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ABSTRACT
This paper introduces an observer strategy, namely a Sliding Mode Observer (SMO), to
realise the fault detection and estimation of general uncertain non-linear systems. The use
of a non-linear observer is considered for monitoring the states of a high incidence research
model (HIRM) aircraft system. For a special class of Lipschitz non-linear system, a fault
reconstruction scheme is presented where the reconstructed signal can approximate the fault
signal to any accuracy. The proposed method is based only on the available plant input-output
information and can be calculated online. Moreover, the globally asymptotic stability of the
closed-loop system is mathematically proved. Finally, an HIRM aircraft system example is
given to illustrate the efficiency of the proposed approach.

Keywords: Sliding mode observer; Non-linear systems; State estimation; Fault
reconstruction; HIRM Aircraft

Received 17 July 2015; revised 3 September 2015; accepted 10 September 2015.

https://doi.org/10.1017/aer.2016.5 Published online by Cambridge University Press

http://dx.doi.org/10.1017$/$aer.2016.5
https://doi.org/10.1017/aer.2016.5


458 March 2016The Aeronautical Journal March 2016

1.0 INTRODUCTION
As automatic control systems can be very effective in reducing energy losses, they are
widely used in industrial fields. However, such systems are susceptible to poor performance
because the interaction between the human operator and the systems is often ignored. Also,
unanticipated changes in the external environment can make the system defective. The effect
of faults can be destructive if they are not detected early. So, practical fault detection and
isolation (FDI) methods are essential. The primary task of FDI methods is to show that
something is incorrect and specify which component has a fault. Progress in modelling
methods has raised the possibility of applying model-based FDI methods. These have been
considered a very efficient approach for FDI both in theory and in practice(1).

The control of uncertain systems exposed to an external perturbation has become an
active field of study during the past decade. Most of the systems encountering problems
of this kind in real terms are usually affected by various uncertainties such as parameter
variations, actuator faults and non-linearities. In the majority of control strategies proposed in
literature, it is assumed that all state variables are available. However, this is not always true in
practice. Hence, a state vector needs to be estimated to be used in the control rules. The fault
identification plan is mainly aimed at producing a warning when faults occur(2). Among the
common methods used to perform comparisons in this field are the Kalman filter(3), adaptive
observers(4), high-gain observers(5) and sliding mode observers (SMO)(6-9).

The SMO takes advantage of discontinuous control actions to move the observer error
direction towards a certain hyper-plane in the fault space; from this point, the direction
of the slide is maintained until the fault states converge to the origin. Basically, the
observer generates the signals used to discover data associated with the fault. Remaining
generation statements, used as linear observers, have been extensively applied. In this method,
discrepancy between the system output and observer output is processed by a weighting matrix
to form so called residuals. The remaining will equal zero if a fault does not occur in the
process. However, it will reply specifically once a special fault occurs(10,11).

In 1992, Utkin et al designed an ordinary observer with a discontinuous part that was fed
back along with an appropriate gain(12). An observer where the output fault is fed back linearly
was designed by Walcott and Zakin(13), and a Lyapunov technique was applied to show its
sustainability. A canonical form was proposed by Spurgeon and Edwards(14,15) for the design
of an SMO that depends on the invariable zeros of the system and the particular conditions
related to the input and output distribution matrices. They used both the linear and non-linear
output error injection in that procedure. They also presented a procedure for calculating the
linear output error injection gain. The solution is obvious. However, it does not make use of
all the degrees of freedom. In Ref. 16, another canonical form was suggested by Edwards
et al based on an adequate status in accordance with the linear matrix inequality (LMI). In
that paper, the authors tried to utilise the freedom in the model proposed by Edwards(17) for
sectional pole attribution. However, they did not determine the best position for eigenvalues
in the region of interest.

