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In this study, a data-driven method for the construction of a reduced-order model
(ROM) for complex flows is proposed. The method uses the proper orthogonal
decomposition (POD) modes as the orthogonal basis and the dynamic mode
decomposition method to obtain linear equations for the temporal evolution coefficients
of the modes. This method eliminates the need for the governing equations of the
flows involved, and therefore saves the effort of deriving the projected equations and
proving their consistency, convergence and stability, as required by the conventional
Galerkin projection method, which has been successfully applied to incompressible
flows but is hard to extend to compressible flows. Using a sparsity-promoting
algorithm, the dimensionality of the ROM is further reduced to a minimum. The
ROMs of the natural and bypass transitions of supersonic boundary layers at
Ma = 2.25 are constructed by the proposed data-driven method. The temporal
evolution of the POD modes shows good agreement with that obtained by direct
numerical simulations in both cases.

Key words: compressible boundary layers, low-dimensional models, transition to turbulence

1. Introduction
Modal decomposition methods, such as proper orthogonal decomposition (POD)

and dynamic mode decomposition (DMD), are able to capture the important structures
of fluid flows. Based on the resulting spatial modes, a reduced-order model (ROM)
can be constructed to estimate the temporal evolution of the flow field. ROM is a
powerful tool for exploring the physical mechanisms of complex flows, predicting
their behaviour and designing control schemes, by constructing a finite-dimensional
dynamical system of the flows (Rowley & Dawson 2017). Recent developments in
machine learning-based flow modelling and control also provide a new framework to
control complex dynamical systems (Duriez, Brunton & Noack 2017). The motivation
of the present research is to construct ROMs for the supersonic boundary layer
transition, which involves very complex physical processes and raises many questions
concerning transition prediction and control.

The POD–Galerkin method has been successfully applied to construct ROMs for
various incompressible flows (Holmes et al. 2012). The ordinary differential equations
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Data-driven reduced-order model for boundary layer transition 1097

(ODEs) for the temporal evolution of the modal coefficients (henceforth referred to
as ‘temporal coefficients’) are obtained by projecting the governing equations (i.e.
momentum equations in this case) onto the POD modes. Solving the resulting
ODEs gives the temporal evolution of the POD modes, yielding the reduced-order
representation of the flow field. For instance, Smith (2003) and Ilak & Rowley
(2008) constructed low-dimensional models of wall-bounded turbulent flows on the
basis of conventional POD and balanced POD, respectively, the latter of which is an
approximation of the balanced truncation, a standard modal-reduction method used
for stable linear input–output systems (Rowley 2005). Lumley & Poje (1997) further
applied the POD–Galerkin method to flows with density fluctuations, and studied the
variation of coherent structures as a function of Richardson number. Noack, Papas
& Monkewitz (2005) discussed the necessity for a pressure-term representation in
empirical Galerkin models of incompressible free shear flows and found that, although
the magnitude of pressure terms is small, their effects cannot be neglected.

For compressible viscous flows, ROMs are difficult to obtain via the traditional
POD–Galerkin method because of the complexity of the governing equations, the
presence of fine-scale (sharp boundary layers) and discontinuous features (shocks)
in the solutions to these equations and a general lack of an a priori stability
guarantee for POD–Galerkin ROMs applied to these equations. Rowley, Colonius &
Murray (2004) constructed a ROM with the POD–Galerkin method for compressible
isentropic flows, in which the energy equation is replaced by an equation for the
speed of sound. The ROM accurately predicted a two-dimensional cavity flow during
relatively long-term evolution. Taking viscosity into consideration further increases the
complexity because the viscosity varies with temperature, which has been neglected in
the previous POD–Galerkin methods. The application to compressible viscous flows
was further proposed and performed by Gloerfelt (2008). However, the ODEs thus
obtained were unstable, leading to the exponential growth of the temporal coefficients.

