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1. Introduction

It is an interesting question to ask under which conditions on the underlying space
M there exist entire non-constant bounded solutions u : M → R to the minimal
graph equation

div
∇u√

1 + |∇u|2 = 0 (1.1)

or to the p-Laplace equation

div(|∇u|p−2∇u) = 0. (1.2)

Namely, in R
n there is the famous Bernstein theorem which states that entire

solutions of (1.1) are affine for dimensions n � 7. Moreover, entire positive solutions
in R

n are constant in all dimensions by the celebrated result due to Bombieri,
De Giorgi, and Miranda [2]. For the p-harmonic equation (1.2) the situation is
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the same as for the harmonic functions, that is, entire positive solutions in R
n are

constants, the reason being the validity of a global Harnack’s inequality.
If the underlying space is changed from R

n to a Cartan-Hadamard manifold
with sufficiently negative curvature, the situation changes for both equations. The
existence results have been proved by studying the so-called asymptotic Dirichlet
problem. If M is an n-dimensional Cartan-Hadamard manifold, it can be com-
pactified by adding a sphere at infinity, ∂∞M , and equipping the resulting space
M̄ := M ∪ ∂∞M with the cone topology. With this compactification M̄ is home-
omorphic to the closed unit ball and ∂∞M is homeomorphic to the unit sphere
S

n−1. For details, see [12]. The asymptotic Dirichlet problem can then be stated as
follows: Given a continuous function θ : ∂∞M → R, find a function u ∈ C(M̄) that
is a solution to the desired equation in M and has ‘boundary values’ θ on ∂∞M .

Recently the asymptotic Dirichlet problem for minimal graph, f -minimal graph,
p-harmonic and A-harmonic equations has been studied for example in [5–8,18,22,
23,32,33], where the existence of solutions was studied under various curvature
assumptions and via different methods. In [8] the existence of solutions to the
minimal graph equation and to the A-harmonic equation was proved in dimensions
n � 3 under curvature assumptions

−
(
log r(x))2ε̄

r(x)2
� K(Px) � − 1 + ε

r(x)2 log r(x)
, (1.3)

where ε > ε̄ > 0, Px ⊂ TxM is a 2-dimensional subspace, x ∈M\B(o,R0), and
r(x) = d(o, x) is the distance to a fixed point o ∈M . In [18] it was shown that
in the case of A-harmonic functions the curvature lower bound can be replaced by
a so-called pinching condition

|K(Px)| � C|K(P ′
x)|,

where C is some constant and Px, P
′
x ⊂ TxM . One of our main theorems shows that

in the above result the upper bound for the curvatures is (almost) optimal, namely,
we prove the following.

Theorem 1.1. Let M be a complete Riemannian manifold with asymptotically non-
negative sectional curvature and only one end. If u : M → R is a solution to the
minimal graph equation (1.1) that is bounded from below and has at most linear
growth, then it must be a constant. In particular, if M is a Cartan-Hadamard man-
ifold with asymptotically non-negative sectional curvature, the asymptotic Dirichlet
problem is not solvable.

The notion of asymptotically non-negative sectional curvature (ANSC) is defined
in definition 2.1. It is worth pointing out that we do not assume, differing from
previous results into this direction, the Ricci curvature to be non-negative; see for
example, [9–11,29].

Our theorem gives immediately the following corollary.
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Corollary 1.2. Let M be a complete Riemannian manifold with only one end and
assume that the sectional curvatures of M satisfy

K(Px) � − C

r(x)2
(
log r(x)

)1+ε

for sufficiently large r(x) and for any C > 0 and ε > 0. Then any solution u : M →
[a,∞) with at most linear growth to the minimal graph equation (1.1) must be
constant.

The main tool in the proof of theorem 1.1 is the gradient estimate in proposition
3.1, where we obtain an upper bound for the gradient of a solution u of the minimal
graph equation in terms of an appropriate lower bound for the sectional curvature of
M and the growth of u. Under the assumptions in theorem 1.1 we obtain a uniform
gradient upper bound that enables us to prove a global Harnack’s inequality for
u− infM u.

It is well-known that a global Harnack’s inequality (for positive solutions) can
be iterated to yield Hölder continuity estimates for all solutions and, furthermore,
a Liouville (or Bernstein) type result for solutions with controlled growth.

Corollary 1.3. Let M be a complete Riemannian manifold with asymptotically
non-negative sectional curvature and only one end. Then there exists a constant
κ ∈ (0, 1], depending only on n and on the function λ in the (ANSC) condition
such that every solution u : M → R to the minimal graph equation (1.1) with

lim
d(x,o)→∞

|u(x)|
d(x, o)κ

= 0

must be constant.

Before turning to the existence results, we mention two closely related results
by Greene and Wu [15]. Firstly, in [15, theorems 2 and 4] they show that an n-
dimensional, n �= 2, Cartan-Hadamard manifold with asymptotically non-negative
sectional curvature is isometric to R

n. Secondly, in [15, theorem 2] they show
that an odd dimensional Riemannian manifold with a pole o ∈M and every-
where non-positive or everywhere non-negative sectional curvature is isometric to
R

n if lim infs→∞ s2k(s) = 0, where k(s) = sup{|K(Px)| : x ∈M, d(o, x) = s, Px ∈
TxM two-plane}.

We point out that our results differ from those theorems of [15] (besides the
methods) since we do not assume the existence of a pole or the manifold to be simply
connected, and the (ANSC) condition allows the sectional curvature to change a
sign. Moreover, in the following theorems we will see that, in order to get the result
of Greene and Wu, it is necessary to assume lim infs→∞ s2k(s) = 0 for all of the
sectional curvatures and not only for the radial ones.

Concerning the existence results, we prove that, at least in the rotationally sym-
metric case, the curvature upper bound can be slightly improved from (1.3). We
also point out that the proof of theorem 1.4 is very elementary compared with the
ones in [8] concerning the general cases.
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Theorem 1.4 (= corollary 4.2). Let M be a rotationally symmetric n-dimensional
Cartan-Hadamard manifold whose radial sectional curvatures outside a compact set
satisfy the upper bounds

K(Px) � − 1 + ε

r(x)2 log r(x)
, if n = 2 (1.4)

and

K(Px) � − 1/2 + ε

r(x)2 log r(x)
, if n � 3. (1.5)

Then the asymptotic Dirichlet problem for the minimal graph equation (1.1) is
solvable with any continuous boundary data on ∂∞M . In particular, there are
non-constant bounded entire solutions of (1.1) in M .

The rotationally symmetric 2-dimensional case was previously considered in [28],
where the solvability of the asymptotic Dirichlet problem was proved under the
curvature assumption (1.4).

