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In this article, we show how tests of nonlinear serial dependence can be applied to
high-frequency time series data that exhibit high volatility, strong mean reversion, and
leptokurtotis. Portmanteau correlation, bicorrelation, and tricorrelation tests are used to
detect nonlinear serial dependence in the data. Trimming is used to control for the
presence of outliers in the data. The data that are employed are 161,786 half-hourly spot
electricity price observations recorded over nearly a decade in the wholesale electricity
market in New South Wales, Australia. Strong evidence of nonlinear serial dependence is
found and its implications for time series modeling are discussed.
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1. INTRODUCTION

In this article, we show how tests of nonlinear serial dependence can be applied
to high-frequency time series data that exhibit high volatility, strong mean rever-
sion, and leptokurtotis. These are features typically found in financial, currency
exchange, and commodity market data. Portmanteau correlation, bicorrelation,
and tricorrelation tests are applied to detect nonlinear serial dependence. In ad-
dition to using these tests to discover the presence and extent of nonlinear serial
dependence, we also use them to examine whether “stochastic volatility” models
provide adequate characterizations of the data.

Large positive and negative deviations from the mean are often deemed to
be a principal source of deviations from the Gaussian ideal in finance and en-
ergy economics. The empirical distributions of most finance and energy time
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series data when transformed to continuous compound rates of return have much
fatter tails than the normal (Gaussian) distribution—an empirical feature called
“leptokurtosis.” A key consequence of this empirical feature is that the returns
data have large fourth-order cumulants. For example, many NYSE stock rates of
return have an excess kurtosis value larger than one [Hinich and Patterson (1989,
1995, 2005)]. Foreign exchange rates are very leptokurtic [Brooks and Hinich
(1998)].

From a statistical perspective, the principal effect of leptokurtosis is to slow
down significantly the rate of convergence of finite sample tests whose asymptotic
distributions are based upon asymptotic normality. Because economic time series
have lagged time dependence in the mean and variance, standard bootstrapping is
not appropriate to determine the variance of finite sample statistics based on some
averaging of the data.

One classical approach designed to improve the rate of convergence of test
statistics so that we can have greater confidence in the use of standard asymptotic
theory for estimation and inference is to trim back very high positive and negative
rates of return in the time series data. This operation improves the finite sample
performance of the test statistics. Trimming also allows us to discover whether an
observed nonlinear generating mechanism is a deep structure phenomenon. For
our purposes, the concept of “deep structure” can be viewed as arising if observed
nonlinear serial dependence continues to arise after the effects of outliers have
been removed. We conduct several trimming experiments to examine the impacts
on nonlinear serial dependence test results.

The data we employ in this study are half-hourly wholesale spot electric-
ity prices for the state of New South Wales, Australia, over the period from
7 December 1998 to 29 February 2008, producing a sample size of 161,786
observations.! There are two key stylized facts concerning spot price dynamics
in this market. First, there is high volatility (i.e., a lot of price spikes), and sec-
ond, there is strong mean-reverting behavior (volatility clustering followed by
sustained periods of normality). The numerous spot price spikes act as outliers
that produce significant deviations from the Gaussian distribution, producing the
predominant empirical leptokurtotic feature of most high-frequency asset price
data.

In Foster, Hinich, and Wild (2008), the extent and stability of a weekly cycle
in this time series data were investigated. A major finding was that the mean
properties of the spot price data had a weak weekly and daily periodicity. The
most important periodicities were found to contain significant but imperfect sig-
nal coherence, suggesting that some wobble existed in the waveforms. This was
determined by applying the randomly modulated periodicity (RMP) model intro-
duced in Hinich (2000) and Hinich and Wild (2001) to the data. They suggested
that the generating mechanism for an RMP process is likely to be nonlinear.
Thus, a research question was posed: is the mechanism responsible for generating
weekly data nonlinear, and if so, is it episodic in character? The rationale for
episodic nonlinearity is that this type of behavior would seem to be required to

https://doi.org/10.1017/51365100509090543 Published online by Cambridge University Press


https://doi.org/10.1017/S1365100509090543

90 PHILLIP WILD ET AL.

generate the aforementioned stylized fact of strong mean reversion in spot elec-
tricity prices.

The finding that nonlinearity is present can rule out many classes of linear
models as candidates for modeling spot price dynamics. This leads to the question
of how spot price dynamics can be modeled in a way that can capture observed
nonlinearity.

In the energy and finance literature, the notion of nonlinearity has been most
commonly associated with multiplicative nonlinearity or nonlinearity in variance.
In principle, such models can be defined as either observation-driven or parameter-
driven. The main class of parametric models associated with the first category is
autoregressive conditional heteroskedasticity (ARCH/GARCH) models [Engle
(1982), Bollerslev (1986), and Taylor (1986)].2 In these models, the conditional
variance is postulated to depend on the variability of recent observations. The
main class of parametric models that are associated with the second category
is stochastic volatility models. In these models, volatility is postulated to be
a function of some unobserved or latent stochastic process [Shephard (1996,
pp. 6-7)].°

A key aspect of both ARCH/GARCH and stochastic volatility modeling frame-
works is that the time series is assumed to be a zero-mean process. This implies
that the mean of the source time series has to be removed, typically by some
linear time series model. The residuals from this model then constitute the zero-
mean data series that underpins theoretical discussion of volatility models. A
potential problem emerges when the mean of the process is nonlinear. In this
case, erroneous conclusions of nonlinearity in variance might emerge when the
prime source of serial dependence is nonlinear structure in residuals that could
not successfully be extracted by conventional linear-based time series models.
This nonlinearity-in-mean structure would end up in the residuals of the fitted
model and might subsequently trip ARCH tests even though the serial dependence
structure was associated with the mean properties of the data-generating process.*
Thus, volatility modeling might lead to situations involving the acceptance of
linear specifications (with conditionally heteroscedastic disturbances) that actu-
ally constitute a misspecification of the actual process in statistical terms. Thus,
it seems essential to discover as much as possible about the nature of any non-
linearity present in the time series data before techniques such as GARCH are
applied.