In recent years, the sliding-mode method has been used widely to design controllers or
state observers(18-22). Sliding-mode method has been used in many studies(18,19) to control
linear time invariant (LTI) and time variant systems (LTV) with uncertainties. In these studies,
the superiority of the proposed methods is well-presented. But unfortunately, these methods
cannot be used for non-linear systems due to the unstructured nature of uncertainties in
them. Therefore, to have an effective control technique for linear systems, to overcome the
uncertainties and to ensure the stability of the closed-loop system, control input coefficients
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must be increased. This, in turn, will lead to an increase in control input amplitude and
consequently the saturation of actuators. In Refs 20-22, sliding-mode method was used as
the controller or state observer in non-linear systems with uncertainty. Mathematical proof
and simulation results have shown the acceptable performance of these methods. But in
these studies, unlike the conventional methods, the integral of system states is used to
determine the sliding surface. The use of an integral factor in a sliding surface will lead to an
undesirable wind-up effect. So, the practical implementation of these methods will encounter
problems(23-27).

It must be emphasised that ‘accurate’ fault reconstruction is very encouraging in non-
linear systems, particularly in the presence of uncertainty. The notion of ‘accurate’ fault
reconstruction has been considered by Edwards(14) for linear systems without uncertainty.
When uncertainties are considered, all the sliding mode observer-based fault reconstruction
results offer only an estimate of the fault signal. It is highly desirable to create a procedure
for fault reconstruction in non-linear systems or to achieve conditions under which ‘accurate’
fault reconstruction is possible. Also, since FDI is needed for use in real engineering systems,
the reconstruction fault signal needs to be based only on accessible measured data.

In this study, a simple SMO is proposed for a special of class of non-linear systems in the
presence of faults/unknown inputs. All the parametric uncertainties/disturbances present in
the system are modelled in the form of unknown inputs/faults. The unknown input can be a
combination of immeasurable or unmeasured disturbances, unknown control actions, or un-
modelled system dynamics. The novelty of this study lies in the choice of robust terms to deal
with faults/unknown inputs. The methods of the researches use all the output information
to deal with unknown inputs, and so require the reduced-order system itself to be stable
in the sliding mode(15,28-30). Moreover, the robust terms are applied to ‘reconstruct’ all the
faults/unknown inputs from the sliding mode. Finally, an HIRM aircraft system example is
given to illustrate the efficiency of the proposed approach.

The organisation of this paper is as follows:
In Section 2, the dynamic equations of a non-linear system and necessary assumptions

for the design of an SMO are introduced. In Section 3, the design details of the SMO are
described. Section 4 discusses the selection of the sliding surface and the necessary conditions
for existence of the sliding surface. In Section 5, using mathematical analysis, we try to obtain
the conditions for making the error zero. In Section 6, fault reconstruction using the sliding
mode is explained. In Section 7, the advantages of the proposed method are explained. In
Section 8, the dynamic equations of the HIRM aircraft system are introduced. The simulation
results of the proposed observer are presented and discussed in Section 9. Finally, conclusions
are drawn in Section 10.

2.0 FORMULATING THE PROBLEM
Consider the following system(31):

ẋ (t ) = Ax + g (x, u) + E (x, u) f (t )
y (t ) = Cx,

… (1)

where x ∈ Rn is the state vector; u ∈ Rq is the input vector and y ∈ Rp is the output vector;
f (t) ∈ Rm shows the actuator fault; A,C and E are known constant real matrices of suitable
dimensions; the pair (A,C) are observable; g(x, u) is a continuous non-linear vector function,
assumed to be Lipschitz, with a Lipschitz constant lg, i.e. ||g(x̂,u)− g(x,u)|| ≤ lg ||x̂ − x||. It
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is assumed that the derivative of f (t) with respect to time is norm-bounded, i.e. ‖ ḟ (t)‖ ≤ f1,
where f1 ≥ 0.

Assumption 1: Matrix C is a full rank matrix and the pair (A, C) is observable.

Thanks to C being a full rank matrix, we consider that the first m rows (outputs) of matrix
C form a full rank m×n matrix C1 such that

C1 = [C11 C12 ]m×n; Rank[C11]m×m = m.