In § 4 we consider the existence of bounded non-constant p-harmonic functions
and prove the following.

Theorem 1.5 (= corollary 4.4). Let M be a rotationally symmetric n-dimensional
Cartan-Hadamard manifold, n � 3, whose radial sectional curvatures satisfy the
upper bound

K(Px) � − 1/2 + ε

r(x)2 log r(x)
.

Then the asymptotic Dirichlet problem for the p-Laplace equation (1.2), with p ∈
(2, n), is solvable with any continuous boundary data on ∂∞M .

We point out that the case p = 2 reduces to the case of usual harmonic functions,
which were considered under the same curvature assumptions in [27]. It is also worth
noting that our curvature upper bound is optimal in a sense that asymptotically
non-negative sectional curvature would imply a global Harnack’s inequality for the
A-harmonic functions and hence also for the p-harmonic functions, see for example,
[20, example 3.1]. Also, the upper bound of p is optimal for this curvature bound,
namely in theorem 5.1 we show that if

KM (Px) � − α

r(x)2 log r(x)

and p = n, the manifold M is p-parabolic for all 0 < α � 1, and if p > n, then M is
p-parabolic for all α > 0. We want to point out that all entire positive p-harmonic
functions or, more generally, positive A-harmonic functions (of type p) on M must
be constant if M is p-parabolic.

2. Preliminaries and definitions

We begin by giving some definitions that are needed in later sections. For the
terminology in this section, we mainly follow [16,20,25].

https://doi.org/10.1017/prm.2018.134 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2018.134


Minimal graphic and p-harmonic functions 345

Let (M, g) be a complete smooth Riemannian manifold. If C ⊂M is a compact
set, then an unbounded component of M\C is called an end with respect to C.
We say that M has finitely many ends if the number of ends with respect to any
compact set has a uniform finite upper bound.

If σ is a smooth positive function on M , we define a measure μ by dμ = σ2dμ0,
where μ0 is the Riemannian measure of the metric g. We will use the notation (M,μ)
for the weighted manifold. The weighted Laplace operator Δμ is a second-order
differential operator on M defined as

Δμf = σ−2 div(σ2∇f) = divμ(∇f), (2.1)

where ∇ is the gradient and div the divergence with respect to the Riemannian
metric g. We call divμ the weighted divergence.

Definition 2.1. We say that

(ANSC) M has asymptotically non-negative sectional curvature if there exists
a continuous decreasing function λ : [0,∞) → [0,∞) such that∫ ∞

0

sλ(s) ds <∞,

and that KM (Px) � −λ(d(o, x)) at any point x ∈M ;

(EHI) the weighted manifold (M,μ) satisfies the elliptic Harnack inequality if
there exists a constant CH such that, for any ball B(x, r), any positive
weighted harmonic function u in B(x, 2r) satisfies

sup
B(x,r)

u � CH inf
B(x,r)

u;

(PHI) the weighted manifold (M,μ) satisfies the parabolic Harnack inequal-
ity if there exists a constant CH such that, for any ball B(x, r),
any positive solution u to the weighted heat equation in the cylinder
Q := (0, t) ×B(x, r) with t = r2 satisfies

sup
Q−

u � CH inf
Q+

u,

where

Q− = (t/4, t/2) ×B(x, r/2), and Q+(3t/4, t) ×B(x, r/2).

Using the previous definitions we can now state the following main result [16,
theorem 1.1] due to Grigor’yan and Saloff-Coste, although we do not need it in its
full strength.

Theorem 2.2. Let M be a complete non-compact Riemannian manifold having
either (a) asymptotically non-negative sectional curvature or (b) non-negative Ricci
curvature outside a compact set and finite first Betti number. Then M satisfies
(PHI) if and only if it satisfies (EHI). Moreover, (PHI) and (EHI) hold if and only
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if either M has only one end or M has more that one end and the functions V and
Vi satisfy for large enough r the conditions Vi(r) ≈ V (r) (for all indices i) and∫ r

1

sds
V (s)

≈ r2

V (r)
.

Above V (r) = μ
(
B(o, r)

)
and Vi(r) = μ

(
B(o, r) ∩ Ei

)
for an end Ei.

We will briefly sketch the rather well-known proof of the validity of (EHI) in the
case where M has only one end. For that purpose, we need additional definitions.

Definition 2.3. We say that

(VD) a family F of balls in (M,μ) satisfies the volume doubling property if there
exists a constant CD such that for any ball B(x, r) ∈ F we have

μ
(
B(x, r)

)
� CDμ

(
B(x, r/2)

)
;

(PI) a family F of balls in (M,μ) satisfies the Poincaré inequality if there exists a
constant CP such that for any ball B(x, r) ∈ F and any f ∈ C1(B(x, r)) we
have

inf
ξ∈R

∫
B(x,r)

(f − ξ)2 dμ � CP r
2

∫
B(x,r)

|∇f |2 dμ;

(BC) a set A ⊂ ∂B(o, t) has a ball-covering property if, for each 0 < ε < 1, A can
be covered by k balls of radius εt with centres in A, where k depends on ε and
possibly on some other parameters, but is independent of t.

From the curvature assumptions ((a) or (b)) in theorem 2.2 it follows that (VD)
and (PI) hold for all ‘remote” balls, that is for balls B(x, r), where r � (ε/2)d(o, x)
and ε ∈ (0, 1] is a suitable remote parameter. The familiar Moser iteration then
yields local (EHI) for such remote balls. Furthermore, if E is an end of M and E(t)
denotes the unbounded component of E\B̄(o, t), then set ∂E(t) is connected and
has the ball-covering property (BC) for all sufficiently large t. Iterating the local
(EHI) k times, one obtains Harnack’s inequality

sup
∂E(t)

u � C inf
∂E(t)

u

with C independent of t. Finally, if M has only one end, the global (EHI) follows
from the maximum principle. We will give a bit more details in § 3 and refer to [16,
20,25] for more details, and to [1,4,24–26] for the connectivity and the covering
properties mentioned above.

3. Non-existence for minimal graph equation

In order to prove theorem 1.1 we need a uniform gradient estimate for the solutions
of the minimal graph equation (1.1). Our proof follows closely the computations
in [9,29]. It is worth pointing out that the solutions in theorem 1.1 need not
be bounded and that we do not assume the Ricci curvature being non-negative,
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therefore the gradient estimates in [30, theorem 1.1] and [29, theorem 4.1] are not
available as such in our setting. We begin by introducing some notation.