Although various modifications have been proposed, such as taking into account the
viscous dissipation of the truncated higher modes via eddy viscosity, the parameters
involved were usually set artificially and empirically. The stability of the ODEs
in the ROMs of compressible flows has aroused much research interest, and has
been studied thoroughly with rigorous mathematical proofs (Barone et al. 2009).
Balajewicz, Tezaur & Dowell (2016) proposed that a goal-oriented rotation of the
POD basis would improve the stability of the ROM with the POD–Galerkin method.
Elsewhere, the boundary conditions and the inner product have also been considered
as potential factors leading to instability (Kalashnikova & Barone 2010). It has been
proved that the ROM can be stable and weakly convergent with the correct choice
of the inner product and boundary conditions (Kalashnikova et al. 2014b). While the
application of the method to laminar subsonic flows at low Reynolds numbers has
so far been successful, for nonlinear flows, the stability and convergence are still
challenging. Kalashnikova et al. (2014a) proposed an improved method to construct
stable ROMs for compressible flows. The approach delivers stable and accurate ROMs
for linear and laminar flow problems, but for nonlinear problems, the convergence is
still not satisfactory. Previous studies have indicated that the traditional methods to
construct the ROMs are not yet feasible for compressible viscous flows, especially
for complex cases such as transition and turbulence.

DMD is a data-driven method for reduced-order representation, which can extract
the spatial modes as well as their frequencies and growth rates (Schmid 2010).
Because DMD does not require any governing equations, it has been especially
widely applied in compressible flows, for example, the reduced-order representation
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1098 M. Yu, W.-X. Huang and C.-X. Xu

of near-wall structures in a transitional boundary layer of Mach 0.2 (Sayadi et al.
2014), and the pressure distribution near an isolated roughness element inducing
a hypersonic boundary layer transition (Subbareddy, Bartkowicz & Candler 2014).
Although DMD is a powerful method to construct the ROM, the resulting modes are
not orthogonal, which makes it difficult to investigate the interaction between modes.
The recursive dynamic mode decomposition (RDMD) method, recently proposed by
Noack et al. (2016), in which the DMD modes are orthogonalised, offers a way to
combine the advantages of the two main modal decomposition methods, i.e. POD
and DMD, to obtain the orthogonal flow basis and its temporal evolution.

In this study, we propose a purely data-driven ROM construction method based
on the combination of POD, DMD and sparsity-promoting DMD (Jovanović, Schmid
& Nichols 2014). The POD is used to obtain the orthogonal basis, DMD to obtain
its temporal evolution and sparsity-promoting DMD for dimension truncation. This
method does not involve the governing equations and hence is spared the problems
arising from their projection (e.g. instability). The method can be easily applied to
compressible as well as incompressible flows, overcoming the difficulties encountered
by the conventional POD–Galerkin method. In this study, the supersonic boundary
layer transitions at Mach number Ma = 2.25 are considered, and the ROMs are
obtained using the proposed construction method to allow longer-term prediction of
the flow fields.

The remainder of this paper is organised as follows. In § 2, the principles of the
present ROM construction method are introduced, and the algorithm and dimension
truncation technique are described. The method is applied to the natural and bypass
transition processes in a supersonic boundary layer at Ma = 2.25 in § 3, where the
construction of the ROM is shown in detail. Finally, concluding remarks are given
in § 4.

2. Data-driven reduced-order model construction
This section describes the new data-driven construction method of a ROM based on

the POD and DMD methods. The principles of POD and DMD are briefly summarised
in §§ 2.1 and 2.2, respectively, focusing on their application to discrete systems. Then,
in § 2.3, the new method is derived by considering the relationship between POD and
DMD.

2.1. Proper orthogonal decomposition of a discrete system
POD extracts a set of spatial modes based on the energy of the flow structures. For
a discrete system, studied either experimentally or by numerical simulations, the flow
quantity v of a certain temporal instantaneous (e.g. the ith) flow field can be written
as a column vector,

vi = [v1i, v2i, . . . , vji, . . . , vMi]
T, (2.1)

where the components vji are the values of the quantity at the spatial point j at
temporal instant i, and M is the total number of spatial points in the experiment
or numerical simulation. The superscript T represents the transpose of the vector or
matrix. With a set of data samples at different temporal instants with a constant time
interval, the data samples can be written as a matrix,

V N = [v1, v2, . . . , vN], (2.2)
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Data-driven reduced-order model for boundary layer transition 1099

where N is the number of temporal data samples, or columns in matrix V N . Usually,
the dimension of the matrix M � N for fluid flow problems. We define the energy
matrix R as

