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Abstract
This paper proposes a novel autonomous navigation method for Mars-orbiting probes. Satellite-to-satellite tracking
(SST) between two probes is generally deemed to involve autonomous measurements with no dependence on any
external observation sites on the Earth. For the conventional two-body dynamic model, it is well known that the
orbit states cannot be estimated by merely using such SST measurements. Considering the effects of third-body
gravitation perturbation and the weak Mars tesseral harmonics perturbation, autonomous navigation with SST
measurements alone becomes weakly observable and may be achieved by some nonlinear filtering techniques. Two
significant improvements are made to mitigate the nonlinearity brought by the dynamic models. First, singularity-
avoiding orbit elements are selected to represent the dynamic models in order to reduce the intensity of the
nonlinearity which cannot be overcome by the traditional position–velocity state expression. Second, the unscented
Kalman filter method is effectively utilised to avoid the linearised errors calculated by its extended Kalman filter
counterpart which may exceed the tesseral harmonics perturbation. A constellation, consisting of one low-orbit
probe and one high-orbit probe, is designed to realise the autonomous orbit determination of both participating
Mars probes. A reliable navigation solution is successfully obtained by Monte Carlo simulation runs. It shows that
the errors of the semimajor axes of the two Mars probes are less than 10 m and the position errors are less than 1 km.

1. Introduction

Autonomous navigation has become more and more urgent with the need to determine the orbit of
interplanetary spacecraft (Sanderson, 2010; Thisdell, 2013; Xin et al., 2013; Karimi and Mortari, 2015;
Carreau, 2016; Steffes and Barton, 2017; Jiang et al., 2018). The flight course of Mars probes usually
consists of three stages, namely the cruising stage, the Mars-capturing stage and the Mars-orbiting stage.
For autonomous navigation at the Mars-orbiting stage, satellite-to-satellite tracking (SST) in addition to
other measurements can usually be observed for some time span to estimate the constellation navigation
solution effectively (Liu and Liu 2001; Hill et al., 2006; Hill and Born, 2007; Hill and Born, 2008; Ma
et al., 2015). A Kalman-like filter is the typical onboard computation scheme, wherein the dynamic
models described by the state set consisting of position and velocity components are conventionally
utilised in the Cartesian frame (Hill and Born, 2007, 2008; Ma et al., 2015; Ning et al., 2016). At the
cruising stage, a probe orbiting the Sun generally possesses a time span of more than several months.
For such a long-day cruising flight, the state set in the Cartesian frame above has weak nonlinearity
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for its slow orbit variation. The weak nonlinearity is equally valid at the Mars-capturing stage, wherein
the orbit period is no more than several hours and the flight path can be linearly approximated well in
such a short time span. However, the orbit period of Mars probes at the Mars-orbiting stage often varies
from several hours to several days, which leads to some intensive nonlinearity (Doody, 2009; Martin-
Mur et al., 2014). In the three sets of navigation scenarios above, the extended Kalman filter (EKF) is
implemented for effective calculation, which has to rely on the observation of SST combined with other
measurements. Unfortunately, the intensive nonlinearity occurring at the Mars-orbiting stage, especially
for low-orbit probes, makes the dynamic models expressed by the position–velocity state set above
fail in the EKF implementation under the condition where only SST measurements are available. The
nonlinearity is caused by the rapid alteration of position and velocity components in one orbit period.
The accumulated linearised errors in a relatively large measurement step can make the EKF computation
fail to obtain a high-precision navigation solution. The nonlinearity brought by the dynamic models
can however be solved by some nonlinear filter techniques, such as the unscented Kalman filter (UKF)
method (Ma et al., 2015, 2017).

An alternative state selection described by the Kepler orbit elements, i.e. semimajor axes, eccentricity,
orbit inclination, ascending nodes, argument of perigee and mean anomaly, can effectively mitigate the
intensive nonlinearity occurring in the dynamic models at the Mars-orbiting stage as compared with the
position–velocity state expression. For Kepler orbit elements, the reduced nonlinearity benefits from
the fact that the mean anomaly is the unique rapidly altering variable compared with the six equally
altering position–velocity elements. Consequently, the linearised errors are significantly reduced and
thus the navigation solution relies less on the computation steps. Unfortunately, as the eccentricity and
orbit inclination approach zero, the singularity problem cannot be avoided in dynamic models which
are expressed by the standard Kepler orbit elements. Thus revised dynamic models are proposed in this
paper by use of singularity-avoiding orbit elements, which have been applied well to Earth-orbiting
spacecraft (Chobotov, 2002; Tapley et al., 2004).

