
Math. Struct. in Comp. Science (2016), vol. 26, pp. 658–701. c© Cambridge University Press 2014

doi:10.1017/S0960129514000358 First published online 12 November 2014

Making abstract models complete†

ROBERTO GIACOBAZZI and ISABELLA MASTROENI

Università degli Studi di Verona, Dipartimento di Informatica

Strada Le Grazie, 15, 37134 Verona, Italy

Email: roberto.giacobazzi@univr.it and isabella.mastroeni@univr.it

Received 31 December 2011; revised 10 February 2014

Completeness is a key feature of abstract interpretation. It corresponds to exactness of the

abstraction of fix-points and relies upon the need of absence of false alarms in static

program analysis. Making abstract interpretation complete is therefore a major problem in

approximating the semantics of programming languages. In this paper, we consider the

problem of making abstract interpretations complete by minimally modifying the predicate

transformer, i.e. the semantics, of a program. We study the mathematical properties of

complete functions on complete lattices and prove the existence of minimal transformations

of monotone functions to achieve completeness. We then apply minimal complete

transformers to prove the minimality of standard program transformations in security, such

as static program monitoring.

1. Introduction

Abstract interpretation (Cousot and Cousot 1977) is not only a theory for the approxim-

ation of the semantics of dynamic systems, but also a way of thinking about information

and computation. From this point of view a program can be seen as an abstraction

transformer i.e. a function which maps properties of input data into properties of output

data, generalizing Dijkstra’s predicate transformer semantics, by considering abstractions

as the objects of the computation: the way a program transforms abstractions tells us

a lot about the way information flows and is manipulated during the computation. For

instance the following two programs clearly compute the same input/output function,

multiplying the input integer values a and b:

C : input(a, b); C ′ : input(a, b);
x = a ∗ b; x = 0;

output(x) if b � 0 then {a =−a; b =−b};
while b �= 0 {x = a + x; b = b − 1};
output(x)

An automated program sign analysis, replacing concrete computations with approximated

ones (i.e. the rule of signs) is able to catch, with no loss of precision, the intended sign

behaviour of C , while this is not possible in C ′. This is because the rule of signs is imprecise

† This is a revised and extended version of two papers that appeared in the Proceedings of SAS’08 (Giacobazzi

and Mastroeni 2008) and SEFM’08 (Giacobazzi 2008).

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

Making abstract models complete 659

in approximating integer addition, while it is precise (complete) in approximating integer

multiplication. The two programs therefore differ in the way they transform abstractions,

although they compute the same input-output function. Similar situations hold in program

transformation (e.g. in compile-time program optimization) where the transformed code,

while preserving the concrete semantics of the source code, may worsen the precision

of an analysis (Laviron and Logozzo 2009). It is therefore becoming more and more

relevant looking at programs as abstraction transformers and study the properties of these

transformations. This is the case in abstract non-interference (Giacobazzi and Mastroeni

2004, 2008), where in order to understand who can attack the code and what information

is released, we study how data properties, namely abstractions, are manipulated and

possibly released during program execution and observed by attackers which are abstract

interpretations, or in code obfuscation (Dalla Preda and Giacobazzi 2009; Giacobazzi

2008), where obfuscating programs means making an (abstract) interpreter (the attacker)

imprecise in its analysis. This view exposes new possibilities for abstract interpretation

use, e.g. in security, code design and protection, as well as posing problems concerning the

methods according to which these transformations are studied. Even if clearly previewed

in the early stages of abstract interpretation (Cousot and Cousot 1979c), this approach

to the use of abstract interpretation is still relatively unexplored.

1.1. The problem

A major challenge in abstract interpretation is precision, which is completeness (Giacobazzi

et al. 2000). Completeness means exactness in the analysis: an abstraction is complete

for a program P whenever the approximation of the semantics of P, with respect to

some properties of interest, does not generate any loss of precision. This means that the

analysis of the program P is insensitive to the specific abstraction (Cousot and Cousot

1979c; Mycroft 1993). Consider again the multiplication example, completeness of the sign

analysis means that the sign of the result does not change (it does not lose precision) when

we consider the sign abstract semantics of the program, namely whenever we compute the

program semantics on signs instead of on values. This does not hold for the program on

the right, containing the addition for which the sign analysis in incomplete. In this case,

the result may be imprecise, since there are cases in which we cannot say anything about

the sign of the result, e.g. when the added values have different sign.

The problem of making abstract domains complete in the standard adjoint framework

of abstract interpretation by minimally transforming abstractions has been successfully

solved in Giacobazzi et al. (2000). In this paper, the authors proposed a general theory

of domain transformations that provide, under the non-restrictive hypothesis of Scott-

continuous functions, the minimal refinements and simplifications of an abstract domain

which is complete for those functions. In other words, this characterization provides the

minimal transformation of the analysis which is precise enough for the given program

semantics. Among these problems, the most relevant is refining. Refining abstractions

towards completeness in fact corresponds to remove false alarms , therefore adapting the

analysis to the particular program (or family of programs) under analysis. This has been

successfully implemented with ad hoc advanced abstract domain tuning in the Astrée

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

R. Giacobazzi and I. Mastroeni 660

z

p

X Y

x

Fig. 1. Example of incomplete abstraction of transition system.

analyser (Cousot et al. 2007a). Although general and constructive in fact, the method

presented in Giacobazzi et al. (2000) did not provide a direct algorithm for refining

abstractions which could be applied to any program and domains. Efficient algorithmic

implementations of these methods have been introduced in abstract model checking in

Clarke et al. (2003) and predicate abstraction in Gulavani and Rajamani (2006), where

abstractions correspond to partitions of the state space, by the so-called counter example

guided abstraction refinement iterative refinement. All these methods provide solutions to

the problem of deriving complete abstractions, but none of them attack the problem

of modifying semantics, i.e. the program model, in order to achieve completeness. As

observed in Giacobazzi et al. (2000), and earlier in Cousot and Cousot (1979c), we can

attack the problem of making an analysis complete either by modifying the abstractions

or by modifying the model (i.e. the program). While the first has been widely investigated

in the last decade from the most general setting in Giacobazzi et al. (2000) to efficient

and practical refinement strategies in Ball et al. (2002), Clarke et al. (2003), Cousot et al.

(2007a,b) and Laviron and Logozzo (2009), the latter is still an open problem.

In order to show what we mean by transforming semantics to achieve completeness , let

us consider the meaning of incompleteness in transition systems. In this case, we know

that (e.g. see Mastroeni (2008); Ranzato and Tapparo (2007)) an abstraction is (forward)

complete for a transition function if the image of an abstract state may only be the union

of abstract states, namely if it can only contain entire blocks of states partitioned by

the abstraction. This means that we have incompleteness when the image of an abstract

state covers only a subset of another abstract state. This naturally derives from the

so-called existential abstraction, in such a way that an abstract transition relates two

blocks of concrete states (abstract states) if there exists at least one concrete transition

from one state to another belonging respectively to the two blocks (Dams et al. 1997).

In order to better understand this concept, consider the transition system in Figure 1.

In the figure the (concrete) states are depicted as plain bullets while the transition

relation f is depicted with plain arrows, X and Y are abstract states, i.e. sets of concrete

states. The abstract system is characterized by defining the abstract transition relation as

f a (W)
def
= {W ′| ∃w ∈ W ,w ′ ∈ W ′. f (w) = w ′ }. We can show that this abstract transition

system is incomplete. In particular, from a state z (an abstract state containing only one

concrete state, z) we can reach the abstract state Y where the condition p holds, while in

the concrete system this is not possible. In other words there are abstract traces (from z
to Y) that cannot be simulated by any concrete trace in the system (from z to any state

in Y). These kind of traces are called spurious. The partition (abstraction) refinement

here, to get completeness, would split the abstract state X (Clarke et al. 2003). If instead

we want to force completeness by transforming the transition function f , then we have at

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

Making abstract models complete 661

z
p

X Y

x z
p

X Y

x

z
p

X Y

x

z z

z

Fig. 2. Refining transition relations.

p

X Y

xz

Fig. 3. Simplifying transition relations.

least to force f (x) ⊆ Y , for instance by adding a single transition, such as in Figure 2. In

this way we force also in the concrete system the abstract traces. However, this is not the

only possibility we have in order to force completeness. We can also choose to simplify

the transition function by removing transitions. In this latter case the idea is to restrict

the image of the function of an abstract state to the greatest union of abstract states

completely contained in it, for instance consider the case in Figure 3, in this situation we

can choose to erase also from the abstract system the spurious traces. Hence, we remove

all the transitions from X to Y .

Main contribution. In this paper, we consider the mathematical problem of minimally

transforming semantics in order to achieve completeness. Hence, we propose a min-

imal transformation and we transform program semantics. By minimal we mean the

closest transformation in the approximation order, namely we transform functions by

enriching the output images, i.e. by adding noise to the output computation, or by

restricting the output images of the function, i.e. by losing output information. Hence,

minimal here means that we add or remove the minimal amount of information from

the output observation of the semantics. Moreover, as we underlined before, we propose

to transform program semantics. It is clear that not all program transformations are

admissible in general and, in particular, it may not be meaningful to transform semantics

in all possible contexts. We show here that, whenever these transformations are allowed

then they can be modelled as completeness transformation, e.g. in program monitoring as

showed in Section 6.

A model for a program P is a triple 〈A,B , f P〉 where A and B are possibly different

domains of computational objects, and f P : A −→ B is a semantic transformer, e.g.

a predicate transformer, associating with each program P a function modelling the

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

R. Giacobazzi and I. Mastroeni 662

input/output behaviour of P. As usual in denotational semantics, models may involve

fix-point computations. In this general setting, we study the lattice-theoretic structure of

the set of all complete semantics for a given pair of abstractions, respectively for the

domain A and B . We consider both backward, denoted B, and forward, denoted F ,

completeness (Giacobazzi and Quintarelli 2001). If we compare the results in the abstract

domain, we obtain what is called backward completeness, while, if we compare the results

in the concrete domain we obtain the so-called forward completeness.

Backward completeness corresponds precisely to the standard notion of completeness

for an abstract interpretation (Cousot and Cousot 1979c; Giacobazzi et al. 2000), requiring

that no loss of precision is accumulated in computing by using approximate (abstract)

objects. A classical example is the rule of signs which is clearly backward complete for

integer multiplication but not for addition. This means that the sign of values is sufficient

to completely characterize the sign of the output multiplications, while this is not sufficient

for integer addition (in the latter case, the least refinement of signs which is complete is

the abstract domain of intervals (Giacobazzi et al. 2000)).

Forward completeness is relatively less known, and it corresponds to requiring that no

loss of precision is accumulated by approximating the output of a concrete computation.

An example can be found in the context of abstract transition systems. In particular,

for instance strong preservation in abstract model checking (absence of spurious counter-

example) is modelled as a forward completeness w.r.t. the inverse image of the transition

relation (Giacobazzi and Quintarelli 2001).

It is known that forward and backward completeness are dual notions, see Giacobazzi

and Quintarelli (2001), and that an abstraction is B-complete for an additive function f
if and only if it is F -complete for its right adjoint f +.

In the following, we consider the problem of modifying models, i.e. functions, in order

to achieve completeness. Achieving F -completeness means here forcing a function to

reduce its output to fall into an abstraction. This is precisely restricting a function by

selecting its outputs, an idea that is not new in program transformation. For instance,

in Vechev et al. (2010), the authors combine abstraction and semantics refinement for

synchronization synthesis in multi-threaded programs. The idea is that of modifying the

semantics, the set of all the possible execution traces, by restricting them to a subset of

traces which satisfy some synchronization constraints.

B-completeness instead transforms a function in order to make its abstraction insensit-

ive on the abstraction of the input. This means that the transformed function operates only

on an abstraction of its input, making the non-abstract objects irrelevant for its output.

Once again this corresponds to restricting the function. In both cases, we can drive a

function (program) transformation towards completeness, by restricting the function on

specific elements. We believe that this is suitable for modelling a variety of program

transformations in security. In particular, we prove that static program monitoring can

be specified in terms of making a given program complete.

The paper is structured as follows. In Section 2, we introduce the main mathematical

notation and notions, including a brief presentation of the standard adjoint framework

of abstract interpretation, including the main results on soundness and completeness. In

Section 3, we show that software watermarking is in an ideal context where completeness

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

Making abstract models complete 663

semantic transformers may be used for characterizing and deeply understanding different

watermarking techniques. In Section 4, we present a lattice-theoretic characterization

of forward complete semantics, including minimal transformations for modifying a

non-complete function towards a complete one, providing both an upper and lower

approximation of the transformed function. In Section 5 the same construction is

developed for backward completeness. The validity of our approach is proved in Section 6,

where model transformations are applied both to prove minimality in static program

monitoring as complete model transformation. Section 7 concludes the paper by exploring

future research directions.

2. Preliminaries

In this paper, we consider the standard definition of abstract domains as Galois

connections, as formalized in Cousot and Cousot (1977, 1979c). We introduce the basic

mathematical background concerning Galois connection-based abstract interpretation,

residuated closures, fix-point soundness and completeness (Davey and Priestley 1990;

Nielson et al. 1999).

2.1. Basic lattice and fix-point theory

If S and T are sets, then ℘(S) denotes the powerset of S , |S | the cardinality of S ,

S � T strict inclusion, S × T the cartesian product, and for a function f : S → T and

X ⊆ S , f (X)
def
= {f (x) | x ∈ X }. By g f we denote the composition of the functions f

and g , i.e. g f def
= λx .g(f (x)). 〈P ,�〉 denotes a poset P with ordering relation �, while

〈C ,�,∨,∧,�,⊥〉 denotes a complete lattice C , with ordering �, lub ∨, glb ∧, greatest

element (top) �, and least element (bottom) ⊥. Often, �P will be used to denote

the underlying ordering of a poset P , and ∨C , ∧C , �C and ⊥C to denote the basic

operations and elements of a complete lattice C . Let P be a poset and S ⊆ P . Then,

max(S)
def
= {x ∈ S | ∀y ∈ S . x �P y ⇒ x = y} denotes the set of maximal elements of S

in P ; also, the downward closure of S is defined by ↓S def
= {x ∈ P | ∃y ∈ S . x �P y}, and

for x ∈ P , ↓x is a shorthand for ↓ {x}, while the upward closure ↑ is dually defined. We

use the symbol � to denote point-wise ordering between functions: If S is any set, P a

poset, and f , g : S → P then f � g if for all x ∈ S , f (x) �P g(x). An operator f : P −→P
is extensive if ∀x ∈ P . x �P f (x). It is reductive if ∀x ∈ P . x �P f (x). Let C and D be

complete lattices. Then, C m−→D and C c−→D denote, respectively, the set and the type of

all monotone and (Scott-)continuous functions from C to D . Recall (Abramsky and Jung

1994) that f ∈ C c−→D iff f preserves lub’s of (non-empty) chains iff f preserves lub’s

of directed subsets. Also, f : C → D is (completely) additive if f preserves lub’s of all

subsets of C (emptyset included), while co-additivity is dually defined. The additive lift of

f : C → D is a function f a : ℘(C) → ℘(D) such that f a def
= λX . {f (x)| x ∈ X }. Recall that

any function can be transformed into the closest (from below and from above) monotone

function that approximates it. This is achieved by considering the following functionals

(Cousot and Cousot 1979a) M
↓,M↑ : (C −→D)−→ (C m−→D) such that

M
↓ def

= λf . λx .
∧

{f (y)| y � x } M
↑ def

= λf . λx .
∨

{f (y)| y � x }.