We assume that M is a complete non-compact n-dimensional Riemannian man-
ifold whose Riemannian metric is given by ds2 = σij dxi dxj in local coordinates.
Let u : M → R be a solution to the minimal graph equation, that is,

div
∇u√

1 + |∇u|2 = 0,

where the gradient and divergence are taken with respect to the Riemannian metric
of M . We denote by

S =
{
(x, u(x)) : x ∈M

}
the graph of u in the product manifold M × R and by

N =
−uj∂j + ∂t

W

the upward pointing unit normal to the graph of u expressed in terms of a local coor-
dinate frame {∂1, . . . , ∂n} and ∂t = en+1. Here W =

√
1 + |∇u|2 and ui = σijDju,

Dj being the covariant derivative on M . The components of the induced metric on
the graph are given by gij = σij + uiuj with inverse

gij = σij − uiuj

W 2
.

We denote by ∇S and ΔS the gradient and, respectively, the Laplace-Beltrami
operator on the graph S. For the Laplacian on the graph we have the Bochner-type
formula (see e.g. [13])

ΔS 〈en+1, N〉 = −(|A|2 + Ric(N,N)
) 〈en+1, N〉 , (3.1)

where |A| is the norm of the second fundamental form and Ric is the Ricci curvature
of M × R. From (3.1) we obtain

ΔSW = 2
|∇SW |2
W

+
(|A|2 + Ric(N,N)

)
W. (3.2)

Here and in what follows we extend, without further notice, functions h defined on
M to M × R by setting h(x, t) = h(x). The Laplace-Beltrami operator of the graph
can be expressed in local coordinates as

ΔS = gijDiDj .

Now we are ready to prove the following gradient estimate.

Proposition 3.1. Assume that the sectional curvature of M has a lower bound
K(Px) � −K2

0 for all x ∈ B(p,R) for some constant K0 = K0(p,R) � 0. Let u be
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a positive solution to the minimal graph equation in B(p,R) ⊂M . Then

|∇u(p)| �
(

2√
3

+
32u(p)
R

)

×
(

exp

[
64u(p)2

(
2ψ(R)
R2

+

√
4ψ(R)2

R4
+

(n− 1)K2
0

64u(p)2

)]
+ 1

)
, (3.3)

where ψ(R) = (n− 1)K0R coth(K0R) + 1 if K0 > 0 and ψ(R) = n if K0 = 0.

Proof. Define a function h = ηW , where η(x) = g(ϕ(x)) with g(t) = eKt − 1,

ϕ(x) =
(

1 − u(x)
4u(p)

− d(x, p)2

R2

)+

,

and a constant K that will be specified in (3.10). Denote by C(p) the cut-locus
of p and let U(p) = B(p,R)\C(p). Then it is well known that d(x, p) is smooth in
the open set U(p). We assume that the function h attains its maximum at a point
q ∈ U(p), and for the case q �∈ U(p) we refer to [29].

In all the following, the computations will be done at the maximum point q of h.
We have

∇Sh = η∇SW +W∇Sη = 0 (3.4)

and since the Hessian of h is non-positive, we obtain, using (3.4) and (3.2),

0 � ΔSh = WΔSη + 2
〈∇Sη,∇SW

〉
+ ηΔSW

= WΔSη +
(

ΔSW − 2
W

|∇SW |2
)
η (3.5)

= W
(
ΔSη + (|A|2 + Ric(N,N))η

)
,

where Ric is the Ricci curvature of M × R. Since the Ricci curvature of M × R in
B(p,R) × R has a lower bound Ric(N,N) � −(n− 1)K2

0 , we obtain from (3.5) that
ΔSη � (n− 1)K2

0η and hence, from the definition of η, we get

ΔSϕ+K|∇Sϕ|2 � (n− 1)K2
0

K
. (3.6)

Next we want to estimate ΔSϕ from below by using the lower bound for the sec-
tional curvature and the Hessian comparison theorem. For this, let {ei} be a local
orthonormal frame on S. Since u is a solution to the minimal graph equation, we
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have ΔSu = 0 and
n∑

i=1

〈∇̄ei
N, ei

〉
= 0,

where ∇̄ denotes the Riemannian connection of the ambient space M × R. Hence

ΔSϕ = ΔS

(
− d2

R2

)
= − 1

R2

n∑
i=1

〈∇S
ei
∇Sd2, ei

〉

= − 1
R2

n∑
i=1

〈∇̄ei

(∇̄d2 − 〈∇̄d2, N
〉
N
)
, ei

〉

= − 1
R2

n∑
i=1

〈∇̄ei
∇̄d2, ei

〉

= − 2d
R2

n∑
i=1

〈∇̄ei
∇̄d, ei

〉− 2
R2

n∑
i=1

(eid)
〈∇̄d, ei

〉

� − 2d
R2

n∑
i=1

〈∇̄ei
∇̄d, ei

〉− 2
R2

.

Now decompose ei as ei = (ei − 〈∂t, ei〉 ∂t) + 〈∂t, ei〉 ∂t =: êi + 〈∂t, ei〉 ∂t. Then
〈∇̄ei

∇̄d, ei

〉
=
〈∇̄êi+〈∂t,ei〉∂t

∇̄d, êi + 〈∂t, ei〉 ∂t

〉
=
〈∇̄êi

∇̄d, êi

〉
= Hess d(êi, êi)

and by the Hessian comparison (e.g. [14, theorem A]) we have

Hess d(êi, êi) � f ′(d)
f(d)

(|êi|2 − 〈∇d, êi〉
)
,

where f(t) = K−1
0 sinh(K0t) if K0 > 0 and f(t) = t if K0 = 0. Choosing ên parallel

to ∇d at q we have

Hess d(êi, êi) �

⎧⎨
⎩

0, if i = n;
f ′(d)
f(d)

, if i ∈ {1, . . . , n− 1}.

Hence

n∑
i=1

〈∇̄ei
∇̄d, ei

〉
=

n∑
i=1

Hess d(êi, êi)

�

⎧⎨
⎩

(n− 1)K0 coth(K0d), if K0 > 0;
n− 1
d

, if K0 = 0.
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Therefore

ΔSϕ � − 2d
R2

n∑
i=1

〈∇̄ei
∇̄d, ei

〉− 2
R2

� −2ψ(R)
R2

, (3.7)

where ψ is as in the claim.
A straightforward computation gives also

|∇Sϕ|2 = gijDiϕDjϕ =
|∇u|2

16u(p)2W 2
+

4d(x, p)2

R4

(
1 −

〈∇u
W

,∇d(x, p)
〉2
)

+
d(x, p)

u(p)R2W 2
〈∇u,∇d(x, p)〉

� |∇u|2
16u(p)2W 2

+
4d(x, p)2

R4

(
1 − |∇u|2

W 2

)
− d(x, p)|∇u|
u(p)R2W 2

=
( |∇u|

4u(p)W
− 2d(x, p)

R2W

)2

.