Thus, Rank (C1) = m. By partitioning the output distribution matrix, the following
equations could be obtained:

y =
[

C1

C2

]
x, y1 = C1x.

The following result depends on the observability of faults/unknown inputs from
measurements of the output. The following assumptions on the fault distribution matrix are
the basic needs for the expansion of the SMO that can use the faults in the sliding mode.

Assumption 2: The function E(x, u) and the inverse of the non-linear matrix C1E(x, u), exist
and are bounded ∀x ∈ M and u ∈ U.

Assumption 3: The non-linear functions g(x, u) and E(x, u) fulfil the Lipschitz conditions
so that

‖g(x̂, u) − g(x, u)‖ ≤ lφ‖x̂ − x‖‖E (x̂, u)(C1E (x̂, u))−1

−E (x, u)(C1E (x, u))−1‖ ≤ l g‖x̂ − x‖

for some Lipschitz constants lφ and l g.

Remark 1: In this paper, all parametric uncertainties/disturbances affecting the system are
modelled as unknown inputs/faults. In order to generalise the expansion, the fault distribution
matrix E(x, u) is intended to be non-linear without any constraint.

3.0 THE DESIGN OF THE SLIDING MODE OBSERVER
For Equation (1), an observer, as follows, can be developed to estimate the states:

x̂ = Ax̂ + g (x̂, u) + L (y − C x̂) + E (x̂, u) v (t ) , … (2)

where L is the feedback gain and v(t) is the robust term provided by the sliding-mode
estimation(31):

v (t ) = −(C1E (x̂, u))−1ρ (0) sign (C1x̂ − C1x) . … (3)

Also, ρ(.) is a positive scalar function that needs to be specified.

Remark 2: In the above observer development, the disturbance inputs are substituted by
robust terms. The number of robust terms v(t) is equivalent to the number of fault inputs fi(t).
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By defining the estimation error as e = x̂ − x, the estimation error dynamics can be
calculated from Equations (1) and (2) as

ė = (A − LC) e + g (x̂, u) − g (x, u) + E (x̂, u) v (t ) − E (x, u) f (t ) . … (4)

Because the non-linear matrix E(.) and faults f(t) are limited, the boundedness of the error
dynamics can be ensured with an appropriate selection of feedback gain L using the standard
Lyapunov analysis.

4.0 DESIGN OF SLIDING MODE SURFACE FOR FAULT
DETECTION

The selection of sliding-mode gain ρ(.) to guarantee the existence of the sliding mode will
be reviewed in this section. The main purpose of the robust terms v(t) in Equation (2) is to
compensate for fault inputs and improve the integrity of estimation. This approach can be
expressed as follows:

1. Describe the following sliding surfaces(31):

ey1 = C1e = 0; that is, eyi = 0, for all i = 1, 2, . . . , m. … (5)

2. Design the sliding-mode estimation as Equation (2) with v(t) presented by Equation (3)
so that the system can achieve the sliding mode.

3. Make sure that the reduced-order estimation error dynamics goes toward zero on the
sliding surfaces of ey1 = 0, ey2 = 0, … , eym = 0.

By defining ey = C1e, we have

ėy = C1ė = C1 (A − LC) e + C1g (x̂, u) − C1g (x, u) + C1E (x̂, u) v (t )
−C1E (x, u) f (t ) .

… (6)

By inserting Equation (4) into Equation (6), we have

ėy = C1 (A − LC) e + C1g (x̂, u) − C1g (x, u) − ρ (0) sign
(
ey

) − C1E (x, u) f (t ) .