Another issue affecting the autonomous navigation of Mars probes is the state observability of all
participating probes when only SST measurements are available. Simple two-body dynamic models,
namely considering only the central gravitation of Mars, cannot be utilised to estimate the orbit states of
a pair of probes in such SST-alone measurement scenarios (Liu and Liu, 2001). To improve the observ-
ability of orbit states effectively, more dynamic constraints have to be added to the two-body problem.
Hill and Born (2007) found that a spacecraft, orbiting on the L1 and L2 Lagrange points respectively,
can experience significant third-body acceleration and thus the orbit states become observable. Xiong
et al. (2014) also utilised the crosslink range measurements between two spacecraft, orbiting the Earth
and the Moon respectively, to estimate the absolute orbit states. These two trials illustrate that the
orbital state observability mainly depends on the assignable third-body attraction in addition to the SST
measurements. But the rigorous requirement of remote inter-spacecraft ranges always makes the SST
measurements intractable in the onboard calculation implementation, especially for two Mars-orbiting
probes. In this sense, the nonspherical perturbation of Mars is a naturally good substitute for third-body
attraction as some dynamic constraints for the following two reasons. On the one hand, the components
of tesseral harmonics in the nonspherical perturbation have obvious area-related asymmetry which has
some perturbation effects on Mars probes. On the other hand, the Mars tesseral harmonic components
are much greater than in the case of Earth (Lemoine et al., 2001), and thus can be readily sensed by the
SST measurements. Besides, this dynamic constraint relaxes the rigorous range requirement between
two Mars probes. This paper focuses on utilisation of the tesseral harmonic perturbation of Mars as well
as the SST measurements to obtain a better navigation solution for two Mars probes. Another impor-
tant issue addressed in this paper is the selection of singularity-avoiding orbit elements to address the
problems of smaller eccentricities and inclination in the UKF computation.

This paper is organised as follows. Section 2 presents the dynamic models with singularity-avoiding
orbit elements associated with the SST measurement models. Section 3 analyses the tesseral harmonic
perturbation which is considered as the main dynamic constraint. Simulation tests and the corresponding
navigation solution are reported in Section 4. Conclusions and discussion are drawn in Section 5.
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2. Autonomous navigation implementation

2.1. Dynamic models using singularity-avoiding orbit elements

For Mars probes, dynamic models are usually established in the J2000.0 Mars-centre Mars-equator
orientating frame. These dynamic models are expressed as

�𝒓 = 𝒂0 + 𝒂ns + 𝒂nbody + 𝒂srp + 𝒂drag + 𝒂𝜀 (1)

where 𝒂0 denotes the central gravitation of Mars, 𝒂ns denotes the nonspherical perturbation of Mars,
𝒂nbody denotes the third-body gravitation perturbation from the Sun and other major planets, 𝒂srp denotes
the solar radiation pressure perturbation, 𝒂drag denotes the atmosphere drag perturbation especially for
the low-orbit Mars probe, and 𝒂𝜀 denotes the other much smaller perturbation which can be ignored.
For more detailed expression of the different gravitation and perturbation, see Ma et al. (2015).

In the dynamic models above, the state set is obviously selected as the position and velocity com-
ponents. However, the intensive nonlinearity manifested by all the six elements above, readily makes
the linearised errors of dynamic models calculated by the conventional EKF computation exceed the
weak perturbation of tesseral harmonics or the third-body gravitation. By this consideration, the state
set can be selected as the Kepler orbit elements and some other combination of Kepler orbit elements.
The classical Kepler orbit elements are defined by six elements, i.e. semimajor axes, eccentricity, orbit
inclination, right ascending nodes, argument of perigee and mean anomaly, respectively denoted by the
following state vector (Chobotov, 2002; Tapley et al., 2004).

𝝈0 : 𝑎, 𝑒, 𝑖,Ω, 𝜔, 𝑀 (2)

These six elements cannot describe the exact orbit states well, especially for the two follow-
ing singularity problems. Firstly, the argument of perigee is ambiguous for near-circular orbits with
smaller eccentricities. Secondly, the ascending nodes also become inconclusive as the orbit inclination
approaches zero. Considering these two kinds of singularities, the state selection of classical Kepler
orbit elements cannot be effectively utilised in general to describe the dynamic models.

An alternative expression is the selection of singularity-avoiding orbit elements, which has been
well applied to the approximating-circle orbits for Earth-orbiting spacecraft. Singularity-avoiding orbit
elements are defined as follows (Liu, 1977).

𝝈1 : 𝑎, 𝑖,Ω, 𝜉 = 𝑒 cos𝜔, 𝜂 = 𝑒 sin𝜔, 𝜆 = 𝜔 + 𝑀 (3)

The state expression in Equation (3), which avoids the singular eccentricity problem, can also be
equivalently used to describe the dynamic models of Mars probes. Besides, the singular orbit inclination
problem can be successfully avoided by selecting some reference plane other than the conventional
Mars-equator-orientating plane, such as the Earth-equator-orientating plane. Even as the orbit plane of
Mars probes approaches the Earth-equator plane, the reference plane can be subsequently altered by
selecting the Mars-centred Mars-equator-orientating plane or the Mars-centred ecliptic plane instead of
that in the singular cases.

The dynamic models for each Mars probe, described by the singularity-avoiding orbit elements, are
established as follows

�𝝈1,𝑘 = 𝑓 (𝝈1,𝑘 , 𝑡), (𝑘 = 1, 2) (4)
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The explicit expression for the 𝑘 − th probe is given as the following Gaussian perturbation equation
(Liu, 1977).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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√

1 − 𝑒2
𝑘
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(5.2)

where 𝑎𝑘,𝑋 denotes the in-plane forward perturbation, 𝑎𝑘,𝑌 denotes the normal-plane perturbation and
𝑎𝑘,𝑍 denotes the in-plane radial perturbation. Correspondingly, the orbital frame is defined with each
axis pointing to the direction of perturbation acceleration above.