Note that ( |∇u|
4u(p)W

− 2d(x, p)
R2W

)2

>
1

16u(p)2α2
(3.8)

with some constant α > 2 if and only if( |∇u|
4u(p)W

− 2d(x, p)
R2W

− 1
4u(p)α

)( |∇u|
4u(p)W

− 2d(x, p)
R2W

+
1

4u(p)α

)
> 0.

This is clearly true if the first factor is positive, that is, if

α|∇u| −W >
α8d(x, p)u(p)

R2
.

On the other hand,

α|∇u| −W > W

if

W 2 >
α2

α2 − 4
.

Therefore assuming

W (q) > max
{

α√
α2 − 4

,
α8u(p)
R

}

we see that also (3.8) holds and thus we have the estimate

|∇Sϕ|2 > 1
16u(p)2α2

. (3.9)
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Plugging (3.7) and (3.9) into (3.6) we obtain

−2ψ(R)
R2

+
K

16u(p)2α2
<

(n− 1)K2
0

K
.

But choosing

K = 8u(p)2α2

(
2ψ(R)
R2

+

√
4ψ(R)2

R4
+

(n− 1)K2
0

4u(p)2α2

)
(3.10)

with α = 4 we get a contradiction and hence we must have

W (q) � max
{

2√
3
,
32u(p)
R

}
.

This implies

h(p) = (eKϕ(p) − 1)W (p) = (e(3/4)K − 1)W (p) � h(q)

� (eK − 1)max
{

2√
3
,
32u(p)
R

}

� (eK − 1)
(

2√
3

+
32u(p)
R

)

and noting that e(3/4)K − 1 � eK/2 − 1 we obtain the desired estimate

|∇u(p)| � (eK/2 + 1)
(

2√
3

+
32u(p)
R

)
. �

Next, we apply proposition 3.1 to the setting of theorem 1.1 to obtain a uniform
gradient estimate.

Corollary 3.2. Let M be a complete Riemannian manifold with asymptotically
non-negative sectional curvature. If u : M → R is a solution to the minimal graph
equation (1.1) that is bounded from below and has at most linear growth, then there
exist positive constants C and R0 such that

|∇u(x)| � C (3.11)

for all x ∈M\B(o,R0).

Proof. We may assume, without loss of generality, that u > 0. Then the assumptions
on the growth of u and the (ANSC) condition of M imply that there exist constants
c and R0 such that

u(x) � c d(x, o) (3.12)

and

K(Px) � − c

d(x, o)2

for all x ∈M\B(o,R0/2). Next, we apply proposition 3.1 to points p ∈M\B(o,R0)
with the radius R = d(p, o)/2 � R0/2. Noticing that B(p,R) ⊂M\B(o,R) ⊂
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M\B(o,R0/2), we obtain an upper bound

K2
0 = K0(p,R)2 � c2/R2 (3.13)

for the constant K0 in the sectional curvature bound in B(p,R). It follows now
from (3.12) and (3.13) that

u(p)
R

� 2c,

ψ(R) � (n− 1)c coth(c) + 1,

and

u(p)2K2
0 � 4c3.

Plugging these upper bounds into (3.3) gives the estimate (3.11). �

We are now ready to prove theorem 1.1.

Proof of theorem 1.1. Denoting

A(x) =
1√

1 + |∇u|2

we see that

div
∇u√

1 + |∇u|2 = div
(
A(x)∇u) = 0

is equivalent to

1
A(x)

div
(
A(x)∇u) = 0.

Now we can interpret the minimal graph equation as a weighted Laplace equation
Δσ with the weight

σ =
√
A.

Note that due to the uniform gradient estimate (3.11) of corollary 3.2 there exists
a constant c > 0 such that c � σ � 1 in M\B(o,R0) and hence the operator Δσ

is uniformly elliptic there. On the other hand, the assumption (ANSC) implies
that the (unweighted) volume doubling condition (VD) and the (unweighted)
Poincaré inequality (PI) hold for balls inside B(p,R), with R = d(o, p)/2 � R0.
More precisely, the Ricci curvature of M satisfies

Ric(x) � − (n− 1)K2

d(x, o)2
(3.14)

for some constant K � 0 if d(x, o) � R0 and R0 is large enough. Then for
each x ∈ B(p,R), with d(o, p) � 2R � 2R0, we have Ric(x) � −(n− 1)K̃2, where
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K̃ = KR−1. Then the well-known Bishop-Gromov comparison theorem (see [17,
5.3.bis Lemma]) implies that

μ0

(
B(x, 2r)

)
μ0

(
B(x, r)

) � 2n exp
(
2r(n− 1)K̃

)
� 2n exp

(
(n− 1)K

)
(3.15)

for all balls B(x, 2r) ⊂ B(p,R) ⊂M\B(o,R0). On the other hand, it follows from
Buser’s isoperimetric inequality [3] that∫

B(x,r)

|f − fB(x,r)|dμ0 � r exp
(
cn(1 + K̃r)

) ∫
B

|∇f |dμ0 � cr

∫
B

|∇f |dμ0,

(3.16)
for every f ∈ C1

(
B(x, r)

)
, where

fB(x,r) =
1

μ0

(
B(x, r)

) ∫
B(x,r)

f dμ0

and the constant c also has an upper bound that depends only on n and K. Since
Δσ is uniformly elliptic in M\B(o,R0), the Moser iteration method gives a local
Harnack’s inequality

sup
B(p,R/2)

u � c inf
B(p,R/2)

u (3.17)

for all p ∈ ∂B(o, 2R), with the constant c independent of p and R. Since we assume
thatM has only one end, the boundary of the unbounded component ofM\B̄(o, 2R)
is connected for all sufficiently large R and can be covered by k balls B(x,R/2), with
x ∈ ∂B(o, 2R) and k independent of R; see [1,24]. Iterating the Harnack inequality
(3.17) k times and applying the maximum principle we obtain

sup
B(o,2R)

u � C inf
B(o,2R)

u. (3.18)

Finally, we may suppose, without loss of generality, that infM u = 0. Letting then
R→ ∞, we get

sup
B(o,2R)

u � C inf
B(o,2R)

u→ 0

as R→ ∞, and therefore u must be constant. �

Proof of corollary 1.3. In the proof below, the constants c, C,C0,Λ, and κ depend
only on n and on the function λ in the (ANSC) assumption.