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

R. Giacobazzi and I. Mastroeni 664

Similarly, any function can be transformed into the closest extensive or reductive map

by considering the following functionals (Cousot and Cousot 1979a) E,R : (C −→C)−→
(C −→C) such that:

E
def
= λf . λx . f (x) ∨ x R

def
= λf . λx . f (x) ∧ x

We denote by lfp(f) and gfp(f), respectively, the least and greatest fix-point, when they

exist, of an operator f on a poset. The well-known Knaster–Tarski’s theorem states that

any monotone operator f : C m−→C on a complete lattice C admits both least and greatest

fix-points, and the following characterizations hold:

lfp(f) = ∧C {x ∈ C | f (x) �C x} and gfp(f) = ∨C {x ∈ C | x �C f (x)}.

Let us note that if f , g : C m−→C and f � g then lfp(f) � lfp(g). It is known that if f :

C c−→C is continuous then lfp(f) = lfp(E(f)) = ∨i∈Nf i (⊥C), where, for any i ∈ N and x ∈
C , the i th power of f in x is inductively defined as follows: f 0(x) = x ; f i+1(x) = f (f i (x)).

Dually, if f : C → C is co-continuous then gfp(f) = gfp(R(f)) = ∧i∈Nf i (�C).

{f i (⊥C)}i∈N and {f i (�C)}i∈N are called, respectively, the upper and lower Kleene’s

iteration sequences of f (Cousot and Cousot 1979b). The set of all finite sequences (traces)

over an alphabet Σ is denoted Σ+. If σ, σ′ ∈ Σ+ then σσ′ ∈ Σ+ is the concatenation of the

two sequences.

2.2. Abstract domains individually and collectively

Concrete domains represent collections of computational objects on which the con-

crete semantics and models are defined. These include standard data-types (e.g. heap,

stack, numerical types) control-flow structures, etc. Abstract domains are collections

of approximate objects, representing properties of concrete objects in a domain-like

structure. The relation between concrete and abstract domains can be specified in terms

of Galois connections , and this sets up the so-called standard adjoint framework of abstract

interpretation (Cousot and Cousot 1977). The adjoint presentation is a relatively restrictive

view of abstract interpretation. Weaker frameworks could involve the weakening of the

relation between concrete and abstract domains, e.g. in Cousot and Cousot (1992a), or

sophisticated fix-point iteration strategies by fix-point widening on approximate domains

(Cousot and Cousot 1992b). In this paper, we consider abstractions in the standard adjoint

framework, which provides the richest mathematical environment for proving properties

about abstractions.

The aim of the following part is that of recalling the basic concepts and properties

in abstract interpretation that will be used in the paper, for a formal introduction of

abstract interpretation see (Cousot and Cousot 1977, 1979c). If 〈C ,�,�,⊥,∨,∧〉 is a

complete lattice, a pair of monotone functions α : C m−→A and γ : A m−→C forms an

adjunction or a Galois connection if for any x ∈ C and y ∈ A: α(x) �A y ⇔ x �C γ(y).

The function α is the left- adjoint to γ and it is additive, i.e. it preserves lub’s of all

subsets of the domain (emptyset included). The function γ is the right-adjoint to α and

it is additive, i.e. it preserves glb’s of all subsets of the domain (emptyset included). The

right adjoint of a function α is α+ def
= λx .

∨
{y | α(y) � x }. Conversely the left adjoint

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

Making abstract models complete 665

of γ is γ− def
= λx .

∧
{y | x � γ(y)}. In this case: γ− = α and α+ = γ. It is known that

abstract domains can be formalized as closure operators on the concrete domain (Cousot

and Cousot 1979c). An upper [lower] closure operator ρ : P −→P on a poset P is

monotone, idempotent, and extensive [reductive]. Closures are uniquely determined by

their fix-points ρ(C). In the following, we will write x ∈ ρ as shorthand for x fix-point

of ρ, i.e. for x ∈ ρ(C). In the following, we will often use closures both as functions

and as sets (viz., domains). Given X ⊆ C , the least abstract domain containing X is

the least closure including X as fix-points, which is the Moore-closure or Moore family

M(X)
def
= {

∧
S | S ⊆ X }. It turns out that 〈ρ(C),�〉 is a complete meet subsemilattice

of C (i.e. ∧ is its glb), but, in general, it is not a complete sublattice of C , since the

lub in ρ(C) – defined by λY ⊆ ρ(C). ρ(∨Y) – might be different from that in C . In

fact, ρ(C) is a complete sublattice of C iff ρ is additive. The set of all upper closure

operators on P is denoted by uco(P), while lower closure operators are denoted lco(P). If

C is a complete lattice, then 〈uco(C),�,�,�, λx .�, id〉 is a complete lattice (Ward 1942),

which is isomorphic to the lattice of abstract domains of C (cf. (Cousot and Cousot 1977,

Section 7) and (Cousot and Cousot 1979c, Section 8)). where id def
= λx .x and for every

ρ, η ∈ uco(C), {ρi}i∈I ⊆ uco(C) and x ∈ C :

— ρ � η iff ∀y ∈ C . ρ(y) � η(y) iff η(C) ⊆ ρ(C);

— (�i∈Iρi)(x) = ∧i∈Iρi (x);

— (�i∈Iρi)(x) = x ⇔ ∀i ∈ I . ρi (x) = x ;

— λx .� is the top element and λx .x is the bottom element.

Thus, the glb in uco(C) is defined point-wise, while the lub of a set of closures {ρi}i∈I ⊆
uco(C) is the closure whose set of fix-points is given by the set-intersection ∩i∈Iρi (C). In

the following, we will make use of the following basic properties for ρ, η ∈ uco(C) and

Y ⊆ C :

i. ρ(∧ρ(Y)) = ∧ρ(Y);

ii. ρ(∨Y) = ρ(∨ρ(Y));

iii. η � ρ ⇔ ηρ = ρ ⇔ ρη = ρ.

In abstract interpretation, A1 is more precise (viz. more concrete) than A2 (i.e. A2 is an

abstraction of A1) iff A1 � A2 in uco(C) iff A2 ∈ uco(A1).

2.3. Adjoining closure operators

In the following, we will make an extensive use of adjunction, in particular of closure

operators. Janowitz (1967) characterized the structure of residuated (adjoint) closure

operators by the following basic result (see also Blyth and Janowitz (1972)).

Theorem 2.1 (Janowitz 1967). Let 〈η, η+〉 and 〈η−, η〉 be pairs of adjoint operators on C .

(1) η ∈ uco(C) ⇔ η+ ∈ lco(C) ⇔
{
ηη+ = η+

η+η = η

(2) η ∈ uco(C) ⇔ η− ∈ lco(C) ⇔
{
ηη− = η

η−η = η−

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

R. Giacobazzi and I. Mastroeni 666

This theorem says that the adjoint of a closure operator is always a closure operator,

when it exists. In particular, the adjoints of upper closure operators are lower operators,

and, by duality, the adjoint of a lower operator is an upper one. Let us explain the

relations described in the theorem, existing between closure adjoints, in the lco case. Let

τ ∈ lco(C). By Theorem 2.1, if τ− exists then τ−(τ(X)) = τ(X) and τ(τ−(X)) = τ−(X).

This means that τ− is such that both τ and τ− have the same sets of fix-points, namely τ−

extends any object X to the largest object Y such that τ(Y) = Y . Conversely, the right

adjoint of τ, when it exists, is quite different. By Theorem 2.1, we have that if τ+ exists

then τ+(τ(X)) = τ+(X) and τ(τ+(X)) = τ(X). In this case τ+(X) is not a fix-point of τ.

Instead, it is the least element Y that can be lifted by τ to the same object as X does, i.e.

such that τ(X) = X = τ(Y). The following result strengthen Theorem 2.1 by showing the

order-theoretic structure of residuated closures.

Proposition 2.2. Let τ ∈ lco(C) and η ∈ uco(C).

1. If 〈τ−, τ〉 and 〈η, η+〉 are pairs of adjoint functions then τ− = λX .
∧

{τ(Y)|τ(Y) � X }
and η+ = λX .

∨
{η(Y)|X � η(Y)}.

2. If 〈τ, τ+〉 and 〈η−, η〉 are pairs of adjoint functions then τ+ = λX .
∨

{Y |τ(Y) = τ(X)}
and η− = λX .

∧
{Y |η(X) = η(Y)}.

Proof.

1. Let us prove that
∧

{τ(y)| τ(y) � x } =
∧

{y | τ(y) � x } (the proof for η can be obtained

by duality). We suppose that 〈τ−, τ〉 is a pair of adjoint functions, namely that τ is

co-additive. We prove that the two implications of equality separately. Note that, by

idempotence of τ

{τ(y)| τ(y) � x } ⊆ {y | τ(y) � x }
⇒

∧
{τ(y)| τ(y) � x } �

∧
{y | τ(y) � x }.

On the other hand, τ is co-additive, therefore

τ(
∧

{y | τ(y) � x }) =
∧

{τ(y)| τ(y) � x } � x
⇒ τ(

∧
{y | τ(y) � x }) ∈ {τ(y)| τ(y) � x }.

This means, since τ is reductive, that∧
{y | τ(y) � x } � τ

(∧
{y | τ(y) � x }

)
�

∧
{τ(y)| τ(y) � x }.

In this way we proved the equality.

2. Let us prove the result for τ, the other case is obtained by duality. Since, we suppose

that 〈τ, τ+〉 is a pair of adjoint functions, we are supposing that τ is additive. We prove

the two implication of equality separately. First of all note that, since τ is reductive,

i.e. τ(x) � x , then

{y | τ(y) = τ(x)} ⊆ {y | τ(y) � x }
⇒

∨
{y | τ(y) = τ(x)} �

∨
{y | τ(y) � x }.

On the other hand, since τ(x) ∈ {τ(y)| τ(y) � x }, by additivity of τ, we have that

τ
(∨

{y | τ(y) � x }
)

=
∨

{τ(y)| τ(y) � x } � τ(x).

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

Making abstract models complete 667

Moreover, for each y , such that τ(y) � x , we have τ(y) � τ(x), by idempotence and

monotonicity of τ, therefore

τ(x) �
∨

{τ(y)| τ(y) � x } ⇒ τ(x) � τ(
∨

{y | τ(y) � x }).

Hence, τ(
∨

{y | τ(y) � x }) = τ(x), i.e.
∨

{y | τ(y) � x } ∈ {y | τ(y) = τ(x)}, which implies∨
{y | τ(y) = τ(x)} �

∨
{y | τ(y) � x }.

In this way we proved the equality.

Uniform closures have been introduced in Giacobazzi and Ranzato (1998b) for specify-

ing the notion of abstract domain compression , namely the operation for reducing abstract

domains to their minimal structure with respect to some given abstraction refinement

η ∈ lco(uco(C)). An upper closure η is meet-uniform (Giacobazzi and Ranzato 1998b) if

η(
∧

{Y |η(X) = η(Y)}) = η(X). Join-uniformity is dually defined for lower closures. Well-

known non-co-additive upper closures are meet-uniform, such as the downward closure ↓
of a subset of a partially ordered set (Giacobazzi and Ranzato 1998b). The following is

an example of meet-uniform closure.

Example 2.3. It is easy to prove that the limited-interval abstract domain with m ∈ N:

ι
def
= λx . let a = if min(x) < −m then − m else min(x),

b = if max (x) > m then − m else max (x) in [a , b] ∈ uco(℘([−m,m]))

is a meet-uniform closure: If Y ⊆ ℘([−m,m]) and for any x , y ∈ Y : ι(x) = ι(y), then for

any x , y ∈ Y . min(x) = min(y) ∧ max(x) = max(y). Therefore there exists z ∈ Y such

that ι(
⋂

Y) = ι(z). In this case, ι− = λx . {min(x),max(x)} ∈ lco(℘([−m,m])).

It is known that any ρ ∈ uco(C) is join-uniform and the set of meet-uniform upper closures

uco∗(C) is a Moore-family of uco(C). The following is immediate by Theorem 2.1 and

Proposition 2.2.

Corollary 2.4. Let η ∈ uco(C). 〈η−, η〉 is a pair of adjoint closures iff η is meet-uniform.

2.4. Soundness and completeness

Let f : C m−→D be a concrete semantic operation defined over some concrete domains

C and D . Let an abstract interpretation be specified by Galois connections with abstract

domains ρ(C) and η(D) corresponding to closure operators ρ ∈ uco(C) and η ∈ uco(D)

respectively, and by a corresponding abstract semantics f � : ρ
m−→η. Then, f � is sound for

(or is a correct approximation of) f if ηf � f �ρ. This holds iff ηf ρ � f �. The function

ηf ρ is called best correct approximation of f in ρ and η. Whenever f : C m−→C and

f � : ρ
m−→ρ, f � is fix-point sound for f if ρ(lfp(f)) � lfp(f �). A sound over-approximation

means that no error can be forgotten by the analysis, i.e. the approximate semantics

includes a full coverage of all possible concrete computations, e.g. the collections of all

reachable states. As we recalled in the introduction, a well-known basic result of abstract

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

R. Giacobazzi and I. Mastroeni 668

interpretation (Cousot and Cousot 1979c, Theorem 7.1.0.4) states that soundness implies

fix-point soundness. It is worth remarking that fix-point soundness is in general a strictly

weaker property than soundness.

Precision of an abstract interpretation is typically defined in terms of completeness

(Cousot and Cousot 1979c; Mycroft 1993). Depending on where we compare the

concrete and the abstract computations, we obtain two different notions of completeness

(Giacobazzi et al. 2000; Giacobazzi and Quintarelli 2001). If we compare the results in

the abstract domain, we obtain what is called backward completeness (B-completeness),

while, if we compare the results in the concrete domain we obtain the so-called forward

completeness (F -completeness). Formally, if f : C m−→C and ρ ∈ uco(C), then ρ is B-

complete if ρf ρ = ρf , while it is F -complete if ρf ρ = f ρ. A complete over-approximation

means that no false-alarms are returned by the analysis, i.e. in B-completeness the

approximate semantics computed by manipulating abstract objects corresponds precisely

to the abstraction of the concrete semantics, while in F -completeness the concrete

semantics do not lose precision by computing on abstract objects. The problem of making

abstract domains B-complete has been solved in Giacobazzi et al. (2000) and later

extended to F -completeness in Giacobazzi and Quintarelli (2001). Let f : C1 −→C2

and ρ ∈ uco(C2) and η ∈ uco(C1). 〈ρ, η〉 is a pair of B-complete abstractions for f
if ρf = ρf η, it is a pair of F -complete abstractions for f if f η = ρf η. A pair of

domain transformers has been associated with any completeness problem, which are

respectively a domain refinement and simplification (Filé et al. 1996; Giacobazzi and

Ranzato 1997). In Giacobazzi et al. (2000) and Giacobazzi and Quintarelli (2001), a

constructive characterization of the most abstract refinement, called complete shell , and

of the most concrete simplification, called complete core, of any abstract domain, making

it F or B-complete for a given continuous function f , is given as a solution of simple

abstract domain equations given by the following basic operators:

RF
f

def
= λX .M(f (X)) RB

f
def
= λX .M(

⋃
y∈X max(f −1(↓y)))

CF
f

def
= λX . {y ∈ L| f (y) ⊆ X } CB

f
def
= λX . {y ∈ L| max(f −1(↓y)) ⊆ X }

Let � ∈ {F ,B}. In Giacobazzi et al. (2000) the authors proved that the most concrete

β � ρ such that 〈β, η〉 is �-complete and the most abstract β � η such that 〈ρ, β〉
is �-complete are respectively the �-complete core and �-complete shell, which are:

C�,η
f (ρ)

def
= ρ � C �

f (η) and R�,ρ
f (η)

def
= η � R�

f (ρ). When η = ρ, we need a fix-point iteration on

abstract domains, i.e. R�
f (ρ) = gfp(λX . ρ � R�

f (X)) ∈ lco(uco(C)) which is called absolute

�-complete shell . By construction if f is additive then RB
f = RF

f + (Giacobazzi and

Quintarelli 2001). This means that when we have to solve a problem of B-completeness

for an additive function then we can equivalently solve the corresponding F -completeness

problem for its right adjoint. The following example from Giacobazzi and Quintarelli

(2001), exemplifies the duality of forward and backward abstract domain completeness

when dealing with additive functions. Assume S to be the domain in Figure 4, which is an

obvious abstraction of 〈℘(Z),⊆〉 for the analysis of integer variables and sq : ℘(Z) → ℘(Z)

be the square operation defined as follows: sq(X) = {x 2| x ∈ X } for X ∈ ℘(Z). The

arrows in Figure 4a and b show the function sq�. Let ρS ∈ uco(℘(Z)) be the closure

operator associated with S. The best correct approximation of sq in S is sq� : S → S

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

Making abstract models complete 669

Fig. 4. The abstract domain S and two abstractions.

such that sq�(X) = ρS(sq(X)), with X ∈ S. It is easy to see that the abstractions

ρa = {Z, [0,+∞], [0, 10]} (black dots in Figure 4a) and ρb = {Z, [0, 2], [0]} of S (black dots

in Figure 4b), respect the following facts: ρa = {Z, [0,+∞], [0, 10]} is F -complete but not

B-complete on the concrete domain S for sq� (for instance ρa (sq�(ρa ([0]))) = [0,+∞] but

ρa (sq�([0])) = [0, 10]) and ρb = {Z, [0, 2], [0]} is B-complete but not F -complete on the

concrete domain S for sq� (for instance ρb(sq�(ρb([0, 2]))) = Z but sq�(ρb([0, 2])) = [0, 10]).

