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A liquid foam is a dispersion of gas bubbles in a liquid matrix containing
surface-active agents. Its flow involves the relative motion of bubbles, which
switch neighbours during a so-called topological rearrangement of type 1 (T1). The
dynamics of T1 events, as well as foam rheology, have been extensively studied, and
experimental results point to the key role played by surfactants in these processes.
However, the complex and multiscale nature of the system has so far impeded a
complete understanding of the mechanisms involved. In this work, we investigate
numerically the effect of surfactants on the rheological response of a 2D sheared
bubble cluster. To do so, a level-set method previously employed for simulation
of two-phase flow has been extended to include the effects of surfactants. The
dynamical processes of the surfactants – diffusion in the liquid and along the interface,
adsorption/desorption at the interface – and their coupling with the flow – surfactant
advection and Laplace and Marangoni stresses at the interface – are all taken into
account explicitly. Through a systematic study of the Biot, capillary and Péclet
numbers that characterise the surfactant properties in the simulation, we find that the
presence of surfactants can affect the liquid/gas hydrodynamic boundary condition
(from a rigid-like situation to a mobile one), which modifies the nature of the flow
in the volume from a purely extensional situation to a shear. Furthermore, the work
done by surface tension (the 2D analogue of the work by pressure forces), resulting
from surfactant and interface dynamics, can be interpreted as an effective dissipation,
which reaches a maximum for a Péclet number of order unity. Our results, obtained
at high liquid fraction, should provide a reference point, with which experiments and
models of T1 dynamics and foam rheology can be compared.

Key words: bubble dynamics, foams, interfacial flows (free surface)

1. Introduction
Liquid foams are concentrated dispersions of gas in a liquid matrix. They belong

to the material class of complex fluids, characterised by their multiscale structure,
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and their rheological properties have been widely investigated, for example in the
pioneering paper series of Princen (Princen 1983, 1985; Princen & Kiss 1986, 1989;
Kraynik, Reinelt & Princen 1991). A commonly used empirical description for foam
rheology is the Herschel–Bulkley relationship (Cantat et al. 2013; Cohen-Addad,
Höhler & Pitois 2013). Foam behaviour is complicated further by it being an out
of equilibrium system that evolves with time, due to different mechanisms such as
gravity liquid drainage, bubble coarsening and coalescence (Cantat et al. 2013).

Several numerical and analytical methods have been utilised to attempt to link foam
properties at the local scale to the macroscopic rheological behaviour (Buzza, Lu &
Cates 1995; Besson et al. 2008; Denkov et al. 2008; Tcholakova et al. 2008; Cantat
2011; Cohen-Addad et al. 2013). Among these, large or multiscale simulations may
describe the foam either as bubble or soft sphere assemblies (Durian 1995, 1997;
Rognon, Einav & Gay 2010; Seth et al. 2011; Sexton, Möbius & Hutzler 2011) or as
networks of films and Plateau borders (Kern et al. 2004; Cantat 2011; Saye & Sethian
2013). However, to be fully accurate, such simulations require a full description of
local responses and time scales, which is still missing.

One essential feature of a liquid foam is that the liquid matrix is filled with surface-
active molecules (i.e. surfactants) which adsorb at interfaces and whose primary role
is to stabilise the liquid films separating the bubbles by inducing nanometric range
repulsion between the interfaces (Israelachvili 2010). The macroscopic behaviour
of foams is strongly affected by the nature of the surfactants. For instance, liquid
transport through foams is limited by dissipation in either the Plateau borders or
the nodes (Durand, Martinoty & Langevin 1999), and depends on the interfacial
boundary conditions and hence on the surfactant dynamics (Lorenceau et al. 2009;
Cohen-Addad et al. 2013). Regarding foam rheology, the shear stress in flow
(Tcholakova et al. 2008) can be modified by changing the nature of the surfactants.
Viscoelastic measurements have shown that relaxation time scales (Krishan et al.
2010; Costa, Höhler & Cohen-Addad 2013) are also affected. Finally, the foam
stability, characterised either by a critical volume fraction or by a critical capillary
pressure, can be modified (Biance, Delbos & Pitois 2011; Rio & Biance 2014).

Foam flow occurs through relative motion of deformable bubbles. As depicted in
figure 1, this process involves switching of neighbours, which is referred to as a
topological rearrangement of type 1 (T1) (Höhler & Cohen-Addad 2005). T1 dynamics
has been largely studied experimentally in model systems such as bubble clusters
(Biance, Cohen-Addad & Höhler 2009), 2D foams (Durand & Stone 2006), soap film
architecture (Hutzler et al. 2008; Petit et al. 2015) and 3D foams (Le Merrer, Cohen-
Addad & Höhler 2012, 2013). It is affected mainly by the amount of liquid in the
foam, the viscosity of the liquid and the nature of the surfactants. T1 involves the
flow and the stretching of a thin liquid film, a process that has been extensively
characterised experimentally (Seiwert et al. 2013; Champougny et al. 2015; Petit et al.
2015) and has been found to depend on the nature of the surfactants. Elongation of the
film is observed in some cases whereas shear in the contacting meniscus appears in
some others, as already predicted for small deformations by Buzza et al. (1995). On
the theoretical side, analytical prediction of T1 dynamics when neglecting bulk flow
has also been performed, taking into account surfactant transport along the interface
(Durand & Stone 2006; Satomi, Grassia & Oguey 2013).

