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The classical problem of roll-up of a two-dimensional free inviscid vortex sheet is
reconsidered. The singular governing equation brings with it considerable difficulty
in terms of actual calculation of the sheet dynamics. Here, the sheet is discretized
into segments that maintain it as a continuous object with curvature. A model for the
self-induced velocity of a finite segment is derived based on the physical consideration
that the velocity remain bounded. This allows direct integration through the singularity
of the Birkhoff–Rott equation. The self-induced velocity of the segments represents the
explicit inclusion of stretching of the sheet and thus vorticity transport. The method
is applied to two benchmark cases. The first is a finite vortex sheet with an elliptical
circulation distribution. It is found that the self-induced velocity is most relevant in
regions where the curvature and the sheet strength or its gradient are large. The second
is the Kelvin–Helmholtz instability of an infinite vortex sheet. The critical time at
which the sheet forms a singularity in curvature is accurately predicted. As observed
by others, the vortex sheet strength forms a finite-valued cusp at this time. Here, it is
shown that the cusp value rapidly increases after the critical time and is the impetus
that initiates the roll-up process.

Key words: vortex dynamics, vortex flows

1. Introduction
A shear layer is a region across which the fluid velocity changes appreciably. In

many situations of interest, the shear layer thickness is typically thin relative to other
length scales in the problem. In the limit of zero thickness one arrives at the high
Reynolds number model of a shear layer known as a vortex sheet. The vorticity in
the shear layer is then confined to the mathematical surface describing the sheet and
thus becomes a singular distribution. Kinematically, this is represented by a jump in
the tangential velocity across the sheet. The problem becomes an inviscid one that is
governed by the Euler equations and with the sheet being a material surface. Since the
sheet vorticity is infinite, the quantity known as the sheet strength density is defined
as the integral of vorticity in the direction normal to the sheet.

For the case of a two-dimensional free vortex sheet in an otherwise quiescent
surrounding, the self-induced dynamics is governed by the Birkhoff–Rott equation.
With γ (s, t) as the strength density, the problem can be transformed by letting Γ (s, t)
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300 A. C. DeVoria and K. Mohseni

be a Lagrangian parameter describing the amount of circulation in the sheet as
measured from a reference point with coordinate s. Then γ (s, t)= ∂Γ /∂s and for a
point z = seiθ(s) on the sheet the complex conjugate velocity ∂z/∂t = u − iv of the
sheet is:

u− iv =
1

2πi

∫
γ (s′) ds′

z(s)− z(s′)
=

1
2πi

∫
dΓ ′

z(Γ )− z(Γ ′)
, (1.1)

where the Cauchy principal value is implied and the integration is over the entirety of
the sheet; explicit dependence on t, time, has been omitted for notational clarity. This
equation is dynamical as it ensures continuity of pressure everywhere across the sheet
(Saffman 1992) including a shedding edge if present. While seemingly innocuous,
this nonlinear singular equation presents considerable mathematical difficulties to those
seeking its solution. The successful similarity solution of Kaden (1931) for a semi-
infinite vortex sheet gave the rolled-up spiral structure of the inner core. For the finite
vortex sheet, Kaden’s solution is assumed to be applicable to the two sheet tips at very
small times.

To circumvent the difficulties, many other investigations of roll-up have discretized
the sheet into elements that make the evolution dynamics more tractable. Rosenhead
(1931) famously was the first to use a point vortex discretization and investigated the
evolution of a periodic perturbation to the sheet. Westwater (1935) used the same point
vortex method to study the roll-up of the finite vortex sheet left behind an elliptically
loaded wing. For nearly half a century the apparent success of these two studies
remained somewhat mysterious. Perhaps now infamously, their results were difficult,
if not impossible, to recreate with improved numerical capability (e.g. Moore 1971).
Instead, chaotic motion of the point vortices occurred when the spatial and temporal
resolutions were refined (also see Saffman & Baker 1979).

Moore (1974) stated that the main reason the chaotic motion ensues is an inability
of the point vortices to satisfactorily represent the inner spiral. As such, while
retaining the point vortex discretization, he introduced a tip vortex representing the
overall effect of the spiral core, an idea attributed to Smith (1968). As vortices
approach the core they are amalgamated into the tip vortex with a user-defined
criterion, which is also referred to as ‘core dumping’. Chorin & Bernard (1973)
used the cutoff or vortex blob method to regularize the singular point vortices and
exhibited smooth roll-up, at least initially. Krasny & coworkers have systematically
studied and significantly improved upon this method (Krasny 1986a, 1987; Nitsche
& Krasny 1994; Krasny & Nitsche 2002).

Fink & Soh (1978) convincingly argue that the issue is a more fundamental
one associated with the point vortex method. They showed that this discretization
inherently neglects logarithmic contributions to the Cauchy principal value integral.
They proposed a rediscretization of the vortices that causes the logarithmic terms
to vanish. Baker (1980) gave a more thorough error analysis of their method and
showed that another source of error appears as a result of neglecting the effect of
sheet curvature, which becomes significant and unavoidable in the spiral.

After these foundational papers (there are several others we have not mentioned
here), the 1980s marked major improvements in the calculation of vortex sheet
roll-up via vortex panel methods (Hoeijmakers & Vaatstra 1983; Sugioka & Widnall
1985). These methods use a combination of numerical techniques to obtain a smooth
roll-up including a rediscretization process, core dumping and patching the numerical
solution of the inner spiral with that of Kaden’s similarity solution as given by Pullin
(1978). Higdon & Pozrikidis (1985) used a higher-order interpolation method for the
sheet shape and strength distribution along with a point-insertion procedure to capture
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the initial roll-up of a Kelvin–Helmholtz instability. The vortex blob method (for a
comparison of different regularization kernels see Baker & Pham 2006) has brought
continued success to the study of vortex dynamics including complex unsteady
three-dimensional motions (e.g. Lindsay & Krasny 2001).

Point vortex methods cannot explicitly account for the effect of sheet curvature,
but judicious choices of the spacing and number of vortices can yield an accurate
representation of the sheet evolution. Also, special numerical techniques can be
employed to produce more stable calculations, such as point insertion combined
with a shock-capturing scheme to resolve steep gradients (Sohn, Yoon & Hwang
2010). However, the concept of the Cauchy principal value integral defining the
induced velocity at a single point on the sheet requires infinite resolution. An
attempt to estimate the local contribution by direct computation of the limit results
in near-singular values of opposing sign that must appropriately cancel, which can
be problematic and arbitrary. As such, for any discretization of the sheet into finite
elements, e.g. segments, the self-induced velocity of that element must also be
considered and is yet another effect neglected by point vortex methods. Conventional
vortex panel methods provide an unrealistic model of the self-induced velocity giving
logarithmically divergent velocities at the edges of the panel and thus, in a sense,
reclaim the issue of the principal value limit.

Pozrikidis (2000) discusses the evaluation of the principal value singularity without
a regularizing kernel. Two main methods were investigated and he demonstrated the
success of each up to a certain time when the calculations succumb to numerical
instabilities, which can be increased by employing various regularization, smoothing
and/or adaptive rediscretization techniques. The first is an indirect method based on
the generalized vortex methods of Baker (1983) in which a decomposition of the
velocity field contains a vector potential representing the flow induced by the vortex
sheet. Derivatives of this potential are computed to obtain the velocity the sheet
induces on itself. The second method is a direct one in which the singularity of the
Birkhoff–Rott equation (or more generally the Biot–Savart equation) is subtracted off
and its contribution is accounted for through the use of integral identities. Pozrikidis
states that this method relaxes the constraint on the geometrical smoothness of
the sheet (i.e. a continuously varying normal vector) that is interrupted by typical
discretizations of the sheet into approximated elements. While these methods reduce
the order of the singularity, the results still contain weak singularities, which we opt
to avoid in the current study.