R =
1
N

V NV T
N, (2.3)

which is a symmetrical and semi-positive-definite matrix, whose eigenvalues can be
obtained by

RU=UΣ ′, (2.4)
U= [u1, u2, . . . , uN], (2.5)

Σ ′ = diag(σ ′1, σ
′

2, . . . , σ
′

N). (2.6)

Here the column vectors ui of the matrix U are the eigenvectors of R, referred to as
POD modes, and σ ′i in the diagonal matrix Σ ′ is the eigenvalue, identical to the energy
of ui. The POD method is equivalent to the singular value decomposition (SVD) of
matrix V N in such a way that

V N = UΣV H, (2.7)

where Σ =
√

NΣ ′ is a diagonal matrix of rank n (usually n = N) with non-zero
singular values {σ1, . . . , σn} on its main diagonal, and U and V are matrices with unit
and orthogonal columns, i.e.

U ∈CN×n, UHU = I, (2.8a,b)
V ∈Cn×M, V HV = I, (2.9a,b)

where the superscript H refers to the Hermitian transpose of the matrix.

2.2. Dynamic mode decomposition
The DMD method needs one more temporal realisation of the flow field than POD,
and the data samples can be written as two matrices:

V N1 = [v0, v1, . . . , vN−1], V N2 = [v1, v2, . . . , vN]. (2.10a,b)

It is assumed that the constant time interval 1t is small enough that the two
matrices can be related by a linear mapping, i.e.

V N2 = AV N1, (2.11)

where A is the evolving matrix of the dynamical system. Matrix A is unknown and can
be seriously ill-conditioned if obtained by taking the pseudo-inverse of V N1; thus an
orthogonal decomposition of V N1 is needed to solve the eigenvalue problem correctly.
Performing SVD on V N1 as shown in (2.7), the linear mapping shown in (2.11) can
further be expressed as

V N2 = AUΣV H. (2.12)

Then the projection of A on the basis U can be expressed as

A′ = UHAU = UHV N2VΣ−1. (2.13)
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Note that A′ shares the same eigenvalues as A, but its rank is much lower. The
eigenvalues µi (i= 1, 2, . . . , n) and eigenvectors wi of A′ are obtained by solving the
following eigenvalue problem:

A′W =WΛ, (2.14)
Λ= diag(µ1, µ2, . . . , µn), (2.15)

W = [w1,w2, . . . ,wn], (2.16)

and the eigenmodes are obtained by

Φ = UW. (2.17)

2.3. Data-driven reduced-order model construction
The present data-driven ROM construction method uses POD modes as the orthogonal
basis and DMD eigenvalues to represent the temporal evolution of the modes. With
the POD modes obtained in (2.4), each temporal realisation of the flow field can be
expressed as a linear combination of the POD modes,

v0 =

N∑
i=1

bi(0)ui, v1 =

N∑
i=1

bi(1t)ui, . . . , vN =

N∑
i=1

bi(N1t)ui. (2.18a,b)

Substituting the above linear expansions into the linear mapping (2.11), we get

UB2 = AUB1, (2.19)

where B1 and B2 are the matrices of the temporally evolving coefficients:

B1 =


b1(0) b1(1t) · · · b1((N − 1)1t)
b2(0) b2(1t) · · · b2((N − 1)1t)
...

...
. . .

...
bN(0) bN(1t) · · · bN((N − 1)1t)

 , (2.20)

B2 =


b1(1t) b1(21t) · · · b1(N1t)
b2(1t) b2(21t) · · · b2(N1t)
...

...
. . .

...
bN(1t) bN(21t) · · · bN(N1t)

 . (2.21)

Equation (2.19) can be further written as

B2 = UHAUB1 = A′B1. (2.22)

Note that the SVD is used in both methods, as shown in (2.5) and (2.8). Equation
(2.22) indicates that the temporally evolving matrix A′ is the same as the matrix
defined in (2.13) for DMD, which is the projection of the temporally evolving matrix
A on the orthogonal basis U. In this sense, the POD and DMD modes are equivalent,
as the latter are simply linear combinations of the former. The temporal evolution
of the POD modes can be obtained via the DMD eigenvalues and eigenvectors in
(2.14). As stated in the previous section, the essential step of the POD–Galerkin
method is to obtain the matrix of temporal coefficients. However, the projection of
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Data-driven reduced-order model for boundary layer transition 1101

the equations is quite complicated, and is restricted by many factors, including the
numerical schemes and boundary conditions. The present data-driven method avoids
all of these problems, and the matrix of temporal coefficients can be easily obtained
from data samples.