The article is organized as follows. In Section 2 we outline the portmanteau
correlation, bicorrelation, and tricorrelation tests proposed in Hinich (1996). These
tests are used to test for second-order (linear) and third- and fourth-order (non-
linear) serial dependence, respectively. In this section, we also outline the test
for the presence of pure ARCH and GARCH structures in the weekly spot price
data using the well-known Engle (1982) ARCH LM test. In Section 3, the ratio-
nale for and practical aspects of the trimming procedure are outlined. In Section
4, the empirical results are presented, and concluding comments are offered in
Section 5.
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2. THE TESTING METHODOLOGY

In this section, it is explained how the testing methodology proposed in Hinich
and Patterson (1995, 2005) is applied in the context of spot price dynamics.
The objective is to detect epochs of transient serial dependence in a discrete-time
pure white noise process.’ This methodology involves computing the portmanteau
correlation, bicorrelation, and tricorrelation test statistics (denoted as C, H, and
H4 statistics, respectively) for each sample frame to detect linear and nonlinear
serial dependence, respectively.

Before applying the various tests outlined in this article, we convert the source
spot price data series to continuous compounded returns by applying the relation-
ship

x(n)

r(t) = In [x(t -

] « 100, 0

where r(t) is the continuous compounded return for time period #; and x(¢) is the
source spot price time series data.
For each sample frame, the data are standardized using the relationship

Z(t) = r(t)——m, )

Sy

for each t = 1,2,...,n, where m, and s, are the sample mean and standard
deviation of the sample frame and r(¢) are the returns data composing a sample
frame of n observations. As such, the returns data in each sample frame are
standardized on a frame-by-frame basis.

The null hypothesis for each sample frame is that the transformed data {Z(¢)}
are realizations of a stationary pure white noise process. Therefore, under the
null hypothesis, the correlations Czz(r) = E[Z(#)Z(t + r)] = 0, forallr # 0,
the bicorrelations Czzz(r, s) = E[Z(t)Z(t +r)Z(t + s)] = 0, forall r, s except
where r = 5 = 0, and the tricorrelations Czzz7(r, s, v) = E[Z(t)Z(t +r)Z(t +
$)Z(t +v)] = 0, forallr, s, and v except where r = s = v = 0. The alternative
hypothesis is that the process in the sample frame has some nonzero correlations,
bicorrelations, or tricorrelations in the set 0 < r < s < v < L, where L is the
number of lags associated with the length of the sample frame. That is, either
Czz(r) #0,Czz2(r,s) # 0,0r Czzzz(r,s,v) # 0 for at least one r value or
one pair of » and s values or one triple of r, s and v values, respectively.

The r sample correlation coefficient is defined as

sz(")=; Z()Z(t+r). 3)
Vn—r &=

The C statistic is designed to test for the existence of nonzero correlations
(i.e., second-order linear dependence) within a sample frame, and its distribution
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L
C =) [Czz(N’ =~ x}. @
r=1
The (r, s) sample bicorrelation coefficient is defined as

n—s

Czz7(r,s) = —— E ZWZ(t+r)Z(t+s), forO<r <s. Q)
n—s
t=1

The H statistic is designed to test for the existence of nonzero bicorrelations
(i.e., third-order nonlinear serial dependence) within a sample frame, and its
corresponding distribution is

L s—1

H= ZZ Gz(ra 5) ~ Xz(L_])/27 (6)

s=2 r=1

where G(r,s) = /n —sCzz7(r,s).
The (r, s, v) sample tricorrelation coefficient is defined as
Czz727(r, s, v)

n—v

= ! ZZ([)Z(t—i-r)Z(t—i—s)Z(t—i—v), forO<r <s <w. @)
t=1

n—uv
The H4 statistic is designed to test for the existence of nonzero tricorrelations
(i.e., fourth-order nonlinear serial dependence) within a sample frame, and its
corresponding distribution is

L v-1s—1

HA = Z Z Z T(r,5,0) ~ Xz(L—l)(L—Z)/3v )]

v=3 s=2 r=1

where T (r, s, V) = /1 — U X Czz77(r, s, V).

In principle, the tests can be applied to either the source returns data determined
from application of (2) or to the residuals from frame-based autoregressive AR(p)
fits of these data, where p is the number of lags that is selected in order to
remove significant C statistics at some prespecified threshold level. The latter
is a prewhitening operation and can be used to effectively remove second-order
(linear) serial dependence producing no significant C frames, thus allowing the
investigator to focus on whether spot price data contain predictable nonlinearities
after all linear dependence is removed. As such, the portmanteau bicorrelation and
tricorrelation tests are applied to the residuals of the fitted AR(p) model of each
sample frame. Any remaining serial dependence left in the residuals must be a
consequence of nonlinearity that is episodically present in the data—thus, only
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significant H and H4 statistics will lead to the rejection of the null hypothesis of a
pure white noise process.