For the 𝑘 − th Mars probe, the position vector, velocity vector and acceleration vector are denoted
respectively by 𝒓𝑘 , �𝒓𝑘 and �𝒓𝑘 . The absolute acceleration of Mars probes in the inertial frame equals the
sum of centre-body gravitation and all of the perturbation acceleration as follows

�𝒓𝑘 = −
𝜇MARS

𝒓3
𝑘

+ 𝑪𝑇
𝑘

[
𝑎𝑘,𝑋 𝑎𝑘,𝑌 𝑎𝑘,𝑍

]𝑇 (6)
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Thus the perturbation acceleration, which needs to be substituted into the dynamic models, can be
readily obtained as

[
𝑎𝑘,𝑋 𝑎𝑘,𝑌 𝑎𝑘,𝑍

]𝑇
= 𝑪𝑘

(
�𝒓𝑘 +

𝜇MARS

𝒓3
𝑘

)
(7)

where the direction cosine matrix 𝑪𝑘 transforms the perturbation acceleration in the inertial frame to
that in the orbital frame. The row elements of 𝑪𝑘 can be readily computed as

⎧⎪⎪⎨⎪⎪⎩
𝑪𝑘 (3, :) = −𝒓𝑘/|𝒓𝑘 |
𝑪𝑘 (2, :) = −𝒓𝑘 × �𝒓𝑘/|𝒓𝑘 × �𝒓𝑘 |
𝑪𝑘 (1, :) = 𝑪𝑘 (2, :) × 𝑪𝑘 (3, :)

(8)

For more details about other notations in Equations (5.1) and (5.2), readers are recommended to refer
to the explanation by Liu (1977).

2.2. Observation models based on SST measurements

The SST measurements are usually selected as the relative range and Doppler measurements (𝜌 and �𝜌)
between two Mars probes. For the SST measurements, the line of sight between the two probes may be
obscured by Mars in some time span. Hence, the SST measurements can only be utilised in the visible
observation segments. The observation equation is readily given as

𝒚 =
[
𝜌 �𝜌

]𝑇
= ℎ(𝝈1,𝑘 , 𝑡), (𝑘 = 1, 2) (9)

where the relative range and Doppler measurements are described as follows (Ma et al., 2015)

𝜌 = | |𝒓1 − 𝒓2 | | =
√
(𝑥1 − 𝑥2)

2 + (𝑦1 − 𝑦2)
2 + (𝑧1 − 𝑧2)

2 (10)

�𝜌 =
(𝒓1 − 𝒓2) · ( �𝒓1 − �𝒓2)

𝜌
=

(𝑥1 − 𝑥2)( �𝑥1 − �𝑥2) + (𝑦1 − 𝑦2)( �𝑦1 − �𝑦2) + (𝑧1 − 𝑧2)( �𝑧1 − �𝑧2)√
(𝑥1 − 𝑥2)

2 + (𝑦1 − 𝑦2)
2 + (𝑧1 − 𝑧2)

2
(11)

The orbit states for each Mars probe, i.e. 𝒓𝑘 and �𝒓𝑘 , are obtained from the conventional transformation
of classical Kepler orbit elements of 𝝈0,𝑘 , which can be readily solved from the singularity-avoiding
orbit elements of 𝝈1,𝑘 (Chobotov, 2002; Tapley et al., 2004).

2.3. The UKF estimation method

According to the aforementioned dynamic models and SST measurement models, the UKF estimation
method is selected to accomplish the autonomous navigation calculation. The state transition matrix of
dynamic models and Jacobi matrix of SST measurement models, which are inevitable requisites in EKF,
are not needed in UKF. Instead, the mean and covariance of probability distributions are propagated
by some appropriate weighted sample points, named as sigma points, which can be obtained by the
unscented transformation (UT) (Julier and Uhlmann, 1997, 2004). The intensive nonlinearities occurring
in the dynamic models and SST measurement models can be faithfully described by these sigma points.
Thus the UKF estimator can yield an estimation performance equivalent to the KF for linear systems
but generalise elegancy to nonlinear systems without the linearisation steps required by the EKF.

The primary calculation scheme in UKF is described as follows.
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Step 1 Construct the sigma points by UT as follows.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝝌0 = 𝒙 𝑗 𝑤0 =
𝜅

𝑛 + 𝜅

𝝌𝑖 = 𝒙 𝑗 +
(√

(𝑛 + 𝜅)𝑷𝑥𝑥

)
𝑖

𝑤𝑖 =
1

2(𝑛 + 𝜅)

𝝌𝑖+𝑛 = 𝒙 𝑗 −
(√

(𝑛 + 𝜅)𝑷𝑥𝑥

)
𝑖
𝑤𝑖+𝑛 =

1
2(𝑛 + 𝜅)

(12)

Assuming that the state of 𝒙 follows Gaussian distribution, a heuristic selection of 𝑛 + 𝜅 = 3 is
always recommended. In the filtering implementation, 𝑛 = 12 and 𝜅 = −9; 𝑤𝑖 denotes the weight factor
associated with the 𝑖 − th sigma point.

Step 2 Transform the sigma points through the dynamic models by some numerical integration, such
as the RK7(8) integration, as follows.

