reproducing the experimental protocols and time scales of observation
within our numerical simulations, we also quantitatively explain features of the
measured buckling probability curve as a function of the effective flow forcing.
Finally, we show within both experiment and simulation the existence of short and
long time scales in the evolution of fibre conformation.

Key words: flow–structure interactions, low-Reynolds-number flows, slender-body theory

1. Introduction
Complex fluids come in tremendous variety – particulate and polymer suspensions,

polymer melts, liquid crystalline and liquid crystal polymer fluids, flexible fibre
suspensions and ‘active’ bacterial baths, to name only a few. While it is very
challenging to understand any of these systems, it is especially challenging when the
microstructure of a suspension has many degrees of freedom, such as flexible fibres
that can assume complex shapes through flow-induced bending and buckling. As a
fluid–structure problem, the interaction of flexible fibres with flows is very common,
arising in micro-organismal and mucal transport by flagella or cilia (Gray 2001), in
determining the shape of biofilm streamers (Rusconi et al. 2010, 2011), in the abrupt
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Increasing time
(a) (b)

Increasing time

FIGURE 1. Examples of typical transport and buckling dynamics of a fibre in a cellular
array of counter-rotating vortices and associated hyperbolic stagnation points: simulations
are shown in (a) (η= 2350) and experiments in (b) (η= 2230). Here η is the adimensional
strength of flow forcing. Time increases from red to blue in fibre colour. The circled
arrows show the counter-rotating vortices that generate the stagnation points (indicated
by black dots). The differences in the fibre shapes can be attributed to slight differences,
particular to the experimental or simulational run, in the approach of the fibres to the
stagnation point, as is explained in the text.

appearance of normal stress differences (Goto, Nagazono & Kato 1986; Zirnsak, Hur
& Boger 1994) observed in wood pulp suspensions in the paper processing industry
and in microfluidic engineering where flow control using flexible particles has recently
been explored (Attia et al. 2009; Wexler et al. 2013).

Flow-induced buckling of fibres is an important determinant of fibre transport.
While fibre buckling in elementary shear and stagnation point flows is now relatively
well understood (Becker & Shelley 2001; Young & Shelley 2007; Kantsler &
Goldstein 2012; Wexler et al. 2013; see Lindner & Shelley (2014) for a recent
review), its influence in inhomogeneous flows is much less so. The achievement of
such an understanding will be important, for example, to the eventual development of
first-principles theories of flexible fibre suspensions. As a first step in this direction,
Young & Shelley (2007) simulated the buckling-mediated transport of a flexible fibre
through a given background 2D cellular flow. This background flow comprised sets of
four counter-rotating vortices that periodically tiled the plane. They found that either
fibres became trapped within the vortices of the cellular array or moved along the
backbone of stable and unstable manifolds that connected the corresponding array of
hyperbolic stagnation points; see figure 1. In the latter case, fibre transport behaved
as a random walk with buckling of the fibre near the hyperbolic stagnation point
acting as a coin flip for determining along which branch of the unstable manifold
the fibre would depart. As a wandering fibre typically approaches the stagnation
point along its compressive direction, Young and Shelley explained the observed
buckling theoretically as arising from the instability of a nearly straight fibre under
the viscously induced compressive axial load of the locally linear hyperbolic flow.
This instability occurs beyond a critical strain rate of the linear flow, and is associated
with a U-shaped deformation mode. Successive bifurcations at higher strain rates yield
modes of higher spatial complexity.

In an experimental instantiation of this theoretical model, Wandersman et al. (2010)
created a viscous cellular flow consisting of a planar array of electromagnetically
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driven counter-rotating vortices, across which moved centimetric fibres made of a soft
elastomer. They also observed fibre trapping in vortices and, when the fluid strain-rate
was sufficiently high, transport and buckling of fibres through hyperbolic stagnation
points. Kantsler & Goldstein (2012) investigated the deformation of a micrometric
actin fibre held at a stagnation point created in a microfluidic cross-slot device where,
unlike the experiments of Wandersman et al. (2010), transport dynamics does not
play a role. They related the observed shapes to the predicted shape modes of the
linear analysis of Young & Shelley, and showed that, given their small size, thermal
fluctuations are contributory to the dynamics and have the role of smoothing out the
transition to buckling. The role of thermal fluctuations in transport across cellular
flow was further studied through simulations by Manikantan & Saintillan (2013), who
showed that thermal fluctuations tended to increase trapping of fibres into vortices,
and thus decreased transport.