The number of lags L is defined as L = n” with 0 < b < 0.5 for the correlation
and bicorrelation tests and 0 < b < 0.33 for the tricorrelation test, where b is a
parameter to be chosen by the user. Based on results of Monte Carlo simulations,
Hinich and Patterson (1995, 2005) recommended the use of » = 0.4 (in relation
to the bicorrelation test).® In this article, the data are split into a set of equal-length
nonoverlapped moving frames of 336 half-hour observations, corresponding to a
week’s duration.

The correlation, bicorrelation, and tricorrelation tests can also be used to exam-
ine whether GARCH or stochastic volatility models represent adequate charac-
terization of the data under investigation. We can define a GARCH(p, g) process
as

q p
e =gh, g ~NID(0,h7), b = oo+ Y _ous} , + Y Bihi_;.  (9)
k=1 j=1

We can similarly define a stochastic volatility model as

yi = erexp (h/2) , & ~ NIID(O, 1),
his1 = o +aihy + 1, 1, ~ NID(0, 87) (10)

[Shephard (1996, pp. 6-7)]. In both cases, the &, term acts to model volatility of
the observed process y, by multiplicatively changing the amplitude of the NIID
process &;. The binary transformation defined next removes the amplitude affects
of the processes modeled by the A, term in the above equations and yields a
Bernoulli process, given the assumption that the volatility models in (9) and (10)
are adequate characterizations of the data and provided that the distribution of &,
is symmetric.®

The binary data transformation, called “hard clipping” in the signal processing
literature, is defined as follows:

y(@) =1, if Z(t) >0

DOV 022 ez <0 11

If Z(¢) is generated by a pure ARCH, GARCH, or stochastic volatility process
whose innovations ¢, are symmetrically distributed with zero mean, then the hard
clipped time series {y(¢)} will be a stationary pure-noise Bernoulli sequence. In
essence, whereas Z(t) is a special parameterized martingale difference process,
the hard clipping defined in (11) converts it into a Bernoulli process [Lim et al.
(2005, pp. 269-70)], which has moments that are well behaved with respect to
asymptotic theory [Hinich (1996)]. Therefore if the null of pure noise is rejected
by the C, H, or H4 tests when applied to binary data determined from (11), this
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then signifies the presence of structure in the data that cannot be modeled by
ARCH, GARCH, or stochastic volatility models defined by (9) and (10).

The issue of parameter instability of GARCH models and the transient nature of
ARCH effects can be examined by utilizing the Engle LM test for autoregressive
and conditional heteroscedasticity (ARCH) in residuals of a linear model. This
was originally proposed in Engle (1982) and should have power against more
general GARCH alternatives [Bollerslev (1986)]. The test statistic is based on the
R? of the auxiliary regression

p
xP=Po+ Y Bixti +é&, 12)

i=1

where x? are typically squared residuals from a linear regression. Therefore,

equation (12) involves regressing the squared residuals on an intercept and its own
p lags. Under the null hypothesis of a linear generating mechanism for x,, (N R?)
from the regression outlined in (12) is asymptotically distributed as XI%, where N is
the number of sample observations and R? is the coefficient of multiple correlation
from the regression outlined in (12).

To implement the test procedures on a frame-by-frame basis, a frame is defined
as significant with respect to the C, H, H4, or ARCH LM test if the null of pure noise
or no ARCH structure is rejected by each of the respective tests for that particular
sample frame at some prespecified (false alarm) threshold. This threshold controls
the probability of a TYPE I error, that of falsely rejecting the null hypothesis
when it is in fact true.” For example, if we adopted a false alarm threshold of
0.90, this would signify that we would expect random chance to produce false
rejections of the null hypothesis of pure noise (or no ARCH structure) in 10 of
every 100 frames. In accordance with the above criteria, if we secured rejections
of the test statistics at rates (significantly) exceeding 10%, 5%, and 1% of the
total number of sample frames examined, then this would signify the presence
of statistical structure, thus pointing to the presence of (significant) second-,
third-, and fourth-order serial dependence or ARCH/GARCH structure in the
data.

3. THE TRIMMING PROCEDURE

Correlation, bicorrelation, tricorrelation, and ARCH LM tests are large-sample
results based on the asymptotic normal distribution’s mean and variance. The
validity of any asymptotic result for a finite sample is always an issue in statistics.
In particular, the rate of convergence to normality depends on the size of the
cumulants of the observed process. All data are finite because all measurements
have an upper bound to their magnitudes.'® However, if the data are leptokurtic, as
is typically the case for stock returns, exchange rates, and energy spot prices, then
the cumulants are large and the rate of convergence to normality is slow. Trimming
the tails of the empirical distribution of the data is an effective statistical method
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to limit the size of the cumulants in order to get more rapid convergence to the
asymptotic (theoretical) distribution.

Trimming data to make sample means less sensitive to outliers has been used
in applied statistics for many years. Trimming is a simple data transformation
that makes statistics based on the trimmed sample more normally distributed.
Transforming data is a technique with a long pedigree, dating back at least to
Galton (1879) and McAlister (1879). Subsequently, Edgeworth (1898) and John-
son (1949), among others, have contributed to the understanding of this technique
for examining data.

Suppose we want to trim the upper and lower «% values of the
sample{x(#;), ..., x(ty)}. To accomplish this, we order the data and find the
(k/100) quantile x, /100 and the (1 — x/100) quantile x;_, 190 of the order statis-
tics. Then set all sample values less than the (x/100) quantile to x,,100 and set all
sample values greater than the (1 — «/100) quantile to x{_,,i00. The remaining
(100 — k)% data values are not transformed in any way.