𝝌𝑖, 𝑗+1 | 𝑗 = 𝑓 (𝝌𝑖) (13)

Step 3 Propagate the state estimation and the covariance matrix as follows.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝒙 𝑗+1 | 𝑗 =

2𝑛∑
𝑖=0
𝑤𝑖 𝝌𝑖, 𝑗+1 | 𝑗

𝑷𝑥𝑥, 𝑗+1 | 𝑗 =
2𝑛∑
𝑖=0
𝑤𝑖 (𝝌𝑖, 𝑗+1 | 𝑗 − 𝒙 𝑗+1 | 𝑗 )(𝝌𝑖, 𝑗+1 | 𝑗 − 𝒙 𝑗+1 | 𝑗 )

𝑇 +𝑄 𝑗

(14)

where 𝑄 𝑗 denotes the unmoulded process noise.
Step 4 Predict the observation and the covariance matrix as follows.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝒚 𝑗+1 | 𝑗 =

2𝑛∑
𝑖=0
𝑤𝑖𝜰 𝑖, 𝑗+1 | 𝑗 =

2𝑛∑
𝑖=0
𝑤𝑖ℎ(𝝌𝑖, 𝑗+1 | 𝑗 )

𝑷𝑦𝑦, 𝑗+1 | 𝑗 =
2𝑛∑
𝑖=0
𝑤𝑖 (𝜰 𝑖, 𝑗+1 | 𝑗 − 𝒚 𝑗+1 | 𝑗 )(𝜰 𝑖, 𝑗+1 | 𝑗 − 𝒚 𝑗+1 | 𝑗 )

𝑇 + 𝑅 𝑗+1

(15)

where 𝑅 𝑗+1 denotes the observation noise.
Step 5 Calculate the Kalman gain matrix as follows.

𝑲 𝑗+1 = 𝑷𝑥𝑦, 𝑗+1 | 𝑗𝑷
−1
𝑦𝑦, 𝑗+1 | 𝑗 = 𝑷−1

𝑦𝑦, 𝑗+1 | 𝑗

2𝑛∑
𝑖=0
𝑤𝑖 (𝝌𝑖, 𝑗+1 | 𝑗 − 𝒙 𝑗+1 | 𝑗 )(𝜰 𝑖, 𝑗+1 | 𝑗 − 𝒚 𝑗+1 | 𝑗 )

𝑇 (16)

Step 6 Update the estimated state and the covariance matrix as follows.{
𝒙 𝑗+1 = 𝒙 𝑗+1 | 𝑗 + 𝑲 𝑗+1(𝒚 𝑗+1 − 𝒚 𝑗+1 | 𝑗 )

𝑷𝑥𝑥, 𝑗+1 = 𝑷𝑥𝑥, 𝑗+1 | 𝑗 − 𝑲 𝑗+1𝑷𝑦𝑦, 𝑗+1 | 𝑗𝑲
𝑇
𝑗+1

(17)

3. Analysis of Mars nonspherical perturbation

The potential function of the Mars nonspherical perturbation is usually expressed by the following
spherical harmonic equation (Chobotov, 2002; Tapley et al., 2004), which is similar to the Earth
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nonspherical perturbation.

𝑉 =
𝜇Mars

𝑟

{
∞∑
𝑛=2
𝐶̄𝑛,0

(
𝑅Mars

𝑟

)𝑛
𝑃̄𝑛 (sin 𝜑)

+

∞∑
𝑛=2

𝑛∑
𝑚=1

(
𝑅Mars

𝑟

)𝑛
𝑃̄𝑛𝑚 (sin 𝜑)(𝐶̄𝑛𝑚 cos𝑚𝜆 + 𝑆𝑛𝑚 sin𝑚𝜆)

}
(18)

where 𝑃̄𝑛 (sin 𝜙) and 𝑃̄𝑛𝑚 (sin 𝜙) denote the normalised Legendre and association of Legendre function
respectively, 𝐶̄𝑛,0 denotes the normalised coefficients of zonal harmonics, 𝐶̄𝑛𝑚 and 𝑆𝑛𝑚 denote the
normalised coefficients of tesseral harmonics, 𝑅Mars denotes the Mars equatorial radius, 𝜆 and 𝜑 denote
the longitude and latitude respectively in the Mars-centred Mars-fixed frame, and r denotes the distance
from the centre of Mars to the probe.

According to the potential function in Equation (18), the Mars nonspherical perturbation can be
calculated by the following expression (Chobotov, 2002; Tapley et al., 2004).

𝒂𝑛𝑠 =
𝜕𝑉

𝜕𝒓
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑉

𝜕𝑥

𝜕𝑉

𝜕𝑦

𝜕𝑉

𝜕𝑧

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=
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·
𝜕𝜆

𝜕𝑥

𝜕𝑉

𝜕𝑟
·
𝜕𝑟

𝜕𝑦
+
𝜕𝑉

𝜕𝜑
·
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𝜕𝑦
+
𝜕𝑉

𝜕𝜆
·
𝜕𝜆

𝜕𝑦

𝜕𝑉

𝜕𝑟
·
𝜕𝑟

𝜕𝑧
+
𝜕𝑉

𝜕𝜑
·
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𝜕𝑧
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𝜕𝜆
·
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(19)

The explicit expression for each partial derivative above is respectively given as follows.