The observations by Wandersman et al. (2010) identified a threshold to buckling
that showed reasonable agreement with the predictions of linear analysis in a purely
hyperbolic flow. However, these same observations also suggested that whether and
how a fibre buckled was more complex than linear theory alone could account for.
In this paper, we carry out a more detailed comparison of the computational model
of Young & Shelley (2007) and the experimental set-up of Wandersman et al. (2010).
We explore larger ranges in all experimentally controllable parameters, which extends
the range of the fundamental control parameter, the elasto-viscous number η, by
an order of magnitude above that reached in Wandersman et al. (2010) of η = 900.
We focus closely on the statistical relation between the state of the fibre entering a
compression region (position, orientation, shape) and the development of a buckled
state near the stagnation point. We show that when the simulations are performed
to more closely follow the experimental protocols, the two systems show excellent
quantitative concordance in their statistical behaviours, and that the theoretical model
provides a very good basis from which to interpret the experimental observations. We
show too that the system evinces a history dependence between buckling events that
cannot be accounted for by a simple linear theory and that has not been noted in
previous studies. In § 2 we introduce the theoretical model, the experimental set-up
and the elements of the data analysis. In §§ 3 and 4 we discuss and compare the
experimental and simulational observations.

2. Materials and methods
2.1. The theoretical model and its numerical simulation

Consider a slender fibre of radius r and length L that moves freely in a background
velocity field v(x, t). The fibre is assumed to be inextensible and elastic with flexural
rigidity B, and the fluid is described by the incompressible Stokes equations with
viscosity µ. We represent the fibre by its centreline position X(s, t), with s the
centreline arclength. For a slender fibre (i.e. ε = r/L� 1) we use local slender-body
theory (Keller & Rubinow 1976; Johnson 1980; Becker & Shelley 2001; Tornberg &
Shelley 2004; Young & Shelley 2007) to approximate its dynamics by the equations

µ̃ [X t − v(X, t)]= (
I + XsXT

s

)
((T Xs)s − BXssss) , (2.1)

Xs · X ts = 0. (2.2)

Here, µ̃= 8πµ/(−ln(ε2e)) > 0 and subscripts refer to partial differentiation. Hence
Xs is also the tangent to the fibre centreline. Equation (2.2) expresses that the
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arclength s ∈ [0, L] is a material parameter, which is a consequence of inextensibility,
and the tension T is the quantity whose determination enforces that condition. In
addition to tensile forces, we have bending forces which give rise to the high-order
term −BXssss. We assume that the fibre is ‘free’, and so have the boundary conditions
Xss|s=0,L= Xsss|s=0,L= 0 and T|s=0,L= 0. These guarantee that the fibre exerts zero net
force and torque upon the surrounding fluid.

Scaling. We assume that the background velocity field has a characteristic length scale
W and strain rate γ̇ , so that v(x, t)=Wγ̇u(x/W). We now scale space on L and time
on γ̇ −1, and set η→ µ̃γ̇L4/B and α = L/W. Equation (2.1) becomes

η
[
X t − α−1u (αX)

]= (
I + XsXT

s

)
((T Xs)s − Xssss) , (2.3)

while (2.2) and the boundary conditions remain unchanged due to their homogeneity.
Hence, the system has only two control parameters, one being the elasto-viscous
number η, which measures the flow strength relative to viscously modulated elastic
relaxation. Like a Weissenberg number it can be written as the ratio of a fibre
relaxation time τR= µ̃L4/B to a flow time scale τF= γ̇ −1. The other control parameter
is the normalized system length scale α−1.

By applying the constraint (2.2) to (2.3), and through use of some simple
differential geometric identities, we can replace (2.2) with an elliptic equation for the
tension T ,

2Tss − XT
ssXssT =−ηXT

s∇v (X) Xs − 6XT
sssXsss − 7XT

ssXssss (2.4)

(see Tornberg & Shelley 2004), for which the boundary conditions Ts=0,L = 0 are
applied.

Linear behaviour near a stagnation point. For any linear background flow, a straight
fibre with a parabolic tension distribution is an exact solution of (2.3) and (2.4). Of
particular interest here is the stability of a straight fibre moving in the plane in the
2D linear hyperbolic flow u = (x, −y). An illustrative and simple case is where the
fibre is moving along the y-axis, which is the direction of flow compression (Young
& Shelley 2007). In this case the linearized dynamics of transverse perturbations of
the straight rod is variable coefficient but autonomous (see Lindner & Shelley 2014),
and exponentially growing solutions satisfy the eigenvalue/vector relation