In this paper, we revisit the inviscid roll-up problem with the aim of providing a
realistic model of the self-induced velocity of a sheet segment while also maintaining
the integrity of the sheet as a continuous object, thus capturing the effect of curvature.
The true dynamics of the sheet must include both of these features. The model is
based on the physical principle of a bounded velocity and allows direct integration
through the singularity as opposed to circumventing the singularity, such as in
the methods discussed by Pozrikidis (2000). In the next section we briefly review
the method of Fink & Soh (1978), which is then followed by the details of our
proposed model and we show how it essentially includes their method as a special
case. The numerics of the method are described in § 3. Example calculations of
a finite vortex sheet with the elliptical circulation distribution are presented in § 4.
The Kelvin–Helmholtz instability of a periodically disturbed infinite vortex sheet is
investigated in § 5. Throughout, the term ‘panel’ implies a planar element, whereas
‘segment’ refers to an element with arbitrary curvature.
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2. Mathematical formulation

Fink & Soh (1978) showed the appearance of logarithmic and higher-order terms
that are neglected by a point vortex method. The vortex sheet is divided into N straight
line panels whose motion is determined from that of pivotal points zj. The sheet
strength on each panel is represented by the Taylor series γk(σ ) =

∑
p=0 γ

(p)
k σ p/p!,

where σ is a local coordinate measured from the pivotal point, γ (p)
k is the pth

derivative of γk at σ = 0. The k = j panel induces a velocity on itself, 1(u − iv)j,j,
that must be included in (1.1). Then including the induced velocities 1(u − iv)j,k
from all other k 6= j panels gives, to first-order approximation, the total velocity of
the jth point (u− iv)j as:

(u− iv)j ≈
1

2πi

∑
k 6=j

Γk

zj − zk︸ ︷︷ ︸
sheet remainder

−
e−iθj

2πi

[
γ
(0)
j log

(
1s+j
1s−j

)
+ γ

(1)
j (1s+j +1s−j )

]
︸ ︷︷ ︸

j-th panel self-induced velocity

, (2.1)

where Γk =
∫ 1s+k
−1s−k

γk(σ ) dσ is the circulation in the kth panel, 1s±j are the lengths of
the partial panels from σ = 0 to the two endpoints and θj is the angle of inclination
of the jth panel. Clearly the summation term represents a point vortex system
approximating the sheet remainder, but also present are the aforementioned logarithmic
and higher-order terms. The rediscretization places the pivotal points at the midpoints
of the panels so that 1s+j =1s−j ≡1sj/2 and the log term vanishes. The remaining
term is the first in the series

∑
p=1 γ

(p)
j (1sj)

p/(p · p!)[1 − (−1)p] so that the even
terms are zero, leaving just the odd terms and in using (2.1) they state that the
error is O(1s3

j ). However, Baker (1980) showed that the error is actually O(1sj) due
to effect of curvature having been neglected.

2.1. The self-induced velocity: single segment
Next, we derive a model for the self-induced velocity of the jth segment that yields a
closed-form result in a single term rather than an infinite series. Consider a point s′ on
a sheet segment of length 21s where the local coordinate is s and let δΓ be the small
amount of circulation (change) near s′. This infinitesimal circulation induces a velocity
whose local functionality is δu ∼ (δΓ /[s − s′]) ≈ γ (δs/[s − s′]), where the definition
γ = ∂Γ /∂s was invoked. For this δu to remain finite it is required that γ ∼ [s− s′]/δs.
Then, if we parameterize this segment as s=−1s cos φ with 06 φ 6π we obtain:

γ̃ (φ; φ′)∼
cos φ′ − cos φ

sin φ
, (2.2)

where φ′ corresponds to the parameterization of the point of interest s′ =−1s cos φ′,
that is where the self-induced velocity is evaluated. Note that while the coordinate s
is measured relative to the midpoint of the segment we have not yet considered any
specific point on the segment at which to evaluate the induced velocity. To show the
physical significance of this term, the integration is first performed over a small sub-
range encompassing the primed point: (φ′ −1φ−)→ (φ′ +1φ+) which is of length
1φ=1φ++1φ−. Assuming the segment to be straight with inclination angle θ , the
local induction of just this sub-segment is:
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1(u− iv) = −
e−iθ

2πi

∫ φ′+1φ+

φ′−1φ−

[
γ̃ (α; φ′)

cos φ − cos α

]
sin α dα

= −
e−iθ

2πi

[
α + γ̃ (φ; φ′) log

∣∣∣∣1+ γ̃ (φ;π) tan(α/2)
1− γ̃ (φ;π) tan(α/2)

∣∣∣∣]φ′+1φ+
α=φ′−1φ−

, (2.3)

where the integration is with respect to the dummy variable α and we see a similar
logarithmic term. However, we note that this logarithmic term is distinctly different
from that obtained by Fink & Soh (1978). This is because they expanded the vortex
sheet strength in a Taylor series prior to integration so that their log term corresponds
to the leading term in that expansion. We can further reveal the connection with their
method by letting the point of interest, that is φ′, correspond to the midpoint of the
segment. Then the limit 1φ→ 0 on the above equation yields:

1(u− iv)≈−
e−iθ

2πi

1φ + (−1φ +O(1φ3)+ · · · +O(1φ2n−1))︸ ︷︷ ︸
logarithmic term

 , (2.4)

where n is any positive integer thus showing that the log term is expressed as a series
of odd powers in 1φ (when φ′ is not the midpoint even terms appear). This is the
same feature as the series that led to the first-order term in (2.1). The connection with
the method of Fink & Soh (1978) is apparent.

Now, upon returning to (2.3) we see that by setting φ = φ′ the logarithmic term
vanishes identically since γ̃ (φ′; φ′) = 0. More importantly, this is the case for
φ′ representing any point along the segment, not specifically the midpoint. The
self-induced velocity on the sub-segment is simply 1(u − iv) = −(e−iθ/2πi)1φ, but
having assumed a planar segment the error is O(1s) as mentioned above. We also
note that there are no higher-order terms that remain because we have represented
the self-induced velocity with a closed-form expression containing a single term. The
meaning of this is that the potentially singular log term of Fink & Soh (1978) would
be balanced by their infinite series of remainder terms. In other words, when the
physics of the problem is considered at the level of the sheet strength, the intuitive
result is a finite velocity that does not depend on the choice of how the sheet is
discretized.

The above procedure can be followed on every sub-segment 1φ that makes up the
original segment. Then (2.3) can be integrated over the whole segment from 0→ π
and by putting γ̃ (α; φ′ = φ) the self-induced velocity on the segment is:

1(u− iv)=
i
2

e−iθ
=

1
2
(sin θ + i cos θ) ∀φ ∈ [0,π] (2.5)

so that a uniform velocity is induced normal to the segment over the whole of itself.
This equation will be recognized as the self-induced velocity of a planar vortex sheet
with an elliptical circulation distribution (put φ′ = π/2 in (2.2)). This is in contrast
to vortex panel methods (e.g. Sugioka & Widnall 1985) where the logarithmically
divergent velocity is due to the assumption of a constant strength density along the
panel. In fact, this is the same logarithmic term found by Fink & Soh (1978) because
the leading term in their expansion of γ (s) corresponds to a zero-order approximation
of a constant strength density; see the first term in square brackets in (2.1).