3. A motivating example: incompleteness for information hiding

Among the different methods for hiding secrets in programs, software watermarking is

one of the most common and widely used (Collberg and Nagra 2010). Consider a pro-

gramming language defined as the collection of all well-formed programs P. We consider

a steganographic approach to software watermarking, i.e. program transformations where

the intended (typically a copyright) signature is hidden from external observers. We follow

(Cousot and Cousot 2004) by defining the stegomarker M : S−→P as the encoding of

the signature s ∈ S ⊆ A+ over a finite alphabet A, into a program M(s) ∈ P, called the

stegomark . The stegolayer L : P × P−→P is used to compose the stegomark with the

source (cover) program. The (watermarked) stegoprogram S : P × S−→P is such that

S(P, s) = L(P,M(s)) for any program P ∈ P and signature s ∈ S .

The standard taxonomy of software watermarking in Collberg and Nagra (2010),

Collberg and Thomborson (1999, 2000) and Nagra et al. (2002), distinguish between static

watermarking , where signatures are encoded as properties of the code text, and dynamic

watermarking , where the signature is encoded in the state computed by the stegoprogram

under suitable inputs. Abstract watermarking, introduced in Cousot and Cousot (2004),

is different: the signature is encoded as a stegomark in the cover program and can be

extracted by suitable static program analysis. In some sense it is dynamic being encoded

in the states computed by the stegoprogram and static being observable and removable

by a static analysis under suitable (secret) hypothesis (the secret key).

In the following, we show that static and dynamic watermarking are indeed both

instances of abstract watermarking, under suitable choices for M and L. In particular,

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

R. Giacobazzi and I. Mastroeni 670

they are instances of a common pattern which corresponds precisely to the program

transformations making semantics F -complete.

Let P ∈ P be a deterministic program on concrete data-types D and α, ω ∈ uco(℘(Σ+))

be program properties on program traces, i.e. sequences of program states in Σ, such

that α � ω. Denote by [[·]] : P × D−→Σ+ the concrete semantics associating with each

program P and input d ∈ D the computed trace [[P]](d) ∈ Σ+. [[·]]α : P × D−→α is the

abstract interpretation with respect to an abstraction α ∈ uco(℘(Σ+)). If η ∈ uco(D) and

∀x . [[M(s)]]α(x) ∈ ω then L is a stegolayer for P and M(s) if

[[S(s , P)]]α = [[L(P,M(s))]]α def
= λx .

{
[[M(s)]]α(x) if x ∈ η

[[P]]α(x) otherwise

where we recall that x ∈ η denotes x fix-point of η. Static software watermarking

corresponds here to set η = id, i.e.

∀x ∈ D. [[S(s , P)]]α(x) = [[M(s)]]α(x) ∈ ω

and α is a decidable abstraction. This means that the interpretation of the stegoprogram

always reveals the watermark, independently from the input, provided that a (static)

decidable analysis is performed on the stegoprogram S(s , P). In dynamic watermarking

instead η �= id, meaning that only suitable inputs may reveal the watermark. In this case,

the inputs revealing the watermark are all and only the inputs satisfying the property

η. In this context, the syntactic stegomarker M(·) can be associated with a semantic

stegomarker M[[·]] : S−→uco(℘(Σ+)). ω = M[[s]] can be any property of the watermark,

for instance M[[s]] = {Σ+,Xs} ∈ uco(℘(Σ+)), which is the least closure including the a

suitable set of execution traces revealing the watermark Xs ⊆ Σ+, for some signature

s ∈ S . It is immediate to recognize a F-completeness transformation here: a stegoprogram

reveals the watermark ω = M[[s]] under input η if its abstract semantics is F-complete for

ω and η. In this case the abstract semantics [[·]]α performs watermark extraction which can

be, as in Cousot and Cousot (2004), implemented as abstract interpretation. Therefore

S(s , P) is a stegoprogram if its abstract semantics [[·]]α is a F -complete transformation

of the abstract semantics of P w.r.t. the input observation η and the output observation

M[[s]], recognizing the watermarks. This means that by formalizing and characterizing

completeness transformers we obtain a framework where we can understand, study and

even generalize well-known existing watermarking techniques.

Note that if 〈η,M[[s]]〉 is F -complete for [[S(s , P)]]α it may happen that 〈M[[s]], η〉 is

not F -complete for [[S(s , P)]] (Giacobazzi et al. 2000). This means that the knowledge of

the stegomarker may not be sufficient in order to extract the watermark. This makes the

extraction completely dependent on the suitable choice of the abstract semantics [[·]]α. In

this sense, code obfuscation can be used in order to design appropriate stegolayers making

〈η, ω〉 incomplete for the standard interpreter [[·]] (e.g. see Giacobazzi et al. (2012)). This is

a further weakening with respect to abstract watermarking in Cousot and Cousot (2004),

where ω = α and the secrecy relies upon the difficulty to guess ω out of any blind static

or dynamic analysis of the stegoprogram.

It is easy to provide the intuition of how it is possible to encode, within this schema,

most well-known watermarking methods. This of course does not reduce the impact

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

Making abstract models complete 671

of these methods but rather shows a common invariant pattern in most methods for

information hiding in programs, which is precisely modelled by fixing some abstractions,

which play here the role of the watermark recognition process and then making the cover

program complete with respect to these abstractions, letting the corresponding abstract in-

terpretation be a valid watermark extractor. We sketch two of these encodings for popular

watermarking methods, see Collberg and Nagra (2010) for details, showing how they both

correspond to program (semantics) modifications inducing F -completeness with respect

to an observer (the watermark extractor) and a key (the key for watermark extraction).

Abstract watermarking. Abstract watermarking (Cousot and Cousot 2002) is immediate.

In abstract watermarking, a signature is a large number c ∈ N which is embedded

in the program as a tuple of smaller numbers 〈c1, . . . , cn〉 ∈ N
n , where each ci

is a natural number modulo a prime number pi , i.e. ci ranges in [0, pi − 1]. The

tuple of relatively prime numbers 〈p1, . . . , pn〉 is the secret key. 〈c1, . . . , cn〉 is the

watermark which is embedded in the cover program P by including a stegomarker

which is a set of program modules given, for each ci , by the code computing (by

the Horner’s method) two polynomials Ri and Qi such that ci ≡pi
Ri (I) for some

input value I ∈ N and ci ≡pi
Qi (ci), where x ≡p y if x = y + kp and k ∈ Z.

The watermark extraction is obtained by extracting the invariants of the computed

polynomials. Because the numbers computed in N by the embedded polynomials may

appear random, this can only be achieved by a constant propagation analysis in an

abstract domain αi ∈ uco(℘(N)) of values representing congruences modulo pi , i.e.

αi = {N, 0, . . . , pi − 1,�}. The abstract domain α =
�n

i=1 αi is therefore unambiguously

determined by the secret key 〈p1, . . . , pn〉. In this case, the obtained stegoprogram

S(s , P) is such that [[S(s , P)]]α is a complete transformation of [[P]]α w.r.t. η and α,

where η = {N, I } ∈ uco(℘(N)) is the closure determining whether the (input) value is

I . A similar notion of abstract watermarking can be found in Mastroeni (2004).

Block reordering. Let G be the set of all possible directed graphs which can be obtained

from the basic blocks (or any given partition of code statements) of the cover program

P. Assume that the concrete semantics extracts program execution traces in Σ+ where

each program state includes the executed statements of P. Let also CFG(σ) ∈ G, for σ ∈
Σ+, be the graph of basic blocks visited in σ. The block reordering static watermarking

corresponds to choose: η = id (static); given a (numerical) signature s and an encoding

of numbers as graphs, i.e. sequences of basic blocks E : N−→G then M[[s]] is the

atomic closure {Σ+,Gs} ∈ uco(℘(Σ+)) where Gs = {σ ∈ Σ+| E(s) = CFG(σ)} and

[[P]]α extracts the CFG of P (Giacobazzi et al. 2012), which is an (incomplete) abstract

interpretation of the trace semantics [[P]] provided that states include code instructions

with labels. The abstraction α forgets about memory locations and computed values

and just keeps track of the sequence of program instructions isolating basic blocks

(consecutive instructions) as graph nodes and determining possible jumps between

blocks as graph edges (Rival and Mauborgne 2007). Incompleteness results here from

the inability of [[P]]α in distinguishing true or false branches and iterations (i.e. dead

code), being a purely static extraction of the control flow graph of P. A dynamic

version of block reordering can be implemented by choosing η �= id. In this case

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

R. Giacobazzi and I. Mastroeni 672

S(s ,P) has to include within the stegomarker a block reordering algorithm, which is

activated when x is a fix-point of η, as in metamorphic malware (Dalla Preda et al.

2007). A similar model, with analogous abstractions can be used for encoding the

Venkatesan et al. CFG-based watermarking (Venkatesan et al. 2001).

Other watermarking methods can be encoded as making a transformed program

complete for an abstraction. For instance, the Threading watermarking in Nagra and

Thomborson (2004) would need a different computational model, including multith-

reading and concurrency. In this case the extractor should correspond to a complete

abstract interpretation modelling execution paths, which encode the watermark in the

sequence of thread interleavings. Credibility , data-rate, resilience and stealthy (Collberg

and Thomborson 2000) rely upon the choice of the properties α and M[[s]]. High credibility

corresponds to α,M[[s]] ∈ uco(℘(Σ+)) such that [[P]]α �∈ M[[s]] (i.e. M[[s]]([[P]]α) ≈ Σ+

minimizes false positives). Data-rate depends upon the choice of M[[s]]. Resilience is high

when M[[s]], and therefore α, are both hard to guess and they are preserved by most

common program transformations. Stealthy instead depends upon the implementation of

the stegolayer, which has to produce output code which is as similar as possible to P. Note

that, the F -completeness transformers will be formalized as idempotent transformations,

hence they provide also a code tamper-detection method similar to the one used for

images in mathematical morphology (Kihara et al. 2007).

4. Making semantics forward complete

In this section, we face the problem of (minimally) transforming semantics in order to

make them F -complete. Minimal here is defined on the approximation order, namely

we characterize the transformation with the least loss of precision w.r.t. the original

semantics outputs, both adding noise or removing information. The transformation is

made in two steps: first we induce F -completeness, and then we force monotonicity by

using standard results on function transformers in Cousot and Cousot (1979a). This is

because the completeness transformation may generate nonmonotone functions. Before

introducing the completeness transformers we have to formally specify what we mean by

minimally transforming semantics . As usual we consider a lattice of functions where maps

are point-wise ordered. Hence, a minimal transformation of f finds the closest function,

by reducing or increasing the images of f , w.r.t. a given property we want to hold for

f , which is in this context, F -completeness. In abstract interpretation this corresponds

to find the closest (viz., least abstraction or concretization) of the semantics such that

F -completeness holds for a given pair of abstractions. Consider a function f : C −→C
and consider two abstract domains η, ρ ∈ uco(C), we are interested in transforming f in

order to make 〈η, ρ〉 F -complete for f , namely in order to force the equation ρf η = f η
to hold.

4.1. Order-theoretic F -complete semantics

We first observe that the set of all the F -complete functions with respect to two given

abstractions η and ρ, namely the set {h : C m−→C | ρhη = hη}, has a least element. The

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

Making abstract models complete 673

following theorem proves exactly this fact, implying that we can always minimally increase

a given monotone function f in order to induce completeness.

Theorem 4.1. Given η, ρ ∈ uco(C) the set {f : C −→C | ρf η = f η} is a Moore family on

〈C −→C ,�〉.

Proof. Let us prove that the set F def
= {f : C −→C | ρf η = f η} is closed under greatest

lower bound, namely it has minimum. We prove that it is closed under infinitary glb.

Consider {fi}i ⊆ F , we have to prove that also
�

i fi ∈ F , i.e. ρ
�

i fi η =
�

i fi η. First

of all we recall that, by properties of uco, ρ(∧ρ(x)) = ∧ρ(x) for any ρ ∈ uco(C). Let x ∈ C ,

�
i fi η(x) =

∧
i fiη(x) By def. of �

=
∧

i ρfiη(x) By complet. hyp. on fi
= ρ(

∧
i ρfiη(x)) Since ρ(∧ρ(x)) = ∧ρ(x)

= ρ(
∧

i fiη(x)) By complet. hyp. on fi
= ρ

�
i fi η(x)

Corollary 4.2. Given η, ρ ∈ uco(C) the set {f : C m−→C | ρf η = f η} of monotone functions

is Moore family on 〈C m−→C ,�〉.

Proof. Immediate by Theorem 4.1 because the glb of monotone functions is monotone.

On the other hand we observe that, under additivity hypothesis on ρ, the set of all the

complete functions has also the greatest element, implying that we can always minimally

decrease a given monotone function f in order to induce F -completeness.

Theorem 4.3. Given η, ρ ∈ uco(C) the set {f : C −→C | ρf η = f η} is a dual Moore family

on the domain 〈C −→C ,�〉 iff ρ is additive.

Proof. Let us prove that the set F def
= {f : C −→C | ρf η = f η} is closed under least

upper bound. We prove that it is closed under infinitary lub. Consider {fi}i ⊆ F , we have

to prove that also
⊔

i fi ∈ F , i.e. ρ
⊔

i fi η =
⊔

i fi η. Let x ∈ C and suppose ρ additive.

Then the following equalities hold⊔
i fi η(x) =

∨
i fiη(x) By def. of �

=
∨

i ρfiη(x) By complet. hyp. on fi
= ρ(

∨
i fiη(x)) By additivity of ρ

= ρ
⊔

i fi η(x)

Hence we have completeness.