λf = f + sfs + 1
4

(
s2 − 1

4

)
fss − η−1fssss, (2.5)

with fss = fsss = 0 at s= 0, 1. While the variable coefficient nature prevents a closed-
form solution, one can easily solve this eigenvalue/eigenfunction problem numerically
(Young & Shelley 2007; Lindner & Shelley 2014). With an eigenvalue solver we can
track the system’s eigenvalues and eigenfunctions as η, the effective viscosity or strain
rate, is increased. For small η the straight fibre is stable to perturbations. With increase
in η we find the successive crossing to the right half-plane of eigenvalues coupled
to eigenfunctions associated with increasingly higher-order bending modes. The first
three crossings occur at η1 = 153.2, η2 = 774.3 and η3 = 1930, and the associated
eigenmodes correspond respectively to the classical U-, S- and W-shaped buckling
modes.

Numerical simulation. The two main difficulties that arise in numerically solving (2.3)
and (2.4) are the temporal stiffness induced by the high number of spatial derivatives
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and accurately maintaining curve inextensibility in the discrete setting. In this study
we will be considering 2D dynamics of the fibre in a 2D flow. In this setting both
difficulties are easily handled by reformulating the dynamics in terms of the 2D
curve’s tangent angle ν(s, t), which satisfies Xs = e(ν)= (cos ν, sin ν), where νs = κ
is the planar curvature. In terms of the tangent angle, (2.3) and (2.4) have the form

νt =−η−1νssss + g(s, t), (2.6)
2Tss − ν2

s T = R(s, t), (2.7)

with boundary conditions νs|s=0,1 = νss|s=0,1 = T|s=0,1 = 0. Here,

g= e⊥ (ν) · vs + η−1
(
9ν2

s νss + Tνss + 3νsTs
)
, (2.8)

R=−ηe (ν) · vs −
(
6ν2

ss + 7νsνsss − ν4
s

)
, (2.9)

with e(ν)= (cos ν, sin ν) and e⊥(ν)= (−sin ν, cos ν), and where vs is the arclength
derivative of the background velocity v along the fibre. In this formulation the
bending response appears through the high-order but linear term νssss, while the
function g contains nonlinear, but lower-order, terms. While the curve geometry and
its orientation are specified by ν, its absolute position is not, and so the centre-of-mass
of the curve is evolved independently.

If (2.6) were integrated forward using an explicit time-stepping method then the
bending term would induce the crippling stability constraint 1t < C1s4, where 1t
is the time step and 1s is the discretization length in s. Hence, we use a second-
order three-level (implicit) backward differentiation scheme to stably and accurately
evolve ν,

1
21t

(
3νm+1 − 4νm + νm−1

)=−η−1νm+1
ssss +

(
2gm − gm−1

)
, (2.10)

2Tm
ss −

(
θm

s

)2
Tm = Rm, (2.11)

where 1t is the time step and m refers to the time level tm = m1t. Because the
bending term is treated implicitly, (2.10) constitutes a fourth-order boundary value
problem for νm+1. We discretize these equations uniformly in s using second-order
accurate finite-difference formulae for all spatial derivatives. This includes the
boundary conditions on ν which use compact one-sided formulae and which are
applied at the (m + 1)st time level (see Tornberg & Shelley 2004). This leads to
a matrix equation for Tm on the spatial mesh, which is solved first, followed by
solution of a matrix equation for νm+1 on the spatial mesh. This is accomplished
efficiently by a sparse-matrix solver whose computational complexity scales linearly
with the number of mesh points.

Periodic cellular flow. In this study we follow Young & Shelley (2007) and consider
the doubly periodic incompressible cellular flow

u(x)= (sin x cos y,−cos x sin y). (2.12)

This cellular background flow comprises a periodic tiling of the 2D plane by a
2 × 2 array of counter-rotating vortices centred upon a hyperbolic stagnation point
whose stable and unstable manifolds separate the closed streamline vortices. The flow
structure is shown schematically in figure 1.
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Stable
manifold

Unstable
manifold

Compression
region

s

FIGURE 2. (Colour online) A schematic defining quantities associated with entry into a
compression zone. The distance b to the centre of the closest vortex is normalized by W.
The deformation λ is the ratio of the end-to-end distance and the fibre length L. Here,
θ is the angle between the end-to-end line and the stable manifold. The zone considered
in the experiments and the simulations is limited by the four streamlines (two from the
bottom and two from the top) corresponding to b= 0.8.