𝜕𝑟

𝜕𝑥
=
𝑥

𝑟
,
𝜕𝑟

𝜕𝑦
=
𝑦

𝑟
,
𝜕𝑟

𝜕𝑧
=
𝑧

𝑟
(20)

𝜕𝜑

𝜕𝑥
= −

𝑥𝑧

𝑟2
√
𝑥2 + 𝑦2

,
𝜕𝜑

𝜕𝑦
= −

𝑦𝑧

𝑟2
√
𝑥2 + 𝑦2

,
𝜕𝜑

𝜕𝑧
=

√
𝑥2 + 𝑦2

𝑟2 (21)

𝜕𝜆

𝜕𝑥
=

−𝑦√
𝑥2 + 𝑦2

,
𝜕𝜆

𝜕𝑦
=

𝑥√
𝑥2 + 𝑦2

,
𝜕𝜆

𝜕𝑧
= 0 (22)

𝜕𝑉

𝜕𝑟
= −

𝜇Mars

𝑟2

[
∞∑
𝑛=2

(𝑛 + 1)𝐶̄𝑛,0

(
𝑅Mars

𝑟

)𝑛
𝑃̄𝑛 (sin 𝜑) +

∞∑
𝑛=2

𝑛∑
𝑚=1

(𝑛 + 1)𝑃̄𝑛𝑚 (sin 𝜑)𝑇𝑛𝑚

]
(23)

𝜕𝑉

𝜕𝜑
=
𝜇Mars

𝑟

[
∞∑
𝑛=2
𝐶̄𝑛,0

(
𝑅Mars

𝑟

)𝑛
𝜕𝑃̄𝑛 (sin 𝜑)

𝜕𝜑
+

∞∑
𝑛=2

𝑛∑
𝑚=1

𝜕𝑃̄𝑛𝑚 (sin 𝜑)
𝜕𝜑

𝑇𝑛𝑚

]
(24)

𝜕𝑉

𝜕𝜆
=
𝜇Mars

𝑟

∞∑
𝑛=2

𝑛∑
𝑚=1

𝑃̄𝑛𝑚 (sin 𝜑)
𝜕𝑇𝑛𝑚
𝜕𝜆

(25)

𝑇𝑛𝑚 =

(
𝑅Mars

𝑟

)𝑛
(𝐶̄𝑛𝑚 cos𝑚𝜆 + 𝑆𝑛𝑚 sin𝑚𝜆) (26)

𝜕𝑇𝑛𝑚
𝜕𝜆

= 𝑚

(
𝑅Mars

𝑟

)𝑛
[𝑆𝑛𝑚 cos𝑚𝜆 − 𝐶̄𝑛𝑚 sin𝑚𝜆] (27)

It is indicated from Equation (26) that the item of 𝑇𝑛𝑚 is related to the tesseral harmonics of 𝐶̄𝑛𝑚

and 𝑆𝑛𝑚, but has no association with the zonal harmonics of 𝐶̄𝑛,0. As is subsequently shown from
Equations (23)–(25), the perturbation acceleration in the distance and latitude dimensions depends on
both the zonal and tesseral harmonics, but in the longitude dimension it depends only on the tesseral
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Table 1. Coefficients of the Mars GMM-2B models.

n m Cnm Snm

2 0 −8·75× 10−4 0·00
2 1 1·39× 10−10 1·70× 10−10

2 2 −8·42× 10−5 4·96× 10−5

3 0 −1·19× 10−5 0·00
3 1 3·91× 10−6 2·51× 10−5

3 2 −1·59× 10−5 8·49× 10−6

3 3 3·53× 10−5 2·51× 10−5

4 0 5·13× 10−6 0·00
4 1 4·23× 10−6 3·74× 10−6

4 2 −1·03× 10−6 −8·96× 10−6

4 3 6·45× 10−6 −2·73× 10−7

4 4 9·64× 10−8 −1·29× 10−5

harmonics. According to this conclusion, no matter how the time span of SST measurements grows,
the ascending nodes of the two probes, which are closely related to the longitude dimension, are still
indistinguishable by the zonal harmonics perturbation. On the contrary, the effects of tesseral harmonic
perturbation on the probes are related to the SST measurement segments. In other words, the absolute
orbit states depend closely on the tesseral harmonic perturbation in different areas on Mars. Owing to
this dependence, the ascending nodes may be recognised in theory for two probes.

As is well known, the nonspherical perturbation of Earth has the same expression as that of Mars in
Equation (19). For Earth-orbiting spacecraft, the perturbation coefficient of 𝐶̄2,0, which is the principal
zonal harmonics perturbation, is no more than 10−3, but the tesseral harmonic perturbation is less than
10−6 (Vallado, 2013). Obviously, the tesseral harmonic perturbation is much smaller than that in the
zonal harmonics case, for which the absolute orbit states of two spacecraft can hardly be obtained by
using SST measurements alone in a relatively short time span. Fortunately, the Mars tesseral harmonic
perturbation is relatively greater than that of the Earth. A widespread gravitational-field model of Mars
called the GMM-2B model (Lemoine et al., 2001) is listed in Table 1. As can be seen from Table 1, most
of the coefficients below the 4-by-4 degree-and-order are greater than 10−5, which makes the tesseral
harmonic perturbation have more obvious effects on the low-orbit Mars probes. Besides, for the high-
orbit Mars probes, the tesseral harmonic perturbation will become much smaller for greater distances,
but the solar gravitational perturbation is still not to be ignored and can be also selected as an additional
dynamic constraint relating to its absolute orbit states. For example, the solar gravitational perturbation
on the probe, with an orbit altitude of more than 20,000 km, is greater than 10−5, which is the typical
magnitude for the central gravitation of Mars. Thus in the third-body problem including both the
gravitation of Mars and the Sun, the absolute orbit states are also observable in the prerequisite of SST-
alone measurements. In these two senses above, the observability of absolute orbit states is relatively
improved for autonomous navigation by Mars probes, no matter which constellation is designed, i.e.,
one low-orbit probe and one high-orbit probe, two low-orbit probes or two high-orbit probes. Due to this
improved observability, an inevitable benefit of obtaining the precise navigation solution by observing
the SST measurements in a short time span becomes a prospective manner of autonomous navigation
for Mars probes.