Suppose now that completeness holds for lub of complete functions, we have to prove

that ρ is additive. We prove that it is infinitary additive, i.e. we prove that for any xi ∈ C ,

ρ(
∨

i xi) =
∨

i ρ(xi). Let us define the functions fx
def
= λz .ρ(x), then these functions are

trivially forward complete, so it is their lub by hypothesis. Moreover, let us recall that for

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

R. Giacobazzi and I. Mastroeni 674

any uco ρ we have that ρ(∨ρ(x)) = ρ(∨x) (∗). Then the following equalities holds:

ρ(
∨

i xi) = ρ(
∨

i ρ(xi)) By Equation (*)

= ρ(
∨

i fxi
η(z)) By Definition of fxi

= ρ
⊔

i fxi
η(z)

= (
⊔

i fxi
) η(z) By hypothesis

=
∨

i fxi
ρ(z)

=
∨

i ρ(xi) By Definition of fxi

Corollary 4.4. Given η, ρ ∈ uco(C) the set {f : C m−→C | ρf η = f η} is a dual Moore

family on the domain 〈C m−→C ,�〉 iff ρ is additive.

Proof. By Theorem 4.3 since the lub of monotone functions is monotone.

4.2. Functional extension towards F -completeness

In this section, we aim to characterize the operator associating with each function the

closest (from above) function for which a given pair of abstract domains is F -complete

for this function. This is indeed a closure operator on the lattice of monotone functions,

point-wise ordered. For any f ∈ C m−→C and η, ρ ∈ uco(C), let us define:

F
↑
η,ρ

def
= λf .λx .

{
ρf (x) if x ∈ η

f (x) otherwise

We can observe that, F -completeness is checked only on η-closed elements, i.e. on fix-

points of η. The intuition behind this transformation is that we force all these η-closed

elements to be mapped into ρ (namely F
↑
η,ρ(x) = ρf (x)), obtaining trivially completeness.

The interesting aspect is that this, quite straightforward, transformation is the minimal

complete extension of f .

Lemma 4.5. Let f : C m−→C . Then F
↑
η,ρ(f) is F -complete and

F
↑
η,ρ(f) =

�
{h : C −→C | f � h , ρhη = hη}.

Proof. Let A def
= {h : C −→ C | f � h , ρhη = hη}, and let f ∗ def

= F
↑
η,ρ(f).

First of all we prove that f ∗ ∈ A, namely that f ∗ � f and ρf ∗η = f ∗η. Clearly the fact

that f ∗ � f , where h1 � h2 if ∀x . h1(x) � h2(x), trivially holds since ρ ∈ uco(C). Consider

ρf ∗η = f ∗η:

ρ(f ∗(η(x))) = ρ(ρ(f (η(x)))) = ρ(f (η(x))) = f ∗(η(x)).

Therefore f ∗ ∈ A, let us prove that it is the glb, namely for each g : C −→C such that g � f
and ρgη = gη, then g � f ∗. If x /∈ η, then f ∗(x) = f (x), therefore g(x) � f (x) = f ∗(x).

Consider x ∈ η, namely such that η(x) = x :

g(x) � f (x) ⇒ g(x) � f (η(x)) ⇒ (By completeness hyp.)

g(x) � ρ(f (η(x)) ⇒ g(x) � ρ(f (x)) = f ∗(x).

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

Making abstract models complete 675

Note that, if f is complete, i.e. f η = ρf η, we have that, when x ∈ η, f ∗(x) = ρf (x)

and being x ∈ η we have ρf (x) = ρf η(x). Hence by completeness we conclude that

f ∗(x) = ρf η(x) = f η(x) = f (x).

It is worth noting that F
↑
η,ρ(f) may not be monotone, as shown in the following example.

Example 4.6. Consider the lattices depicted on the

right. The circled points are those in ρ and the arrows

in the picture (a) represent f . The arrows in the

picture (b) are those of the map obtained from f by

applying F
↑, which is clearly not monotone.

The lack of monotonicity is due to the fact that, in order to minimally transform f ,

only the images of the elements in η are modified, leaving unchanged the images of all

the other elements. Indeed monotonicity fails when we check it between the transformed

image of one element in η and one taken outside η. We consider the basic transformer

M
↑ (see Section 2.1) for finding the closest monotone transformation of f which is F -

complete for the pair of abstractions η, ρ ∈ uco(C). Next lemma proves that M
↑ preserves

F -completeness, namely M does not destroy the transformations made by F towards

completeness.

Lemma 4.7. For any η, ρ ∈ uco(C) we have F
↑
η,ρM

↑
F

↑
η,ρ = M

↑
F

↑
η,ρ

Proof. For the sake of readability let us simply use F
↑, omitting the closure operators

η and ρ.

M
↑
F

↑(f) = λx .
∨

{F↑(f)(y)| y � x }
= λx .

∨
{ρf (y)| y � x , y ∈ η} ∨

∨
{f (y)| y � x , y /∈ η}

= λx .
{
ρf (x) ∨

∨
{f (y)| y � x , y /∈ η} x ∈ η∨

{ρf (y)| y � x , y ∈ η} ∨ f (x) x /∈ η
(∗)

= λx .
{
ρf (x) x ∈ η (∗∗)∨

{ρf (y)| y � x , y ∈ η} ∨ f (x) x /∈ η

where the step (∗) holds because if x ∈ η then ρf (x) ∈ {ρf (y)| y � x , y ∈ η}, hence

ρf (x) �
∨

{ρf (y)| y � x , y ∈ η}, while by monotonicity of ρ and f we have ρf (x) �∨
{ρf (y)| y � x , y ∈ η}. On the other hand, if x /∈ η then f (x) ∈ {f (y)| y � x , y /∈ η},

hence f (x) �
∨

{f (y)| y � x , y /∈ η}, while the other inclusion holds by f monotonicity.

Step (∗∗) holds because
∨

{f (y)| y � x , y /∈ η} � f (x), and therefore we have that

ρf (x) ∨
∨

{f (y)| y � x , y /∈ η} = ρf (x) ∨ f (x) = ρf (x).

Hence, we can compute the complete transformation of the map above

F
↑
M

↑
F

↑(f) = F
↑
(
λx .

{
ρf (x) x ∈ η∨

{ρf (y)| y � x , y ∈ η} ∨ f (x) x /∈ η

)

= λx .
{
ρρf (x) = ρf (x) x ∈ η∨

{ρf (y)| y � x , y ∈ η} ∨ f (x) x /∈ η

= M
↑
F

↑(f)

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

R. Giacobazzi and I. Mastroeni 676

Fig. 5. The abstract domain S with sq and F↑
ρc ,ρc

(sq).

The following theorem shows that the minimal monotone transformation for F -completeness

of a monotone function is:

F↑
η,ρ

def
= λf . M↑

F
↑
η,ρ(f).

Theorem 4.8. If f : C m−→C then F↑
η,ρ(f) =

�
{h : C m−→C | f � h , ρhη = hη}.

Proof. Straightforward consequence of Lemmas 4.5 and 4.7.

The construction presented so far for obtaining F -completeness focuses first on the

idea of inducing completeness by guaranteeing extensivity (F↑) and then by forcing

monotonicity (M↑). It is worth noting that these two transformers deal with different

aspects of f :

• F
↑ transforms η-closed elements on which F -completeness fails, i.e. x ∈ η. ρf η(x) �=

f η(x) implies that F
↑(f)(x) > f (x).

• M
↑ transforms only those elements x outside η which are above an incomplete point

of η, i.e. y ∈ η. x � y and ρf η(y) �= f η(y). This implies ∀x ∈ η.M↑
F

↑(f)(x) = F
↑(f)(x).

• All the other elements are left unchanged.

In particular, we can note that:

∀x ∈ η. F↑(f)(x) = ρf η(x)

This observation is interesting because it means that the closest F -completeness trans-

formation (by ignoring extensivity and monotonicity) of f is indeed its best correct

approximation.

Example 4.9. Consider the concrete domain S in Figure 4, an erroneous square operation

sq ′ and an abstraction ρc = {Z, [−∞, 0], [0,+∞], [0]}, depicted in Figure 5 with black dots.

Figure 5 shows the transformation of sq ′ induced by F↑
ρc ,ρc

(sq ′). Note that F↑
ρc ,ρc

(sq ′) =

sq�.

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

Making abstract models complete 677

4.3. Preserving monotonicity and F -completeness towards extension

In this section, we characterize the closest monotone transformation of a function f that

induces F -completeness, and which is extensive. Let us define the following function:

F
E
η,ρ

def
= λf . λx . ρf η+(x)

where η+ is the right adjoint of η. This transformation transforms incomplete elements of

η exactly as it was done by the previous transformer, i.e. being η+(x) = x for each x ∈ η,

we have

∀x ∈ η. FE
η,ρ(f)(x) = ρf (x) = F

↑
η,ρ(f)(x) = M

↑
F

↑(f)(x)

while it transforms all the other elements in order to preserve monotonicity, in particular

for all x /∈ η above an incomplete point, the transformation coincides with M
↑
F

↑, while

for all the other elements we have that F
E(f) is incomparable with f . The following results

tells us that the order of composition of extensivity (recall that E forces extensivity and

it is defined in Section 2.1) and monotonicity is irrelevant.

Proposition 4.10. If η ∈ uco(C) is additive then

F↑
η,ρ(f)

def
= M

↑
F

↑(f) = EF
E(f) = λx . ρf η+(x) ∨ f (x).

Proof. By Lemma 4.7 we know that

F↑
η,ρ(f)

def
= λf . M↑

F
↑
η,ρ(f) = λx .

{
ρf (x) x ∈ η∨

{ρf (y)| y � x , y ∈ η} ∨ f (x) x /∈ η

Let us prove that this function corresponds to λx . ρf η+(x) ∨ f (x).

If x ∈ η, then x = η(x), moreover we recall that η+η(x) = η(x), therefore

ρf η+η(x) ∨ f η(x) = ρf η(x) ∨ f η(x) = ρf (x)

being ρf η(x) � f η(x) = f (x).

Consider x /∈ η. We can prove that
∨

{ρf (y)| y � x , y ∈ η} ∨ f (x) = ρf η+(x) ∨ f (x),

in particular we prove that
∨

{ρf (y)| y � x , y ∈ η} = ρf η+(x). Being η+(x) � x and,

by construction, η+(x) ∈ η, we have that ρf η+(x) ∈ {ρf (y)| y � x , y ∈ η} and therefore

ρf η+(x) �
∨

{ρf (y)| y � x , y ∈ η}. On the other hand, for each y ∈ η such that y � x we

have y � η+(x), being η+(x) the greatest fix-point of η less or equal to x by construction.

Hence ρf (y) � ρf η+(x) for each such y , therefore
∨

{ρf (y)| y � x , y ∈ η} � ρf η+(x).

Example 4.11. Let us consider transition functions on a transition system as shown in

the introduction. In this case, we have one more constraint since the resulting function

has to be additive in order to be the transition relation of a transition system. In order to

obtain an additive function we simply transform the image of singletons and we obtain

the whole function by additive lift. It is clear that we cannot use the transformation of

Section 4.2 since in that transformation we only modify the abstract elements that usually

(for all the abstractions different from the identity) are not the singletons. Hence, we have

to consider the transformation F
E
η,ρ. Consider for instance Figure 1. In this case η = ρ

is the equivalence relation depicted in the picture, and clearly η+ applied to singletons

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

R. Giacobazzi and I. Mastroeni 678

is the identity, hence on transition systems, by denoting R the equivalence relation, the

transformation become λx ∈ C . [f (x)]R where given a set X , we define [X]R =
⋃

x∈X [x]R.

This transformation, which is unique, corresponds to the following transition system

z
p

X Y

x

Even if in this example we obtain a minimal transformation, we have to observe that, in

general, we lose optimality because we transform the image of an abstract state (i.e. a set

of states) by transforming the image of all the singletons states in the set.

4.4. Functional reduction towards F -completeness

In this section, we characterize the operator transforming each function into the closest

one (from below) for which a given pair of domains is F -complete. For any f : C m−→C
and η, ρ ∈ uco(C), with ρ additive, let us define:

F
↓
η,ρ

def
= λf .λx .

{
ρ+f (x) if x ∈ η

f (x) otherwise

Intuitively, ρ+ is the operator associating with a generic element z the greatest fix-point

of ρ smaller than z . Hence, it can be used to restrict the f -image of x in order to be

mapped precisely in the greatest ρ-closed element contained in f (x), when x is η-closed,

forcing again completeness.

Lemma 4.12. Let f : C m−→C , then F
↓
η,ρ(f) is F -complete and

F
↓
η,ρ(f) =

⊔
{h : C −→C | f � h , ρhη = hη}

Proof. Let A be {h : C −→ C | f � h , ρhη = hη}, and f ∗ def
= F

↓
η,ρ(f). We first prove

that f ∗ ∈ A, namely that f ∗ � f and ρf ∗η = f ∗η. Clearly f ∗ � f holds trivially since

ρ+ ∈ lco(C), being the adjoint function of an uco. Consider ρf ∗η = f ∗η:

ρ(f ∗(η(x))) = ρ(ρ+(f (η(x)))) = ρ+(f (η(x))) [By Theorem 2.1(1)] = f ∗(η(x))

Finally, we have to prove that f ∗ is the lub of A, namely for each g ∈ A we have g � f ∗.

If x /∈ η then f ∗(x) = f (x), and therefore g(x) � f (x) = f ∗(x). Consider x ∈ η, namely

x = η(x):

g(x) � f (x) ⇒ ρ+(g(x)) � ρ+(f (x)) ⇒
ρ+(g(η(x))) � f ∗(x) ⇒ ρ+(ρ(g(η(x)))) � f ∗(x) (By complet.) ⇒
ρ(g(x)) � f ∗(x) (By Theorem 2.1(1) and x ∈ η) ⇒
g(x) � ρ(g(x)) � f ∗(x))

If f is complete, then we have that when x ∈ η, f ∗(x) = ρ+f (x) = ρ+f η(x), hence by

completeness f ∗(x) = ρ+ρf η(x) = ρf η(x) = f η(x) = f (x).

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

Making abstract models complete 679

Also in this case, the transformed function may fail monotonicity as shown in the next

example.

Example 4.13. Consider the lattices

depicted on the right. The circled points

are those in ρ and the arrows on picture

(a) are those of f . The arrows on

the picture (b) are those of the map

obtained from f by means of F
↓, and

this map is clearly not monotone.

Again, the lack of monotonicity is due to the fact that, for the sake of minimality, the

transformer changes the f -image of only some elements, those in η. Again we apply the

monotonicity transformer, in this case M
↓, for finding the best monotone transformation of

f . As above, the next theorem shows that it is not necessary a fix-point transformation since

the monotone transformer does not change the F -completeness of functions obtained by

F
↓.

Lemma 4.14. For any η, ρ ∈ uco(C) we have F
↓
η,ρM

↓
F

↓
η,ρ = M

↓
F

↓
η,ρ.

Proof. For the sake of readability let us simply use F
↑, omitting the closure operators

η and ρ.

M
↓
F

↓(f) = λx .
∧

{F↓(f)(y)| y � x }
= λx .

∧
{ρ+f (y)| y � x , y ∈ η} ∧

∧
{f (y)| y � x , y /∈ η}

= λx .
{
ρ+f (x) ∧

∧
{f (y)| y � x , y /∈ η} x ∈ η∧

{ρ+f (y)| y � x , y ∈ η} ∧ f (x) x /∈ η
(∗)

= λx .
{
ρ+f (x) x ∈ η (∗∗)∧

{ρ+f (y)| y � x , y ∈ η} ∧ f (x) x /∈ η

where the step (∗) holds because if x ∈ η then ρ+f (x) ∈ {ρ+f (y)| y � x , y ∈ η}, hence

ρ+f (x) �
∧

{ρ+f (y)| y � x , y ∈ η}, while by monotonicity of ρ+ and f we have ρ+f (x) �∧
{ρ+f (y)| y � x , y ∈ η}. On the other hand, if x /∈ η then f (x) ∈ {f (y)| y � x , y /∈ η},

hence f (x) �
∧

{f (y)| y � x , y /∈ η}, while the other inclusion holds by monotonicity of f .