We may assume that u(o) = 0. Suppose first that u : M → R is a solution to the
minimal graph equation (1.1) such that

lim
d(x,o)→∞

|u(x)|
d(x, o)

= 0. (3.19)

Then there exists a sufficiently large R0 such that |u(x)| � d(x, o) for all x ∈
M\B(o,R0/2) and that (3.13) holds, that is, K2

0 = K0(p,R)2 � c2/R2 for all
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p ∈M\B(o,R0) and R = d(p, o)/2 � R0/2. Denote

M(t) = sup
B(o,t)

u and m(t) = inf
B(o,t)

u

for t > 0. Then u−m(2t) is a positive solution in B(o, 2t) and, moreover, u(x) −
m(2t) � 4t for all x ∈ ∂B(o, 3t/2) and t � R0. Applying corollary 3.2 to u−m(2t)
in balls B(x, t/2), where x ∈ ∂B(o, 3t/2) and t � R0, we obtain a uniform gradient
bound

|∇u(x)| � C

for all x ∈M\B(o, 3R0/2). Therefore, we may apply the Harnack inequality (3.18)
to functions u−m(2t), for all sufficiently large t, to obtain

M(t) −m(2t) � C0

(
m(t) −m(2t)

)
. (3.20)

Then we proceed as in the proof of the Hölder continuity estimate for A-harmonic
functions in [19, 6.6. theorem] to obtain

M(t) −m(t) � Λ
(
M(2t) −m(2t)

)
, (3.21)

where Λ = (C0 − 1)/C0. For reader’s convenience we give the short proof of (3.21).
To obtain (3.21) suppose first that

m(t) −m(2t) � C−1
0

(
M(2t) −m(2t)

)
. (3.22)

Then

M(t) −m(t) = M(t) −m(2t) +m(2t) −m(t)

� (C0 − 1)
(
m(t) −m(2t)

)
� Λ

(
M(2t) −m(2t)

)
by (3.20) and (3.22). On the other hand, if

m(t) −m(2t) � C−1
0

(
M(2t) −m(2t)

)
,

then

M(t) −m(t) � M(2t) −m(2t) − (m(t) −m(2t)
)

� Λ
(
M(2t) −m(2t)

)
.

Thus (3.21) always holds. Suppose then that R � r, with r sufficiently large. Choose
the integer m � 1 such that 2m−1 � R/r � 2m. Then

M(r) −m(r) � Λm−1
(
M(2m−1r) −m(2m−1r)

)
� Λm−1

(
M(R) −m(R)

)
.

Setting κ = (− log Λ)/ log 2, we get (r/R)κ � 2−κΛm−1, and therefore

M(r) −m(r) � 2κ
( r
R

)κ (
M(R) −m(R)

)
(3.23)
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for every R � r, with r sufficiently large. Notice that (3.23) holds for all entire
solutions satisfying (3.19). Finally, if u is an entire solution to (1.1) such that

lim
d(x,o)→∞

|u(x)|
d(x, o)κ

= 0,

the estimate (3.23) holds for u. Letting R→ ∞ in (3.23), we obtain M(r) −m(r) =
0 for all r and, consequently, u must be constant. �

4. Existence results on rotationally symmetric manifolds

In this section we assume that M is a rotationally symmetric Cartan-Hadamard
manifold with the Riemannian metric given by

ds2 = dr2 + f(r)2 dϑ2

where r(x) = d(o, x) is the distance to a fixed point o ∈M and f : (0,∞) → (0,∞)
is a smooth function with f ′′ � 0. Then the (radial) sectional curvature of M is
given by K(r) = −f ′′(r)/f(r).

On such manifold, the Laplace operator can be written as

Δ =
∂2

∂r2
+ (n− 1)

f ′ ◦ r
f ◦ r

∂

∂r
+

1
(f ◦ r)2 ΔS, (4.1)

where ΔS is the Laplacian on the unit sphere S
n−1 ⊂ ToM . For the gradient of a

function ϕ we have

∇ϕ =
∂ϕ

∂r

∂

∂r
+

1
f(r)2

∇Sϕ (4.2)

and

|∇ϕ|2 = ϕ2
r + f−2|∇Sϕ|2.

Here ∇S is the gradient on S
n−1, |∇Sϕ| denotes the norm of ∇Sϕ with respect to

the Euclidean metric on S
n−1, and ϕr = ∂ϕ/∂r. More precisely, in geodesic polar

coordinates (r, ϑ),

Δϕ(r, ϑ) =
∂2ϕ(r, ϑ)
∂r2

+ (n− 1)
f ′(r)
f(r)

∂ϕ(r, ϑ)
∂r

+
1

f(r)2
ΔSϕ̃(ϑ),

∇ϕ(r, ϑ) =
∂ϕ(r, ϑ)
∂r

∂

∂r
+

1
f(r)2

∇Sϕ̃(ϑ) ∈ R ⊕ TϑS
n−1,

where ϕ̃ : S
n−1 → R, ϕ̃(ϑ) = ϕ(r, ϑ) for each fixed r > 0.

Existence of non-constant bounded harmonic functions on rotationally sym-
metric manifolds was considered in [27], where March proved, with probabilistic
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arguments, that such functions exist if and only if

J(f) :=
∫ ∞

1

(
fn−3(r)

∫ ∞

r

f1−n(ρ)dρ
)

dr <∞.

In terms of radial sectional curvature we have (for the proof see [27])

J(f) <∞ if K(r) � − c

r2 log r
for c > cn and large r,

and

J(f) = ∞ if K(r) � − c

r2 log r
for c < cn and large r,

where K(r) = −f ′′(r)/f(r) and c2 = 1, cn = 1/2 for n � 3. Another proof for the
existence was given in [31] and our approach in this section is similar to that one.

4.1. Minimal graph equation

First we consider the minimal graph equation and prove the following existence
result.

Theorem 4.1. Assume that∫ ∞

1

(
f(s)n−3

∫ ∞

s

f(t)1−n dt
)

ds <∞. (4.3)

Then there exist non-constant bounded solutions of the minimal graph equation
and, moreover, the asymptotic Dirichlet problem for the minimal graph equation is
uniquely solvable for any continuous boundary data on ∂∞M .

Proof. First, changing the order of integration, the condition (4.3) reads

∫ ∞

1

∫ t

1
f(s)n−3 ds
f(t)n−1

dt <∞. (4.4)

Now we interpret ∂∞M as S
n−1 and let b : S

n−1 → R be a smooth non-constant
function and define B : M\{o} → R,

B(exp(rϑ)) = B(r, ϑ) = b(ϑ), ϑ ∈ S
n−1 ⊂ ToM.