Instead, equation (2.2) represents the limiting form that γ (s) will take for the local
contribution of the jth segment to the Cauchy principal value of the Birkhoff–Rott
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equation. Since γ̃ (φ′; φ′)= 0, then this form can be added to γ (s) without effecting
the actual strength density or circulation distributions. For dimensional consistency
γ̃ is multiplied by some constant qj. However, this qj is not given by a local
approximation of γ (s), such as 1Γ /1s. The reason can be seen by considering that
when 1sj→ 0 then φ′→ φ and so γ̃ (φ; φ′)→ 0, as it should since this then leaves
only the ‘true’ γ (s) at the point s (see (2.7) below). The determination of the qj is
discussed in § 2.4.

2.2. Segmented vortex sheet
The previous subsection showed that the segment discretization of the vortex sheet
can be defined arbitrarily. Moreover, the approximation of a planar segment is only
required for the local contribution to the Cauchy principal value integral, that is the
self-induced velocity. For numerical purposes, it is convenient to also consider the
sheet as a ‘mesh’ of N + 1 points. While we maintain these points to be the end
points of the N segments, the self-induced velocity expression applies to any straight
segment regardless of whether it is defined by its endpoints, midpoint or any other
point(s). Next, we parameterize the sheet and each of the j = 1 . . . N segments of
respective arclengths 2so and 21sj as:

s=−so cos φ sj =−1sj cos φj so =

N∑
j=1

1sj, (2.6a,b)

where 0 6 φ, φj 6π. Then, recalling that the self-induced velocity term does not add
circulation, the expression for the sheet strength density may be written:

γ (s)= γ (φ)+ qj
cos φ′j − cos φj

sin φj
. (2.7)

The total velocity induced along the jth segment by the whole of the sheet is:

(u− iv)j =
iqj

2
e−iθj +

1
2πi

[∫ φ
j
l

0

γ (φ′)so sin φ′ dφ′

zj − z(φ′)
+

∫ π

φ
j
r

γ (φ′)so sin φ′ dφ′

zj − z(φ′)

]
, (2.8)

where the first term is the self-induced velocity, φj
l and φj

r are the values of φ at the
left and right endpoints of the jth segment and zj= z(φ) for φ ∈ [φj

l, φ
j
r]. The integrals

in (2.8) may be written as the sum Qj,k ≡
∑

k 6=j 1(u− iv)j,k where:

1(u− iv)j,k =
1

2πi

∫ π

0

γ (φk)1sk sin φk dφk

(zj,o − zk,o)− (1sj cos φj)eiθj(φj) + (1sk cos φk)eiθk(φk)
(2.9)

and is the velocity contribution induced by the kth segment on the jth with zj,o and zk,o

as the complex locations of the midpoints of these segments. The possibility of γ (φk),
θk(φk) and θj(φj) varying along their respective segments is not precluded. The forms
in (2.8) and (2.9) reiterate that the assumption of a planar segment is only required
for the self-induced velocity and the effects of sheet curvature can be captured insofar
as the sheet shape is well-represented by spline interpolation (Baker 1980).
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t = tn

qj-1

œ �
j-1 œ �

j

qj

tn + Ît

FIGURE 1. The self-induction of two adjacent sheet segments from some time t = tn to
tn +1t. The qj and θ ′j are determined by requiring the induced velocities at the mutual
endpoint are equal; see (2.12).

2.3. Neighbouring segments
Consider the neighbouring k = j± 1 segments that are on the right and left of the
jth one. If 1s is appropriately small then we can assume that 1sk ≈ 1sj, θk ≈ θj,
and (zj,o − zj±1,o) ≈ ∓21sjeiθj . Similarly, assuming that the strength density does
not vary much over these segments, γ (φk) ≈ γo, then the induced velocity becomes
approximately:

γoe−iθj

2πi

log
∣∣∣∣1− cos φj

3− cos φj

∣∣∣∣︸ ︷︷ ︸
j−1 segment

+ log
∣∣∣∣3+ cos φj

1+ cos φj

∣∣∣∣︸ ︷︷ ︸
j+1 segment

 . (2.10)

The neighbouring segments induce infinite velocities at the endpoints of the jth
segment, that is at φj = 0 and π. However, as 1sj→ 0 then the segment shrinks to
the single point at its centre, namely φj = π/2, so that the log terms cancel and the
velocity remains finite. Hence, the discretization fabricates this issue and it is actually
correct to omit the singular contributions on the endpoints. Moreover, as 1sj→ ε > 0
the result should be the local contribution to the Cauchy principal value integral,
which we have already accounted for with the self-induced velocity (iqj/2)e−iθj .

2.4. Stretching the sheet with qj

The unknown constants qj are related to the magnitude of the self-induced velocity.
A given endpoint belongs to two different segments and is thus subjected to two
different self-induced velocities, which recall are normal to the segment. The vorticity
equation is Dω/Dt= ∂ω/∂t+ u · ∇ω= 0 and letting γ (s)= δ(n)ω(s) with n being the
sheet normal coordinate, then we may write:∫ [

∂ω

∂t
+ u · ∇ω

]
dn≈

∂γ

∂t
+ us

∂γ

∂s
= 0. (2.11)

Now considering the two adjacent segments shown in figure 1, we see that the
self-induced velocity of each segment stretches its neighbour and will elongate the
sheet. This is a feature not accounted for in point vortex methods, nor vortex panel
methods where γ is assumed constant on each panel. Hence, the self-induced velocity
physically represents the transport of vorticity by advective stretching of the sheet
and is most important at locations on the sheet where the tangential sheet velocity
and/or the gradient of the strength density along the sheet are large. The presence of
these features are usually the locations where roll-up occurs. For example, the tip of
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a finite vortex sheet typically has an infinite strength density, which is often cited as
the reason for the initial roll-up (Pullin & Phillips 1981), and the Kelvin–Helmholtz
instability resulting from a sinusoidal perturbation to an infinite vortex sheet of
initially constant strength density shows roll-up beginning at the locations where the
perturbation has concentrated vorticity such that ∂γ /∂s is largest.

Now, in reality the sheet deforms continuously in time and space. With the
representation of the sheet as a segmented object, we can consider that the inclination
angle of the segment between time steps, say θ ′j , is also unknown. Moreover, the
self-induction should not be discontinuous, which yields the following equations:[

iqj

2
e−iθ ′j +Qj,k

]
φj=0

=

[
iqj−1

2
e−iθ ′j−1 +Qj−1,k

]
φj−1=π

, (2.12)

where again Qj,k =
∑

k 6=j 1(u − iv)j,k is the velocity induced on the j segment due
to the k 6= j segments. These equations ensure that the left endpoint of the j segment
moves with the same self-induced velocity as the right endpoint of the ( j−1) segment
and are used to determine qj and θ ′j . The difference between the Qj,k terms is how
the neighbouring segments are treated (recall § 2.3) when a given point on the sheet
is considered to belong to the j or ( j− 1) segment; this is discussed further in § 3.2.
This bypasses the difficulty of a discontinuous normal vector (Pozrikidis 2000).

3. Numerical method
In this section the rediscretization procedure and calculation of the self-induced

velocity for a general sheet are discussed. Additional numerical treatments required
for specific problems are discussed in beginning of §§ 4 and 5 where the cases of
finite and infinite vortex sheets are investigated.