Step (∗∗) holds since
∧

{f (y)| y � x , y /∈ η} � f (x), and therefore we have ρ+f (x) ∧∧
{f (y)| y � x , y /∈ η} = ρ+f (x) ∧ f (x) = ρ+f (x). Hence, we can compute the complete

transformation of the map above

F
↓
M

↓
F

↓(f) = F
↓
(
λx .

{
ρ+f (x) x ∈ η∧

{ρ+f (y)| y � x , y ∈ η} ∧ f (x) x /∈ η

)

= λx .
{
ρ+ρ+f (x) = ρ+f (x) x ∈ η∧

{ρ+f (y)| y � x , y ∈ η} ∧ f (x) x /∈ η

= M
↓
F

↓(f).

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

R. Giacobazzi and I. Mastroeni 680

Fig. 6. The abstract domain S with sq ′ and F ↓
ρc ,ρc

(sq ′).

The next result states that the minimal monotone transformation of a function towards

completeness is defined as F↓
η,ρ

def
= λf . M↓

F
↓(f).

Theorem 4.15. Let f : C m−→C , then

F↓
η,ρ(f) =

⊔
{h : C m−→C | f � h , ρhη = hη}.

Proof. Straightforward consequence of Lemmas 4.12 and 4.14.

The construction presented so far for obtaining forward completeness focuses first on

the idea of inducing completeness by guaranteeing reductivity (F↓) and then, if necessary,

by forcing monotonicity (M↓). Once again these two transformers deal with different

aspects of f :

• F
↓ transforms η-closed elements on which completeness fails, i.e. x ∈ η.ρf η(x) �= f η(x)

implies that F
↓(f)(x) < f (x).

• M
↓ transforms only those elements x /∈ η which are below an incomplete point of η, i.e.

y ∈ η. x � y and ρf η(y) �= f η(y). This in particular implies that ∀x ∈ η.M↓
F

↓(f)(x) =

F
↓(f)(x).

• All the other elements are left unchanged.

Again, we can observe that ∀x ∈ η. F↓(f)(x) = ρ+f η+(x). As above, this observation is

interesting because it means that the closest F -completeness transformation (ignoring

extensivity and monotonicity) of f is its best correct approximation with respect to the

corresponding adjoint closures.

Example 4.16. Consider the situation in Example 4.9. Figure 6 shows the transformation

of sq ′ induced by F↓
ρc ,ρc

(sq ′).

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

Making abstract models complete 681

4.5. Preserving monotonicity and F -completeness towards reduction

In this section, we characterize the closest monotone transformation of a function f that

induces F -completeness, and which is reductive. Let us define the following function:

F
R
η,ρ

def
= λf . λx . ρ+f η(x).

This transformation transforms incomplete elements of η exactly as it was done for F
↓,

i.e. being η+(x) = x , we have

∀x ∈ η. FR
η,ρ(f)(x) = ρ+f (x) = F

↓
η,ρ(f)(x) = M

↓
F

↓(f)(x)

while it transforms all the other elements in order to preserve monotonicity, in particular

for those non η-closed elements below an incomplete point, the transformation coincide

with M
↓
F

↓, while for all the other elements we have that F
R(f) is incomparable with f .

The following results tells us that inducing reductivity (recall that R forces reductivity

and it is defined in Section 2.1) and then monotonicity or vice versa, leads to the same

transformation.

Proposition 4.17. F↓
η,ρ(f) = M

↓
F

↓(f) = RF
R(f) = λx . ρ+f η(x) ∧ f (x).

Proof. By Lemma 4.14 we know that

F↓
η,ρ(f)

def
= λf . M↓

F
↓
η,ρ(f) = λx .

{
ρ+f (x) x ∈ η∧

{ρ+f (y)| y � x , y ∈ η} ∧ f (x) x /∈ η

Let us prove that this function corresponds to λx . ρ+f η(x) ∧ f (x).

If x ∈ η, then x = η(x) for all x ∈ η, therefore

ρ+f ηη(x) ∧ f η(x) = ρ+f (x) ∧ f (x) = ρ+f (x)

being ρ+f η(x) = ρ+f (x) � f (x).

Consider x /∈ η. We can prove that
∧

{ρ+f (y)| y � x , y ∈ η} ∧ f (x) = ρ+f η(x) ∧ f (x),

in particular, we prove that
∧

{ρ+f (y)| y � x , y ∈ η} = ρ+f η(x). Being η(x) � x and

η(x) ∈ η, we have that ρ+f η(x) ∈ {ρ+f (y)| y � x , y ∈ η} and therefore ρ+f η(x) �∧
{ρ+f (y)| y � x , y ∈ η}. On the other hand, for each y ∈ η such that y � x we have

y � η(x), being η(x) the smallest fix-point of η greater or equal to x by construction.

Hence ρ+f (y) � ρ+f η(x) for each such y , therefore
∧

{ρ+f (y)| y � x , y ∈ η} � ρ+f η(x).

Example 4.18. Let us consider again transitions on a transition system. As we underlined

previously, in this case the resulting function has to be additive in order to be the

transition relation of a transition system. In order to obtain an additive function we

simply transform the image of singletons and we obtain the whole function by additive

lift. As above we cannot use the transformation of Section 4.4 since in that transformation

we only modify the abstract elements that usually (for all the abstractions different from

the identity) are not the singletons. Hence, we have to consider the transformation

F
R
η,ρ. Consider for instance the transition system in Figure 1. In this case η = ρ is the

equivalence relation depicted in the picture. Let R such equivalence relation, and note that

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

R. Giacobazzi and I. Mastroeni 682

[X]+R
def
=

⋃
{[y]R| [y]R ⊆ X }, then the transformation become λx ∈ C . [f ([x]R)]

+
R ∩ f (x).

The resulting transition system is the one depicted in Figure 3.

4.6. Weakening additivity

Additivity in the construction of the reduction of a generic function f towards F -

completeness is a relatively restrictive hypothesis for closure operators, which corresponds

in abstract interpretation to have disjunctive abstract domains (Cousot and Cousot

1979c; Giacobazzi and Ranzato 1998a). The problem is that ρ+ may not exist in

general. In this case however we can still induce F -completeness by weakening the

uniqueness of the function. Instead of a unique transformed function we may have a

family of equally optimal incomparable functions, all F -complete. In other words, when

we have incompleteness on some input x , we can choose as output any element in

max{ρ(y)| ρ(y) � f (x)}, yet keeping F -completeness:

F̃
↓
η,ρ

def
= λf .λx .

{
y if x ∈ η ∧ y ∈ max{ρ(y)| ρ(y) � f (x)}
f (x) otherwise.

Proposition 4.19. Let f : C m−→C , then F̃
↓
η,ρ(f) is F -complete and

F̃
↓
η,ρ(f) ∈ max{h : C −→C | f � h , ρhη = hη}.

Proof. Let A be {h : C −→ C | f � h , ρhη = hη}, and f ∗ def
= F̃

↓
η,ρ(f). We first prove that

f ∗ ∈ A, namely that f ∗ � f and ρf ∗η = f ∗η. Clearly f ∗ � f holds trivially by construction.

Consider ρf ∗η = f ∗η, let f ∗(η(x)) = y , with y ∈ ρ by definition of F̃:

ρ(f ∗(η(x))) = ρ(y) = y = f ∗(η(x)).

Finally we have to prove that f ∗ is a maximal element of A, namely for each g ∈ A, if

g � f ∗ we have g = f ∗. If x /∈ η then f ∗(x) = f (x), and therefore g(x) � f (x) = f ∗(x),

namely f ∗(x) = g(x). Consider x ∈ η, namely x = η(x):

g(x) � f ∗(x) = y ∈ max{ρ(z)| ρ(z) � f (x)} ⇒
g(x) ∈ {ρ(z)| ρ(z) � f (x)} being g complete (gη(x) ∈ ρ) and g � f ⇒
g(x) = g(η(x)) = y = f ∗(x).

It is worth noting that, by weakening the maximality condition, we can still obtain a F -

complete transformation by choosing any element y ∈ {ρ(z)| ρ(z) � f (x)} for transforming

f (x).

5. Making semantics backward complete

In this section, we describe the semantic transformers that induce B-completeness.

Unfortunately, as far as B-completeness is concerned, we lose the modularity between

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

Making abstract models complete 683

monotonicity and extensivity/reductivity, which holds in the case of F -completeness. In

fact, in this case, we have only one possible way for both extending and reducing a

function towards B-completeness, yet preserving monotonicity. First we observe that we

can always transform a function in order to force B-completeness. In particular, we have

that while we can always reduce the function for inducing completeness, we have some

restrictions when we need to extend the function.

5.1. Order-theoretic B-complete semantics

Consider f : C −→C and η, ρ ∈ uco(C). We prove that the set of B-complete monotone

functions

{h : C m−→C | ρhη = ρh }
has a least element under certain conditions. The following result characterizes when we

can minimally increase a given monotone function f in order to induce B-completeness.

Theorem 5.1. Given η, ρ ∈ uco(C), the set {f : C −→C | ρf η = ρf } is an upper closure

operator on 〈C −→C ,�〉 iff ρ is co-additive.

Proof. Let us prove that the set F def
= {f : C −→C | ρ ◦ f ◦ η = ρ ◦ f } is closed under

greatest lower bound. We prove that it is closed under infinitary glb. Consider {fi}i ⊆ F ,

we have to prove that also
�

i fi ∈ F , i.e. ρ ◦ (
�

i fi) ◦ η = ρ ◦ (
�

i fi). Let x ∈ C and

suppose ρ co-additive. Then the following equalities hold

ρ ◦ (
�

i fi)(x) = ρ(
∧

i fi (x)) By def. of ∧
=

∧
i ρfi (x) By co-additivity of ρ

=
∧

i ρfiη(x) By complet. hyp. on fi
= ρ(

∧
i fiη(x)) By co-additivity of ρ

= ρ ◦ (
�

i fi) ◦ η(x)

Hence we have completeness.

Suppose now that completeness holds for glb of complete functions, we have to prove

that ρ is co-additive. We prove that it is infinitary co-additive, i.e. we prove that for any

xi ∈ C , ρ(
∧

i xi) =
∧

i ρ(xi). Let us define the following family of functions, where x ∈ C

fx
def
= λz .

{
ρ(x) if z ∈ η

x otherwise.

These functions are trivially backward complete, so it is the glb among subsets of them, by

hypothesis. Finally note that, for any uco ρ we have that ρ(∧ρ(x)) = ∧ρ(x) (∗∗). Consider

a family of such elements xi , then the following equalities holds:

ρ(
∧

i xi) = ρ(
∧

i fxi
(z)) By Def. of fxi

, z /∈ ρ

= ρ ◦ (
�

i fxi
)(z)

= ρ ◦ (
�

i fxi
) ◦ η(z) By hypothesis

= ρ(
∧

i fxi
η(z))

= ρ(
∧

i ρ(xi)) By Def. of fxi

=
∧

i ρ(xi) By Eq. (**)

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

R. Giacobazzi and I. Mastroeni 684

Corollary 5.2. Given η, ρ ∈ uco(C), the set {f : C m−→C | ρf η = ρf } of B-complete

monotone functions is an upper closure operator on 〈C m−→C ,�〉 iff ρ is co-additive.

Proof. By Theorem 5.1 since the glb of monotone functions is always monotone.

On the other hand, next theorem proves that the set of all B-complete functions

admits a greatest elements, therefore we can always minimally reduce a function towards

completeness.

Theorem 5.3. Given η, ρ ∈ uco(C), the set {f : C −→C | ρf η = ρf } is a dual Moore family

on the domain 〈C −→C ,�〉.

Proof. Let us prove that the set F def
= {f : C −→C | ρf η = ρf } is closed under least

upper bound. We prove that it is closed under infinitary lub. Consider {fi}i ⊆ F , we

have to prove that also
⊔

i fi ∈ F , i.e. ρ(
⊔

i fi)η = ρ(
⊔

i fi). First of all we recall that

ρ(∨ρ(x)) = ρ(∨x) (∗) for any ρ ∈ uco(C). Let x ∈ C ,

ρ(
⊔

i fi)(x) = ρ(
∨

i fi (x)) By def. of ∨
= ρ(

∨
i ρfi (x)) By Eq. (*)

= ρ(
∨

i ρfiη(x)) By complet. hyp. on fi
= ρ(

∨
i fiη(x)) By Eq. (*)

= ρ(
⊔

i fi)η(x)

Corollary 5.4. Given η, ρ ∈ uco(C), the set {f : C m−→C | ρf η = ρf } is a dual Moore

family on the domain 〈C m−→C ,�〉.

Proof. By Theorem 5.3 since the lub of monotone functions is monotone.

5.2. Functional extension towards monotone B-completeness

In this section, we aim to characterize the upper closure operator extending a function in

order to make it B-complete. Theorem 5.1 tells us that if ρ is meet-uniform then there

exists the best correct B-complete approximation of a function. Let us call this functional

B↑
η,ρ. Consider the function:

B
i
η,ρ = λf . λx . ρ−f η(x)

where f ∈ C m−→C and η, ρ ∈ uco(C). Then, we can define the completeness transformer

as:

B↑
η,ρ

def
= EB

i
η,ρ = λf .λx .ρ−f η(x) ∨ f (x).

Hence, for backward completeness, the only way we can follow for inducing completeness,

when possible, is to transform preserving monotonicity (Bi
η,ρ) and then to force extensivity

(E). Note that, if x ∈ η then ρ−f η(x) ∨ f (x) = ρ−f η(x) ∨ f η(x) = f η(x) = f (x) being

η(x) = x and ρ− ∈ lco(C). Otherwise, B↑
η,ρ =

∧
{y ∈ C | y � f (x), ρ(y) � f η(x)} by

construction of ρ−.

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

Making abstract models complete 685

Theorem 5.5. Assume ρ co-additive. Let f : C m−→C , then B↑
η,ρ(f) is B-complete and

B↑
η,ρ(f) =

�
{h : C m−→C | f � h , ρhη = ρh }

Proof. Being ρ co-additive, let ρ− = λx .
∧

{y | x � ρ(y)} ∈ lco. Let us first prove that

f ∗ = B↑
η,ρ(f) is monotone. Consider x , y ∈ C such that x � y:

• If x , y ∈ η then f ∗(x) = f (x) � f (y) = f ∗(y), by monotonicity of f ;

• If x ∈ η and y /∈ η, then since x � y we have x � η(y). Now, by mono-

tonicity of f we have f η(y) � f (x) � ρf (x) and f (x) � f (y), i.e. f (x) ∈ {z ∈
C | z � f (y), ρ(z) � f η(y))}.
So we obtain that, f ∗(y) =

∧
{y ∈ C | y � f (x), ρ(y) � f η(x)} � f (x) = f ∗(x);

• If x /∈ η and y ∈ η, then by definition we have f ∗(x) � f (x) � f (y) = f ∗(y);

• If x , y /∈ η, then note that by monotonicity of f we have f (x) � f (y) and hence

f η(x) � f η(y). Consider k ∈ {k | k � f (x), ρ(k) � f η(x)} then k � f (x) � f (y) and

ρ(k) � f η(x) � f η(y), hence k ∈ {z | z � f (y), ρ(z) � f η(y)}, i.e.

{k | k � f (x), ρ(k) � f η(x)} ⊆ {z | z � f (y), ρ(z) � f η(y)}, which implies

f ∗(x) =
∧

{k | k � f (x), ρ(k) � f η(x)}
�

∧
{z | z � f (y), ρ(z) � f η(y)} = f ∗(y).