… (7)
The stability of the reduced-order dynamics can be easily analysed in the transformed

domain. From Assumptions 1 and 2, we have det(C11) �= 0; then, there exists a non-singular
transformation

T =
[

C11 C12

0 In−m

]
, … (8)
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with the following transformed matrices:

TAT−1 = Ã =
⎡
⎣ Ã11 Ã12

Ã21 Ã22

⎤
⎦ , C1T−1 = [ Im 0 ]

y =
[

C1

C2

]
T−1x =

[
y1

y2

]
, y1 = x1, y2 = C̃2x

TL

[
C1

C2

]
T−1 = H =

[
H 11 H12

H 21 H22

]

Tg (x, u) = � (x, u) =
[

�1 (x, u)

�2 (x, u)

]

TE (x, u) = Ẽ (x, u) =
⎡
⎣ Ẽ1 (x, u)

Ẽ2 (x, u)

⎤
⎦ ,

… (9)

where x1 is measurable output.
Now, we have C1E (x, u) = Ẽ1(x, u). By defining ẽ = Te = [ eT

y ẽT
2 ]T , we transform the

error dynamics of Equation (7) with the transformation in Equation (8) to the form

ėy =
(

Ã11 − H11

)
ey +

(
Ã12 − H12

)
e2 + �1 (x̃, u) − �1 (x, u) − ρ (0) sign

(
ey

)
− Ẽ1 (x, u) f (t ) … (10)

ẽ2 =
(

Ã21 − H21

)
ey +

(
Ã22 − H22

)
e2 + �2 (x̃, u) − �2 (x, u) + Ẽ2 (x̃, u) v (t )

− Ẽ2 (x, u) f (t ) , … (11)

where H is the feedback gain matrix in the transformed domain. According to the
transformation, all the states in the subsystem ey are measurable. Considering the generality
of the problem, H11 can be chosen to be of full rank.

Lemma 1: For the systems of Equations (10) and (11) fulfilling Assumptions 1-3 are driven
to the sliding surface of Equation (5) in limited time and stay on it if the sliding-mode gain
ρ(.) in Equation (7) fulfils

ρ (x̂, x, u) ≥
(∥∥∥Ã12 − H 12

∥∥∥ + l�1

)
be + bẼ1

f̄ + β, … (12)

where ||e|| ≤ be and β is a positive constant.

Proof: Consider the Lyapunov function V1 = 1/2eT
y ey, differentiating with respect to time

and using Equation (11), we have(31)

V̇ 1 ≤ eT
y ėy = eT

y

[(
Ã12 − H12

)
ẽ2 − Ẽ1 (x, u) f (t ) + �1 (x̃, u) − �1 (x, u)

]
+eT

y

(
Ã11 − H11

)
ey − ρ (0)

∥∥(
ey

)∥∥ . … (13)
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From Assumption 2, we have ‖Ẽ1(x, u)‖ ≤ bẼ1
for some upper bound bẼ1

. From the
Lipschitz condition in Assumption 3, we have ‖�1(x̃, u) − �1(x, u)‖ ≤ l�1 for some Lipschitz
constant l�1 .

V̇ 1 ≤ ∥∥ey
∥∥ [∥∥∥Ã12 − H12

∥∥∥ + l�1

)
be + bẼ1

f̄ ] + eT
y

(
Ã11 − H11

)
ey − ρ (0)

∥∥(
ey

)∥∥
… (14)

From Equation (14) we conclude that

V̇ 1 ≤ eT
y

(
Ã11 − H11

)
ey − β

(
ey

)
.

Because H11 is of full rank, we can choose H11 such that Ã11 − H11 = P1, where P1 > 0
is positive definite. So,

V̇ 1 ≤ −eT
y P1ey − β

∥∥(
ey

)∥∥ < 0.

Thus, the gain in Equation (14) guarantees that the sliding surface can be achieved in a
limited time.