The discrete form of the temporal evolution equation can be expressed as follows:

b(t+1t)= A′b(t), (2.23)

where

b(t+1t)= [b1(t+1t), b2(t+1t), . . . , bN(t+1t)]T, (2.24)
b(t)= [b1(t), b2(t), . . . , bN(t)]T. (2.25)

With a group of initial values, the temporal coefficients can be obtained via the above
linear mapping. If desired, the formula can be further expressed as ODEs, enabling
continuous temporal coefficients to be obtained. The eigenvalues and eigenvectors of
A′ can be calculated by (2.14), and the logarithms of the eigenvalues

Ξ = diag(lnµ1, lnµ2, . . . , lnµn)/1t (2.26)

are the eigenvalues of the ODEs, representing the frequency and amplification rate of
the DMD modes. Therefore,

Ac =W−1ΞW (2.27)

is the temporal evolution matrix of the ODEs, i.e.

db(t)
dt
= Acb(t), (2.28)

which can be solved by classical algorithms such as the Runge–Kutta method.
Because the number of temporal data samples is usually of the order of O(102),

the dimensionality of the ROM is still high. The sparsity-promoting (SP) dynamic
mode decomposition (SPDMD) (Jovanović et al. 2014) provides a way to lower
its dimensionality. SPDMD addresses the dimension reduction of the full-rank
decomposition by adding a penalty function term in the standard optimisation problem.
The SP method removes the modes with large damping rates or small amplitudes and
leaves only those with strong contributions to the original data sequence. In temporal
equilibrium systems, there are no significant damping modes, and the SP method
only removes modes with small amplitudes, leaving the important modes needed to
construct an appropriate ROM. Because the POD modes are ranked by energy, the
dimensionality of the ROM should be larger than, or at least equal to, the number of
modes selected by the SP method. Therefore, the truncation of A′ can be performed
as follows. Assuming that the appropriate number of ROM dimensions is r, and the
r POD modes are used and written as Ur ∈RM×r, then we have

Ar = UH
r AUr = UH

r V N2V rΣ
−1
r , (2.29)

where the matrix with subscript r on the right-hand side represents the truncated
matrix, leaving the first r rows (for UH), columns (for V ) or both (for Σ). Substituting
the matrix Ar into (2.28) and using only the first r temporal coefficients b1, b2, . . . , br,
then an r-dimensional ROM can be obtained.
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Non-reflection condition
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FIGURE 1. (Colour online) Computational configuration.

The ROM construction process is briefly summarised as follows:

(1) Write the data samples (with a constant time interval) obtained by numerical
simulations or experimental measurements in the form of matrices V N1 and V N2
as dictated by (2.10).

(2) Perform SVD via equation (2.7) on the matrix V N1 to obtain the orthogonal basis
U and the singular values Σ . The energy of each mode is obtained.

(3) Perform DMD by solving (2.11)–(2.14) and (2.26).
(4) Truncate A′ to lower dimensions according to the SPDMD results or the energy

of the POD modes according to (2.29), and obtain the temporal evolution matrix
from (2.27) by replacing Ac with Ar.

(5) Solve (2.28) numerically to give the temporal evolution of the POD modes.

3. Application: reduced-order model for supersonic boundary layer transition
In this section, direct numerical simulation (DNS) is performed to predict the

natural and bypass transitions in supersonic boundary layers, where the ROM is
built with the above-proposed data-driven method. To evaluate its performance, the
temporal coefficients obtained by the ROM are compared with those obtained by the
direct projection of the DNS data. The construction of the ROMs is shown step by
step in the following to illustrate some important mechanisms found in the results of
the intermediate steps.