3.1. Rediscretization
Let the vortex sheet be comprised of j= 1 . . . N segments or n= 1 . . . (N + 1) mesh
points. For the rediscretization we essentially use the interpolation scheme described
by Baker (1980). Namely, a chord length parameter defines the members of the set
{λn} as:

λn =

n−1∑
k=1

|zk+1 − zk|, (3.1)

and is used in a spline interpolation to approximate z(λ). The derivative of the
interpolated function |dz/dλ| is evaluated at a chosen number of M locations {λm}

and these are integrated to give the arclength at points {sm}; Baker recommends that
M > 2(N + 1). Then a new set of arclength points {sp} are prescribed with a desired
spacing to interpolate the points {λp} = λ({sp}). Finally, the set of rediscretized points
{zp} are interpolated from {zn}, {λn} and {λp}, and may contain more or less points
than the original (N + 1).

Any other variable corresponding to the rediscretized points may be found by
interpolating with {λn} and {λp}. If desired we may also rediscretize to points
corresponding to equal intervals of the sheet parameter φ. We term the spacing options
as s-spacing and φ-spacing. Alternatively, once the equal-arclength rediscretization
has been performed, then the points may be re-interpolated to correspond to equal
spacing of other quantities, such as the circulation.
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3.2. Calculation procedure
When the sheet strength is infinite there is also an infinite induced velocity. However,
it is impossible to preserve this feature numerically if γ is used in the calculations.
Therefore, we opt to describe the sheet with the differential change in circulation dΓ ,
which remains finite and preserves circulation. As a result we revert to the left-hand
side of (1.1), and (2.8) is easily converted to this formulation since γ (φ)so sin φ dφ=
γ (s) ds= dΓ . The sheet integration is then from Γ = 0 to Γs, with Γs being the total
circulation.

Assigning the p-interpolation described above to produce the same number of
original points p= n= 1 . . . (N+ 1), then with the circulation interpolated to the same
spacing we may write:

zn = z(λ(sn)), Γn = Γ (λ(sn)) → zn = z(Γn). (3.2a,b)

The nth mesh point on the sheet belongs to the j and ( j− 1) segments, so that the
velocity induced at the nth point is:

(u− iv)n =
iqj

2
e−iθ ′j +

iqj−1

2
e−iθ ′j−1 +Qn (3.3)

Qn =
1

2πi

[∫ Γn−1

0

dΓk

zn − zk
+

∫ Γs

Γn+1

dΓk

zn − zk

]
. (3.4)

For a sheet divided into j = 1 . . . N segments, qj and θ ′j are 2N unknowns to be
determined from (2.12) which represents 2(N − 1) real equations. The system is
closed by a given boundary condition (e.g. symmetry, stagnation point) at the end(s)
of the sheet so that q1 and θ ′1 are either known or inferred. In the latter case, the
equations are solved iteratively until |Xm − Xm−1| < ε at the m iteration where
X = (q1, . . . , qN, θ

′

1, . . . , θ
′

N) and ε is a chosen threshold.
With the given boundary condition then (2.12) is used to determine qj and θ ′j for

the 2 6 j 6 N segments:

iqj

2
e−iθ ′j =

iqj−1

2
e−iθ ′j−1 + (Qj−1,k −Qj,k). (3.5)

The above Qj,k terms are calculated by integrals similar to that for Qn, but by omitting
the contribution from the neighbouring segments (recall § 2.3). Since the difference of
these terms is required, then we may reduce the calculation to:

(Qj−1,k −Qj,k)=
1

2πi

[∫ Γn−1

Γn−2

dΓk

zn − zk
−

∫ Γn+2

Γn+1

dΓk

zn − zk

]
. (3.6)

Since the functions are interpolated, then the integration may be performed as
desired. For the ease of implementation, we use the trapezoid rule on the n mesh
points. Ideally, a fourth-order Runge–Kutta time-integration scheme will be used, but
a different time-integration scheme may be used when the sheet strength is infinite.

3.3. Convergence
To demonstrate consistency and convergence of the proposed method we present some
data from § 4 which investigate the finite vortex sheet with an elliptical circulation
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FIGURE 2. (a) The root-mean-square error over time (06 t 6 1) in the computed impulse
relative to the invariant theoretical value of Io=πUa2 for different 1t with fixed N= 400
(open circles) and different N at fixed 1t=5×10−5 (solid circles). (b) The sheet positions
at t= 0.25 for N= 200, 300, 400, 500 and 600. Only the outer turns are shown for clarity.
Inset: points near the centre of the sheet away from the spiral. Data are from § 4 for a
finite vortex sheet with elliptical circulation distribtuion.

distribution. First, consider the vertical impulse of the sheet, which is an invariant of
the motion with value Io=πUa2. Figure 2(a) shows the root-mean-square (r.m.s.) error
of the computed impulse over time (0 6 t 6 1) relative to the theoretical values for
several different combinations of N and 1t. It was verified that further increasing N
or decreasing 1t yielded negligible differences in the computed results. Also, for the
computation to remain stable, it was required that 1t be smaller for larger N.

Figure 2(b) plots the segment endpoints representing the rolled-up vortex sheet at
t= 0.25 for N = 200, 300, 400, 500 and 600 each with 1t= 5× 10−5. It is seen that
the largest variations occur in the outermost turn but these decrease with increasing
N. The innermost turns were omitted for clarity; see figure 5 for an example of these
closely wound turns. The inset shows sheet position near the centre symmetry plane
where there is nearly no difference between each value of N.

4. Finite vortex sheet
Here, we demonstrate the method developed in this paper on the well-known

problem of the trailing-edge vortex sheet left in the wake of an elliptically loaded
wing. The initial sheet position is −a 6 x 6 a, y = 0 with strength density
γ (x)= 2Ux(a2

− x2)−(1/2), thus giving an initial velocity of u(x)= 0, v(x)=−U. The
problem is non-dimensionalized by a and U giving a corresponding time t = Utd/a.
The non-dimensional quantities are implied throughout unless otherwise noted. The
symmetry of the problem is taken advantage of so that Γs represents the circulation
in the right half of the sheet as measured from the centre. Then (3.4) must be
supplemented with the integral over the left side of the sheet located at z=−z. Since
the sheet strength is infinite at the tip, the velocities are very large there and so the
rediscretization process is critical to maintaining appropriately spaced segment points.
Here we use a forward Euler time-integration scheme so that the rediscretization
procedure occurs after each advection of the sheet.
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FIGURE 3. (a) Roll-up at t= 1 compared with previous point vortex methods. The results
of Krasny (1987) were recreated with the vortex blob parameter δ = 0.05, N = 200 and
1t = 0.01. Moore (1974) used N = 60, 1t = 2 × 10−3 and core dumping. The current
paper used the same parameters as Moore, but no core dumping, and omitted both the
self-induced velocity and curvature. (b) Roll-up at t= 0.01 compared with Pullin (1978);
the solid square is the isolated vortex at the spiral core. The current method used s-spacing
with N= 1000, 1t= 10−5 and includes curvature, but no self-induced velocity. Four more
complete turns were computed, but were omitted for clarity.