2.2. Experimental set-up
In our experiments an array of 4× 5 counter-rotating vortices, each of size W = 3 cm,
is created using electromagnetic forcing of a viscous electrolyte (of depth 5 mm), as
is described in detail in Wandersman et al. (2010). All our experiments are performed
in a selected region, a 3× 3 lattice of stagnation points, where boundary effects are
negligible. The electrolyte used is a 2:1 mixture of polyethylene glycol 1000 (Fluka)
and purified water, into which NaCl is added up to saturation (viscosity µ = 82 ±
5 mPa s at T = 23 ◦C, surface tension σ = 43± 1 mN m−1 and density ρe = 1.25×
103 kg m−3). The applied electric current I is tens of milliamperes.

The velocity field is measured by particle imaging velocimetry (using DAVIS
software) and the flow created in this way is very well described by an equation of
the form of (2.12), again as detailed by Wandersman et al. (2010). The experimental
flow is found to be very nearly 2D, with the divergence of the 2D surface velocity
being less than 5 % of the out-of-plane vorticity for all experiments. As detailed in
figure 2, the flow around a hyperbolic streamline is compressive along streamlines
near its incoming stable manifold (i.e. the shaded region), and extensional along
streamlines near its outgoing unstable manifold. For this inhomogeneous flow, the
compression/extension rate is maximal at the stagnation point itself, and zero at
the vortex centres. The maximal compression/extension rate in the experiments is
γ̇ =πU0(I)/W, where U0 (in m s−1) is a measured flow strength found to be linearly
proportional to the applied electric current I. In the range of velocities used, the
Reynolds number (based on the fibre length) lies in the range [0.1, 0.95]. Inertial
effects do not seem to play a major role in our findings.
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Notation Description Values Units

Fibre

r Radius 41, 62, 88, 150 µm
L Length [9.5–19.5] mm
Y Young’s modulus [20–570] kPa
ρ Density 1.1× 103 kg m−3

Flow

U0 Maximal speed [1–3.2] mm s−1

µ Viscosity 82 mPa s
ρe Density 1.25× 103 kg m−3

σe Surface tension 43± 1 mN m−1

Control parameters
Re Reynolds number [0.1–0.95]
L/r Aspect ratio [63–475]
α Normalized system length scale [0.3–0.65]
η Elasto-viscous number [25–10 000]

TABLE 1. Experimental conditions.

Experiments are performed with macroscopic fibres made from vinylpolysiloxane;
their dimensions are given in table 1. The ratio of fibre length to cell size, α =
L/W, varies from 0.3 to 0.65. The use of different samples allows us to vary the
elastic bulk modulus of the fibre from Y = 20 to 570 kPa. Determination of Y using
rheological measurements of the elastic shear modulus agreed well with independent
beam bending experiments (Quennouz 2013).

We have shown before that the fibres produced in this way float on the surface of
the electrolyte due to their lower density (Wandersman et al. 2010). More precisely,
we have shown that the fibre is exactly half immersed and there is no meniscus. As a
consequence, the motion and the deformation of the fibre are two-dimensional, being
constrained at the surface of the liquid. As the interface is not deformed, the influence
of surface tension on the dynamics of the fibre is negligible. The fact that the fibre
is only half immersed reduces the viscous forces acting on it, and the elasto-viscous
number will be corrected by a factor 1/2 for comparison with simulations.

Pictures of the fibre are taken with a digital camera (PixeLINK, 1024 × 768) at
10 f.p.s. Using standard object detection procedures (ImageJ software) the shape of
the fibre is captured from each frame. Data analysis is described in the next section.

2.3. Definitions
2.3.1. Data analysis

To study the dynamics along a fibre trajectory we define the passage of a fibre
through the compression zone (the grey region in figure 2) as an elementary event.
Both the experimental and the simulated data are treated identically. At each recorded
time we have from the shape of the fibre its centre-of-mass position, its end-to-end
distance and its angle θ between the end-to-end line and the stable manifold. The
deformation λ is the end-to-end distance normalized by the fibre length L. Hence,
if the fibre is nearly straight then λ is near unity, while if it is highly bent then λ
is small. The fibre angle is taken as positive if the angle is in the direction of the
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streamlines and negative otherwise. As an example, in figure 2 the fibre has negative
angle. From the temporal evolution of the centre-of-mass we can determine an entry
event, when the fibre passes into a compression region. It is at this time that we record
the entry distance of the fibre centre-of-mass to the centre of the neighbouring vortex
and normalize it by W/2. This normalized distance b is unity on the stable manifold,
and hence the distance of the fibre to the stable manifold is 1− b. We also record the
entry angle θ and entry deformation λ. As the fibre evolves freely, these parameters
are set only at the beginning of a trajectory (through their initial values b0, θ0 and
λ0). Along the trajectory, the position, orientation and deformation of the fibre are
determined by its dynamics.