3.1. Numerical set-up
The supersonic boundary layer transition for an ideal gas and a Newtonian fluid
is simulated by DNS using OPENCFD-1.10.4, developed by Li et al. (2010). The
conservative governing equations are solved numerically with the high-order finite
difference method. The convection terms are approximated with the seventh-order
weighted essentially non-oscillatory (WENO) scheme, and the viscous terms are
approximated with the sixth-order central difference scheme. The third-order total
variation diminishing (TVD) Runge–Kutta scheme is adopted for time advancement.
The details of the numerical schemes and validation of the code can be found in Li
et al. (2010).

The computational configurations and boundary conditions are shown in figure 1.
The computational domain is divided into the main region with a fine mesh and
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FIGURE 2. Streamwise variation of Cf : (a) linear case, and (b) nonlinear case.

Cases Re∞ Ma∞ T∞ Tw/T∞ Domain Grid number
(inch−1) Lx × Ly × Lz Nx ×Ny ×Nz

Linear 635 000 2.25 169.44 1.9 12× 0.2× 0.35 340× 72× 256
Nonlinear 15× 0.2× 0.35 2984× 72× 256

TABLE 1. Computational parameters.

the buffer region with gradually coarser meshes to minimise the influence of the
outlet boundary condition. At the inlet of the computational domain, the laminar
profiles of density (ρ), velocity (u, v and w, the velocity components in the x, y and
z directions) and temperature (T) are set as those obtained by the two-dimensional
numerical simulation with the same parameters and boundary conditions. At the
wall, a no-slip condition is adopted for velocities and the isothermal condition for
temperature. A non-reflection condition is adopted at the upper boundary, and a
periodic condition in the spanwise direction.

For the supersonic boundary layer, the flow parameters are set according to
Pirozzoli, Grasso & Gatski (2004), i.e. the free-stream Reynolds number Re =
635 000 inch−1, Mach number Ma = 2.25 and temperature 169.0 K. The wall
temperature is 1.9 times the free-stream temperature. All of the flow quantities in the
following are non-dimensionalised by the reference density, velocity and temperature
of the free stream, and the characteristic length is chosen to be 1 inch. Two separate
cases are considered, with linear and nonlinear disturbances (inducing natural and
bypass transitions, respectively). The computational domain and grid numbers for
each case are listed in table 1, in which the subscripts x, y and z denote streamwise,
wall-normal and spanwise directions, respectively.

To trigger the transition, a periodic blowing and suction disturbance is introduced
at the wall in the region of x = 4.0–4.5. The formulation of the disturbance can be
found in Pirozzoli et al. (2004). The frequencies introduced are 3.982 and 7.854, with
spanwise wavenumbers of 35.9 and 71.8 (corresponding to one and two waves in the
spanwise direction), which are linearly unstable according to linear stability analysis.
In the linear case, the disturbance amplitudes are set to 0.0003 for the two frequencies,
and in the nonlinear case both are set to 0.004. The streamwise distributions of the
mean skin friction coefficient (Cf ) are shown in figure 2 in comparison with that of the
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laminar Blasius boundary layer and that of a turbulent flow given by Pirozzoli et al.
(2004). The Cf values before and after the transition show good agreement with the
reference results of laminar and turbulent flows, respectively.

3.2. Reduced-order model of natural transition
First, the ROM of the flow with a linear disturbance is built to validate the proposed
ROM construction method. The flow quantities used in the analysis are the three
velocity components u, v and w, density ρ and temperature T . The mean values are
subtracted so that only the fluctuating parts are considered. The data from all of the
grid points constitute the data sample at each temporal instant, and a total of 201
realisations with the time interval of 1t= 0.05 are used to construct the ROM.

Notably, the inner product in the present POD is simply defined as

(vi, vj)=

M∑
n=1

(uniunj + vnivnj +wniwnj + ρniρnj + TniTnj). (3.1)

Therefore, the term POD ‘energy’, used for brevity in the following discussion, refers
to the Euclid norm of the vector instead of the real physical energy. As pointed out in
§ 1, the definition of the inner product is one of the most important problems in ROM.
Rowley et al. (2004) and Kalashnikova & Barone (2010) suggested that the inner
product must satisfy the definition of total energy, to ensure that the projection of the
modes on the governing equations is physically reasonable. Although the proposed
data-driven method here has no need of governing equations, the results may still be
dependent on the definition of the inner product. Because this paper focuses on the
data-driven method itself, and this method can be used with any definition of the inner
product, we will not further discuss the form of the inner product.