4.1. Validation with previous results
First, we attempt to produce results consistent with the point vortex methods of Moore
(1974) and Krasny (1987). This is done by omitting the self-induced velocity and
neglecting curvature by removing the rediscretization process altogether. Figure 3(a)
shows the comparison. We used the same numerical parameters as Moore, but with
no core dumping into an isolated point tip vortex and as a result the points in the
centre of the spiral began to move chaotically and lost the representation of the sheet.
However, since these points represent segment endpoints and not point vortices, the
calculations remained bounded and we more-or-less reproduced Moore’s data in the
outer turns with the centroid of the chaotic points matching the centre of the actual
spiral. We could reduce the chaotic motion by using a larger number of points and/or
a smaller time step, but the purpose of this comparison was to show consistency by
omitting the aforementioned effects and this point has essentially been made.

Next, we compare with the calculations of Pullin (1978) for the self-similar roll-up
of a semi-infinite vortex sheet; see figure 3(b). While he used straight segments and
thus did not explicitly account for curvature, the resolution is very fine and represents
an acceptable comparison for the effects of sheet curvature. Also, Pullin ‘ignor[ed]
the Cauchy principal value singularity for j = k’, stating that this is equivalent to
assuming a linear variation of Γ over that segment, or equivalently a constant γ , and
gives a zero contribution. Therefore, the self-induced velocity is treated as in vortex
panel methods and is not explicitly taken into account. Hence, for this simulation
we reintroduce the effect of curvature, but still omit our model of the self-induced
velocity. Now, to be consistent with the similarity solution we must compare at an
early stage of the roll-up of the finite vortex sheet. The time t = 0.01 is chosen so
that the diameter of the spiral region is approximately 1.5 % of the initial sheet length
of 2a. The scaling from the similarity space ω = ξ + iη to physical space z= x+ iy
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FIGURE 4. (a–f ) The vortex sheet roll-up for 0.056 t 6 2 as indicated, including the self-
induced velocity and curvature effects. The parameters are N = 100 with φ-spacing, 1t=
10−5 for 0 6 t 6 0.05 and 1t= 10−3 for 0.05< t 6 2. The segment endpoints are plotted
as the left side of the sheet and the spline interpolations as the right side. (g) Log–log
plot of the spiral radius growth. Also shown are the similarity relation r∝ t2/3 of Kaden
(1931) and the recreated results of Krasny (1987) with the vortex blob method.

is z= (a′t)2/3ω and a′ was chosen so that the zero-slope tangent at ξ =−2.2 in Pullin’s
figure 1 was matched to our sheet at x/a ≈ 0.85, which is approximately the same
number of spiral diameters away.

Figure 3(b) shows the comparison with the s-spacing, which captures the tight outer
turns of the spiral and agrees quite well with Pullin’s data who also used more-or-less
equal arclength spacing. The explicit effect of curvature is seen to be greatest in the
outermost turn which is farthest away from other turns. A large value of N = 1000
was chosen so that several turns of the (nearly self-similar) spiral are captured at the
small time t= 0.01.

4.2. Roll-up with the self-induced velocity
We have shown that our method can reproduce the results of previous studies by
identifying and omitting the particular effects not accounted for in those calculations.
Furthermore, we have given a convincing argument and derivation for an appropriate
treatment of the self-induced velocity. We now present roll-up calculations that include
our model for this effect.

Figure 4(a–f ) shows the roll-up with φ-spacing at several times in the range
0.05 6 t 6 2. Also, figure 4(g) plots the spiral radius growth and comparison with
the similarity solution of Kaden (1931) shows that the spiral still grows according
to the r ∝ t2/3 similarity law. The effects of curvature and the self-induced velocity
on the sheet shape result in wider turns in the spiral region as compared to Krasny
(1987). This is due to the stretching of the sheet by these two effects. As an analogy
consider a torsional spring that is tightly wound. The potential energy stored in the
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FIGURE 5. (Colour online) (a) Roll-up at t = 0.25 with the s-spacing and N = 600.
The solid dots represent locations defining different regions of the sheet as indicated; see
text. (b) Zoomed-in view of the inner spiral region of (a). There are 20 total turns with
approximately 3 in the outer spiral and 17 in the inner spiral and the total arclength is
8 times the initial sheet length.

spring will expand the coil back to equilibrium with wider turns when the externally
applied torque on the spring is released and likewise for the vortex sheet since it
cannot support a force or torque.

The φ-spacing always redistributes 30 % of the points in approximately the last 10 %
of the sheet length near the tip. We found that the iterative rediscretization with this
spacing prevented the formation of the closely spaced turns of the inner spiral by
essentially unwinding them toward the very centre. Increasing the number of segments
N puts so many points near the centre that numerical errors quickly accumulated.
Hence, for further discussion we employ the s-spacing, for which an example of the
sheet shape at t= 0.25 is shown in figure 5(a). The outermost turn matches with the
φ-spacing (not shown), however the s-spacing shows closer turns further within the
spiral which become very tight, but these do not extend to the centre of the spiral;
the reason for this will be explained later. In this plot we also define different regions
of the sheet where the unrolled ‘sheet remainder’ extends from the centre of the sheet
to the most extraneous x-coordinate (i.e. infinite slope), the ‘outer spiral’ corresponds
to the turns that occur between this point and the ‘inner spiral’ that begins where the
outer spiral is tangent to the very tightly wound turns; see figure 5(b).

The initial vortex sheet strength is singular at the tip of the sheet, which results
in an infinite velocity there that begins the roll-up process. While formulating the
problem in terms of Γ preserves the total circulation, the infinite velocity cannot
be captured numerically. Figure 6(a,b) shows γ (s) along the sheet at the times t =
0.01 and t = 0.5, respectively. We see that very early on γ is ‘split’ with a small
portion of the circulation (here 7 %) going very near the sheet tip, which essentially
corresponds to the isolated vortex that other researchers have used to represent the
innermost portion of the spiral (e.g. Moore 1974, Fink & Soh 1978, Pullin 1978).
The rest of the circulation is spread along the sheet remainder and the outer spiral.
The inner spiral has essentially no strength density, but as roll-up proceeds the total
arclength so(t) is significantly increased in this region where the sheet is stretched by
the tip. The inset plots show that the portion of γ in the sheet tip is spread out over
more of the innermost turn as t increases thus decreasing its maximum value as well
as its gradient; note so(0.01)= 1.34a and so(0.5)= 12.58a.
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FIGURE 6. (Colour online) (a,b) The vortex sheet strength γ (s) along the sheet coordinate
normalized by the total arclength so for (a) t=0.01, so=1.34a and (b) t=0.5, so=12.58a.
The line/colour styles correspond to the regions of the sheet defined in figure 5(a). The
insets show γ very near the tip of the sheet. (c,d) The magnitude of the self-induced
velocity qs normalized by the sheet-averaged total velocity magnitude and the sheet
curvature κ for (c) t= 0.01, so = 1.34a and (d) t= 0.5, so = 12.58a.

Figure 6(c,d) plots the magnitude of the self-induced velocity, say qs, as well as the
sheet curvature κ for the same times. To give perspective to qs, the average over the
sheet of the magnitude of the total induced velocity is used as a normalization. The
oscillations in qs are due to the fact that, at periodic positions along the spiral, qs is
in-and-out of phase with the overall downward velocity of the sheet. At t= 0.01 the
sheet remainder is nearly flat away from the spiral and is moving normal to itself so
that both qs and κ are zero. However, both of these quantities become non-negligible
in the outer and inner spiral regions (note κ has been scaled down for the plots) and
both increase as the spiral centre is approached. Hence, the self-induced velocity is
also important in areas of high curvature despite the near-zero strength density of the
inner spiral. At the sheet tip, qs sharply increases and is the dominant velocity there.
Therefore, the self-induced velocity is critical in initiating the roll-up process and an
artificial tip displacement to begin the process (e.g. Sugioka & Widnall 1985) is not
required. Again appealing to analogy, the sheet tip is like the locomotive car of a train
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that pulls along its ‘passenger sheet’ while also stretching it since the tip moves with
larger velocity and ∂γ /∂s is very steep; recall (2.11).