It is straightforward to note that f ∗ � f . Let us prove that B↑
η,ρ(f) is B-complete. First of

all, note that by definition we have ρf ∗η = ρf η. On the other side

ρf ∗(x) =

{
ρf (x) = ρf η(x) = ρf ∗η(x) if x ∈ η

ρ(
∧

{y | y � f (x), ρ(y) � f η(x)}) otherwise.

For this last case we have that

ρ(
∧

{y | y � f (x), ρ(y) � f η(x)})
� ρ(

∧
{y | ρ(y) � f η(x)}) Since it is a greater set

= ρ(ρ−f η(x)) By Def. of ρ−

= ρf η(x) By Th. 2.1

= ρf ∗η(x).

Hence, we have ρf ∗(x) � ρf ∗η(x), but the other inclusion is trivial, so we have the equality.

Finally, we prove that f ∗ is the glb of the set, i.e. ∀g : C m−→C such that ρg = ρgη, then

f ∗ � g . If x ∈ η then f ∗(x) = f (x), which implies by definition that g(x) � f ∗(x). Suppose

x /∈ η:

∀x . g(x) � f (x)(By Def. of g) ⇒ gη(x) � f η(x)

⇒ ρgη(x) � f η(x)(Since ρgη(x) � gη(x))

⇒ ρg(x) � f η(x)(g is complete)

⇒ g(x) ∈ {y | y � f (x), ρ(y) � f η(x)}
⇒ g(x) �

∧
{y | y � f (x), ρ(y) � f η(x)}

⇒ g(x) � f ∗(x)

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

R. Giacobazzi and I. Mastroeni 686

5.3. Weakening co-additivity

As above for F -completeness, the extension of an arbitrary (monotone) function towards

B-completeness exists only when the output observation is a co-additive closure. Let us

see in this section what happens when the observation ρ is not co-additive. In this case,

the problem is that ρ− may not exist. As above, we can still induce B-completeness by

weakening the uniqueness of the transformed function. In other words, when we have

incompleteness on some input x , we can choose to transform f (x) in any element in

min{y | ρ(y) � f (x)}:

B̃↑
η,ρ

def
= λf .λx .y ∨ f (x) where y ∈ min{y | ρ(y) � f η(x)}
= λx .y ∈ min{y ∈ C | y � f (x), ρ(y) � f η(x)}

Proposition 5.6. Let f : C m−→C , then B↑
η,ρ(f) is B-complete and

B̃↑
η,ρ(f) ∈ min{h : C m−→C | f � h , ρhη = hη}

Proof. Let us first prove that f ∗ = B↑
η,ρ(f) is monotone. Consider x , y ∈ C such that

x � y:

• If x , y ∈ η then f ∗(x) = f (x) � f (y) = f ∗(y), by monotonicity of f .

• If x ∈ η and y /∈ η, then since x � y we have x � η(y). Now, by monoton-

icity of f we have f η(y) � f (x) � ρf (x) and f (x) � f (y), hence f (x) ∈ {z ∈
C | z � f (y), ρ(z) � f η(y))}.
So we obtain that, f ∗(y) ∈ min{y ∈ C | y � f (x), ρ(y) � f η(x)} � f (x) = f ∗(x).

• If x /∈ η and y ∈ η, then by definition we have f ∗(x) � f (x) � f (y) = f ∗(y).

• If x , y /∈ η, then note that by monotonicity of f we have f (x) � f (y) and hence

f η(x) � f η(y). Consider k ∈ {k | k � f (x), ρ(k) � f η(x)} then k � f (x) � f (y) and

ρ(k) � f η(x) � f η(y), hence k ∈ {z | z � f (y), ρ(z) � f η(y)}, i.e.

{k | k � f (x), ρ(k) � f η(x)} ⊆ {z | z � f (y), ρ(z) � f η(y)}, which implies

f ∗(x) ∈ min{k | k � f (x), ρ(k) � f η(x)}
� f ∗(y) ∈ min{z | z � f (y), ρ(z) � f η(y)}.

It is straightforward to note that f ∗ � f , let us prove it is complete. First of all, note that

by definition we have ρf ∗η = ρf η. On the other side

ρf ∗(x) =

{
ρf (x) = ρf η(x) = ρf ∗η(x) if x ∈ η

ρ(min{y | y � f (x), ρ(y) � f η(x)}) otherwise

For this last case we have that

ρ(min{y | y � f (x), ρ(y) � f η(x)})
� ρ(min{y | ρ(y) � f η(x)}) Since it is a greater set

� f η(x) By construction

⇒ ρf ∗ � ρf η = ρf ∗η(x) By idempotence of ρ

Since the other inclusion is trivial, so we have the equality.

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

Making abstract models complete 687

Finally, we prove that f ∗ is minimal in the set, i.e. ∀g : C m−→C such that ρg = ρgη
and g � f ∗, then f ∗ = g . If x ∈ η then f ∗(x) = f (x), which implies by definition that

g(x) � f ∗(x). Suppose x /∈ η:

∀x . g(x) � f (x)(By Def. of g) ⇒ gη(x) � f η(x)

⇒ ρgη(x) � f η(x)(Since ρgη(x) � gη(x))

⇒ ρg(x) � f η(x)(g is complete)

⇒ g(x) ∈ {y | y � f (x), ρ(y) � f η(x)}
⇒ g(x) = f ∗(x)

(Being g(x) � f ∗(x) and f ∗(x) minimal in the set)

It is worth noting that, as for F -completeness, also in this case we can relax the minimality

condition. In particular, we can choose any element in {y | y � f (x), ρ(y) � f η(x)} as a

possible image of the transformed function B↑
η,ρ(f)(x). An interesting and easy choice

could be B↑
η,ρ(f) = λx .f η(x), which is obviously complete by idempotence of η.

5.4. Functional reduction towards monotone B-completeness

In this section, we characterize the lower closure operator transforming a function towards

B-completeness. Theorem 5.3 tells us that there always exists the best correct B-complete

concretization of a function. Let us call this functional B↓
η,ρ.

Lemma 5.7. Let f : C m−→C and ρ, η ∈ uco(C).

B
↓
η,ρ = λf .λx .

∨
{w | ∀z ∈ [x]η. [w]ρ∩ ↓ f (z) �= �}

where, for each ϕ ∈ uco we have that [x]ϕ
def
= {z | ϕ(z) = ϕ(x)} is the kernel of ρ†. B

↓
η,ρ(f)

is B-complete.

Proof. First of all let us prove that {w | ∀z ∈ [x]η. [w]ρ∩ ↓ f (z) �= �} contains its

maximum. Consider a family of its elements, {wi}i∈I . Hence they are such that ∀z ∈ [x]η
[wi]ρ∩ ↓ f (x) �= �. This means that ∀z ∈ [x]η we have that ∃yi . ρ(yi) = ρ(wi) ∧ yi � f (z).

Then we have that ρ(
∨

i yi) = ρ(
∨

i ρ(yi)) = ρ(
∨

i ρ(wi)) = ρ(
∨

wi) and
∨

i yi � f (z),

hence
∨

i wi belongs to the set.

At this point it is worth noting that B
↓
η,ρ(f)(x) = B

↓
η,ρ(f)(η(x)), by construction, hence

the resulting function is trivially B-complete.

This transformation induces B-completeness, but it may lack both reductivity and

monotonicity. Next results shows that, by forcing reductivity, we preserve completeness

and we obtain the corresponding closest reductive transformation.

Lemma 5.8. RB
↓
η,ρ is idempotent on B-complete functions and RB

↓
η,ρ(f) is a B-complete

function.

† The use of the kernel of an uco is an equivalent way for representing closures (Cousot and Cousot 1979c)

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

R. Giacobazzi and I. Mastroeni 688

Fig. 7. B-complete transformation (1).

Proof. Let us denote f ∗(x)
def
= B

↓
η,ρ(f)(x) ∧ f (x). Consider f complete, then we have

that ∀z ∈ [x]η. ρf (z) = ρf η(z) = ρf η(x). This means that [ρf η(x)]ρ∩ ↓ f (z) �= � for

any z ∈ [x]ρ, since ρf η(x) is the image by ρf of each one of these z . Hence ρf η(x)

is in B
↓
η,ρ(f)(x). Let w = B

↓
η,ρ(f)(x), then w � ρf η(x), but then f (x) � ρf η(x) � w ,

hence f ∗(x) = f (x) ∧ B
↓
η,ρ(f)(x) = f (x). At this point note that B

↓
η,ρ(f)(x) ∈ ρ. Indeed, if

w = B
↓
η,ρ(f)(x), then also ρ(w) is inside the set, hence it is lower than the lub, which is w ,

which implies that w = ρ(w) ∈ ρ. Now, we can prove that ρf ∗(x) = ρ(B↓
η,ρ(f)(x) ∧ f (x)) =

ρ(B↓
η,ρ(f)(x)) = B

↓
η,ρ(f)(x).

Clearly, B
↓
η,ρ(f)(x) = ρ(B↓

η,ρ(f)(x)) � ρ(B↓
η,ρ(f)(x) ∧ f (x)). Now, suppose again w =

B
↓
η,ρ(f)(x), then for what we proved before, w is in the set, hence for each z ∈ [x]η there

exists y ∈ [w]ρ such that y � f (z). Therefore, ρ(y) = ρ(w) = B
↓
η,ρ(f)(x). This implies that

y � B
↓
η,ρ(f)(x) which together with y � f (x) implies that y � B

↓
η,ρ(f)(x) ∧ f (x). Finally,

this means that B
↓
η,ρ(f)(x) = ρ(y) � ρ(B↓

η,ρ(f)(x) ∧ f (x)), which implies the equality. So,

ρf ∗(x) = B
↓
η,ρ(f)(x) = B

↓
η,ρ(f)(η(x)) = ρf ∗η(x), i.e. f ∗ is complete.

Lemma 5.9. B
↓
η,ρ(f) is optimal, i.e. for any g ∈ {h : C m−→C | f � h , ρhη = ρh }, we have

g � B
↓
η,ρ(f).

Proof. Consider g ∈ {h : C m−→C | f � h , ρhη = ρh }. Then by completeness we have

that ∀z ∈ [x]η. ρg(z) = ρgη(z) = ρgη(x), hence [ρgη(x)]ρ∩ ↓ g(z) �= �. By hypothesis,

we have that ∀x . g(x) � f (x), hence that ↓ g(x) ⊆↓ f (x), therefore we can conclude

that ∀z ∈ [x]η we have [ρgη(x)]ρ∩ ↓ f (z) �= �. Clearly this means that ρgη(x) ∈
{w | ∀z ∈ [x]η. [w]ρ∩ ↓ f (z) �= �} and therefore we have the following disequalities: g(x) �
ρgη(x) �

∨
{w | ∀z ∈ [x]η. [w]ρ∩ ↓ f (z) �= �}. At this point, being g(x) � f (x) we obtain

the result, i.e. g(x) � B
↓
η,ρ(f)(x) ∧ f (x) = f ∗(x).

Note that RB
↓
η,ρ(f), and therefore B

↓
η,ρ, may not return a monotone function, as shown

in Figure 7. In this picture, circled points are those belonging to the closure ρ, while

the plain arrows represent the input function f . Consider ρ = η. We can see, that the

domain is not B-complete for the input function f . In particular, note that f (n) = l

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

Making abstract models complete 689

Fig. 8. B-complete transformation (2).

while ρ(n) = �, hence while ρ(f (n)) = c, we have ρ(f (ρ(n))) = �. The new function

f ′ def
= B

↓
η,ρ(f), depicted in Figure 8, makes the following transformations:

f ′(e) = f ′(a) = f ′(b) = f ′(�) = c f ′(g) = f ′(i) = f ′(d) = l

for all the other points f ′ = f . We can note that the resulting function is no longer

monotone, for instance note that l � d while f ′(d) = l < f ′(l) = d .

Lemma 5.10. The functional B
↓
η,ρ is monotone on 〈C m−→C ,�〉.

Proof. Consider f , g : C m−→C , such that f � g (i.e. ∀x ∈ C . f (x) � g(x)). We have to

prove that B
↓
η,ρ(f) � B

↓
η,ρ(g), i.e. B

↓
η,ρ(f)(x) � B

↓
η,ρ(g)(x).

Hence, consider B
↓
η,ρ(f)(x) =

∨
{w | ∀z ∈ [x]η. [w]ρ∩ ↓ f (z) �= �} and B

↓
η,ρ(g)(x) =∨

{w | ∀z ∈ [x]η. [w]ρ∩ ↓ g(z) �= �}. Being f � g we have that ∀z . ↓ f (z) ⊆↓ g(z), hence

[w]ρ∩ ↓ f (z) �= � implies [w]ρ∩ ↓ g(z). This implies {w | ∀z ∈ [x]η. [w]ρ∩ ↓ f (z) �= �} ⊆
{w | ∀z ∈ [x]η. [w]ρ∩ ↓ g(z) �= �}, i.e. we have the result.

Lemma 5.11. The following properties hold:

1. M
↓ is co-additive;

2. R is co-additive;

3. M
↓

R = R M
↓ is an upper closure operator.

Proof.

1. Let us prove that M
↓ is co-additive. Hence we have to prove that, given a family of

functions fi i , then M
↓(

�
i fi) =

�
i M

↓(fi).

M
↓(

�
i fi)(x) =

∧
{(

�
i fi)(y)| y � x } =

∧
{
∧

i fi (y)| y � x }
=

∧
i

∧
{fi (y)| y � x } =

�
i M

↓(fi)(x).

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

R. Giacobazzi and I. Mastroeni 690

2. Let us prove that R is co-additive. Hence we have to prove that, given a family of

functions fi i , then R(
�

i fi) =
�

i R(fi).

R(
�

i fi)(x) = (
�

i fi)(x) ∧ x = (
∧

i fi (x)) ∧ x
=

∧
i (fi (x) ∧ x) =

�
i R(fi (x)).

3. By duality from (Cousot and Cousot 1979a, Lemma 3.4) we have the result.

Next result specifies the minimal reduction towards B-completeness as a fix-point

functional, iteratively combining the functionals for achieving monotonicity, reductivity

and B-completeness.

Theorem 5.12.

B↓
η,ρ

def
= gfp�

f (M
↓

R B
↓
η,ρ) =

⊔
{h : C m−→C | f � h , ρhη = ρh }.

Proof. By Lemma 5.9, we have that the function M
↓
RB

↓
η,ρ is monotone, so a fix-point

can be reached as greatest fix-point. Let us prove that indeed the fix-points of this

function are monotone, reductive and B-complete. Let us denote the greatest fix-point as

(M↓
RB

↓
η,ρ)ω =

�
i (M

↓
RB

↓
η,ρ)

i , then we have that M
↓
RB

↓
η,ρ((M

↓
RB

↓
η,ρ)ω) = (M↓

RB
↓
η,ρ)ω .

Monotonicity:

M
↓((M↓

RB
↓
η,ρ)ω) = M

↓(
�

i (M
↓
RB

↓
η,ρ)

i)

=
�

i (M
↓
M

↓
RB

↓
η,ρ)

i (By Lemma 5.11(1))

=
�

i (M
↓
RB

↓
η,ρ)

i (By idempotence of M
↓)

= (M↓
RB

↓
η,ρ)ω

By the properties of M
↓, this means that the fix-point is monotone.

Reductivity:

R((M↓
RB

↓
η,ρ)ω) = R(

�
i (M

↓
RB

↓
η,ρ)

i)

=
�

i (RM
↓
RB

↓
η,ρ)

i (By Lemma 5.11(2))

=
�

i (M
↓
RRB

↓
η,ρ)

i (By Lemma 4.5(3))

=
�

i (M
↓
RB

↓
η,ρ)

i (By idempotence of R)

= (M↓
RB

↓
η,ρ)ω

By the properties of R, this means that the fix-point is reductive.