Another troublesome issue, inhibiting the implementation of computation of autonomous navigation
effectively, is overcoming the nonlinearity manifested by the dynamic models. In fact, in both cases of
nonspherical gravitation perturbation and third-body gravitation perturbation, the absolute orbit states
are weakly estimable using the SST measurements alone. As for the EKF estimation, the linearised
errors of dynamic models may exceed the nonspherical gravitation perturbation or the third-body
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Figure 1. Predictive position and velocity errors by the 32-by-32 GMM-2B model.

gravitation perturbation. The resulting failed EKF computation of orbit states is usually solved by
turning to its UKF counterpart. As is well acknowledged (VanDyke et al., 2004; Daum, 2005), only the
first-order approximation of nonlinear models can be achieved by the EKF method, whereas the UKF
mode approaches the nonlinear dynamic models with the second-order errors still preserved. By this
consideration, the precise navigation solution may be obtained by the UKF computation method while
only SST measurements between two Mars probes are available.

Additionally, the infinite degrees and orders of nonspherical perturbation models in Equation (18)
need to be truncated for the numerical calculation. For the GMM-2B model, the calculation of the
most precise position and velocity states can usually be implemented by the 80-by-80 degree-and-order
model at most, which can certainly be selected as the referenced prototype. Too small degree-and-
order truncated nonspherical perturbation models may degrade the SST measurements. For instance,
the predictive position errors of Mars-orbiting probes with an altitude of 300 km in the time span of two
days can reach the magnitude of more than 1 km by the 32-by-32 degree-and-order model, which can
be clearly seen from Figure 1.

Other comparison of predictive velocity and position errors with the referenced prototype, respec-
tively by the 50-by-50, 60-by-60 and 70-by-70 degree-and-order truncated models, is also depicted in
Figures 2 and 3. The position errors in the time span of two days are less than 50 m, 40 m and 10 m
respectively for the corresponding truncated model. The velocity errors in the same time span are less
than 0·05 m/s, 0·04 m/s and 0·01 m/s, respectively. In such scenarios, the least 70-by-70-order model
has to be selected for the coincidence with the predictive requirement of position errors less than 10 m
in two days.

4. Simulation and results

4.1. Simulation scenarios

Simulation scenarios for validating the proposed method of autonomous navigation are described by
two Mars-orbiting probes: one low-orbit probe and one high-orbit probe. The orbit states of these two
Mars probes need to be fictionalised to calculate the SST measurements. The initial epoch is set at UTC
time 2020-01-01 0:00:0.00. For the low-orbit probe, the orbit parameters of 3,696 km, 0·005 and 5° are
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Figure 2. Predictive position errors by higher-order truncated GMM-2B models.

Figure 3. Predictive velocity errors by higher-order truncated GMM-2B models.

respectively selected for the semimajor axis, the eccentricity and the inclination. As a comparison, the
semimajor axis is set at 20,000 km, the eccentricity is set at 0·001 and the inclination is set at 75° for the
high-orbit Mars probe. The initial orbit states of these two Mars probes are further described in Table 2.

According to the initial orbit states in Table 2, the referenced orbit evolution of the two Mars probes can
be calculated by using high-precision dynamic models dominated by the central gravitation of Mars, the
80-by-80 degree-and-order nonspherical perturbation, the third-body gravitation perturbation, the solar
radiation pressure perturbation and the drag pressure perturbation. In calculating the orbit evolution,
the RKF7(8) numerical integration algorithm is applied to the orbit propagation for 30 days for the
considered dynamic models. Based on the orbit evolution of the two Mars probes, the relative range and
Doppler measurements, with a sampling rate of 1 min, can be directly calculated as a temporal series.
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Table 2. Initial orbit states of two Mars probes.

Mars probes Orbit elements Position (m) Velocity (m/s)

Low-orbit a= 3696 km X=−1,244,924·79 VX= 3212·73
e= 0·005 Y=−3,454,247·67 VY=−1153·38
i= 5·000° Z=−246,730·43 VZ=−190·96

High−orbit a= 20,000 km X=−10,627,897·28 VX=−1216·04
e= 0·001 Y= 2,671,971·73 VY=−407·01
i= 75·000° Z= 16,707,993·88 VZ=−707·83

Figure 4. Visible segments in one-day time span.

The root mean square errors of 10 m and 0·1 m/s are respectively added to the true SST measurements.
The selected random errors are equally suitable for the current SST measurements in the real navigation
scenarios.