5.0 CHECK THE ERROR CONVERGENCE IN THE
PROPOSED METHOD

By substituting the tantamount output error infusion signal into the error dynamics
Equation (8), the error dynamics in the sliding mode could be obtained(31). In the sliding
mode ey = 0, we have ėy = 0. So, the tantamount output error infusion signal of v(t), veq can
be obtained from Equation (10) according to(6) as follows:

0 = C1 (A − LC) e + C1g (x̃, u) − C1g (x, u) + C1E (x̃, u) veq − C1E (x, u) f (t )
… (15)

So,

veq = (C1E (x̃, u))−1C1E (x, u) f (t ) − (C1E (x̃, u))−1 × (C1 (A − LC) e + C1g (x̃, u)

−C1g (x, u)) . … (16)

By replacing the tantamount output error infusion signal into the error dynamics
Equation (8), we have the following estimation of error dynamics in the sliding mode
of ey = 0.

ė = (A − LC) e + g (x̃, u) − g (x, u) + E (x̃, u) (C1E (x̃, u))−1C1E (x, u) f (t )

− E (x, u) f (t ) − E (x̃, u) (C1E (x̃, u))−1 [C1 (A − LC) e + C1g (x̃, u)

−C1g (x, u)] … (17)

From the above error dynamics, it is obvious that the fault dynamics
E (x̃, u)(C1E (x̃, u))−1C1E (x, u) f (t ) − E (x, u) f (t) → 0 as x̃ → x. Through an appropriate
design of the feedback gain, the error dynamics can be stabilised. For convenience of analysis,
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feedback gain design that stabilises the error dynamics will be reviewed in the transformed
domain. By assessment of the tantamount output error infusion signal from Equation (16)
and replacing it in Equation (11), we have

ẽ2 =
(

Ã22 − H 22

)
ẽ2 + �2 (x̃, u) − �2 (x, u) + Ẽ2 (x̃, u) Ẽ

−1
1 (x̃, u) Ẽ1 (x, u) f (t )

− Ẽ2 (x̃, u) Ẽ
−1
1 (x̃, u)

(
Ã12 − H 12

)
ẽ2 + �1 (x̃, u) − �1 (x, u) … (18)

=
(

Ã22 − H 22

)
ẽ2 + �2 (x̃, u) − �2 (x, u) − Ẽ2 (x̃, u) Ẽ

−1
1 (x̃, u)

(
Ã12 − H12

)
ẽ2

+�1 (x̃, u) − �1 (x, u) +
[
Ẽ2 (x̃, u) Ẽ

−1
1 (x̃, u)

− Ẽ2 (x̃, u) Ẽ
−1
1 (x̃, u) Ẽ1 (x, u) f (t )

]
. … (19)

The following Lemma 1 discusses the stability of reduced-order estimation error
Equation (19) in the sliding mode.

Theorem 1: For the system (1) fulfilling Assumptions 1-3 and using the estimator (2), the
sliding-mode gain (12) guarantees that the estimation error is asymptotically stable in the
multiple sliding mode of ey1=0, … , eym offered the gain H22 fulfils(31)

(
Ã22 − H 22

)T
P2 + P2

(
Ã22 − H22

)
= −I … (20)

λmax (P2) ≤ 1
2lα

, … (21)

where lα
�= (l�1 + bγ1l�2 + bγ2 + lγbE1 f̄ ) for some Lipschitz constants l�1, l�2, lγ and some

upper bounds bγ1, bγ2, bE1 , f̄ .

Proof: In the sliding mode, we have ey = 0, so e ≡ [0eT
2 ]T . Under the same Lipschitz

conditions as in Assumption 3, we have

∥∥∥Ẽ2 (x̃, u) Ẽ
−1
2 (x̃, u) − Ẽ2 (x, u) Ẽ

−1
1 (x, u)

∥∥∥ ≤ l γ ‖e‖ = l γ ‖ẽ2‖
‖�1 (x̃, u) − �1 (x, u)‖ ≤ l�1 ‖e‖ = l�1 ‖ẽ2‖
‖�2 (x̃, u) − �1 (x, u)‖ ≤ l�2 ‖e‖ = l�2 ‖ẽ2‖

… (22)

for some Lipschitz constants l�1 and l�2. Because the known functions are bounded based on
Assumption 2, we have

∥∥∥Ẽ2 (x̃, u) Ẽ
−1
2 (x̃, u)