By following the deformation of the fibre during its passage in the compression
region we can detect buckling: if the fibre deforms enough (λ< 0.8) then the event
is counted as a buckling event. The criterion λ < 0.8 was chosen such as to detect
fibres that are deformed more strongly than a typical curvature of the streamlines
(Wandersman et al. 2010). The number of buckling events is compared with the total
number of events to calculate the buckling probability. Sometimes when the fibre has
buckled in a previous event it is still substantially deformed. We do not consider such
an event and so we disregard events for which the deformation at the entry satisfies
λ < 0.88. This condition was chosen such as to ensure that fibres are sufficiently
straight when entering the compression region. It should be noted that our results,
presented in the following sections, are not very sensitive to the exact values used
for the two criteria on λ.

Because of the complex geometry of the flow we only consider an event if the fibre
enters the compression region sufficiently close to the stable manifold (i.e. b > 0.8).
This criterion allows us to consider the compression rate to be close to its maximal
value along the stable manifold.

Conditions used for simulations. Two sets of simulations are performed. For the study
of the buckling probability, we vary η from 90 to 14 000. The ratio of the length of
the fibres L compared with the cell size W is kept constant at α = L/W = 0.4. Each
value of η is run for different initial conditions (b0 = 1, 0.95, 0.9, 0.85; θ0 = 0◦, 3◦,
6◦) to obtain an ensemble of trajectories. To match the experiments, the length of the
simulations is set so that the fibres pass through a compression region on average 60
times in one trajectory, a value comparable with what is achieved in the experiments.

The second set of simulations aims to study the impact of the parameters b and
θ on the buckling. For this we perform very short simulations, each containing only
one event. The entry parameters are thus identical to the imposed initial conditions
(b0, θ0, with the fibre straight) and are varied over a large range: 0.8 6 b0 6 1 and
−30◦ 6 θ0 6 30◦.

Conditions used for experiments. In a typical experiment the fibre is positioned
initially as close as possible to the stable manifold. For the study of the buckling
probability, the fibre then evolves freely until it leaves the useful region of the
experiment. This corresponds to an average number of events comparable with the
simulations, but with a strong variation between different experiments (typically
between 1 and 200). We vary the length, radius and Young’s modulus of the fibres,
as well as the maximal flow speed (see table 1).

To study the effect of the initial conditions, a specific set of experiments is
performed with η = 2350 and L = 12.5 mm, corresponding to α = 0.4. The initial
conditions b0 and θ0 are varied over a large range, comparable with the simulations.
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FIGURE 3. Buckling probability as a function of η for both experiments (black squares)
and simulations (green triangles). The error bars are the inverse of the square root of
the number of corresponding trajectories. In the insets are typical shapes of fibres for
various values of η, including those at which the first, second and third buckling modes
are observed (η= 175, 4075 and 8350 respectively). Theoretically predicted onset values
for the first, second and third buckling modes (η1 ≈ 153.2, η2 ≈ 774.3 and η3 ≈ 1930
respectively) are shown as vertical lines. For both experiment and simulations, the buckling
probability is only constructed for entry events where b > 0.8. We estimate the error on
the buckling probability from the number of events, N, through 1/

√
N.

3. Buckling
3.1. Buckling probability

Figure 1 shows the transport and deformation of an elastic fibre in a viscous cellular
flow, using one example from simulation (a) and another from experiment (b). For
both, similar observations are made: the fibre is transported across the cellular network
and along its path enters into successive compression regions. There, it interacts with
the stagnation point flow, possibly deforming and buckling, and then exits. Our
experiments show that the elasto-viscous number η controls the buckling probability.
This probability shows a slow increase from zero only after η has exceeded a
particular value. One might expect that since increasing η corresponds to increasing
the flow strength, buckling would become highly probable for large η. However, for
the ranges of η studied in Wandersman et al. (2010) the buckling probability does
not reach a saturated value at the highest values of η used, much less approach unity.

In this study we significantly extend the range of the experimental parameters, in
particular the fibre radius, length and bending modulus, and the flow viscosity and
speed. This allows us to study the system at higher values of η (see table 1). The
buckling probability obtained from these new experiments is shown in figure 3 as
a function of η, averaged over all experimental conditions. A slow increase in the
buckling probability is observed above a value of η ≈ 175. This is somewhat larger
than the threshold value to linear instability, η1 = 153.2, in a linear hyperbolic flow
(vertical line in figure 3). It should be noted that this slight discrepancy does not
arise from the fact that the fibre does not spend enough time in the compression
zone for the buckling to occur, as there is only one time scale (W/U0) in our system
corresponding to a typical residence time in the compression zone as well as to the
inverse of the compression rate. The onset of positive probability is followed by an
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increase and saturation to an apparent limiting probability of approximately 0.4, well
below unity. The shape of the experimental probability curve as a function of η is
quite robust for our experiments, and within the range of parameters used in these
experiments little influence is seen of the fibre aspect ratio ε, the ratio α of fibre
length to cell size or the Reynolds number.