Following the algorithm described in § 2, the method will be explained in detail
using the results of each step in ROM construction.

SVD is performed on the data sample matrix to obtain the POD modes and their
energies, which are represented by the eigenvalues in (2.4). The total energy loss of
the first i modes is defined as

Eli =

(
1−

i∑
j=1

σj

/
N∑

j=1

σj

)
× 100 %. (3.2)

As shown in figure 3, the first five modes are much higher in energy than the others,
and together account for more than 95 % of the total energy. This indicates that
these modes are sufficient to construct the ROM. The distributions of the streamwise
disturbance velocity u of mode 2 and mode 4 on the plane at y = 0.01 are shown
in figure 4. Mode 2 is clearly an H-type disturbance, while mode 4 is a K-type
disturbance (Sayadi et al. 2014).

Next, DMD is applied. In figure 5(a), the eigenvalues of matrix A′ are shown,
coloured by the initial amplitudes of the modes. The SP algorithm is performed to
obtain the important modes, marked with magenta circles. All of the eigenvalues lie
either on or inside the unit circle, indicating that all of the modes are either neutrally
stable or decay with time. The DMD frequency spectrum is shown in figure 5(b). The
selected modes are shown with solid circles, and the corresponding frequencies are
3.9275 and 7.8559, which are the same as those of the disturbance introduced at the
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FIGURE 6. (Colour online) Temporal coefficients of mode 2 (a) and mode 4 (b): red,
projected DNS data; black, ROM.

wall. The non-oscillating mode with the highest energy is not shown in figure 5(b)
because it corresponds to the average flow field. The amplitudes of the selected
modes are much higher than the others.

With the POD and DMD results above, the evolution matrix for the temporal
coefficients of the POD modes can be easily obtained. The ODEs for the temporal
evolution are solved with the fourth-order Runge–Kutta algorithm. The original DNS
data are projected on the POD modes to obtain the initial values and the temporal
coefficients of each mode for comparison. Because the oscillating POD modes come
in pairs with different initial phases, only mode 2 and mode 4 are shown in figure 6.
The temporal coefficients predicted by the ODEs agree very well with the projected
DNS data within the time range used in POD. Because these modes are temporally
stable and periodically evolving, the long-term evolution of the temporal coefficients
should also be so. Therefore, the ROM accurately predicts the temporal evolution of
the POD modes.

3.3. Reduced-order model of bypass transition
The ability of the ROM constructed above to accurately predict the temporal evolution
of the POD modes is not surprising, because the flow field analysed above is linear,
and the DMD, on which the present ROM construction method is based, assumes
linear mapping. The method needs to be further tested by assessing its applicability
to nonlinear flows. The computational parameters for the nonlinear case are listed in
table 1. Compared with the linear case, the domain is longer streamwise and finer
grids are used, to ensure that the entire transitional process can be accurately captured.

The flow quantities used in constructing the ROM are the same as those in the linear
case. The time interval is 1t= 0.02 and a total of 201 temporal samples are included.
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FIGURE 7. (Colour online) Energy of POD modes (a) and total energy loss of the first
i modes (b).

The subzone in the range of x= 5.0–6.5 is selected for analysis because x= 6.5 marks
the beginning of the transition (as shown in figure 2b), and the nonlinear effects in
this region are obvious.

The energy of the POD modes and the total energy loss of the first i modes
are shown in figure 7. The energy decreases slowly with increasing mode number,
indicating the existence of complicated flow structures in the field caused by nonlinear
effects. If the ROM is to capture 90 % of the total energy, 13 modes are needed, as
shown in figure 7(b).

The vortical structures of the first four POD modes with the highest energy are
shown in figure 8 as the isosurfaces of Q, the second invariant of the velocity gradient
tensor. The structures are mainly streamwise-elongated vortices. They become stronger
downstream, where the velocity disturbances around the vortices are more significant,
as indicated by the contours of the streamwise disturbance velocity u. With increasing
mode number (decreasing mode energy), the streamwise vortices become smaller and
appear further downstream.