∥∥∥ ≤ bγ1∥∥∥Ẽ2 (x̃, u) Ẽ
−1
1 (x̃, u)

(
Ã12 − H12

)∥∥∥ ≤ bγ2∥∥∥Ẽ
−1
1 (x̃, u)

∥∥∥ ≤ bẼ1

… (23)
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for some upper bounds bγ1, bγ2 and bẼ1
. Now, we select the Lyapunov function candidate as

V2 = ẽT
2 P2e ẽ2. Differentiating according to time, and by using Equation (19), we have

V̇ 2 = ẽT
2 P2ė2 + ėT

2 P2ẽ2 = ẽT
2

(
Ã22 − H22

)T
P2 + P2

(
Ã22 − H22

)
ẽ2

+ 2ẽT
2 P2

[
�2 (x̃, u) − �2 (x, u) − Ẽ2 (x̃, u) Ẽ

−1
1 (x̃, u)

×
[(

Ã12 − H 12

)
ẽ2 + �1 (x̃, u) − �1 (x, u)

]]
+ 2ẽT

2 P2

[
Ẽ2 (x̃, u) Ẽ

−1
1 (x̃, u) − Ẽ2 (x, u) Ẽ

−1
1 (x, u)

]
Ẽ1 (x, u) f (t ) .

… (24)

Considering the above results, we have

V̇ 2 ≤ −‖ẽ2‖2 + 2λmax (P2)
[
l�1 + bγ1l�2 + bγ2 + l γbE1 f̄

] ‖ẽ2‖2.

If the estimation gain H is designed so that conditions in Equations (20) and (21) are
fulfilled, the error dynamics in the sliding mode will be asymptotically stable.

Remark 3: If the fault distribution matrix Ẽ is a constant matrix or only involves functions
of y1 outputs, that is, Ẽ (x, u) = Ẽ (y1, u), then the reduced-order error dynamics will be
completely free from faults. In the sliding mode, ey = 0; therefore, Ẽ (x∧, u); Ẽ (y1, u). Hence,
we have

ẽ2 =
(

Ã22 − H22 − Ẽ2Ẽ
T
1 (y1, u)

(
Ã12 − H12

))
ẽ2

+�2 (x̃, u) − �2 (x, u) − Ẽ2Ẽ
T
1 (y1, u) [�1 (x̃, u) − �1 (x, u)] .

The gain design now depends on the matrix � = Ã22 − H22 − Ẽ2Ẽ
T
1 (y1, u)(Ã12 − H12).

The conditions that will guarantee stability are reduced to the form

�T P2 + P2� = −I

λmax(P2 ) ≤ 1

2
[
l�2 + bγ1l�1

]T .

6.0 FAULT RECOVERY FROM THE SLIDING MODE
OBSERVER

The equivalent output error injection signal veq in Equation (16) is needed for the existence of
the sliding mode(6,14) and is rewritten as(31):

veq = C1E (x̂, u) )−1C1E (x, u) f (t ) − ∅ (e, x̂, x, u) , … (25)

where

∅ (e, x̂, x, u) = C1E (x̂, u) )−1[C1 (A − LC) e + C1g (x̂, u) − C1g (x, u) . … (26)
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From Assumption 2 and Equation (21), we conclude that

∅ (e, x̂, x, u) ≤ bẼ1
‖C1‖

(‖A − LC‖ + l g
) ‖e (t )‖

→ 0 (t → ∞) .
… (27)

In order to appraise the fault signal f(t) from the sliding mode, the equivalent output error
injection signal veq needs to be reconstructed. Using a low-pass filter for reconstructing
this signal was proposed by Utkin et al in 1992. In this paper, the approach extended by
Edwards(14) and yan(32) will be used to appraise veq. From Assumption 2, the equivalent output
error injection signal veq in Equation (25) can be approximated by

veq
∼= ρ (0)

ey

ey + σ1exp {−σ2t} , … (28)

where σ1 and σ2 are positive constants.
By defining

f̂ (t ) = ρ (0)
ey∥∥ey

∥∥ + σ1exp {−σ2t} , … (29)

and by inserting the approximation of veq from Equation (28) into Equation (16), we have