The curvature shows a rapid, but smooth increase from the sheet remainder
region into the outer spiral. In the inner spiral region κ shows a slower increase
corresponding to the nearly circular turns of gradually smaller radii; this is more
obvious at t= 0.5 where the inner spiral has about 20 turns. It is generally accepted
that vortex sheets develop curvature singularities, as was shown by Moore (1979)
(among many others, subsequently) for the Kelvin–Helmholtz instability of an infinite
vortex sheet. For the finite vortex sheet, the infinite velocity at the sheet tip results
in an infinite number of turns whose radii/curvature approach zero/infinity at the
very centre of the spiral. Since, as mentioned above, the numerical method cannot
capture this in its entirety, then the void in the very inner spiral (recall figure 5a) is
a result of only being able to resolve a finite portion of the infinite velocity of our
‘locomotive’ at t= 0+.

4.3. An impulse-conserving tip vortex
As mentioned previously, an infinite vortex sheet strength presents some numerical
difficulties. Inviscid theory predicts that the infinite velocity at the free end of the
sheet will immediately roll-up into a vanishingly small spiral containing an infinite
number of turns. So long as N <∞ and/or 1t > 0 then there is some distribution
of sheet strength (i.e. vorticity) within the core that we cannot resolve. Although
circulation is conserved via the Lagrangian formulation dΓ = γ ds, we will not
numerically conserve (vertical) impulse, dI = xγ , since there is a distribution of this
quantity within the core as well. The method of core dumping, as employed by Moore
(1974) for point vortices, conserves impulse by locating the new amalgamated vortex
at the circulation centroid, but this occurs as dictated by a user-defined criterion.
Pullin (1978) approximated the core with an isolated point tip vortex and averaged
the governing equation over this region. The assumptions made in the averaging are
tantamount to equating the core impulse with that of the tip vortex and to defining the
vortex velocity to be the average velocity within the core. Even when we attempted
to maintain the tip as part of a continuous sheet, the result was a large portion of
circulation at the very tip of the sheet that drives the roll-up (recall figure 6). This
leaves a void in the centre of the spiral.

We now attempt to resolve more turns further within the spiral by adopting a similar
approach as Pullin and let the (N + 1) point be an isolated vortex with position
zv = zN+1 and circulation Γv = ΓN+1 − ΓN . The induced velocity field now contains
an explicit tip vortex term:

u− iv =
1

2πi

[∫ ΓN

0

dΓ ′

z− z′
+

Γv

z− zv
+

∫ ΓN+1

ΓN

dΓ ′

z− z′

]
. (4.1)

The last integral might as well be termed the self-induced velocity of the core qv and
it is interesting to note that:

qv =
Γv

2πi

[
1
Γv

∫ ΓN+1

ΓN

dΓ ′

zv − z′

]
≈ i

Γv

2πrc
, (4.2)

where r−1
c = (z− zv)−1, with the bar being an average here, is the mean inverse radius

from zv to a point in the core. However, we do not attempt to calculate this here.
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FIGURE 7. (a) The fraction f of circulation contained within the rolled-up portion of the
sheet (vortex plus outer turns). The dashed line is Kaden’s similarity law. Here N = 600
and the vortex acquired circulation from the sheet until t = tv = 0.1 (see (4.3)) at which
time Γv/Γs= 0.33. (b) The interpolated sheet shape at t= 0.5 when f = 0.71 so that 38 %
of the circulation resides in the resolved turns. Inset: zoomed-in view of spiral region; the
square symbol is the location of the vortex.

The impulse can be written as contributions from the sheet and tip vortex: I = Is+

Iv where Is =
∫ ΓN

0 x dΓ and Iv = xvΓv. We assume that after each advection of the
sheet the points are in the correct positions, but the vortex will have acquired some
circulation 1Γv such that the impulse is conserved with the initial value Io. Therefore:

1Γv =
|Io − Is|

xv
− Γv, (4.3)

and this amount is put into the tip vortex by removing a section of the sheet
near the tip with the same circulation. This is accomplished using the interpolants
approximating the sheet shape and circulation as functions along the arclength. As
expected, this process very quickly accumulates circulation into the tip vortex; for
Pullin’s similarity solution, approximately 50 % of the circulation within the rolled-up
portion of the sheet is in the vortex whereas the other 50 % is in the first four outer
turns. While this process conserves impulse and allows the sheet to form initial outer
turns around the growing vortex, it does not conserve energy and in fact consumes
some amount of the initial energy. This represents, in a purely qualitative manner
and not physically, the diffusion of the tightly wound inner spiral into a viscous core.
Therefore, the amalgamation process is only allowed to occur for some small initial
time 0< tv� 1 and once this has concluded the energy remains fairly constant.

The rediscretization and interpolation only apply to the n= 1 . . .N points. Also, the
sheet strength at the point zN is decreased as circulation is consumed by the tip vortex.
Therefore, the rediscretization process, while still important, can be implemented after
the last stage of a fourth-order Runge–Kutta integration scheme. Because of the
singularity, the amount of circulation acquired in the vortex will depend on N and tv.
We do not perform a detailed study of these parameters here, but we find that they
mainly influence the number of turns that appear in the spiral at a later time.

Following Moore (1974) f is the fraction of circulation in the rolled-up region
(vortex plus outer turns) and is plotted in figure 7(a) for the case with N = 600
and tv = 0.1 at which time f = 0.47 and Γv/Γs = 0.33 so 14 % of the circulation is
contained in the outer turns. The sheet shape at t= 0.5 obtained from this procedure
is shown in figure 7(b). At this time f = 0.71 so that now approximately 38 % of
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the circulation resides in the outer turns. The results are remarkably similar to those
of Moore (1974) and Krasny (1986a). While there is still a small void in the centre,
this can be made smaller by decreasing tv. Many more turns can be captured at a
given time, but at the expense of smaller time steps to accurately evolve the sheet
and avoid the accumulation of errors.

5. Infinite vortex sheet
In this section we investigate the Kelvin–Helmholtz instability arising from a

periodically disturbed infinite vortex sheet. Unlike the finite vortex sheet, the sheet
strength and velocities are initially bounded so that the rediscretzation process is less
crucial than in § 4. Therefore, we use a fourth-order Runge–Kutta scheme throughout
and the rediscretization is performed after the last stage. For reasons discussed below,
the sheet is considered as two halves separated by the midpoint where the singularities
form. In this way, the rediscretization is applied to each half individually so that no
interpolation occurs through the singularity point.

If λ is the wavelength of the disturbance then the infinite integration bounds in (1.1)
can be reduced to:

u− iv =
1

2λi

∫ Γs

0
cot
[π
λ
(z− z′)

]
dΓ ′, (5.1)

where it is implied that z = z(Γ ) and Γs is the total circulation in one period. The
initial condition of the sheet is characterized by a disturbance amplitude ε. The
disturbance types that have been most studied are perturbations to the initial sheet
shape and to the initial circulation/strength distribution. It is well known that the
perturbed sheets develop singularities in a finite critical time tc at which the solution
to (5.1) ceases to be analytic. Moore (1979) used an asymptotic analysis of the
Fourier coefficients of a transverse sinusoidal disturbance of the sheet shape to
derive an estimate for the dependence of tc on ε. The singularity is an infinite jump
discontinuity of the sheet curvature at the point around which roll-up would occur.