Define also

η(r) = k

∫ ∞

r

f(t)−n+1

∫ t

1

f(s)n−3 dsdt,

with k > 0 to be determined later, and note that by the assumption (4.4) η(r) → 0
as r → ∞.

The idea in the proof is to use the functions η and B, and condition (4.4) to
construct barrier functions for the minimal graph equation to show the existence
of solutions that extends continuously to the asymptotic boundary ∂∞M with
prescribed asymptotic behaviour.
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Begin by noticing that

η′(r) = −kf(r)−n+1

∫ r

1

f(s)n−3 ds < 0,

η′′(r) = k(n− 1)f ′(r)f(r)−n

∫ r

1

f(s)n−3 ds− kf−2(r),

and

Δη = −kf−2

where η(x) := η
(
r(x)

)
. The minimal graph equation for η +B can be written as

div
∇(η +B)√

1 + |∇(η +B)|2 =
Δ(η +B)√

1 + |∇(η +B)|2

+

〈
∇(η +B),∇

(
1√

1 + |∇(η +B)|2

)〉
,

(4.5)

and we want to estimate the terms on the right-hand side. First note that

Δ(η +B)(r, ϑ) = −kf(r)−2 + f(r)−2ΔSb(ϑ) (4.6)

and

|∇(η +B)(r, ϑ)|2 = ηr(r)2 + f(r)−2|∇Sb(ϑ)|2.
Hence the second term on the right-hand side of (4.5) becomes〈

∇(η +B),∇
(

1√
1 + |∇(η +B)|2

)〉
=
(
1 + η2

r + f−2|∇Sb|2)−3/2

·
(
− η2

rηrr + ηrfr|∇Sb|2f−3 − f−4
〈∇Sb,∇S

(|∇Sb|2)〉
S
/2
)

=
(
1 + η2

r + f−2|∇Sb|2)−3/2
(
− η2

rηrr + ηrfr|∇Sb|2f−3

− f−4 HessS b(∇Sb,∇Sb)
)
,

where HessS is the Hessian on S
n−1. Using (4.5) and (4.6) we get

div
∇(η +B)√

1 + |∇(η +B)|2

=
(
1 + η2

r + f−2|∇Sb|2)−3/2

(
− k

f2
+

ΔSb

f2
− kη2

r

f2

+
η2

rΔSb

f2
− k|∇Sb|2

f4
+

|∇Sb|2ΔSb

f4
− η2

rηrr +
ηrfr|∇Sb|2

f3

− HessS b
(∇Sb,∇Sb

)
f4

)
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=
(
1 + η2

r + f−2|∇Sb|2)−3/2
(
f−2

(− k + ΔSb− kη2
r + η2

rΔSb
)

+ f−4
(
− k|∇Sb|2 + |∇Sb|2ΔSb− HessS b

(∇Sb,∇Sb
))

(4.7)

− η2
r

(
k(n− 1)

fr

fn

∫ r

1

f(s)n−3 ds− kf−2

)
+ ηrfr|∇Sb|2f−3

)

=
(
1 + η2

r + f−2|∇Sb|2)−3/2

(
f−2

(− k + ΔSb+ η2
rΔSb

)

+ f−4
(
− k|∇Sb|2 + |∇Sb|2ΔSb− HessS b

(∇Sb,∇Sb
))

− η2
r

(
k(n− 1)

fr

fn

∫ r

1

f(s)n−3 ds
)

+ ηrfr|∇Sb|2f−3

)

�
(
1 + η2

r + f−2|∇Sb|2)−3/2

(
f−2

(− k + ΔSb+ η2
rΔSb

)
+ f−4|∇Sb|2(− k + ΔSb+ |HessS b|)
− η2

r

(
k(n− 1)

fr

fn

∫ r

1

f(s)n−3 ds
)

+ ηrfr|∇Sb|2f−3

)

� 0

when we choose r large enough and then k � ||b||C2 large enough. Note that S
n−1

is compact so ||b||C2 is bounded. Then the computation above shows that

div
∇(η +B)√

1 + |∇(η +B)|2 � 0

for r and k large enough. In particular, η +B is a supersolution to the minimal
graph equation in M\B(o, r0) for some r0.

Choose k so that (4.7) holds and η > 2max |B| on the geodesic sphere ∂B(o, r0).
Then a := min∂B(o,r0)(η +B) > maxB. Since η(r) → 0 as r → ∞, the function

w(x) :=

{
min{(η +B)(x), a} if x ∈M\B(o, r0);
a if x ∈ B(o, r0)

is continuous in M̄ and coincide with b on ∂∞M . Moreover, w is a global upper
barrier for the asymptotic Dirichlet problem with the boundary values b on ∂∞M .
By replacing η with −η we obtain the global lower barrier v,

v(x) :=

{
max{(−η +B)(x), d} if x ∈M\B(o, r0);
d if x ∈ B(o, r0),

where d = max∂B(o,r0)(−η +B). Notice that v � B � w by construction.
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Next, we solve the Dirichlet problem⎧⎨
⎩

div
∇u	√

1 + |∇u	|2
= 0 in B(o, �);

u	|∂B(o, �) = B|∂B(o, �)

in geodesic balls B(o, �), with � � r0. The existence of barrier functions implies that

v � u	 � w

on ∂B(o, �) for all � � r0. Hence, by the maximum principle, (u	) is a bounded
sequence and we may apply gradient estimates in compact subsets of M to find
a subsequence, still denoted by (u	), that converges uniformly on compact subsets
in the C2-norm to an entire solution u. The PDE regularity theory implies that
u ∈ C∞(M). Moreover, v � u � w and hence it follows that u extends continuously
to the boundary ∂∞M and has the boundary values b.

Suppose then that θ ∈ C(∂∞M). Again we interpret ∂∞M as S
n−1 ⊂ ToM . Let

bi be a sequence of smooth functions converging uniformly to θ. For each i, let
ui ∈ C(M̄) be a solution to (1.1) in M with ui|∂∞M = bi. Then the sequence (ui)
is uniformly bounded and consequently their gradients |∇ui| are uniformly bounded.
By a diagonal argument we find a subsequence that converges locally uniformly with
respect to C2-norm to an entire C∞-smooth solution u of (1.1) that is continuous
in M̄ with u|∂∞M = θ.

For the uniqueness, assume that u and ũ are solutions to the minimal graph
equation, continuous up to the boundary, and u = ũ on ∂∞M . Assume that there
exists y ∈M with u(y) > ũ(y). Now denote δ = (u(y) − ũ(y))/2 and let U ⊂ {x ∈
M : u(x) > ũ(x) + δ} be the component containing the point y. Since u and ũ are
continuous functions that coincides on the boundary ∂∞M , it follows that U is
relatively compact open subset of M . Moreover, u = ũ+ δ on ∂U , which implies
u = ũ+ δ in U . This is a contradiction since y ∈ U . �

In terms of the curvature bounds, we obtain the following corollary; see [27,
theorem 2] or the proof of corollary 4.4.