4. THE EMPIRICAL RESULTS

In Table 1, the summary statistics of the spot price returns series are documented.
It is apparent that the mean of the series is very small in magnitude—the spot price
return is negative over the complete sample. The scale of the spot price returns data
appears quite large. The size of the sixth-order cumulants is also quite large, thus
pointing to the large scale implicit in the spot price returns data. It is also evident
that the spot price returns are quite volatile, with a sizable standard deviation
being observed, and the spot price return displays positive skewness. There is
evidence of significant leptokurtosis, with an excess kurtosis value of 104. Not
unexpectedly, the Jarques—Bera (JB) normality test listed in Table 1 indicates
that the null hypothesis of normality is strongly rejected at the conventional 1%
level of significance. This outcome reflects the strong evidence of both nonzero
skewness and excess kurtosis reported in Table 1 implying substantial deviations

TABLE 1. Summary statistics for New
South Wales spot price returns data

No. of observations 161,785
Mean —0.002
Maximum 545.0
Minimum —-572.0
Std. dev. 19.2
Skewness 0.49
Excess kurtosis 104.0
Sixth-order cumulant 41,958.9
JB test statistic 72,900,000.0
JB normality P-value 0.0000
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from Gaussianity in the underlying spot price returns data [Lim et al. (2005,
p- 270)].

A bootstrap procedure was used to enumerate the empirical distributions of
the various test statistics and was implemented in the following way. Given the
(possibly trimmed) global sample of 161,785 spot price returns, a bootstrap sample
frame was constructed by randomly sampling 336 observations from the larger
global population and the various test statistics were calculated for that particular
sample frame. This process was repeated 500,000 times and the results for each test
statistic were stored in an array. All test statistics entailed the application of the x?
distribution and, for each bootstrap replication, the x? levels (threshold) variable
associated with each test statistic was transformed to a uniform variate. This means,
for example, that the 10% significance level corresponds to a confidence threshold
of 0.90, the 5% significance level corresponds to a confidence threshold of 0.95,
and the 1% significance level corresponds to a confidence threshold of 0.99. The
transformed test statistic confidence threshold values are in the interval (0, 1).
Thus, the theoretical distribution can be represented graphically by a 45° line. The
arrays containing the bootstrap confidence threshold values for each respective
test statistic from the bootstrap process were then sorted in ascending order and
associated with a particular quantile scale producing the empirical distribution for
each test statistic.!!

Recall from the discussion in Section 3 that we raised the possibility of im-
proving the finite sample performance of the various tests in the presence of
significant outliers by employing trimming, which allows us to improve the rate
of convergence of the tests toward their theoretical levels. In this context, it should
be noted that trimming is applied to the global spot price returns data and the
improved finite sample performance can be discerned from inspection of the QQ
plots in Figures 1-7.

The results obtained for the C statistic are documented in Figure 1. In deriving
the results, an AR(10) prewhitening fit was applied to each bootstrap frame of
336 half-hourly bootstrap observations, producing a bootstrap sample frame of
a week’s duration. It is clear from inspection of Figure 1 that the no-trimming
scenario produced an empirical distribution that was substantially different from
the theoretical distribution (corresponding to a 45° line).!? It is also apparent that
all trimming scenarios considered produce empirical distributions that are very
close to the theoretical distribution.

In general terms, the trimming scenarios can be interpreted in the following
way. The 10%—-90% trimming scenario would involve trimming the bottom 10%
and top 90% of the empirical distribution function of the complete sample of spot
price returns. If a spot price return is smaller than the 10% quantile or larger than
the 90% quantile, than the corresponding data values are replaced by the 10% and
90% quantile values, respectively. This operation serves to reduce the range of the
data by increasing the minimum value and decreasing the maximum value of the
data set, thereby reducing the affect of outliers that fall outside of the 10%—-90%
quantile range. For example, for the spot price returns, the 10%-90% trimming
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FIGURE 1. QQ plot for bootstrapped C statistic for New South Wales (weekly) spot price
returns.

scenario increased the minimum value from —572.0 to —15.3 and decreased the
maximum value from 545.0 to 16.1. The newly trimmed data set provides the
global population concept underpinning the bootstrap procedure outlined above.

The QQ plots for the H and H4 statistics are documented in Figures 2 and 3. It
is evident from inspection of both that the empirical distribution associated with
the no-trimming scenario is very different from the theoretical distribution. In fact,
the performance of both statistics under this scenario is worse than the associated
performance of the C statistic (as depicted in Figure 1) because the variance of the
third- and fourth-order products underpinning the H and H4 statistics depends more
crucially on the higher order cumulants than does the variance of the C statistic,
which operates at a lower order of magnitude. As such, the sample properties are
much more sensitive to deviations from the Gaussian distribution than in the case
of the C statistic. As a result, greater degrees of trimming appear to be needed to
get the empirical distributions of the H and H4 statistics to closely approximate
the theoretical distribution than was the case with the C statistic. Specifically, in
Figure 1, trimming in the range of 10%-90% seems to be sufficient to achieve
a good approximation to the theoretical distribution, whereas trimming rates of
at least 20%—80% (and perhaps even as much as 30%—70% for the H4 statistic)
would seem to be required to obtain a good approximation to the theoretical
distribution.'?