B-Completeness:

Suppose f = (M↓
RB

↓
η,ρ)ω not complete, hence B

↓
η,ρ(f) �= f , note that B

↓
η,ρ(f) �� f ,

because otherwise RB
↓
η,ρ(f) = f would be complete, against the hypothesis. This means

that ∃x . B↓
η,ρ(f)(x) < f (x) or not comparable with it. This implies that RB

↓
η,ρ(f)(x) <

f (x). Hence, M
↓
RB

↓
η,ρ(f)(x) � RB

↓
η,ρ(f (x)) < f (x), since M

↓(f (x)) � f (x). But, if f (x)

is a fix-point of M
↓
RB

↓
η,ρ this is absurd, so fix-points are complete.

Consider again the function in Figure 7 and its transformation in Figure 8. As explained,

the function in Figure 8 is not monotone after one application of B
↓
η,ρ, hence we have to

apply the transformation M
↓, towards monotonicity, obtaining the function f ′ = M

↓(f),

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

Making abstract models complete 691

Fig. 9. B-complete transformation (3).

Fig. 10. B-complete transformation (4).

depicted in Figure 9:

f ′(m) = f ′(p) = f ′(h) = ⊥ f ′(x) = x f ′(l) = l f ′(c) = c.

Note that the new function is no more B-complete. Indeed, note that for instance

f (h) = ⊥ while ρ(h) = c, hence ρ(f (h)) = ⊥ while ρ(f (ρ(h))) = c. So, we have to apply

again the two transformers. B
↓
η,ρ does the following transformations:

f ′′(c) = f ′′(l) = ⊥

At this point note that the function, is no more monotone. Indeed, for instance x � c
while f ′′(c) = ⊥ < f ′′(x) = f ′(x) = x . Then we apply for the last time M

↓, obtaining a

function, represented in Figure 10, which is both monotone and B-complete, such that

f ′′′(x) = ⊥.

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

R. Giacobazzi and I. Mastroeni 692

We conclude this section by observing that, under meet-uniformity conditions, we can

again find a modularity in the composition of the functionals R and B
↓
η,ρ, which is similar

to the one observed moving upwards . In other words, when the closures are meet-uniform,

we can first induce completeness by preserving monotonicity and then we can force

reductivity.

Proposition 5.13. Let ρ, η be meet-uniform closures. Let B
o
η,ρ

def
= λf . λx . ρf η−(x), then

1. B
↓
η,ρ = B

o
η,ρ

2. B↓
η,ρ(f) = RB

o
η,ρ(f) = λx . ρf η−(x) ∧ f (x).

Proof.

We have to prove that when η and ρ are meet-uniform then∨
{w | ∀z ∈ [x]η. [w]ρ∩ ↓ f (z) �= �} = ρf η−(x).

First of all let us note that by definition η−(x) =
∧

{y | η(y) = η(x)} =
∧

[x]η , moreover

by meet-uniformity of ρ we have that ρ(
∧

[x]ρ) = ρ(x).

Consider now the following equalities:

∀z ∈ [x]η. [w]ρ∩ ↓ f (z) �= �
⇔ ∀z ∈ [x]η. {y | ρ(y) = ρ(x)} ∩ {y | y � f (z)} �= �
⇔ ∀z ∈ [x]η. ∃y . ρ(y) = ρ(x) ∧ y � f (z)

⇔ ∀z ∈ [x]η.
∧

[w]ρ � f (z) By meet-uniformity of ρ

⇔
∧

[w]ρ � f (
∧

[x]η) By meet-uniformity of η

Therefore {w | ∀z ∈ [x]η. [w]ρ∩ ↓ f (z) �= �} = {w |
∧

[w]ρ � f (
∧

[x]η)}.
At this point, we have to prove that B

↓
η,ρ(f) =

∨
{w |

∧
[w]ρ � f (

∧
[x]η)} is equal to

ρf (
∧

[x]η). Note that ρf (
∧

[x]η) ∈ {w |
∧

[w]ρ � f (
∧

[x]η)} being trivially∧
[ρf (

∧
[x]η)]ρ =

∧
[f (

∧
[x]η)]ρ � f (

∧
[x]η)

hence ρf (
∧

[x]η)]ρ � B
↓
η,ρ(f). On the other hand, ∀w ∈ {w |

∧
[w]ρ � f (

∧
[x]η)} we have

w � ρ(w) = ρ(
∧

[w]ρ) � ρf (
∧

[x]η) by monotonicity of ρ. Hence we have the equality.

Note that the functional B
o
η,ρ, when it exists, is always monotone. The problem here is

that it exists only when η is meet-uniform. Moreover, we can prove that B
↓
η,ρ = B

o
η,ρ only

when also ρ is meet-uniform.

Example 5.14. Consider the concrete domain S in Figure 4, the abstract square operation

sq� and an abstraction η = {Z, [−∞, 0], [0,+∞], [0, 10], [0]}, depicted with black dots in

Figure 11. This figure shows the transformation of sq� induced by B↑
η,η(sq

�).

6. Completeness in program security: static program monitoring

In this section, we consider an example of program transformations used in program

security and protection. The idea is simple: Security is enforced by selecting reliable

computations and discarding untrustworthy ones. We prove that the selection can be

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

Making abstract models complete 693

Fig. 11. The abstract domain S with sq� and B↓
η,η(sq

�).

specified in terms of a minimal (in the approximation order) completeness transformation

of the semantics of the program. This provides both a proof of minimality for standard

program transformations employed in software security, such as program monitoring,

and a deeper comprehension of these techniques in terms of the precision of an

observer (the attacker) with respect to the expected behaviour of the program (its

semantics).

Consider Program Monitoring formalized in the context of program transformation

by abstract interpretation (Cousot and Cousot 2002). Program monitoring consists in

restricting the possible executions of a program P in order to enforce a given safety

property Π. Examples of program monitoring are: the insertion of run-time checks

for checking errors such as the division by zero and out of bound array indexing;

the transformation of a target system before the system is executed in order to make

it halt whenever it is about to violate some security property of interest (Erlingsson

and Schneider 1999; Schneider 2000). In this section, we aim to show that program

monitoring, rejecting computations violating a given safety property are indeed F-

completeness program transformations. In order to show this correspondence let us first

briefly and informally introduce the characterization of program monitoring provided in

Cousot and Cousot (2002).

Let σ be the trace of actions modelling the computation of a program P executed

together with the monitor M, then we denote by σ↓P the projection on the variables in P

only of the actions of P, while σ↓M projects on the variables of M all the actions. Then,

the semantics of the monitored program is tM(P) = {σ|σ↓P is a computation of P and σ↓M
is a computation of M}. This semantics can be expressed in fix-point form Cousot and

Cousot (2002):

tM(P) = lfp⊆λT . Init ∪ Next(T)

where Init is the set of all the sequences of actions executed by M before the start of the

execution of P, while Next(T) models the situation where after the execution of an action

of P there is a sequence of actions executed by M while P does not continue its execution

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

R. Giacobazzi and I. Mastroeni 694

(see Cousot and Cousot (2002) for details):

Init =

{
s1 . . . sn

∣∣∣∣ ∀i < n . si is not an action of P, s1 . . . sn−1 is an execution of M,

sn is an action of P

}
Next(T)

=

{
σs1 . . . sn

∣∣∣∣ σs1 ∈ T , ∀ 2 � i < n . si is not an action of P, s1 is an action of P

s1 . . . sn−1 is an execution of M, and〈s1, sn〉 is a transition in P

}

The intuition is that each time P executes an action then M has to execute a sequence of

actions for checking whether the computation still satisfies the safety property, namely

one step of P is controlled by several steps of M. Hence, when M finds that the execution

satisfies no more property, it stops the execution.

At this point, we can simplify the description of the semantics of the monitored program

by considering only the projection of traces on P, and supposing that the check of the

property Π requires some execution steps of M: Let I[[P]]Π be the set of initial states of P

satisfying Π

FΠ(T) = I[[P]]Π ∪ {σss ′| σs ∈ T , 〈s , s ′〉 transition in P, and Π(σss ′)}

Hence, we can simplify the characterization in Cousot and Cousot (2002).

Theorem 6.1. tM(P)↓P= lfp⊆
� FΠ.

Proof. First of all let us show what is formally tM(P)↓P. Suppose that Π is the property

enforced by the monitor M.

Init↓P =

⎧⎨
⎩s1 . . . sn

∣∣∣∣∣∣
∀i < n .si is not an action of P, s1 . . . sn−1

is an execution of M,

sn is an action of P

⎫⎬
⎭↓P

=
{
sn↓P

∣∣ sn↓P∈ I[[P]],Π(sn↓P)
} def

= I[[P]]Π

while

Next(T)↓P =

⎧⎨
⎩σs1 . . . sn

∣∣∣∣∣∣
σs1 ∈ T , ∀2 � i < n .si is not an action of P,

s1 is an action of P, s1 . . . sn−1 is an execution of M,

〈s1, sn〉 is a transition in P

⎫⎬
⎭↓P

=

{
σ↓P s1sn

∣∣∣∣ σ↓P s1 ∈ T ↓P, 〈s1, sn〉 transition of P,

Π(σ↓P s1sn)

}

where Π(σ) means that M has not stopped the execution of σ, namely the property Π of

σ holds. Moreover note that, in each iteration in the computation of tM(P) the execution

of M does not consider the history of the computation, but depends only on the last

state of the trace, hence it is trivial to show that Next(T) ↓P= Next(T ↓P) ↓P, hence

tM(P)↓P= (lfp⊆λT .Init ∪ Next(T))↓P= λT .Init↓P ∪ Next(T)↓P. Therefore we have the

result.

Let us introduce, now, the completeness characterization of monitoring. In Mastroeni

and Giacobazzi (2011) we formalize safety semantics as abstract interpretations in the

hierarchy of semantics (Cousot 2002). A safety property is characterized as an abstract

interpretation considering the abstraction (Gumm 1993) which maps a set X of (finite)

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

Making abstract models complete 695

traces in the set of all their finite prefixes ϕω(X) = {σ ∈ Σ+| ∃δ ∈ X . σ � δ }, where �
means ‘prefix of’. By using this abstraction we can model the fact that a safety property

is maximal with respect to a given set of partial executions. At this point let us note

that, if we consider the finite partial trace semantics of P (Cousot and Cousot 2002), i.e.

[[P]]
def
= lfp⊆

�FP, where FP
def
= λT . I[[P]] ∪ {σss ′| σs ∈ T , 〈s , s ′〉 transition in P}, then we have

the following property.

Proposition 6.2. ϕω([[P]]) = [[P]].

Proof. In order to prove the thesis we first prove by induction that ϕω(Fi
P) =

⋃
j�i F

j

P,

where F0
P

def
= FP(�), while Fi

P
def
= FP(Fi−1

P). Indeed, ϕω(F0
P) = ϕω(I[[P]]) = I[[P]] since I[[P]]

contains single states. Let us suppose by induction that ϕω(Fi
P) =

⋃
j�i F

j

P, and let us

compute ϕω(Fi+1
P).

ϕω(Fi+1
P) = ϕω(FP(Fi

P))

= ϕω(I[[P]] ∪ {σss ′| σs ∈ Fi
P, 〈s , s ′〉 transition of P})

= ϕω(I[[P]]) ∪ ϕω(Fi
P) ∪ {σss ′| σs ∈ Fi

P, 〈s , s ′〉 transition of P}
(Being ϕω additive (Gumm 1993))

= I[[P]] ∪
⋃

j�i F
j

P ∪ {σss ′| σs ∈ Fi
P, 〈s , s ′〉 transition of P}

(By inductive hypothesis)

=
⋃

j�i F
j

P ∪ {σss ′| σs ∈ Fi
P, 〈s , s ′〉 transition of P}

(Being I[[P]] = F0
P)

=
⋃

j�i F
j

P ∪ Fi+1
P (By definition of Fi+1

P)

=
⋃

j�i+1 F
j

P

Hence, ϕω([[P]]) = ϕω(lfp⊆
�FP) = ϕω(

⋃
i<ω Fi

P) =
⋃

i<ω Fi
P = [[P]].

When we model a (safety) property as the set of all the computations satisfying it, we

can say that a program P satisfies Π iff [[P]] ⊆ Π. By Proposition 6.2 this corresponds

to saying ϕω([[P]]) ⊆ Π. Moreover, Π being a safety property it is prefix closed (Gumm

1993) and therefore it is such that σ ∈ Π implies ϕω(σ) ⊆ Π.

We can model this condition as a completeness problem. Let us consider π ∈ uco(℘(Σ+))

defined as follows: π(X) = X if X ⊆ Π, π(X) = � otherwise, i.e. π is the closure operator

characterizing the sets of computations satisfying Π. Then we have

[[P]] ⊆ Π iff π[[P]] = [[P]]

which is clearly a forward completeness equation where the input abstraction is the

identity. Hence we can transform the semantics [[P]] in order to make the safety property

Π hold. Consider, the right adjoint π+ of π:

π+ = λX .
⋃

{Y | π(Y) ⊆ X } = λX .
⋃

{π(Y)| π(Y) ⊆ X } (By Proposition 2.2)

Then we have that F
↓
id ,π([[P]]) = π+([[P]]) which is exactly the transformation which, among

all the (partial) computations of P, keeps only those satisfying Π. This is precisely the

semantics of the monitored program, as proved in the following result.

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

R. Giacobazzi and I. Mastroeni 696

Theorem 6.3. tM(P)↓P= F
↓
id ,π([[P]])

Proof. By Theorem 6.1 and by definition of fix-point, we have that tM(P)↓P=
⋃

i<ω Fi
Π,

where F0
Π = FΠ and Fi+1

Π = FΠFi
Π. We can trivially note that FΠ(X) = FP(X) ∩ Π, where

we abuse notation denoting by Π the set of all the traces satisfying Π.

On the other hand, by definition, F↓([[P]]) = π+([[P]]) =
⋃

{π(Y)| π(Y) ⊆ [[P]]} =
⋃

{Y ⊆
Π| Y ⊆ [[P]]} =

⋃
{Y | Y ⊆ [[P]] ∩ Π} = [[P]] ∩ Π =

⋃
i<ω Fi

P ∩ Π.

Hence, we have to show that (
⋃

i<ω Fi
P)∩Π =

⋃
i<ω(Fi

P∩Π) =
⋃

i<ω(FP∩Π)i =
⋃

i<ω Fi
Π,

where the first equality holds by distributivity of intersection on union, and the last one

holds by definition. Let us prove by induction that Fi
Π = Fi

P ∩ Π. The base is trivial,

F0
Π = FΠ(�) = FP(�) ∩ Π = F0

P ∩ Π. Suppose it holds the inductive hypothesis. Let us

prove separately the two inclusions. Consider Fi
Π ⊆ Fi

P ∩ Π, then Fi
Π ⊆ Fi

P. By definition

of FΠ.