Surfactants not only affect the static properties of interfaces, but also their
dynamical ones, described through the interfacial stress. They generate intrinsic
surface dissipation but also alter the liquid flow by changing the hydrodynamic
boundary condition at the interface. Surfactants can diffuse along the interface
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FIGURE 1. (Colour online) Schematics of a T1 process in a 2D bubble assembly.

and in the bulk, and can partially adsorb and desorb (Langevin 2014), with many
consequences, such as the generation of an elastic solutal Marangoni stress at the
interface and a viscous one (Lucassen & van den Tempel 1972). Such interfacial
Marangoni stresses influence the liquid flows, which in turn modify the surfactant
distribution, making this coupled nonlinear problem a complex one.

The effects of surfactants on flows involving bubbles have already been established
in a variety of situations. Perhaps the oldest one is the sedimenting drop or rising
bubble, a problem dating back to the early days of surface rheology (Edwards,
Brenner & Wasan 1991) and that is still being explored (Bel Fdhila & Duineveld
1996; Cuenot, Magnaudet & Spennato 1997). By immobilising the interface and
decreasing the velocity, the presence of surfactants not only affects the individual
behaviour of a bubble but also has macroscopic consequences on the turbulence
structure (Takagi & Matsumoto 2011). The deformation and breakup of droplets
or bubbles in elongational or shearing flows is also sensitive to the presence of
surfactants (Stone 1994), as exemplified by the ‘tip streaming’ phenomenon, where
a thin liquid thread is drawn from the drop tips (Eggleton, Tsai & Stebe 2001).
Interfacial boundary conditions influenced by surfactants are also known to affect film
coating (Park 1991; Ou Ramdane & Quéré 1997; Scheid et al. 2010; Champougny
et al. 2015) or the similar problems of bubbles sliding along a rigid wall (Ratulowski
& Chang 1990; Cantat 2013) or foam wall slip (Denkov et al. 2005, 2006). Finally,
surfactants may affect the draining process of films, revealing the importance of
surface elasticity (Sonin, Bonfillon & Langevin 1993) or resulting in dimpled profiles
(Breward & Howell 2002).

Theoretical investigations of surfactant effects relying on analytical or semi-
analytical methods generally assume a fixed geometry (e.g. Schwalbe et al. 2011)
or lubrication approximation (e.g. Scheid et al. 2010; Cantat 2013). Only numerical
approaches can handle the large deformations and topological changes that often
occur in bubble or drop dynamics. A number of methods have been developed
to do so, which fall into two distinct classes. Interface tracking methods, such as
boundary integral (Pozrikidis 2001), front tracking (Tryggvason et al. 2001) and
immersed boundary (Mittal & Iaccarino 2005) schemes, all involve an explicit
representation of the interface with dedicated grid or point sets, which allows for
high accuracy, but makes it more difficult to handle topological changes, in particular
for three-dimensional systems. In interface-capturing methods, such as volume-of-fluid
(VOF), level-set and diffuse-interface methods, the representation of the interface is
only implicit, with the benefit that arbitrary changes in interface shape can be treated
with no further complication. Most such numerical methods have been extended to
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FIGURE 2. (Colour online) (a) The initial configuration for our simulation. The black line
corresponds to the interface between the liquid and gas phases. (b) Definitions of films,
film thicknesses, curvilinear coordinate and unit vectors.

account for the presence of soluble or insoluble surfactants (see Teigen et al. 2011
or Dieter-Kissling, Marschall & Bothe 2015, for an overview).

In this work, our goal is to unveil the role of surfactants on the dynamics of
a T1 event, a situation that has not been considered so far, and to investigate the
mechanisms governing the rheology: surfactant diffusion along the interfaces and
in the bulk, bulk/interface exchanges, viscous shear. This is only possible if the
full surfactant distribution can be tracked in the bulk and along the interfaces, and
requires numerical simulations. We use a level-set approach (e.g. Sussman, Smereka
& Osher 1994; Sethian 1999; Osher & Fedkiw 2003) extended to account for the
presence of surfactants. Our configuration is the minimal one, in terms of both scale
and dimensionality: we consider a unit cell of a semiperiodic arrangement in two
dimensions. Our aim is to relate the local microscopic properties of the surfactants to
the macroscopic foam rheology. For monodisperse crystalline foams, this intermediate
situation is representative of a macroscopic foam; for disordered foams, it may still
provide insight into the dominant dissipation mechanisms at play, and could be used
to refine local ingredients for a multiscale approach.