Krasny (1986b) adapted Moore’s relation of tc(ε) for the initial condition of a
purely growing mode and used the point vortex method to investigate the singularity
formation. Meiron, Baker & Orszag (1982) considered a sinusoidal perturbation to
the circulation distribution of an initially flat sheet and also adapted Moore’s analysis,
which for larger amplitudes slightly underpredicts their critical time determined from
analysis of a temporal Taylor series. Higdon & Pozrikidis (1985) studied the same
problem using a discrete method where the sheet is comprised of interpolated circular
arcsegments and the sheet strength is a piecewise trigonometric function; they also
implemented a point-insertion procedure. All groups agree on the curvature singularity,
but there is some disagreement about other aspects of the singularity.

Moore (1979) notes that at the critical time the sheet is only slightly deformed and
does not exhibit features of roll-up. The sheet profiles computed by Meiron et al.
(1982) agree with this and they also show that at tc the sheet strength exhibits a
finite cusp. Krasny (1986b) also came to the conclusion of a finite cusp at tc. He also
mentions that D. I. Pullin has conjectured that the vortex sheet rolls up from both
sides of the singularity and forms a double-branched spiral with an infinite number
of turns and the size of which vanishes as t → t+c . This would suggest that γ is
also infinite for t > tc, as claimed by Higdon & Pozrikidis (1985) who numerically
computed initial stages of roll-up from which they inferred that γ is also infinite at
t= tc.
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Here, we attempt to resolve this discrepancy concerning the vortex sheet strength
for t > tc and the rolling-up of the sheet. We analyse the same problem as Krasny
(1986b) for which the initial condition is:

z(Γ , 0)= Γ + ε(1− i) sin 2πΓ , (5.2)

with constant sheet strength γ = dΓ /ds and ε = 0.01; for simplicity let λ = 1 = Γs.
Krasny found two types of irregular point vortex motions: one occurring at small times
due to spurious growth of round-off errors and another occurring beyond the critical
time where the accuracy of the time integration suffers. Considering the former, he
proposed a filtering of the point positions to prevent unphysical growth and obtained
regular motion for t < tc. For the current method the first type of error in the sheet
position can be attenuated by the interpolation in the rediscretization process. Next,
we first describe the determination of the critical time.

5.1. The critical time tc

By definition the sheet is analytic up to the critical time so that the spline
interpolation, which has continuous and bounded curvature, should be able to
appropriately approximate the true sheet shape prior to tc. Also, by treating each half
of the sheet separately the jump in curvature at the midpoint can be captured. We
found that rediscretizing the points to equal arclength segments results in insufficient
resolution upon approaching the critical time, as was similarly noted by Higdon
& Pozrikidis (1985). However, the behaviour was interesting: the circulation as a
function of arclength developed a finite jump discontinuity at the singularity point
indicating the amount of circulation that would be rolled-up into the double-branched
spiral. Nevertheless, the rediscretization was instead performed to segments of equal
circulation. This is similar to a point vortex method, but is distinctly different because
the points are connected via the rediscretization and the total arclength of the sheet
increases as it evolves.

Higdon & Pozrikidis (1985) used the inverse of the maximum curvature, κmax(t),
tending toward zero to estimate the critical time. Determining tc in this way, while
not necessarily inaccurate, is somewhat arbitrary as we find that the computation of
this quantity monotonically increases, which prevents an objective determination of tc.
Krasny (1986b) used a criterion based on the time at which a straight line interpolant
between the point vortices immediately adjacent to the midpoint obtained a vertical
slope. Several separate computations with different values of N were performed in
order to extrapolate to N → ∞. We adopt Krasny’s method of extrapolation, but
using a different quantity. Namely, if γ (s, t) forms a cusp at s = sc and t = tc, then
∂γ /∂s ought to be monotonic for |s − sc| > 0. Therefore, tN

γ is defined as the time
when ∂γ /∂s first becomes monotonic over the half-sheet; the calculation excludes the
midpoint.

We computed solutions with N ranging from 150 to 400 and time step 1t= 0.001;
below N= 150 there was insufficient spatial resolution to compute ∂γ /∂s. Prior to the
critical time the mean difference in the interpolated sheet shapes, |1z|, for increments
of 1N = 100 went from |1z/ε| ∼ O(10−3) to ∼ O(10−4). It was also verified that
the results were converged with time step upon comparison with 1t = 0.0001.
Following Krasny, a polynomial in N−1 is fit to the data for tN

γ , but since we have
N−1
∼O(10−3) we only take a first-order fit: tN

γ ≈ t∞γ + c1N−1. Figure 8(a) shows the
data points for ε = 0.01 and the fitted line, which gives an estimated critical time of
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FIGURE 8. (a) The time tN
γ at which dγ /ds becomes monotonic on each side of the

midpoint indicating a cusp in γ (s) for ε=0.01. The line is a first-order linear least squares
fit to the data. (b) The maximum curvature κmax and its inverse as functions of time for a
computation with N = 400. The bold vertical line is the estimated critical time tc = 0.404
as predicted in § 5.1. (c) tc versus ε (left axis). Also shown are the results of Krasny
(1986b) and the asymptotic relation he derived from the method of Moore (1979); see
(5.3). The vortex sheet strength at the critical time γc (right axis).

tc = 0.404. This is larger than that predicted by Krasny (tc = 0.375), but closer to
the value of 0.451 he obtained through the asymptotic method of Moore (1979).
As an a posteriori consistency check on the value of tc predicted here, figure 8(b)
plots κmax and its inverse (minimum radius of curvature) with the bold vertical line
marking tc= 0.404 and we see that tc occurs when the computed curvature is rapidly
increasing as expected.

The above procedure was applied to the same range of amplitudes investigated by
Krasny, namely 0.000625 6 ε 6 0.08, and the results are plotted figure 8(c). Also
shown is the asymptotic relation for ε� 1, which is given by:

πtc + 1+ log πtc = log
1

2πε
. (5.3)

For small amplitudes the tc predicted here are seen to align more with the asymptotic
relation, but for larger amplitudes the critical time becomes shorter. We interpret these
to be effects of representing the sheet as a continuous object. Namely, for small ε
the disturbance is dampened by nonlinear stretching of the sheet, whereas for larger ε
nonlinear excitation amplifies the disturbance (Moore 1979). Also plotted in figure 8(c)
is the computed vortex sheet strength at the singularity γc = γ (sc, tc), which supports
the intuitive trend that larger disturbance amplitudes transport more vorticity toward
the midpoint resulting in earlier critical times and roll-up.

5.2. The sheet strength γ and initial roll-up
Here we continue investigation of the ε = 0.01 case. Although the spline does not
exactly capture the infinite jump discontinuity in the curvature at the midpoint, the
effect on the sheet shape elsewhere is almost imperceptible. We now examine the
computed solutions past the critical time. The aim is not to obtain the accurate
structure of the roll-up since, as in § 4 with the finite vortex sheet, there is little hope
of solving (5.1) below some length scale corresponding to the spiral with infinite
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FIGURE 9. (a–c) The solution with N = 400 at the estimated critical time tc = 0.404.
(a) Interpolated sheet position, (b) vortex sheet strength γ versus arclength s, (c) curvature
κ versus s. (d–f ) The solution shortly after tc at times t = 0.41 and 0.414. (d) Sheet
positions, (e) γ versus s, ( f ) close-up view of (d) and (g) close-up view of (e).

turns. Compared to the finite vortex sheet, two additional difficulties exist here: the
singularity is not initially present and it appears in the middle of the sheet rather
than at an endpoint. Hence, attempting to account for the inner spiral with a point
vortex as was done in § 4.3 is considerably more involved and we do not pursue this
option here. Rather, we wish to gain insight on the behaviour of the vortex sheet
strength as the sheet begins the initial roll-up process.