∥∥∥ f̂ (t ) − f (t )
∥∥∥ ≤ ‖∅ (e, x̂, x, u)‖ . … (30)

Also, limt→∞‖ f̂ (t) − f (t)‖ = 0.
The parameters σ1 and σ2 in the above equation specify the degree to which an

approximation to a perfect sliding mode is obtained. In the general case, σ1 is small and σ2

is large(14,32). Due to the numerical procedures used in the implementation of the algorithms,
the error stays within a small bound ||ey|| ≤ ε around the sliding surface. In the majority of
practical cases, a borderline is used to cope with the inordinate chattering and this also results
in an approximated sliding surface.

7.0 ADVANTAGES OF THE PROPOSED METHOD
In the design of the proposed method, considerations have been made that have a prominent
role in its practical implementation:

1. The proposed fault estimation approach is easy to implement and can be applied to a
reasonably wide class of non-linear systems.

2. The proposed fault estimation/reconstruction signals are based only on the available plant
input/output information and can be calculated online.

3. An actuator fault reconstruction instead of just detection is presented based on the
equivalent output error injection signal.

4. This proposed method is free of undesirable chattering phenomena. Moreover, it can
handle both structured and unstructured uncertainties.
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5. Another benefit of the proposed fault estimation approach is its light burden of
computations, which is an important figure in practical implementation and online control
cases.

6. Since the integral of the system states is not used in dynamic equations of the sliding
surface, the wind-up effect will not occur in the implementation of this method.

7. To design the proposed method of fault detection in Ref. 32, a transformation matrix is
used to change system space. Their proposed methods for obtaining this transformation
matrix were very complicated and time consuming in terms of implementation. In our
paper, to overcome these difficulties, some strategies are presented that make the transfer
matrix computationally efficient.

8.0 APPLICATION TO AN HIRM AIRCRAFT SYSTEM
Consider the simplified dynamics of the HIRM aircraft at the trim values Mach: 0.8, Height:
5000 ft(33-35). By reordering the system state variables

ẋ (t ) = Ax (t ) + g (x, u) + E (x, u) f (t )
y (t ) = Cx (t )

A =

⎡
⎢⎢⎣

0 0 0 1
−0.367 −0.0318 0.0831 −0.0008

0 −0.0716 −1.4850 0.9848
0 −0.2797 −5.6725 −1.0253

⎤
⎥⎥⎦

g(x, u) =

⎡
⎢⎢⎢⎣

0
0

Fe
M

(
Sinx3

/
1 + x2

)
0

⎤
⎥⎥⎥⎦

C =
[

1 0 0 0
0 0 0 1

]
and E =

⎡
⎢⎢⎣

μ1

μ2

μ3

μ4

⎤
⎥⎥⎦ ,

where the parameters Fe and M are the engine thrust and the aircraft mass, respectively. This
system has four states x = col(x1, x2, x3, x4): pitch angle (rad); normalised airspeed deviation
(v-v0)/v0 with v and v0 = 267.51 the present airspeed (m/s) and the favourable airspeed (m/s),
respectively; angle-of-attack (rad); and pitch rate (rad/s). The fault distribution matrix E is
dependent on the system dynamics and is known a priori. The representation μ1,μ2, . . . ,μ4

is adopted for the purpose of comparison with the method in(32).
It is clear that the fault signal is observable through output y1, so C1 = [1 0 0 0]. The other

output is y2 = x4. The following form of observer, with one robust term, can be developed
based on Equation (2).

x̂ = Ax̂ + g (x̂, u) + L (y − C x̂) + E (x̂, u) v (t )
v (t ) = −(C1E (x̂, u))−1ρ (0) sign (C1x̂ − C1x) ,
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Figure 1. (Colour online) The first state of the system and the observer with a sliding-mode term.