The QQ plots for the ARCH LM tests are depicted in Figure 4. It is apparent
that the empirical distribution for the no-trimming scenario once again deviates
substantially from the theoretical distribution. The pattern is similar to the pattern
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FIGURE 2. QQ plot for bootstrapped H statistic for New South Wales (weekly) spot price
returns.
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FIGURE 3. QQ plot for bootstrapped H4 statistic for New South Wales (weekly) spot price
returns.
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FIGURE 4. QQ plot for bootstrapped LM ARCH statistic for New South Wales (weekly)
spot price returns.

observed in Figures 2 and 3 in relation to the H and H4 statistics. However, the
level of trimming that appears to be required to get a good approximation to the
theoretical distribution seems to be more closely aligned to that required for the
C statistic as reported in Figure 1, i.e., trimming in the range 10%-90%. This
might reflect the fact that the squaring of residuals involved in the construction
of the ARCH LM test is of a similar order of magnitude to the product terms
underpinning the C statistic, although it produces a different data scale, whereas
the H and H4 statistics involving third- and fourth-order products involve a higher
order of magnitude and, as such, are likely to be more sensitive to higher order
cumulants and deviations from the Gaussian distribution.

It should also be noted that the empirical distributions associated with the no-
trimming scenarios listed in Figures 1-4 all generally lie below the theoretical
distribution, except in the upper tail regions, where the H, H4, and ARCH LM test
distributions, in particular, lie above the theoretical distributions. This result points
to conservative outcomes for all four tests in the appropriate rejection regions in the
upper tails of the distributions of the test statistics, in the case of the no—trimming
scenario. '

The QQ plots for C, H, and H4 statistics for the bootstrap sample frame—based
hard clipping are documented in Figures 5—7. The data that underpin these results
are the same data that underpinned the results in Figures 1-4, except that prior
to the application of the test statistics, the data in each bootstrap sample frame
are hard-clipped using the binary data transformation outlined in equation (11)
in Section 2. It is apparent from inspection of Figures 5-7 that the no-trimming
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FIGURE 5. QQ plot for bootstrapped C statistic for hard-clipped New South Wales (weekly)
spot price returns.

scenario produces conservative distributions—that is, the empirical distributions
of the various test statistics generally lie above their theoretical distributions.
It is also apparent that the binary transformation implied in (11) produces an
underlying data set that is more well-behaved, to the extent that minimal trimming
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FIGURE 6. QQ plot for bootstrapped H statistic for hard-clipped New South Wales (weekly)
spot price returns.
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FIGURE 7. QQ plot for bootstrapped H4 statistic for hard-clipped New South Wales (weekly)
spot price returns.

associated with 10%-90% trimming rates would appear to be sufficient to produce
good approximations to the theoretical distributions for all three tests. In fact, the
closeness of the no-trimming empirical distributions, reported in Figures 6 and 7,
for the H and (particularly) the H4 statistic supports the theoretical result that the
hard-clipping binary transformation converts the ARCH/GARCH and stochastic
volatility processes into Bernoulli processes [Hinich (1996)]. Conversely, the
statistic with the poorest performance now appears to be the C statistic (see
Figure 5), although 10%-90% trimming appears to produce a good empirical
approximation to the theoretical distribution.

Overall, the results from the QQ plots documented in Figures 1-7 indicate that
the empirical distributions of all statistics tend to deviate substantially from the
theoretical distribution in the case where no trimming is employed to control the
convergence properties of the test statistics in the presence of substantial deviations
from Gaussianity in the returns data. Inspections of Figures 1 and 4-7 appear to
indicate that reasonable empirical performance can be obtained for the C and
ARCH LM tests based on spot price returns and for the C, H, and H4 tests when
the returns are hard-clipped using trimming rates on the order of 10%—90%. For the
H and H4 statistics applied to spot price returns data, the empirical performance
appears to be more sensitive to deviations from the Gaussian distribution, and
trimming rates of at least 20%—-80% appeared to be necessary to derive empirical
distributions that closely approximated the theoretical distributions.

Furthermore, when applied to spot price returns (see Figures 1-4), the no-
trimming empirical distributions of the C, H, H4, and ARCH LM tests appeared
to generally lie below the theoretical functions, suggesting that the tests were
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anti-conservative for a wide assortment of quantiles but were conservative in
the upper tail regions. For the hard-clipped data and results reported in Fig-
ures 5-7, the empirical distribution functions of the C, H, and H4 statistics tend
to be conservative—that is, they tend to lie above the theoretical distribution
function. The above analysis demonstrates how trimming can be used to im-
prove the finite sample performance of the various test statistics in the presence
of substantial deviations from the Gaussian distribution in the source returns
data.

Trimming can also be used to see whether any observed nonlinear serial depen-
dence can be viewed as a deep structure phenomenon that arises when nonlinearity
is not generated purely by the presence of outliers in the data. This would arise,
for example, when the structure associated with the 40%—-60% or 30%—70%
quantile range of the empirical distribution of the spot price returns data pro-
duced nonlinear structure, and not just the data outside of the 10%—-90% quantile
range, which would be more conventionally associated with outliers. As such,
the presence of deep structure can be confirmed if the finding of nonlinear serial
dependence continues to hold in the presence of increasingly stringent trimming
operations.

The bootstrap procedure that is employed to address this issue differs slightly
from that used above to enumerate the empirical properties of the various tests
and is based on calculating specific confidence threshold values associated with
a user-specified false alarm threshold.!> The concepts of global sample, weekly
bootstrap sample frame, number of bootstrap replications, and application of the
various tests remain the same as outlined earlier in this section. Once again, the
arrays containing the bootstrap thresholds for the test statistics from the bootstrap
process are sorted in ascending order. However, the desired bootstrap thresh-
olds are now calculated as the quantile values of the empirical distributions of
the various test statistics associated with a user-specified false alarm confidence
threshold.'® For example, if the user set the false alarm confidence threshold to
0.90, the bootstrap confidence threshold value would be the 90% quantile of the
empirical distribution of the relevant test statistic determined from the bootstrap
process.