The DMD eigenvalues are shown in figure 9(a), coloured by the initial amplitude
of the modes. The SP algorithm is then applied, and the modes selected are shown
with magenta circles. The eigenvalues of the selected modes lie on the unit circle,
indicating that the structures in these modes are neutrally stable. The DMD frequency
spectrum is shown in figure 9(b), where the modes selected by the SP algorithm are
shown with solid circles. The spectrum is more scattered and widely distributed as
compared with the linear case. The low-frequency modes are higher in energy than
the high-frequency modes. The results of the SP algorithm indicate that 19 modes are
needed to capture the most important structures in the flow field. The total energy loss
of the first i DMD modes is also investigated. As shown in figure 9(c), 19 modes are
sufficient to capture 88 % of the total energy.

To examine the influence of the number of modes, we select 11, 15 and 21 modes,
respectively, to construct the ROMs. (Note that the mode number provided by the SP
algorithm is used as a reference, not a criterion, so we do not need to check whether
19 is the precise number of modes needed to establish an accurate and suitable ROM.)
The temporal coefficients for each mode are obtained by solving (2.25) with the same
numerical method as in the linear case. The results are compared with the projected
DNS data, as shown in figure 10. The red symbols represent the projected DNS data
in the time range where POD and DMD are performed (hereinafter referred to as the
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FIGURE 8. (Colour online) Isosurfaces of Q= 0.0001 coloured by u: (a–d) modes 2, 4,
6 and 8, respectively.

TRI), and the green symbols represent those beyond the TRI (hereinafter referred to as
the TRO). For the temporal evolution of the lower modes 2–8, all of the ROMs yield
accurate predictions both in the TRI and TRO. However, for mode 10, an obvious
discrepancy can be observed between the result predicted by the ROM with 11 modes
and the DNS data. Increasing the number of modes included in the ROM enhances
the accuracy for mode 10, as shown by figure 10(II-e) and (III-e).

To quantify the prediction error of the ROMs, we define the averaged relative error
as follows:

err(t)=

(
N∑

i=1

|ai(t)− api(t)|2/N

)1/2

(
N∑

i=1

api(t)2
)1/2 , (3.3)

where N is the number of modes, and api represents the projected DNS data on
POD mode i. As shown in figure 11, the relative error is less than 3 % in all cases,
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FIGURE 9. (Colour online) DMD eigenvalues (a), DMD frequency spectrum (b) and
energy loss (%) as a function of the number of modes (c); magenta circles in (a) and
solid circles in (b) are modes selected by SP algorithm.

and generally decreases when more modes are used in the ROMs. Notably, however,
the relative error with 15 modes is larger than that with 11 modes at some temporal
instants, especially near the peaks and in the TRO region. This is caused by the
inaccurate prediction of the higher modes as discussed above.

Flow reconstruction is performed to further verify the ROMs. The temporally
evolving POD modes are added together to obtain the predicted flow fields. The
streamwise velocity u given by the ROMs with 11, 15 and 21 modes is compared
with the original DNS data at four selected points at x = 5.275, 5.542, 5.803 and
6.058, y = 0.01, z = 0.175 inside the boundary layer. As shown in figure 12(I-a) to
(I-d) for the ROM with 11 modes, the velocity u at x= 5.275, 5.542 and 5.803 can
be accurately predicted, while further downstream at x = 6.058, where the transition
is about to take place, the discrepancy is obvious between the predicted and DNS
data. This suggests that in the transition region the nonlinear effects become stronger
and the flow more complex, and more modes are needed to construct a ROM capable
of sufficiently accurate prediction. Increasing the modes used to 15 and 21, the
prediction at x= 6.058 becomes more accurate, as seen in figure 12(II-d) and (III-d).
Besides the streamwise velocity u, the other flow quantities (not shown here) behave
similarly. Thus, the reconstructed flow field confirms the accuracy of the ROMs.

The prediction error is also computed for the reconstructed u at x= 6.058, defined
as

err2(t)=

∣∣∣∣∣u(t)−
N∑
i

bi(t)ui

∣∣∣∣∣
urms

× 100 %. (3.4)
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FIGURE 10. (Colour online) Temporal coefficients of mode 2, mode 4, mode 6, mode
8 and mode 10 (a–e) given by ROMs with 11, 15 and 21 modes (I–III): —1—, TRI;
—0—, TRO; ——, ROM.