This article is organised as follows. We first present in § 2 the equations governing
the flow of the bubble assembly in the presence of surfactants as well as the main
dimensionless parameters and the configuration considered. Section 3 then briefly
describes our level-set method and numerical implementation. Finally, we report in
§ 4 our results on T1 events, together with a specific discussion. Particular attention
will be paid to the coupling between the bulk flow and the interfacial stress.

2. Shear of a bubble assembly: problem formulation
2.1. The configuration studied

The initial configuration, depicted in figure 2, consists of four hemicircular bubbles
arranged on a hexagonal lattice and separated by a centre-to-centre distance of 2H/

√
3,

where H is the domain height. Considering the symmetry of the system, simulations
were also carried out on a cluster of two half-bubbles only, which simply corresponds
to one half of the domain represented in figure 2. Unless indicated otherwise, the
liquid fraction of the system, defined as the liquid area divided by the total area, is
set to ψl = 30 %. This large liquid fraction, much closer to bubbly liquids than to
real foam, has been chosen to ensure numerical resolution of the resulting liquid film
between the bubbles. The shear is imposed by prescribing a velocity +U (respectively
−U) for the top (respectively bottom) plate. The contact lines, where solid meets both
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226 A. Titta and others

liquid and gas, are assumed to be pinned and thus move at the plate velocity. The
plates are impermeable to fluids and surfactants, with zero flux across them. Periodic
boundary conditions are applied in the lateral direction.

2.2. Equations and relevant parameters
2.2.1. Flow dynamics and interfacial stress

The flow in the liquid and in the gas is governed by the full Navier–Stokes
equations. Assuming that both fluids are incompressible, and denoting by u the
velocity, and by ρ and µ the local density and viscosity, the equations read

∇ · u= 0, (2.1)

ρ

(
∂u
∂t
+ (u · ∇)u

)
=−∇p+∇ · (µ(∇u+ (∇u)T))=∇ · σ , (2.2)

where σ = −pI + µ(∇u + (∇u)T) is the stress tensor. It should be noted that the
viscosity and density depend on the position, since they are different in the liquid
and the gas. A no-slip boundary condition applies for the velocity at the plates. At a
gas–liquid interface with surface tension γ , the stress jump is (Pozrikidis 2011)

[σ · n] =−γCn−∇sγ . (2.3)

Here, [X]=Xliquid−Xgas is the jump of quantity X across the interface, n is the normal
unit vector pointing towards the liquid, C = −∇ · n is the interface curvature and
∇s = Is · ∇ (with Is = I − n ⊗ n the surface identity tensor) is the surface gradient.
The first term on the right-hand side of (2.3) represents the Young–Laplace normal
stress jump across the interface, whereas the second term corresponds to the tangential
solutal Marangoni stress.

We adopt herein a one-fluid formulation (e.g. Brackbill, Kothe & Zemach 1992),
wherein the governing equations for both fluids and the stress jump condition are
combined into one set of governing equations. This is facilitated by introducing the
Dirac function δΓ featuring the interface, and the interfacial stress tensor Ts = γ δΓ Is.
We use here the simplest possible form of the interfacial stress tensor, but more
complex models involving complex surface shear or dilatational rheology (Erni 2011;
Sagis 2011) could be described with this approach. The one-fluid formulation valid
in the entire domain can then be written as

ρ

(
∂u
∂t
+ (u · ∇)u

)
=∇ · (σ + Ts)=∇ · σ+γCδΓ n+ (∇sγ )δΓ . (2.4)

The last two terms on the right-hand side represent the singular contribution arising
from taking the divergence of the discontinuous stress (Teigen et al. 2011). Since ∇δΓ
is normal to the interface, we indeed have ∇ · Ts = γCδΓ n+ (∇sγ )δΓ =−δΓ [σ · n].

In dimensionless coordinates, the mass conservation reduces to ∇̃ · ũ = 0 and the
conservation of momentum to

ρ̃

(
∂ũ
∂ t̃
+ (ũ · ∇̃)ũ

)
= −∇̃p̃+

1
Re
∇̃ · (µ̃(∇̃ũ+ (∇̃ũ)T))

+
1

Ca0 Re
[γ̃ C̃nδ̃Γ + ∇̃sγ̃ δ̃Γ ], (2.5)
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where the characteristic parameters are the shear velocity U and the box height H,
yielding the typical time scale T = H/U. The characteristic viscosity and density µl
and ρl are those of the liquid phase. The pressure is made non-dimensional with
ρlU2. The term δ̃Γ is the dimensionless Dirac function used to feature the interface.
Regarding the interfacial tension, γ̃ = γ /γ0, where γ0 is the bare liquid/gas surface
tension. We have also introduced the Reynolds number, defined as Re = ρlUH/µl,
which compares inertial and viscous stresses, and a capillary number Ca0 = µlU/γ0,
which compares viscous and surface tension forces.