Figure 3 also shows measurements of the buckling probability gleaned from an
ensemble of numerical simulations, where both the initial fibre location and the
orientation are varied. Their general agreement with experiment is surprisingly good.
The simulations agree closely with the observed initial onset and rise of probability,
though they yield a probability saturation level that is slightly higher than that in
experiment. The simulations also show higher variability at high η than the experiment.
It is worth noting here that the experimental estimate of the onset value of η could
not be accounted for by linear theory without using the fact that viscous forces act
only upon the immersed half of the floating fibre. Indeed, in our previous study
(Wandersman et al. 2010) the onset value was calculated without this correction,
yielding an onset value twice as large (350) as the present estimate.

3.2. The modes of deformation
Also displayed in figure 3 are experimentally observed sample shapes of fibres moving
in compression regions. At small values of η the fibres remain nearly straight. As
η is increased U-shaped buckling modes are first observed, as discussed above, at
about η = 175, which is above the first linear threshold to instability at η1 = 153.2.
As η is increased, the U-shaped modes persist, but both the second and third modes,
S- and W-shaped, also appear successively. They are first observed at approximately
η = 4075 and η = 8350 respectively. These values are substantially larger than those
predicted by the linear theory: η2 ≈ 774.3 and η2 ≈ 1930 (vertical lines in figure 3)
respectively. A particularly large number of experiments were performed around the
first onset to buckling. For the higher-order modes, fewer experimental observations
were made close to their predicted threshold values of η. This difference may explain
why the higher-order modes were observed only for significantly larger values of η
(where their probability of appearance is presumably larger).

Kantsler & Goldstein (2012) also observe these buckling modes in their experiments
on micron-scale actin fibres kept near the stagnation point of a cross-slot flow
microfluidic device. As is observed here, the first transition to a U-shaped buckling
mode is well captured by linear theory (despite the influence of thermal fluctuations).
As is also observed here, the successive higher-order modes appear at successively
higher values of flow forcing, although the precise onset of their appearance relative
to the predictions of linear theory is unreported. The free transport of the fibre
between compression regions in our set-up markedly increases the richness of the
dynamics. As we show here, the appearance of buckling depends strongly on the
entry conditions of the fibre into the compression region, and these entry conditions
have a clear history dependence on the fibre’s previous encounters with compression.

4. Transport
We now investigate the influence of fibre transport through the system upon fibre

buckling, and will show that the structure of the buckling probability curve reflects
the complex dependences of buckling upon entry conditions and history.

Two types of dynamics are typically observed at long times in both simulation
and experiment. Examples are shown in figure 4(a,b,e,f ). In one dynamical state,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

11
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.115


Transport and buckling dynamics of an elastic fibre 397

0 250 500 750

0.5

1.0

t (a.u.)
0 500

t (a.u.)
250 750

0 10 20 30

0.5

1.0

t (s)
0 10 20 30

t (s)

0 1 2 3

1

2

3
Trajectories

–10 0 10
0

5

10

15

20

0 1 2 3
0

1

2

3

x

y

y

0 2 4 6

0

2

4

6

x

(a) (b) (c) (d)

(e) ( f ) (g) (h)

FIGURE 4. Examples of trajectories and corresponding time evolution of b (blue), λ (red)
and θ (green): (a–d) show the simulation, (e–h) show the experiment. For the simulation:
(a) shows a trapped fibre (η= 1200), (b) shows a meandering fibre (η= 350), (c) shows
the evolution of entry values for the trapped fibre and (d) shows the evolution for the
meandering fibre. For the experiment: (e) shows a trapped fibre (η = 3500), (f ) shows a
meandering fibre (η= 260), (g) shows the evolution of entry values for the trapped fibre
and (h) shows the evolution for the meandering fibre. The red and blue dots in (a,b,e,f )
mark the beginning (red) and end (blue) of the fibre orbits.

the fibre is trapped within a vortex (a,e) and roughly follows the closed streamline
flow within. In the other dynamical state the fibre instead meanders across the lattice
of vortices (b,f ), transitioning from orbits about one vortex to orbits about another.
Which of these two states is observed depends, in a non-trivial way, upon the fibre
initial conditions b0 and θ0, and the control parameter η. In the simulations, under
certain conditions, a staircase-like motion of the fibre across the vortical array is also
observed (not shown), although rarely. This dynamics is not observed in experiments,
perhaps because of the small test section of the vortical array.