Corollary 4.2. Let M be a rotationally symmetric n-dimensional Cartan-
Hadamard manifold whose radial sectional curvatures outside a compact set satisfy
the upper bounds

K(Px) � − 1 + ε

r(x)2 log r(x)
, if n = 2 (4.8)

and

K(Px) � − 1/2 + ε

r(x)2 log r(x)
, if n � 3. (4.9)

Then the asymptotic Dirichlet problem for the minimal graph equation (1.1) is
solvable with any continuous boundary data on ∂∞M . In particular, there are
non-constant bounded entire solutions of (1.1) in M .

Indeed, the radial curvature assumptions (4.8) and (4.9) imply the integral
condition (4.3).
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4.2. p-Laplacian

Similar approach works also for the p-Laplacian and we prove the following exis-
tence result for p ∈ (2, n). The case p = 2 equals to the case of usual harmonic
functions, which is already known, and the case p � n is discussed in § 5. The case
1 < p < 2 remains open.

Theorem 4.3. Let p ∈ (2, n) and assume that

∫ ∞

1

(
f(s)β

∫ ∞

s

f(t)α dt
)

ds <∞, (4.10)

α = −(n− 1)/(p− 1) and β = (n− 2p+ 1)/(p− 1), that is, α+ β = −2. Then the
asymptotic Dirichlet problem for the p-Laplacian is uniquely solvable for any contin-
uous boundary data on ∂∞M , in particular, there exist entire non-constant bounded
p-harmonic functions.

Proof. Again we interpret ∂∞M as S
n−1. Let b : S

n−1 → R be a smooth non-
constant function such that |HessS b| < ε, where ε > 0 will be specified later. Define
B : M\{o} → R, B(exp(rϑ)) = B(r, ϑ) = b(ϑ), ϑ ∈ S

n−1 ⊂ ToM . Similarly, as in
the proof of theorem 4.1 we define a function

η(r) =
∫ ∞

r

fα(t)
∫ t

1

fβ(s) dsdt,

where α and β are constants to be determined later. We show that the function
η +B, η(x) := η

(
r(x)

)
, is a supersolution for the p-Laplace equation, that is,

Δp(η +B) := div
(|∇(η +B)|p−2∇(η +B)

)
� 0.

Since ηr < 0 and Br = 0, we have |∇(η +B)| > 0 in M\{o}. First, we compute

Δp(η +B) = div(|∇(η +B)|p−2∇(η +B))

= |∇(η +B)|p−2Δ(η +B)

+
p− 2

2
|∇(η +B)|p−4

〈∇(η +B),∇(|∇(η +B)|2)〉

= |∇(η +B)|p−4

[(
η2

r +
|∇Sb|2
f2

)(
ηrr + (n− 1)

frηr

f
+

ΔSb

f2

)

+ (p− 2)

(
η2

rηrr − ηrfr|∇Sb|2
f3

+
HessS b

(∇Sb,∇Sb
)

f4

)]
.
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Since we are interested in the sign of Δp(η +B), we may just consider the term
inside the brackets. Again, by straightforward computation, we obtain

Δp(η +B)
|∇(η +B)|p−4

=
(
η2

r +
|∇Sb|2
f2

)(
ηrr + (n− 1)

frηr

f
+

ΔSb

f2

)

+ (p− 2)

(
η2

rηrr − ηrfr|∇Sb|2
f3

+
HessS b

(∇Sb,∇Sb
)

f4

)

= η2
r

(
(p− 1)ηrr + (n− 1)

frηr

f
+

ΔSb

f2

)

+
|∇Sb|2
f2

(
ηrr + (n− p+ 1)

frηr

f
+

ΔSb

f2

)

+ (p− 2)f−4 HessS b
(∇Sb,∇Sb

)
= η2

r

(
−((p− 1)α+ n− 1

)
fα−1fr

∫ r

1

fβ(s)ds− (p− 1)fα+β +
ΔSb

f2

)

+
|∇Sb|2
f2

(
(α+ n− p+ 1)

frηr

f
− fα+β +

ΔSb

f2

)

+ (p− 2)f−4 HessS b
(∇Sb,∇Sb

)
.

Then choosing α = −(n− 1)/(p− 1) and β = (n− 2p+ 1)/(p− 1), that is, such
that α+ β = −2, and recalling that p ∈ (2, n) and ηr < 0 we see that

Δp(η +B)
|∇(η +B)|p−4

=
η2

r

f2
(ΔSb− p+ 1) +

|∇Sb|2
f4

(
(n− p)(p− 2)ffrηr

p− 1
− 1 + ΔSb

)

+ (p− 2)f−4 HessS b
(∇Sb,∇Sb

)
� η2

r

f2

(−p+ 1 + ΔSb
)

+
|∇Sb|2
f4

(
(n− p)(p− 2)ffrηr

p− 1
− 1 + ΔSb+ (p− 2)|HessS b|

)

� 0

when |HessS b| < ε, with ε > 0 small enough, for example, ε < min
(
(p− 1)/(n− 1),

1/(n+ p− 3)
)
. Hence η +B is a p-supersolution in M\{o}. Similarly, we obtain an

estimate

Δp(−η +B)
|∇(−η +B)|p−4

=
η2

r

f2
(p− 1 + ΔSb) +

|∇Sb|2
f4

(−(n− p)(p− 2)ffrηr

p− 1
+ 1 + ΔSb

)

+ (p− 2)f−4 HessS b
(∇Sb,∇Sb

)
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� η2
r

f2

(
p− 1 + ΔSb

)
+

|∇Sb|2
f4

×
(−(n− p)(p− 2)ffrηr

p− 1
+ 1 + ΔSb− (p− 2)|HessS b|

)