The number of frame-based rejections for each test statistic is calculated by sum-
ming the number of frames over which rejections were secured at the calculated
bootstrap confidence threshold when the tests were applied on a sequential frame-
by-frame basis to the actual (possibly trimmed) returns data.!” Note in this context
that a rejection is secured when the calculated threshold value for the various test
statistics applied to actual data frames exceeds the bootstrap confidence threshold.
For example, suppose the actual threshold value determined from application of
one of the test statistics to an actual sample frame produced a value of 0.97. We
would then secure a rejection for that particular frame if the bootstrap threshold
value for the test at the user specified level of confidence was less than 0.97.
The percentage of frame rejections for each test statistic is calculated as the total
number of frame-based rejections computed as a percentage of the total number
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of frames. Recall that for false alarm confidence thresholds of 0.90, 0.95, and
0.99, we expect only 10%, 5%, and 1% of the total number of frames to secure
rejections that can reasonably be attributed to random chance. If the actual number
of frame rejections (significantly) exceeds 10%, 5%, or 1% of the total number
of frames, then this points to the presence of (significant) linear and/or nonlinear
serial dependence, confirming the presence of a nonlinear generating mechanism
in the latter case.

In order to investigate whether nonlinear serial dependence could be viewed
as a deep structure phenomenon, a number of different trimming scenarios were
investigated. These scenarios involved the implementation of different degrees of
trimming in order to ascertain whether any observed nonlinear serial dependence
that had been observed under less stringent trimming conditions continued to
arise, thus confirming the presence of deep nonlinear structure. Specifically, the
following trimming scenarios were investigated:

Scenario A: No trimming;'®

Scenario B: 1%—99% trimming;
Scenario C: 10%-90% trimming;
Scenario D: 20%—80% trimming;
Scenario E: 30%-70% trimming; and
Scenario F: 40%—60% trimming.

The trimming conditions were applied to the complete sample of spot price
returns,which were then used to underpin the global population concept from
which bootstrap sample frames were constructed and tests applied.

The results for the C, H, H4, and ARCH LM tests applied to the spot price
returns are documented in Table 2. There are a significant number of frame-
based rejections in excess of 10%, 5%, and 1% for H, H4, and ARCH LM tests
that arise for all trimming scenarios considered and particularly for the H statis-
tic [column (5)]."° This finding signifies the existence of statistically significant
third-order and fourth-order (nonlinear) serial dependence. Note further that the
AR(10) prewhitening operation that was used to remove all linear dependence and
significant C frames remained successful for all trimming scenarios considered.
In fact, for Scenarios C-F, no significant C frames were detected.

It should also be noted that for the 0.99 confidence threshold for the H, H4,
and ARCH LM statistics for Scenario A, we had to set the false alarm threshold
to 0.9999 and 0.999999 because the bootstrapped values tended to be very high
and crowded out actual applications to the data. This result seems to be driven
by outliers in the data and disappears when trimming is employed to reduce
the impact of outliers as indicated, for example, by the results for Scenarios
C-F.

Overall, these conclusions confirm the presence of deep (nonlinear) structure
because we secure a significant number of frame-based rejections (for H, H4,
and ARCH LM tests) over and above what can reasonably be attributed to ran-
dom chance for all trimming scenarios considered, including the more stringent
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TABLE 2. Frame test results for New South Wales weekly spot price (returns)

data
Total Significant
no. False Significant Significant Significant ARCH
Scenario/ of alarm C frames H frames  H4 frames frames
(state) frames threshold no. (%) no. (%) no. (%) no. (%)
Scenario A 481 0.90 1 464 452 395
0.21) (96.47) (93.97) (82.12)
481 0.95 1 406 396 326
0.21) (84.41) (82.33) (67.78)
481 0.99 1 358* 358* 186*
0.21) (74.43) (74.43) (38.67)
Scenario B 481 0.90 3 464 422 415
(0.62) (96.47) (87.73) (86.28)
481 0.95 1 442 360 378
0.21) (91.89) (74.84) (78.59)
481 0.99 0 368 280" 303
(0.00) (76.51) (58.21) (62.99)
Scenario C 481 0.90 0 462 427 401
(0.00) (96.05) (88.77) (83.37)
481 0.95 0 451 400 375
(0.00) (93.76) (83.16) (77.96)
481 0.99 0 403 308 305
(0.00) (83.78) (64.03) (63.41)
ScenarioD 481 0.90 0 446 378 356
(0.00) (92.72) (78.59) (74.01)
481 0.95 0 430 339 314
(0.00) (89.40) (70.48) (65.28)
481 0.99 0 374 257 217
(0.00) (77.75) (53.43) (45.11)
Scenario E 481 0.90 0 428 304 281
(0.00) (88.98) (63.20) (58.42)
481 0.95 0 394 260 219
(0.00) (81.91) (54.05) (45.53)
481 0.99 0 331 173 135
(0.00) (68.81) (35.97) (28.07)
Scenario F 481 0.90 0 376 220 165
(0.00) (78.17) (45.74) (34.30)
481 0.95 0 334 161 126
(0.00) (69.44) (33.47) (26.20)
481 0.99 0 239 76 65
(0.00) (49.69) (15.80) (13.51)

Notes: No global AR prewhitening fit; applied frame by frame AR(10) prewhitening fit to remove linear depen-
dence; various trimming scenarios.