Fi
Π = FΠ(Fi

Π) = FP(Fi−1
Π) ∩ Π

⊆ FP(Fi−1
P) ∩ Π

= Fi
P ∩ Π

Let us prove now that Fi
Π ⊇ Fi

P ∩ Π. In particular

δ ∈ Fi
P ∩ Π ⇒ δ ∈ Π ∧ δ ∈ {σss ′| σs ∈ Fi−1

P , 〈s , s ′〉 transition of P}
⇒ δ ∈ {σss ′| σs ∈ Fi−1

P , 〈s , s ′〉 transition of P,Π(σss ′)}

Note that by definition Π is a safety property, namely we have Π(σss ′) ⇒ Π(σs) hence

we have the following relations

δ ∈ Fi
P ∩ Π ⇒ δ ∈ {σss ′| σs ∈ Fi−1

P , 〈s , s ′〉 transition of P,Π(σss ′)}
⇒ δ ∈ {σss ′| σs ∈ Fi−1

P ∩ Π, 〈s , s ′〉 transition of P,Π(σss ′)}
⇒ δ ∈ {σss ′| σs ∈ Fi−1

P ∩ Π, 〈s , s ′〉 transition of P} ∩ Π

⇒ δ ∈ {σss ′| σs ∈ (FP ∩ Π)i−1, 〈s , s ′〉 transition of P} ∩ Π

(By inductive hypothesis)

⇒ δ ∈ FP((FP ∩ Π)i−1) ∩ Π = FP(Fi−1
Π) ∩ Π = Fi

Π

Hence we proved that Fi
Π = Fi

P ∩ Π. Finally,

δ ∈ (
⋃

i<ω Fi
P) ∩ Π ⇔ ∃i . δ ∈ Fi

P ∩ Π = Fi
Π

⇔ δ ∈
⋃

i<ω Fi
Π

7. Conclusion

We studied the lattice-structure of complete semantics in the standard adjoint framework

of abstract interpretation. In particular we proved that it is possible, under often non-

restrictive hypothesis, to characterize the minimal model transformations making a given

semantics complete, both in the forward and backward sense.

The transformations considered here concern the semantics, instead of the abstract

domains, completing, together with (Giacobazzi et al. 2000), the picture of domain and

semantics transformers for making abstract interpretations complete, either by minimally

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

Making abstract models complete 697

modifying abstractions or by minimally modifying semantics. In comparison with abstract

domain refinement for completeness in Giacobazzi et al. (2000), the interest in semantics

transformations for achieving completeness may appear less critical. This is a consequence

of the way abstract interpretation is typically considered and used, where the program

is a constant and the abstraction is a variable to determine. In contrast, making models

complete requires that abstractions are constants, and the semantics, i.e. the program, is

a variable to be determined. Moreover, the transformations considered here concern the

semantics instead of the syntax, even if they are justified/applied in the context of program

transformation, which indeed concerns syntax. This way of driving transformations,

starting from the semantics, opens several big problems, among all: how do we move

from the semantics to the syntax transformation? and how this transformations affect

the computational complexity? The first question finds partial answer in a recent work

(Giacobazzi et al. 2012) where obfuscation is obtained by a completeness-driven design

of language interpreters. This is the first attempt to connect (in)completeness semantic

transformations with syntactic transformations: the interpreter transforms the program

introducing some syntactic structure that surely makes the given analysis imprecise. In

the completeness case we should go in the opposite direction, the interpreter should have

to erase form the program all the syntactic structures inducing imprecision in the analysis,

but it is clear that this idea needs further work in order to be completely understood. As

far as computational complexity is concerned we believe that the problem is even harder

to attack. Semantic transformations, in principle, may change the scope of a program

making a complexity comparison quite meaningless. Anyway it may be the case that, being

the transformation guided by a particular analysis, it may affect the relation between the

complexity of the original program and that of the transformed one, but this is quite far

to be understood and therefore deserves further research.

We considered here language-based security as an application ground for interpreting

our transformations, but of course the validity of our results are more general. We

believe that the idea of making an abstract interpretation complete by modifying

the program is an underlying feature of most algorithm and methods for program

construction and design. Preliminary examples in this direction can be found in Vechev

et al. (2010) where the authors propose a procedure combining abstraction and semantics

refinement for synchronization synthesis in multi-threaded programs. The theory of

minimal model transformations for completeness may provide here the appropriate

mathematical structures for proving minimality on all these cases. An important aspect

where complete model transformations may play a key role is in program transformation

for refining program analysis. It is often the case that the result of an optimized

compilation induces a loss of precision in the abstract interpreter w.r.t. the original source

code. This is the case, for instance, when a C program is compiled into an intermediate

three-address language. We believe that program hints refining program operations

(see Laviron and Logozzo (2009)) can be systematically designed as complete model

transformations, providing the static analyser with new advanced tools for refinement

both at domain and program level. We are currently interested in expanding the theory of

model transformations by considering also semantics transformations inducing maximal

incompleteness (Giacobazzi and Mastroeni 2008). Possible applications of the basic

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

R. Giacobazzi and I. Mastroeni 698

semantic transformers for achieving maximal incompleteness are in code obfuscation

(see Giacobazzi (2008) and Giacobazzi et al. (2012) for some preliminary result in this

direction). In this case, an obfuscated program defeating an attacker which performs

approximate analysis driven reverse engineering can be viewed as the maximal incomplete

transformation of the program with respect to the abstractions used by the analyser.

Unfortunately, for these latter operators, the conditions for the existence of the optimal

deformed model are far more restrictive, making hard the derivation of concrete algorithms

and tools. Under this perspective, the road towards an automated deforming compiler

assisting the developer in program synthesis, repair and protection is still long to run.

Acknowledgements

Part of the material developed in this paper was conceived with Francesco Ranzato and

Elisa Quintarelli. We are grateful to the endless discussions we had together during the

last decade, discussions that helped us in better understanding the beauty of abstract

interpretation theory. The paper has been written when Roberto Giacobazzi was visiting

the ENS, École Normale Supérieure in rue d’Ulm, Paris. We thank ENS for always

providing a perfect environment for researchers. Finally, we would like to thank the

anonymous referees for their helpful comments and suggestions.

References

Abramsky, S. and Jung, A. (1994) Domain theory. In: Abramsky, S., Gabbay, D. M. and Maibaum,

T. S. E. (eds.) Handbook of Logic in Computer Science, volume 3, Oxford University Press, Inc.

1–168.

Ball, T., Podelski, A. and Rajamani, S. (2002) Relative completeness of abstraction refinement for

software model checking. In: Kaoen, J.-P. and Stevens, P. (eds.) Proceedings of TACAS: Tools

and Algorithms for the Construction and Analysis of Systems. Springer-Verlag Lecture Notes in

Computer Science 2280 158–172.

Blyth, T. and Janowitz, M. (1972) Residuation Theory, Pergamon Press.

Clarke, E. M., Grumberg, O., Jha, S., Lu, Y. and Veith, H. (2003) Counterexample-guided abstraction

refinement for symbolic model checking. Journal of the ACM 50 (5) 752–794.

Collberg, C. and Nagra, J. (2010) Surreptitious Software, Addison Wesley.

Collberg, C. and Thomborson, C. D. (1999) Software watermarking: Models and dynamic

embeddings. In: POPL’99: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, ACM, New York, NY, USA 311–324.

Collberg, C. and Thomborson, C. D. (2000) Watermarking, tamper-proofing, and obfuscation-tools

for software protection. IEEE Transactions on Software Engineering 28 735–746.

Cousot, P. (2002) Constructive design of a hierarchy of semantics of a transition system by abstract

interpretation. Theoretical Computer Science 277 (1-2) 47–103.

Cousot, P. and Cousot, R. (1977) Abstract interpretation: A unified lattice model for static analysis

of programs by construction or approximation of fix-points. In: Proceedings of Conference Record

of the 4th ACM Symposium on Principles of Programming Languages (POPL’77), ACM Press,

New York 238–252.

Cousot, P. and Cousot, R. (1979a) A constructive characterization of the lattices of all retractions,

preclosure, quasi-closure and closure operators on a complete lattice. Portuguese Mathematical

38 (2) 185–198.

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

Making abstract models complete 699

Cousot, P. and Cousot, R. (1979b) Constructive versions of Tarski’s fixed point theorems. Pacific

Journal of Mathematics 82 (1) 43–57.

Cousot, P. and Cousot, R. (1979c) Systematic design of program analysis frameworks. In: Proceedings

of Conference Record of the 6th ACM Symposium on Principles of Programming Languages

(POPL’79) , ACM Press, New York 269–282.

Cousot, P. and Cousot, R. (1992a) Abstract interpretation frameworks. Journal of Logic and

Computation 2 (4) 511–547.

Cousot, P. and Cousot, R. (1992b) Comparing the Galois connection and widening/narrowing

approaches to abstract interpretation (Invited Paper) In: Bruynooghe, M. and Wirsing, M. (eds.)

Proceedings of the 4th International Symposium on Programming Language Implementation and

Logic Programming (PLILP’92). Springer-Verlag Lecture Notes in Computer Science 631 269–295.

Cousot, P. and Cousot, R. (2002) Systematic design of program transformation frameworks by

abstract interpretation. In: Proceedings of Conference Record of the 29th Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, ACM Press, New York 178–190.

Cousot, P. and Cousot, R. (2004) An abstract interpretation-based framework for software

watermarking. In: Conference Record of the 31st Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, Venice, Italy. ACM Press 173–185.

Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Min, A., Monniaux, D. and Rival, X. (2007a)

Combination of abstractions in the Astrée static analyzer. In: Okada, M. and Satoh, I. (eds.) 11th

Annual Asian Computing Science Conference (ASIAN’06). Springer Lecture Notes in Computer

Science 4435 1–24.

Cousot, P., Ganty, P. and Raskin, J.-F. (2007b) Fixpoint-guided abstraction refinements. In: Filé, G.

and Riis Nielson, H. (eds.) Proceedings of the 14th International Symposium on Static Analysis,

SAS ’07, Kongens Lyngby, Denmark. Springer Lecture Notes in Computer Science 4634 333–348.

Dalla Preda, M., Christodorescu, M., Jha, S. and Debray, S. (2007) A semantics-based approach

to malware detection. In: POPL’07: Proceedings of the 34th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, ACM Press, New York, NY, USA 377–388.

Dalla Preda, M. and Giacobazzi, R. (2009) Semantic-based code obfuscation by abstract

interpretation. Journal of Computer Security 17 (6) 855–908.

Dams, D., Gerth, R. and Grumberg, O. (1997) Abstract interpretation of reactive systems. ACM

Transactions on Programming Languages and Systems 19 (2) 253–291.

Davey, B. A. and Priestley, H. A. (1990) Introduction to Lattices and Order, Cambridge University

Press, Cambridge, U.K.

Erlingsson, U. and Schneider, F. (1999) Sasi enforcement of security policies: A retrospective. In:

NSPW’99, ACM Press, New York 87–95.

Filé, G., Giacobazzi, R. and Ranzato, F. (1996) A unifying view of abstract domain design. ACM

Computing Surveys 28 (2) 333–336.

Giacobazzi, R. (2008) Hiding information in completeness holes – new perspectives in code

obfuscation and watermarking. In: Proceedings of The 6th IEEE International Conferences on

Software Engineering and Formal Methods (SEFM’08), IEEE Press 7–20.

Giacobazzi, R., Jones, N. and Mastroeni, I. (2012) Obfuscation by partial evaluation of

distorted interpreters. In: Proceedings of the ACM Symposium on Partial Evaluation and Program

Manipulation (PEPM’12), ACM Press, New York 179–185.

Giacobazzi, R. and Mastroeni, I. (2004) Abstract non-interference: Parameterizing non-interference

by abstract interpretation. In: Proceedings of the 31st Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL ’04), ACM-Press, New York 186–

197.

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

R. Giacobazzi and I. Mastroeni 700

Giacobazzi, R. and Mastroeni, I. (2008) Transforming abstract interpretations by abstract

interpretation. In: Alpuente, M. (ed.) Proceedings of the 15th International Static Analysis

Symposium, SAS’08. Springer-Verlag Lecture Notes in Computer Science 5079 1–17.

Giacobazzi, R. and Quintarelli, E. (2001) Incompleteness, counterexamples and refinements in

abstract model-checking. In: Cousot, P. (ed.) Proceedings of The 8th International Static Analysis

Symposium (SAS’01). Springer-Verlag Lecture Notes in Computer Science 2126 356–373.

Giacobazzi, R. and Ranzato, F. (1997) Refining and compressing abstract domains. In: Degano,

P., Gorrieri, R. and Marchetti-Spaccamela, A. (eds.) Proceedings of the 24th International

Colloquium on Automata, Languages and Programming (ICALP ’97). Springer-Verlag Lecture

Notes in Computer Science 1256 771–781.

Giacobazzi, R. and Ranzato, F. (1998a) Optimal domains for disjunctive abstract interpretation.

Science of Computer Programming 32 (1-3) 177–210.

Giacobazzi, R. and Ranzato, F. (1998b) Uniform closures: Order-theoretically reconstructing logic

program semantics and abstract domain refinements. Information and Computation 145 (2) 153–

190.

Giacobazzi, R., Ranzato, F. and Scozzari, F. (2000) Making abstract interpretations complete.

Journal of the ACM 47 (2) 361–416.

Gulavani, B. S. and Rajamani, S. K. (2006) Counterexample driven refinement for abstract

interpretation. In: TACAS 06: Tools and Algorithms for Construction and Analysis of Systems.

Springer Lecture Notes in Computer Science 3920 474–488.

Gumm, H. P. (1993) Another glance at the Alpern–Schneider theorem. Information Processing

Letters 47 291–294.

Janowitz, M. F. (1967) Residuated closure operators. Portuguese Mathematical 26 (2) 221–252.

Kihara, M., Fujiyoshi, M., Wan, Q. T. and Kiya, H. (2007) Image tamper detection using

mathematical morphology. In: ICIP 2007: IEEE International Conference on Image Processing,

IEEE 101–104.

Laviron, V. and Logozzo, F. (2009) Refining abstract interpretation-based static analyses with hints.

In: Proceedings of APLAS’09. Springer-Verlag Lecture Notes in Computer Science 5904 343–358.

Mastroeni, I. (2004) Algebraic power analysis by abstract interpretation. Higher-Order and Symbolic

Computation (HOSC) 17 (4) 299–347.

Mastroeni, I. (2008) Deriving bisimulations by simplifying partitions. In: Proceedings of the

9th International Conference on Verification, Model Checking and Abstract Interpretation

(VMCAI’08). Springer-Verlag Lecture Notes in Computer Science 4905 147–171.

Mastroeni, I. and Giacobazzi, R. (2011) An abstract interpretation-based model for safety semantics.

Journal of Computer Mathematics 88 (4) 665–694.

Mycroft, A. (1993) Completeness and predicate-based abstract interpretation. In: Proceedings of the

ACM Symposium on Partial Evaluation and Program Manipulation (PEPM’93), ACM Press, New

York 179–185.

Nagra, J. and Thomborson, C. D. (2004) Threading software watermarks. In: Proceedings of

6th International Workshop on Information Hiding. Springer-Verlag Lecture Notes in Computer

Science 3200 208–233.

Nagra, J., Thomborson, C. D. and Collberg, C. (2002) A functional taxonomy for software

watermarking. Australian Computer Science Communications 24 (1) 177–186.

Nielson, F., Nielson, H. and Hankin, C. (1999) Principles of Program Analysis, Springer.

Ranzato, F. and Tapparo, F. (2007) Generalized strong preservation by abstract interpretation.

Journal of Logic and Computation 17 (1) 157–197.

Rival, X. and Mauborgne, L. (2007) The trace partitioning abstract domain. ACM Transactions on

Programming Languages and Systems 29 (5) 26.

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

Making abstract models complete 701

Schneider, F. B. (2000) Enforceable security policies. Information and System Security 3 (1) 30–50.

Vechev, M. T., Yahav, E. and Yorsh, G. (2010) Abstraction-guided synthesis of synchronization. In:

Proceedings of the 37th ACM SIGPLAN-SIGACT POPL 2010, ACM 327–338.

Venkatesan, R., Vazirani, V. and Sinha, S. (2001) A graph theoretic approach to software

watermarking. In: Information Hiding. Lecture Notes in Computer Science 2137 157–168.

Ward, M. (1942) The closure operators of a lattice. Annals of Mathematical 43 (2) 191–196.

https://doi.org/10.1017/S0960129514000358 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000358