4.2. Visibility analysis

For the SST measurements, the line of sight between the low-orbit and the high-orbit probe may
be obscured by Mars in some time spans. SST measurements are certainly generated in the visible
observation segments. The invisible segments may lead to some time delay in the convergence of the
navigation solution, but the final navigation solution can still be obtained only by the visible observation
segments. The visible segments of the SST measurements in a one-day time span are described in
Figure 4.

4.3. Navigation results

With SST measurements alone, autonomous navigation based on the UKF computation is respectively
accomplished by two kinds of dynamic models. No matter what dynamic models are utilised, the
initial position and velocity errors are respectively selected as 5,000 m and 3 m/s for the low-orbit Mars
probe, and 20,000 m and 1 m/s for the high-orbit Mars probe. For the first dynamic model described
by the position–velocity state and the 80-by-80 degree-and-order nonspherical gravitation perturbation,
the navigation errors are shown in Figures 5 and 6. As is clearly illustrated, no divergence occurred
in the observed position and velocity, and the navigation errors are almost identical with the initial
errors. Thus the UKF method failed for the position–velocity state selection even though the 80-by-80
degree-and-order model was utilised.

For the second dynamic model described by the singularity-avoiding orbit elements, the 32-by-32,
50-by-50, 70-by-70 and 80-by-80 degree-and-order nonspherical perturbation are respectively analysed.

https://doi.org/10.1017/S0373463322000029 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463322000029


The Journal of Navigation 487

Figure 5. Position errors by the 80-by-80 degree-and-order model.

Figure 6. Velocity errors by the 80-by-80 degree-and-order model.

Due to the randomness of measurement noises, 10 sets of Monte Carlo simulation runs are implemented
respectively for the different degree-and-order models above. For a brief description, only the navigation
position errors, which are calculated by averaging the daily position errors in the whole time span of 30
days, are graphically shown as follows.

As can be drawn from Figures 7–14, more accurate navigation solutions can be obtained by the
higher degree-and-order models. Select one arbitrary set of Monte Carlo simulation runs respectively
by different degree-and-order models above as the error comparison. This conclusion can be graphically
shown as in Figures 15–18. Additionally, the numerical statistics of navigation errors in the converged
time span which is selected from the third to the 30th days are described in Table 3.
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Figure 7. Position errors by the 32-by-32 model for the low-orbit Mars probe.

Figure 8. Position errors by the 32-by-32 model for the high-orbit Mars probe.

As can be drawn from Table 3, the navigation accuracy can be significantly improved as the higher
degree-and-order nonspherical perturbation model is utilised for both the low-orbit and high-orbit Mars
probes. For the 32-by-32 and 50-by-50 degree-and-order models, insufficient model accuracy leads to
relatively larger errors of the navigation solution than those in the other two higher degree-and-order
cases. Besides, the differences of position and velocity errors can be nearly negligible for the 70-by-70
and 80-by-80 degree-and-order models. In both cases, the position and velocity errors are respectively
less than 100 m and 0·1 m/s for the low-orbit Mars probe. The position and velocity errors are respectively
smaller than 500 m and 0·1 m/s for the high-orbit Mars probe.

Thus, for the purpose of real-time calculation, some tradeoff has to be made between the calculation
costs and the model degree-and-order numbers. The average calculation time of 10 sets of Monte Carlo
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Figure 9. Position errors by the 50-by-50 model for the low-orbit Mars probe.

Figure 10. Position errors by the 50-by-50 model for the high-orbit Mars probe.

runs is 3,285·349 s, 6,789·364 s, 12,594·907 s and 16,366·194 s respectively for the 32-by-32, 50-by-50,
70-by-70 and 80-by-80 degree-and-order models. From this viewpoint, the 70-by-70 degree-and-order
model is the optimal candidate. In such an optimal model case, the errors of semimajor axes are less than
1 m and 10 m respectively for the low-orbit and high-orbit Mars probes, which can be typically applied to
some special Mars-probing missions. Meanwhile, the orbit inclination and ascending nodes are both less
than 0·0015°, which can also be regarded as excellent confirmation of the precise navigation solution.
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Figure 11. Position errors by the 70-by-70 model for the low-orbit Mars probe.

Figure 12. Position errors by the 70-by-70 model for the high-orbit Mars probe.

4.4. Some special simulation scenario and navigation results

In the preceding simulation scenario, two Mars probes lie in different orbital planes, namely with
different orbit inclinations. The navigation results are thus obtained in a general sense. The constellation’s
geometrical configuration may have some effects on the navigation solution. As a special geometrical
configuration, these two Mars probes are set to lie in the same orbital plane and the navigation solution
is further explored. In this simulation trial, the initial states of the low-orbit Mars probe are changed
but the high-orbit probe remains unchanged. For the low-orbit probe, the eccentricity is set at 0·001
and the inclination is set at 75°. Its semimajor axis is still set at 3,696 km. Thus the low-orbit Mars
probe has the same orbit parameters except the flight height as the high-orbit Mars probe. The Monte
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Figure 13. Position errors by the 80-by-80 model for the low-orbit Mars probe.

Figure 14. Position errors by the 80-by-80 model for the high-orbit Mars probe.

Carlo simulation runs above are repeatedly implemented in this special navigation scenario. For a brief
description, the same conclusion can still be drawn as the aforementioned navigation scenario, which is
vividly illustrated from the navigation errors listed in Table 4.