Figure 9(a–c) respectively shows the sheet shape as a function of the horizontal
position x, the sheet strength and curvature as functions of arclength s, each at the
critical time tc = 0.404 for the case with N = 400. As expected, the slope of the
sheet is finite and does not display visual signs of roll-up, the sheet strength clearly
forms a cusp and the curvature jump, while computed as finite, is rapidly increasing;
recall figure 8(b). Figure 9(d,e) shows the sheet shape and vortex sheet strength at
two times shortly after tc at t = 0.41 and 0.414. The maximum curvature at these
times (not shown) is κmax = 73 and 2193, clearly indicating the singularity. The cusp
in γ has also sharpened and increased considerably. This is a consequence of (2.11),
which expresses the vorticity transport. Assuming a separation of variables solution
for γ (s, t) and that us is locally uniform in s we obtain:

γ (s, t)
γc
= exp

{
t− tc

τ
−

∣∣∣∣s− sc

usτ

∣∣∣∣} (5.4)

for t > tc and |s − sc| � 1, and where τ−1 is the separation constant. Upon letting
τ =1t we see that the delay in irregular point motion observed by Krasny (1986b)
with larger time step is likely caused by a dampening of the vorticity transport toward

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

66
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.663


Vortex sheet roll-up revisited 319

the midpoint sc. As the disturbance amplitude grows in time to t ≈ tc, the rotating
motion of the sheet portends roll-up around sc meaning that us�1. Hence, when t= tc
the form in (5.4) provides a fair approximation of the cusp in γ . We can then expect
that the continual transport of vorticity toward sc will cause an exponential growth, or
at any rate a rapid growth, in γ (sc, t) for tc > t. This could explain the conclusion of
Higdon & Pozrikidis (1985) that the sheet strength γ is infinite at t= tc in addition to
the curvature as well as why they over predicted the critical time reported by Meiron
et al. (1982).

The close-up views of the cusp in γ for t > tc plotted in figure 9(g) provide
numerical evidence for this sudden large temporal growth of sheet strength at sc.
Moreover, the close-up views of the corresponding sheet shapes in figure 9( f ) show
the concomitant initiation of the roll-up process. Previous studies have provided
convincing evidence that the cusp in γ is finite at the critical time. The present work
agrees with this conclusion and also adds the further result from (5.4) that the cusp
value grows exponentially beyond the critical time. The double-branched spiral with
γ being infinite for t> tc is obtained from (5.4) by τ→ 0, which would correspond
to an instantaneous orbital period of a particle at the point sc. Either way, the large
growth of γ for t> tc is clearly the driving force behind the roll-up, which will cause
the rapid formation of turns in the spiral. Unfortunately, shortly after the critical time
the current computation succumbs to errors associated with the attempt, but inevitable
inability of the spline to represent the infinite curvature and number of turns that
would develop within the spiral core.

6. Concluding remarks
This study re-examined the problem of two-dimensional inviscid vortex sheet roll-

up via a method that maintains the sheet as a segmented, but connected object. In
this way, the effect of sheet curvature is explicitly included. Additionally, a model for
the velocity that a sheet segment induces upon itself is derived based on the physical
requirement that this velocity remain finite. This is achieved by a particular form of
the local vortex sheet strength that allows direct integration through the singularity
of the Birkhoff–Rott equation and results in a uniform self-induced velocity normal
to the segment. It was shown that the self-induced velocity method of Fink & Soh
(1978) corresponds to a special case of the present one in which the sheet strength is
approximated by the leading-order term of its Taylor series expansion. The significant
advantage of the current method is the freedom to rediscretize the segment endpoints
to any desired spacing. The self-induced velocity corresponds to the local contribution
of the Cauchy principle value integral and ensures that the coincident endpoints of two
sheet segments remain connected. As a result, nonlinear stretching of the sheet is also
explicitly taken into account and represents the transport of vorticity within the sheet.

The method was applied to two classic problems. The first was a finite vortex sheet
with an elliptical circulation distribution. It was found that the self-induced velocity is
critical in initiating the roll-up process and is significant in regions where the curvature
and/or the gradient of the sheet strength are large. These effects stretch the sheet
such that the turns within the rolled-up spiral are slightly widened by the outwardly
radial self-induced velocity. When the continuous representation of the sheet explicitly
includes the tip, the infinite strength density there naturally concentrates a portion of
circulation at the tip and around which many tightly wound turns appear. However,
there is still a ‘void’ in the middle of the spiral where the infinite number of turns
within the inner core cannot be resolved. In an attempt to capture more turns and
reduce the size of the void, the tip of the sheet was treated as an isolated point
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vortex akin to the similarity calculations of Pullin (1978). The vortex accumulates
circulation based on the conservation of impulse for a small finite amount of time.
This corresponds to the circulation contained within the asymptotic inviscid spiral that
immediately forms, but cannot be fully resolved.

The second problem was the Kelvin–Helmholtz instability of a periodically
perturbed infinite vortex sheet. Here, the ability to rediscretize the segment endpoints
of the sheet to equal spacing of circulation was used and found to be important for the
accurate motion of the sheet. The specific initial condition studied by Krasny (1986b)
was investigated. However, the critical time tc of the sheet was instead predicted
based on the formation of a cusp in the vortex sheet strength γ at the midpoint
where roll-up will occur. For small disturbance amplitudes, ε, the predicted critical
times were truer to the asymptotic relation for ε � 1 than the point vortex method,
whereas for larger ε the critical times were lower. These features were interpreted
as due to the sheet representation such that the nonlinear stretching/excitation of the
initial disturbance is dampened/amplified (Moore 1979) for small/larger amplitudes.
The cusp value of the vortex sheet strength at tc was also computed and showed that
the larger the initial amplitude, the more vorticity that is transported to location of
the singularity formation, which results in smaller critical times. Numerical evidence
that the cusp value in γ is finite complements that of previous claims. However,
a simplifying assumption applied to the vorticity transport equation results in the
prediction that for t > tc the cusp value increases rapidly in time. This was also
numerically supported by the computations, which showed a large local increase in
γ that leads to the initial stage of roll-up. Unfortunately, calculation of the roll-up
for large times past tc was not possible owing to presence of the singularity forming
in the middle of the sheet as opposed to the tip.

The effects of curvature, the self-induced velocity and their role in representing
vorticity transport are important features of the method presented in this paper. There
is anecdotal evidence that the stability of the calculations for evolving the governing
singular integral equation is improved, although this has not been rigorously proved.
Conventional point vortex methods do not include these effects explicitly and are
notoriously susceptible to irregular motion. However, the simple implementation
of these methods makes them attractive. In particular, the vortex blob method can
yield an accurate approximation of the sheet evolution while providing stability and
capturing small-scale features where the current method has failed to do so. However,
considering the blob method as a regularizing kernel it could be straightforwardly
implemented into our method. While this option was not presently explored, it makes
an ideal topic for future work.
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