� 0,

and therefore −η +B is a p-subsolution in M\{o}. Notice that k(η +B) is a
p-supersolution in M\{o} for all k � 0 and similarly k(−η +B) is a p-subsolution
in M\{o}. Hence the assumption |HessS b| < ε is not a restriction. The asymptotic
Dirichlet problem with any continuous boundary data ϕ ∈ C(∂∞M) can then be
uniquely solved either by Perron’s method with a suitable choice of the function
b or approximating the given ϕ ∈ C(∂∞M) by functions bi ∈ C∞. For reader’s con-
venience, we sketch the latter argument. Indeed, for each � ∈ N we first solve the
Dirichlet problem {

div
(|∇u	|p−2∇u	

)
= 0 in B(o, �);

u	|∂B(o, �) = B|∂B(o, �)

in geodesic balls B(o, �). Then −η +B � u	 � η +B and there exists a subsequence
of (u	) converging uniformly on compact sets to an entire p-harmonic function u.
Moreover, u extends continuously to ∂∞M and has the boundary values b. Finally,
given ϕ ∈ C(∂∞M) we again interpret ∂∞M as S

n−1 ⊂ ToM and choose a sequence
bi ∈ C

∞(Sn−1) converging uniformly to ϕ. For each i, let ui ∈ C(M̄) be a solution
to (1.2) in M with ui|∂∞M = bi. Then the sequence (ui) has a subsequence that
converges locally uniformly to an entire p-harmonic function u that is continuous
in M̄ with u|∂∞M = ϕ. Hence u solves the asymptotic Dirichlet problem with
boundary data ϕ ∈ C(∂∞M). The uniqueness of the solution follows exactly as in
the case of the minimal graph equation. See [21,32] for further details. �

In terms of curvature bounds, we obtain the following corollary.

Corollary 4.4. Let M be a rotationally symmetric n-dimensional Cartan-
Hadamard manifold, with n � 3, whose radial sectional curvatures outside a
compact set satisfy

K(Px) � − 1/2 + ε

r(x)2 log r(x)
. (4.11)

Then the asymptotic Dirichlet problem for the p-Laplacian, with p ∈ (2, n), is
uniquely solvable for any continuous boundary data on ∂∞M . In particular, there
exist non-constant bounded p-harmonic functions on M .

Proof. It is enough to show that the curvature assumption (4.11) implies finiteness
of the integral ∫ ∞

1

(
f(s)β

∫ ∞

s

f(t)α dt
)

ds <∞,
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where α = −(n− 1)/(p− 1) and β = (n− 2p+ 1)/(p− 1), that is, α+ β = −2.
Although this seems more complicated than the situation with (4.3), it is essen-
tially the same because α and β are chosen so that α+ β = −2 which is same as
the sum of the exponents in (4.3). For the sake of convenience, we give some details.

As in [27], define φ(r) = r(log r)c, c > 0. Choose a > 1 such that φ′(a) > 0,
φ′′(a) > 0 and let g(r) = (φ(r + a) − φ(a))/φ′(a). Then g(0) = 0, g′(0) = 1, and
−g′′(r)/g(r) � 0 behaves asymptotically as

−g
′′

g
(r) ≈ −φ

′′

φ
(r) = − c

r2 log r

(
1 +

c− 1
log r

)

as r → ∞. Applying [27, lemma 5], we see that (4.10) is equivalent to the finiteness
of the similar integral condition for g. Moreover, g(r) behaves asymptotically as
φ(r), so it is enough to show∫ ∞

2

(
φ(s)β

∫ ∞

s

φ(t)α dt
)

ds <∞. (4.12)

But
∫∞

s
φ(t)α dt behaves asymptotically as

sα+1(log s)cα

−α− 1
,

and therefore

φ(s)β

∫ ∞

s

φ(t)α dt ≈ p− 1
n− p

1
s(log s)2c

as s→ ∞. Hence (4.12) holds if and only if c > 1/2. �

5. p-parabolicity when p � n

In this section, we show that the upper bound p < n in theorem 4.3 cannot be
improved. Namely, there exist manifolds that satisfy the curvature assumption
(4.10) and are p-parabolic when p � n. Recall that a Riemannian manifold N is
called p-parabolic, 1 < p <∞, if

capp(K,N) = 0

for every compact set K ⊂ N . Here the p-capacity of the pair (K,N) is defined as

capp(K,N) = inf
u

∫
N

|∇u|p dμ0,

where the infimum is taken over all u ∈ C∞
0 (N), with u|K � 1. In [20, proposition

1.7] it was shown that a complete Riemannian manifold is p-parabolic if

∫ ∞( t

V (t)

)1/(p−1)

dt = ∞,

where V (t) = μ0(B(o, t)) and o ∈ N is a fixed point. We apply this to get the
following result.
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Theorem 5.1. Let α > 0 be a constant and assume that M is a complete
n-dimensional Riemannian manifold whose radial sectional curvatures satisfy

KM (Px) � − α

r(x)2 log r(x)
(5.1)

for every x outside some compact set and every 2-dimensional subspace Px ⊂ TxM
containing ∇r(x). Then M is p-parabolic

(a) if p = n and 0 < α � 1; or

(b) p > n and α > 0.

Proof. Let R > 1 be so large that the curvature assumption (5.1) holds in
M\B(o,R) and denote

B = inf
{
KM (Px) : x ∈ B̄(o,R− 1)

}
> −∞.

Let k : [o,∞) → (−∞, 0] be a smooth function that is constant in some neighbour-
hood of 0, k(t) � B for t ∈ [0, R− 1], k(t) � −α/(t2 log t) for t ∈ [R− 1, R] and
k(t) = −α/(t2 log t) for all t � R. Then the sectional curvatures of M are bounded
from below by k ◦ r. Applying the Bishop-Gromov volume comparison theorem we
obtain

V (r) = μ0

(
B(o, r)

)
� Crn(log r)α(n−1)

for some constant C and for r � R large enough.
Consider first the case p = n. Then∫ ∞

R

(
t

V (t)

)1/(n−1)

dt � c

∫ ∞

R

(
t

tn(log t)α(n−1)

)1/(n−1)

dt

= c

∫ ∞

R

1
t(log t)α

dt = ∞

if 0 < α � 1. This proves the first case. On the other hand, if p > n, we have
tn−1(log t)α(n−1) � tn−1(log t)α(p−1) and

t(n−1)/(p−1)(log t)α

t
−→ 0

for any α > 0 as t→ ∞, and hence∫ ∞

R

(
t

V (t)

)1/(p−1)

dt � c

∫ ∞

R

(
1

tn−1(log t)α(p−1)

)1/(p−1)

dt

= c

∫ ∞ 1
t(n−1)/(p−1)(log t)α

dt = ∞

for any α > 0. This proves the second case. �
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Sci. École Norm. Sup. (4) 18 (1985), 651–670.

2 E. Bombieri, E. De Giorgi and M. Miranda. Una maggiorazione a priori relativa
alle ipersuperfici minimali non parametriche. Arch. Rational Mech. Anal. 32 (1969),
255–267.

3 P. Buser. A note on the isoperimetric constant. Ann. Sci. École Norm. Sup. (4) 15 (1982),
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