For the trapped fibres, as is suggested by our examples, both b and θ can show
oscillatory behaviours, essentially about a steady mean, that can span several passages
through compression regions (figure 4c,g). For those fibres with trajectories across the
array, the parameters b, θ and λ (defined in figure 2) can also show oscillations, but
also tend to evolve dynamically over long times (see figure 4d,h). For example, the
distance 1− b to the stable manifold often decreases over long time scales (i.e. note
the increase of b towards unity in the simulation example). Further, the angle θ often
shows an oscillating behaviour between negative and positive values, with large jumps
from negative to positive values, which defines the beginning of an oscillation. Our
observation is that in many cases a buckling event is preceded by an entry event
where θ is sufficiently negative, and hence inclined against the flow streamlines, to
yield buckling. Buckling then produces a positive θ for the next entry, and it requires
several passages before the entry angle becomes negative enough again for the fibre to
buckle. While this is especially apparent for the simulations, the experiments (which
are noisier) show the same basic feature.
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FIGURE 5. Maps of buckling and not buckling in the b0–θ0 parameter space for η= 145,
350, 700, 1400, 2000 and 3500 (a–f ). Blue denotes buckling and red no buckling in the
ensuing event.

We note that there is very little variation in λ, and in most cases it can be neglected.
We recall that we do not include events where the fibre is still strongly deformed upon
entry.

5. Transport and buckling dynamics
Obviously the dynamics is very complicated, and an understanding of the origins

of this complexity is beyond the scope of the present work. However, we find that a
great deal can be learnt by quantifying the relation of buckling to temporal evolution
of the entry values of b and θ (and neglecting λ as being comparatively unimportant).

To unambiguously study the influence of the entry values of b and θ on buckling
events during passage near a stagnation point, we performed a series of very short
simulations with each consisting of only one entry event. We fixed the parameters at
entry by setting the initial conditions b0 and θ0 (with a straight fibre, i.e. λ0= 1) and
then determined whether buckling took place or not in the ensuing event. In this way
we constructed the ‘phase diagrams’ (buckling versus non-buckling events) shown in
figure 5, in the b0–θ0 parameter space, for increasing values of η. These maps are
obtained from simulations, as it is far easier to explore the large range of parameters
there.

With increasing η the regions in the b0–θ0 parameter space where buckling takes
place (coloured in blue) change. No buckling is observed below the analytically
predicted buckling threshold, and the region where buckling takes place increases in
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FIGURE 6. (a) Map of buckling as a function of b0 and θ0 at the event entry for η= 2350.
Experiments are represented by closed symbols (red squares, no buckling; blue down
triangles, buckling) and simulations by open symbols (light red circles, no buckling; light
blue up triangles, buckling). (b) Three simulated trajectories for different values of b0 and
θ0, superposed upon the previous map. The lines reflect the time-dependent evolution of
b and θ . Each point has been coloured depending on buckling (blue) or no buckling (red)
in the ensuing event.

extent with increasing η. In all cases, buckling only takes place for negative entry
angles, except for fibres lying very close to the stable manifold, where the sign of θ
is not very meaningful (as the sign is determined relative to the closest vortex, which
is now somewhat ambiguous).

From a time-consuming set of experiments we also obtained a similar set of data
for one value of η above threshold (η = 2350) (figure 6a). For these measurements
the fibre was carefully positioned at varying distances from the stable manifold and
varying initial angles, and released. We then recorded whether buckling took place
during the ensuing event. Despite the many differences between the experimental set-
up (use of finite-thickness fibres, an approximation of the background flow and a
finite test section) and the simulations (use of local slender-body theory and an infinite
system), we nonetheless found a good quantitative agreement between them. Thus, we
will consider that the results obtained from the simulations are also valid in describing
the experiments.

We now investigate which parts of these maps are explored by fibres during
transport, and whether the maps are predictive of buckling events. In figure 6(b)
we have superimposed on the map temporal sequences of entry values (b, θ) from
trajectories of fibres released from three different initial conditions (b0, θ0). Generally,
a fibre spends time in regions of the phase diagram where buckling takes place, as
well as in regions where no buckling takes place. Moreover, the phase diagram is
a very good predictor as to whether the fibre actually buckles following the entry
event.