The results are shown in figure 13. The relative errors in the TRI for the three ROMs
are small enough to be neglected. For the 11-mode ROM, the prediction error rises
rapidly in the TRO, indicating that the ROM is unstable there. When the mode number
in the ROM increases to 15 and 21, the error is reduced to below 2 %.
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FIGURE 11. (Colour online) Errors of ROMs: red dashed line, 11 modes; green dashed-
dotted line, 15 modes; black solid line, 21 modes.

11 modes 15 modes 21 modes

2.09× 10−3 9.86× 10−4 3.14× 10−4

TABLE 2. Largest amplification rates of the ROMs.

The stability of the ROMs can be determined from the real component of
the eigenvalues of their temporal evolution matrix, which is referred to as the
amplification rate in the following. The eigenvalues of the 11-, 15- and 21-mode
ROMs considered herein were calculated and the largest amplification rates are listed
in table 2. All of the eigenvalues are positive, indicating that all three ROMs are
unstable. However, the largest amplification rate decreases as the order (number
of modes) increases. Hence, although the absolute stability of the truncated ROMs
cannot be guaranteed, increasing their order reduces the prediction error and prolongs
the time period in which valid predictions can be made, as shown by figure 3 and
table 2.

It is instructive to discuss the CPU times needed to obtain the ROMs and the
computational savings of using this model. The computational time in this study
includes solving the DNS, POD and DMD equations and the temporal evolution
ODEs for the ROM. The cost of the first three procedures is independent of ROM
size, while the last requires relatively little CPU time. An estimation of the CPU
time costs for each procedure is listed below:

(i) CPU information: Intel(R) Xeon(R) CPU E5-2683 v3 @ 2.00 GHz.
(ii) DNS: approximately 15 CPU seconds multiplied by 24 cores per time step.

(iii) POD and DMD: approximately 9000 CPU seconds.
(iv) ROM (less than 30 modes): less than 6.0 CPU seconds for 100 000 steps.

To simulate 10 000 time steps, DNS would cost 3.6 million CPU seconds. However,
for the ROM, the CPU time cost would be only 9000 CPU seconds for the POD and
DMD procedures combined, which is much lower than that of DNS.

4. Concluding remarks and future work
In this paper, we propose a data-driven method to construct ROMs for complex

flows. The method uses the POD modes as the orthogonal basis and obtains the time
evolution ODEs by DMD. Being purely data-driven, this ROM construction method
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FIGURE 12. (Colour online) Time evolution of streamwise velocity u given by ROMs
with 11, 15 and 21 modes (I–III) at x= 5.275, 5.542, 5.803 and 6.058, y= 0.01, z= 0.175
(a–d), respectively: —1—, TRI; —0—, TRO; ——, ROM.

can be easily applied to flows governed by complex equations such as compressible
flows.

The ROMs of the natural and bypass transitions induced by linear and nonlinear
disturbances in a supersonic boundary layer at Ma = 2.25 were built using the
proposed method. The temporal coefficients of the POD modes and the reconstructed
flow fields given by the ROMs were compared with those given by DNS data,
confirming the practicality and accuracy of the present method. The influence of
ROM dimensionality on the predicted flow was further examined by tracking the
time history of the streamwise velocity u at different streamwise locations inside
the boundary layer in the bypass transition case. It was found that, at downstream
locations near the transition region, more modes were needed to give a satisfactory
prediction because of the intensely complex flow.
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FIGURE 13. (Colour online) Errors of ROMs for the reconstructed u at x = 6.058: red
dashed line, ROM with 11 modes; green dashed-dotted line, ROM with 15 modes; black
solid line, ROM with 21 modes.

The present method was also applied to the bypass transition of a hypersonic
boundary layer at Ma = 6 (not shown here). However, because the disturbance
frequencies differ by several orders in hypersonic flow, data samples with a longer
time span and finer time interval are needed. Owing to limited computational
resources, the ROMs obtained herein can only accurately predict short-term behaviour.
A promising approach to streamline the present ROM construction method is the
multi-resolution DMD method proposed by Kutz, Fu & Brunton (2016), which we
are now studying in our research.
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