It can be drawn from Tables 3 and 4 that the position and velocity errors in the two simulation
scenarios are almost equivalent for the 70-by-70 degree-and-order model. But the errors of semimajor
axes in the latter scenario are less than 1 m for both the low-orbit and high-orbit Mars probes. According
to the statistics, the constellation configuration, including one low-orbit and one high-orbit Mars probe,
has better estimation performance in the special navigation scenario. Besides, as the random errors in
simulation scenarios are selected as 10 m/s and 0·1 m/s respectively for relative ranges and Doppler
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Figure 15. Position errors by different models for the low-orbit Mars probe.

Figure 16. Velocity errors by different models for the low-orbit Mars probe.

measurements, which can be easily fulfilled by the current SST measurements, the navigation results
above are expected to be fully obtained even in real scenarios.

5. Conclusion and discussion

Autonomous navigation is vital for the current Mars-probing missions. This paper proposes a promising
autonomous navigation manner which mainly focuses on tesseral harmonics in the Mars nonspherical
perturbation. The main contribution of this paper is summarised as follows.
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Figure 17. Position errors by different models for the high-orbit Mars probe.

Figure 18. Velocity errors by different models for the high-orbit Mars probe.

1. It reveals that third-body gravitation perturbation and Mars tesseral harmonics perturbation, which
are added to the conventional two-body dynamic model, make autonomous navigation with SST
measurements alone become weakly observable. The weak observability of absolute orbit states
makes the EKF computation fail in obtaining the precise navigation solution. The UKF
computation then has to be employed to accomplish the autonomous navigation because the
linearised errors calculated by its EKF counterpart may exceed the tesseral harmonics perturbation.

2. Dynamic models expressed by the singularity-avoiding orbit elements are firstly proposed for the
Mars probes. The selection of singularity-avoiding orbit elements can attenuate the intensive
nonlinearity of dynamic models which cannot be effectively addressed by the position–velocity state
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Table 3. Statistics of navigation errors by different degree-and-order models.

Mars probe
Degree-

and-order
Position

(m)
Velocity

(m/s)
Semimajor
axes (m)

Orbit
inclination

(°)
Ascending
nodes (°)

Low-orbit 32× 32 1188·276 1·106 1·807 1·935× 10−3 1·917× 10−2

50× 50 608·851 0·565 0·646 2·315× 10−4 1·089× 10−2

70× 70 77·816 0·072 0·522 1·083× 10−4 1·274× 10−3

80× 80 43·117 0·041 0·518 4·757× 10−5 7·343× 10−4

High-orbit 32× 32 6208·649 0·443 13·435 1·437× 10−3 1·688× 10−2

50× 50 3018·351 0·223 6·685 2·333× 10−4 1·019× 10−2

70× 70 383·183 0·028 6·611 1·047× 10−4 1·281× 10−3

80× 80 211·401 0·016 6·604 4·794× 10−5 7·321× 10−4

Table 4. Statistics of navigation errors by different degree-and-order models in the special case.

Mars probe
Degree-

and-order
Position

(m)
Velocity

(m/s)
Semimajor
axes (m)

Orbit
inclination

(°)
Ascending
nodes (°)

Low-orbit 32× 32 1210·011 1·126 2·491 3·549× 10−3 2·102× 10−2

50× 50 204·976 0·191 0·771 1·711× 10−3 2·947× 10−3

70× 70 62·537 0·058 0·146 3·184× 10−4 1·028× 10−3

80× 80 23·204 0·022 0·041 8·199× 10−5 3·696× 10−4

High-orbit 32× 32 6335·704 0·467 6·579 2·454× 10−3 2·225× 10−2

50× 50 1091·829 0·081 0·701 1·462× 10−3 3·236× 10−3

70× 70 331·816 0·025 0·273 2·561× 10−4 1·047× 10−3

80× 80 122·698 0·009 0·139 8·354× 10−5 3·726× 10−4

expression. A reliable navigation solution can only be obtained by utilising such dynamic models.
Through the tradeoff between the calculation costs and the model degree-and-order numbers, the
70-by-70 degree-and-order dynamic model is optimal for the real-time calculation onboard.

3. The effects of the geometrical configuration of the constellation on the autonomous navigation
performance are investigated. When two Mars probes lie on the same orbital plane, which is a
special flight scenario, a more accurate navigation solution can be obtained.

The simulation results reveal that the navigation solution in the time span of 30 days, with semimajor
axis errors of less than 10 m in a general sense and less than 1 m in some special scenarios, can
be effectively obtained in the case where the SST measurements alone are available. The acceptable
navigation solution validates the effectiveness and availability of the newly proposed autonomous
navigation manner.

The major limitation that deeply affects the navigation accuracy is the dynamic model of the nonspher-
ical perturbation of Mars. For more recent dynamic models relying on the rapidly increasing observation
data at a larger scale (Hirt et al., 2012; Genova et al., 2016), the nonspherical perturbation of Mars may
provide more accurate tesseral harmonics and thus better navigation solutions than in the GMM-2B
case. Additionally, although the simulation results indicate that the nonlinearity can be overcome well
by the depiction of converged navigation errors, theoretical analyses as some further consideration may
still be needed to approve the weak observability of orbit states in the UKF computation framework.
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