That both buckling and no buckling regions are visited, even for values of η well
above the buckling threshold, is in agreement with our finding that the maximal
observed buckling probability is significantly less than unity. That fibres buckle (or
not) where the map predicts confirms that we are looking at the right variables. Only
when the fibre is very close to the stable manifold (b ∼ 1) are some discrepancies
observed (not visible from figure 6). Those rare buckling events that take place in
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regions where no buckling is predicted can be attributed to a deformation λ that
differs from unity. In this case, and only in this case, the deformation plays a role.

To obtain the buckling probability, we can disregard the temporal evolution, and
simply count the number of buckling events compared with the total number of events.
We found it useful to classify the different events in terms of the entry values b and
θ . In the following we choose to sort the different events simply based on the value
of b.

For η= 2350, figure 7 shows the histograms of angles θ over given ranges of b for
simulations (a) and experiments (b). The vertical red lines bound the region where
buckling takes place according to the phase diagram in figure 5. One observes that
the distribution of angles narrows as the fibre approaches the stable manifold (i.e. b
approaches 1). At the same time an increasingly large proportion of the entry angles
lie within the region where buckling is observed. As a consequence, the buckling
probability increases as b approaches unity, as can be seen from figure 7(a,b), which
shows the buckling probability from experiments and simulations as a function of
b for this special value of η. It should be noted again that the exact value of the
probability results from the combination of the parameter space map indicating where
buckling takes place and the values of θ actually explored at a given b. The buckling
probability from the simulations reaches 1 for b ∼ 1. This is not observed in the
experiments as a perfect alignment of the fibre with the stable manifold is probably
not possible.

We now have all the elements needed to understand the shape of the probability
curve presented in figure 3. First, the buckling probability increases with increasing
η due, in part, to the fact that the region in the b–θ parameter space where buckling
can take place becomes larger with increasing η. The exact shape of the probability
curve as a function of η is given by the distribution of b and θ (and to a lesser extent
λ) during the trajectories of the fibres through the cellular flow. This link between the
transport dynamics and the buckling of the fibre explains the smooth increase of the
probability curve as well as the fact that the overall probability curve does not reach
unity. It also shows the added complexity afforded by transport.

Underlying the apparent simplification gained by parametrizing the dynamics in
terms of b itself is that the dynamics of θ is fast (only a small number of events
are needed to sample through the different values) while the dynamics of b is slow.
Hence, running experiments (or simulations) over different time scales can lead
to different results in the overall buckling probability. Here, we achieved a good
agreement between experiments and simulations because we matched both the initial
conditions and the temporal lengths of the fibre trajectories.

6. Conclusion

In this paper we have studied the link between the transport and the buckling
dynamics of an elastic fibre moving in a viscous cellular flow. We combined an
experimental study using a centimetric fibre made from a soft elastomer in an
electromagnetically driven viscous flow together with a computational study based on
the dynamics of a slender Euler–Bernoulli elastic fibre moving in a Stokesian fluid. In
both cases, the fibre is freely transported through an array of counter-rotating vortices
and experiences a compressive load when approaching the hyperbolic stagnation
points created by the vortex array. Buckling of the fibre leads to complex transport
dynamics of the fibre through the array. A linear stability analysis describes the
threshold of a buckling instability as a function of a non-dimensional viscosity (the
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FIGURE 7. (a) Distribution of angles θ for different ranges of b (0.80 6 b< 0.85, 0.85 6
b< 0.90, 0.90 6 b< 0.95, 0.95 6 b< 0.97, 0.97 6 b< 0.99, 0.99 6 b< 1) from simulations
(a) and experiments (b) for η = 2350. The red vertical lines indicate the regions where
buckling takes place. (c) Corresponding buckling probability from simulations (green) and
experiments (black) as a function of b, chosen as the average value of each range of b.

elasto-viscous number η). We showed that even above the buckling threshold, the
fibre does not buckle with each passage near a stagnation point. We rationalized this
observation by taking into account the fibre state when approaching the stagnation
point. Buckling of a fibre depends not only upon the control parameter η but also
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upon its entry distance and orientation to the unstable manifold. By simply taking
into account these two parameters, fibre buckling can be quantitatively predicted.

These entry parameters are a consequence of the previous history of transport
and buckling of the fibre through the array of stagnation points. In further studies
it would be worthwhile to gain an understanding of the origins of the complex
transport dynamics. The study of this simple model problem has revealed complex
fibre dynamics that can only be explained by taking into account the coupling between
deformation and transport. In the future this fundamental understanding should be
useful to the understanding of even more complex flow situations.
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