where L = [ l11 l21 l31 l41
l12 l22 l23 l24

] is the feedback gain in the sliding mode of e1 = x̂1 − x1 = 0. The
unknown fault can be recovered from the sliding mode based on Equation (29) as

f̂ (t ) ∼= − 1
μ1

ρ (0)
e1

|e1| + δ
. … (31)

9.0 SIMULATION RESULTS
To demonstrate the performance of the proposed method, simulations are presented in two
stages.

Simulation 1: In this section, we try to design our proposed SMO for estimating the
system’s states. The fault distribution vector elements are selected to be μ1 = 1.2, μ2 = 0.6,
μ3 = 0.2, μ4 = 0.7. The sliding-mode gain is selected to be ρ(.) = 8. The initial conditions
for the plant and estimator are set as x(0) = [6 3 6 2] and x̂1(0) = [ 0 0 0 0 ], respectively. For
the recovery of the unknown input from the sliding mode, the parameter δ in Equation (31) is
selected to be 0.015. The gain is developed in a way that the reduced-order system is stable.
We chose the feedback gain

L =
[

1.701 0.78 1.6 0.19
0.09 −4.65 −4.85 6

]T

.

The positive-definite matrix P that fulfils the algebraic Ricatti equation (ARE) (28) is
obtained to be

P =
⎡
⎣ 0.2494 0.3476 0.1970

0.4016 1.9341 0.8199
0.2397 0.2497 2.0091

⎤
⎦ ,
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Figure 2. (Colour online) The second state of the system and the observer with a sliding-mode term.

Figure 3. (Colour online) The third state of the system and the observer with a sliding-mode term.

with λmax(Q) = 1.9921. The Lipschitz constant for the selected values was computed to be
l� = 0.201. Now, we can investigate if the condition in Remark 3 is fulfilled.

To verify the estimation integrity in the existence of high frequency elements, we
recommend a square wave disturbance of amplitude 1 and period 6.66 s. Simulation results for
the state estimation with the non-linear SMO are shown in Figs 1-4. In spite of the existence
of a large unknown input/disturbance, leading to large oscillations in the HIRM aircraft, the
observer was capable of tracking the states.

Simulation 2: In this stage, a fault estimator based on the proposed SMO of Yan et al (2007)
is designed for an HIRM aircraft system. Then, the performance of the proposed method is
compared with that of the SMO presented by Yan et al (2007) to show the superiority of the
proposed method. It should be noted that the design parameters of the proposed method are
the same as those in the first stage of simulation. It can be concluded from Fig. 5 that the
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Figure 4. (Colour online) The fourth state of the system and the observer with a sliding-mode term.

Figure 5. (Colour online) A fault and its estimation (first example).

proposed observer has estimated the fault efficiently. However, the SMO of Yan et al (2007)
shows chattering and is not highly accurate. By changing the fault, as shown in Fig. 6 to
verify the robustness of the suggested procedure, we selected 6sin(0.6πt)–3cos(0.35πt) as a
fault signal. It can be observed that the performance of the proposed method is still acceptable.
Although the SMO of Yan et al (2007) does not have chattering, it has a high estimation error
making its implementation problematic.

10.0 CONCLUSION
This study aims to propose a simple SMO developed for accurate state estimation in the
presence of faults for a class of non-linear systems. The proposed method is simple and is of
a relatively lower complexity compared to existing methods. Robust terms are designed in a
way that faults can be reconstructed directly from the sliding surfaces. Our proposed method
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Figure 6. (Colour online) A fault and its estimation (second example).

does not need a non-linear transformation. The stability of the reduced-order error system in
the sliding mode is established. A specific HIRM aircraft system example is given to illustrate
the efficiency of the proposed approach. Since most industrial systems are uncertain and non-
linear, extension of the proposed method to robust fault diagnosis for uncertain non-linear
systems is another interesting issue.
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