*False alarm threshold arbitrarily set to 0.9999.

**False alarm threshold arbitrarily set to 0.999999.
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scenarios associated with Scenarios E and F. The observed rejection rates are
believable because the tests were demonstrated to be conservative for Scenario
A and the empirical distribution of the tests were found to be quite close to the
theoretical distributions for Scenarios C—F for the C and ARCH LM tests and for
Scenarios D-F for the H and H4 tests. The rejection rates confirm the presence
of nonlinear serial dependence under all trimming scenarios considered, pointing
to the presence of deep nonlinear structure. This finding, in turn, implies that the
observed nonlinear serial dependence is not purely determined by the presence of
outliers in the data.

The results for the C, H, and H4 tests associated with hard-clipping transfor-
mation applied to the residuals from the frame by frame AR(10) fits are outlined
in Table 3. Recall that these residuals are the same as those underpinning the
results listed in Table 2, except that the transformation in (11) was applied to the
residuals prior to the application of the three above-mentioned portmanteau tests.
Recall further that the intention of this particular test framework is to see whether
structure is present in the data that cannot be attributed to ARCH/GARCH or
stochastic volatility models.

It is evident from inspection of Table 3 that the numbers of frame-based rejec-
tions for the C, H, and H4 statistics applied to the binary data sets are greater than
the 10%, 5%, and 1% rates that we can reasonably attribute to random chance,
thus pointing to the contributing presence of structure that cannot be explained
by volatility models. This conclusion holds for all trimming scenarios considered,
although the underlying rejection rates discernible from Table 3 suggest that third-
order nonlinear serial dependence (associated with H-statistic rejections) is the
most prominent form of nonlinear serial dependence. Interestingly, the rejection
rates tail off somewhat over Scenarios B—D but then become more prominent for
Scenarios E and F, which correspond to the most stringent trimming conditions
considered. This is interesting because ARCH/GARCH processes, in particular,
are seen as being driven by volatility clustering associated with the episodic
presence of outliers in the data. The more stringent trimming conditions increas-
ingly abstract from this type of generating mechanism whereas, at the same time,
the results cited in Table 3 point to significant frame-based rejections, indicating the
presence of linear as well as third- and fourth-order (nonlinear) serial dependence
in the hard-clipped data. Finally, it should be noted that the data underpinning the
significant C test outcomes are the same set of residuals that produced very few
or no significant C frames in Table 2.

These conclusions indicate the nontrivial presence of a nonlinear generating
mechanism operating over the central quantile ranges of the empirical distribu-
tion of the spot price returns data that cannot be explained by volatility models
encompassing ARCH/GARCH and stochastic volatility models. The fact that the
nonlinear serial dependence arises over this quantile range points to the presence
of deep structure—that is, the presence of nonlinear structure that is not being
generated predominantly by the presence of outliers.
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TABLE 3. Frame test results for New South Wales weekly spot price (hard-
clipped returns) data

Total  False alarm  Significant C  Significant H

Scenario/ no. of threshold frames frames Significant H4
(state) frames no. (%) no. (%) no. (%) frames
Scenario A 481 0.90 176 272 149
(36.59) (56.55) (30.98)
481 0.95 111 212 106
(23.08) (44.07) (22.04)
481 0.99 52 98 55
(10.81) (20.37) (11.43)
Scenario B 481 0.90 129 280 113
(26.82) (58.21) (23.49)
481 0.95 86 222 67
(17.88) (46.15) (13.93)
481 0.99 34 114 24
(7.07) (23.70) 4.99)
Scenario C 481 0.90 38 297 112
(7.90) (61.75) (23.28)
481 0.95 25 236 67
(5.20) (49.06) (13.93)
481 0.99 8 127 18
(1.66) (26.40) (3.74)
Scenario D 481 0.90 57 320 133
(11.85) (66.53) (27.65)
481 0.95 41 269 82
(8.52) (55.93) (17.05)
481 0.99 17 169 28
(3.53) (35.14) (5.82)
Scenario E 481 0.90 197 353 144
(40.96) (73.39) (29.94)
481 0.95 151 310 105
(31.39) (64.45) (21.83)
481 0.99 85 214 49
(17.67) (44.49) (10.19)
Scenario F 481 0.90 378 391 192
(78.59) (81.29) (39.92)
481 0.95 341 353 139
(70.89) (73.39) (28.90)
481 0.99 277 277 85
(57.59) (57.59) (17.67)

Notes: No global AR prewhitening fit; applied frame by frame AR(10) prewhitening fit to remove linear depen-
dence; frame by frame hard clipping of residuals; various trimming scenarios.
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5. CONCLUDING COMMENTS

Before modeling techniques such as GARCH are applied, it is important to un-
derstand the nature of nonlinear serial dependence in the data under investigation.
Using the example of wholesale electricity spot prices, we have demonstrated how
an effective testing methodology can be applied. This involves partitioning time
series data into nonoverlapping frames and computing the portmanteau correla-
tion, bicorrelation, and tricorrelation test statistics for each frame to detect linear
and nonlinear serial dependence, respectively. Furthermore, the presence of pure
ARCH and GARCH effects in the spot price returns was also investigated by
applying the LM ARCH test and, additionally, a detection framework based upon
converting GARCH and stochastic volatility processes into a pure-noise process
and then testing for the presence of linear and nonlinear serial dependence in the
transformed data.

The finite sample properties of the empirical distribution of the various tests
were investigated using a bootstrap procedure. This allowed assessment of how
close the empirical properties of the tests were to their theoretical distributions
given the significant observed deviations from the Gaussian distribution implied
in the source returns data. It was also demonstrated that the empirical properties
of the tests could be improved substantially through the use of trimming, which
permits an investigator to control for the impact of outliers on the finite sample
performance of the test statistics in order to obtain an empirical distribution closer
to the Gaussian distribution.

It was also shown how trimming could be used to investigate whether the
nonlinear generating mechanism was a deep structure phenomenon where ob-
served nonlinear serial dependence was generated by more than the presence of
outliers. In our example, it was found that nonlinear serial dependence did not
disappear as more stringent trimming scenarios were adopted. This confirmed
the presence of a deep structure in the generating mechanism. In particular, the
results indicated that the generating mechanism was not consistent with the hy-
pothesis that an ARCH, GARCH, or stochastic volatility process generated the
returns.

The finding that nonlinearity is present has implications for modeling spot price
dynamics. If there are both third- and fourth-order nonlinear serial dependence
in the data, then time series models that employ a linear structure, or assume
a pure noise input, such as the geometric Brownian motion (GBM) stochastic
diffusion model, are problematic. In particular, the dependence structure violates
both the normality and Markovian assumptions underpinning conventional GBM
models. The finding that nonlinear serial dependence can be categorized as a
deep structure phenomenon poses questions about the validity of jump diffu-
sion models that employ the Poisson process in order to model the probabil-
ity of the occurrence of outliers (i.e., jump events). It is no longer appropri-
ate to simply equate the presence of nonlinearity with the presence of outliers.
This finding has important implications for the use of GBM and jump diffusion
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models that currently underpin accepted risk management strategies based on the
Black—Scholes option pricing model, which are employed in finance and energy
economics.

NOTES

1. The half-hourly load and spot price data were sourced from files located at the following Web
address: http://www.aemo.com.au/data/price_demand.html.

2. Also see Bollerslev et al. (1992), Bera and Higgins (1993), Bollerslev et al. (1995), and Diebold
and Lopez (1995) for detailed surveys of these models.

3. We will demonstrate in the next section how a hard-clipping transformation can be used in
conjunction with our nonparametric tests to falsify both types of models.

4. This nonlinear-in-mean structure in the residuals would be detected using higher order analogues
of a conventional portmanteau test for serial correlation.

5. Other references utilizing this framework include Brooks (1996), Brooks and Hinich (1998),
Ammermann and Patterson (2003), Lim et al. (2003, 2004, 2005), Lim and Hinich (2005a, 2005b),
Bonilla et al. (2007), and Hinich and Serletis (2007).

6. In this article, we set b = 0.4 for the correlation and bicorrelation tests and » = 0.3 for the
tricorrelation test.

7. If we set the B;’s coefficients to zero in (9), we get an ARCH(g) process.

8. For our purposes, the crucial requirement is that &; be a pure—white noise process (i.e., i.i.d.).
The assumption of normality was made purely for convenience. Other distributional assumptions used
in relation to &, in the literature include the ¢ distribution [Bollerslev (1987)] and the generalized
error distribution [Nelson (1991)]. For the hard-clipping technique to work successfully, whatever
distributional assumption is made about &, it must be a symmetric distribution.

9. The false alarm threshold is to be interpreted as a confidence level; for example, a false alarm
threshold of 0.90 is to be interpreted as a 90% confidence level. The level of significance associated
with this confidence level is interpreted in the conventional way. Therefore, for a threshold of 0.9, we
get a corresponding significance level of 10%.

10. In the current context, a maximum spot price that can be bid by wholesale market participants
is $10,000/MWh, which corresponds to the value of lost load (VOLL) price limit that is triggered in
response to demand—supply imbalances that trigger load shedding [see National Electricity Market
Management Company Limited (2005)]. Thus, the range of the spot price data is finite, ensuring that
all moments are finite.

11. In the current context, the term quantile can be interchanged with the term percentile, which is
used on the horizontal axes of Figures 1-7.

12. It should be noted that all distributions represented graphically in the various QQ plots
are plotted on a percentile basis. However, the extreme lower and upper tails of the distribution
functions are defined at an interval of less than a percentile in order to enumerate the character-
istics of the tails. This gives the slight dog-legged appearance at the start and end points of the
plots.

13. This is especially the case in the upper tail region of the empirical distribution functions where
the key rejection regions for the various test statistics in fact lie.

14. In this context, the no-trimming scenario corresponds to the framework underpinning the
results reported in Wild et al. (2008). Given the conservative nature of the tests at the confidence levels
considered in that article (i.e., at 0.90, 0.95, and 0.99), any frame-based rejections reported in that
article are believable in statistical terms.

15. This bootstrap framework mirrors the framework used in Wild et al. (2008).

16. Recall from the discussion in Section 3 that the false alarm threshold is used to control for the
probability of a Type I error.

17. In the results reported in Tables 2 and 3, trimming is incorporated in Scenarios B-F and no
trimming is used in Scenario A only.
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18. Note that the results corresponding to Scenario A are the same set of results reported in Wild
et al. (2008).

19. The results for the H4 and ARCH LM tests also point to significant structure [see columns
(6) and (7) of Table 2] because the rejection rates still exceed those that can be attributed to random
chance (i.e., 10%, 5%, and 1%) but are still dominated by the H-test results, which involve much larger
frame-based rejection rates.
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