2.2.2. Model of surfactant dynamics and adsorption
To completely describe the dynamics of the fluids, one must fully account for the

transport of surfactants in the liquid and along the interface. In the former, it reads

∂F
∂t
+∇ · (uF)=DF∇

2F, (2.6)

where F is the volume concentration of surfactants and DF is its diffusion coefficient
in the bulk. At interfaces, we define the surface concentration of surfactants, denoted
herein by f . This is also governed by diffusion and advection; the balance equation
developed by Wong, Rumschitzki & Maldarelli (1996) is written here in a fixed
reference frame. Upon supposing f to be extended off interfaces as a constant along
the interface normal, the balance equation for f can be written as (Pereira et al. 2007;
Teigen et al. 2009)

∂f
∂t
+∇s · (uf )=Df∇

2
s f + j, (2.7)

where Df is the diffusion coefficient along the interface. The source term j accounts
for the exchange of surfactants between the interface and the bulk and is assumed to
be given by

j= raFs( f∞ − f )− rdf , (2.8)

where ra and rd are the adsorption and desorption coefficients respectively and Fs is
the bulk surfactant concentration in the vicinity of the interface. Regarding boundary
conditions, the following equality applies at the interface:

DF∇F · n=−j, (2.9)

while at the plates, the no-flux condition ensuring surfactant conservation imposes

npl · ∇F= 0, t · ∇f = 0, (2.10a,b)

where npl is the vector normal to the plates and t is the vector tangential to the
interface (see figure 2). Finally, the interfacial stress and surface tension depend
strongly on the amount of surfactants adsorbed at the interface. To link the surface
tension to the surface concentration of surfactants at the interface, f , a simple choice
is the Langmuir equation of state (Langevin 2014),

γ ( f )= γ0

[
1+

RTf∞
γ0

ln
(

1−
f

f∞

)]
, (2.11)

where R is the ideal gas constant, T is the temperature and f∞ is the surface
concentration at saturation.
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These equations can be recast in dimensionless form. First, the convection–diffusion
of surfactants yields

∂

∂ t̃
(HεF̃)+ ∇̃ · (HεF̃ũ)=

1
PeF
∇̃ · (Hε∇̃F̃)− hδ̃Γ j̃, (2.12)

where PeF = UH/DF is the bulk Péclet number, which compares advection and
diffusion. The adsorption depth h= feq/(HFeq), with Feq and feq the volume and surface
concentrations at equilibrium, compares the amounts of surfactants at the surface and
in the bulk. (An equivalent expression is h= raf∞(1− χ)/(rdH), which involves ra.)
The bulk and interfacial concentrations are normalised by their equilibrium values.
It should be noted that the Heaviside function Hε has been introduced to account
for the fact that the surfactants are only present in the liquid phase. The transport
equation along the interface reads

∂

∂ t̃
(f̃ δ̃Γ )+ ∇̃ · (f̃ δ̃Γ ũ)=

1
Pef
∇̃ · (δ̃Γ ∇̃f̃ )+ δ̃Γ j̃, (2.13)

where Pef =UH/Df is the interface Péclet number, and with the dimensionless source
term

j̃= Bi
[

χ

1− χ
F̃s

(
1
χ
− f̃
)
− f̃
]
. (2.14)

Here, Bi = rdH/U is the so-called Biot number, which compares the time scale of
surfactant desorption with convection. Finally, the adimensionalised equation of state
is

γ̃ (f̃ )= 1+ β ln(1− χ f̃ ), (2.15)

where β = RTf∞/γ0 governs the sensitivity of surface tension versus surfactant
concentration and χ = feq/f∞ corresponds to the ratio of surfactant concentration at
equilibrium and at saturation.

3. Numerical simulations: a level-set based method
3.1. The level-set function and the numerical scheme

3.1.1. Level-set method
The governing equations presented above must be supplemented by a method to

determine the evolution of interfaces. For this purpose, we used a level-set scheme
already developed in the case of multiphase flows in previous work (e.g. Sussman
et al. 1994; Osher & Fedkiw 2003). It consists of the introduction of a level-set
distance function denoted φ(x, t) whose sign defines the location of each phase,

φ(x, t)=


d in the liquid,
−d in the gas,
0 along interface Γ,

(3.1)

where d is the closest distance to the interface. It allows one to define the evolution
of interface location versus time. The level-set function is advected by the flow at a
velocity u and then satisfies at the interface

∂φ

∂t
+ u · ∇φ = 0. (3.2)
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The fluid properties at each location then directly depend on the value of the level-set
function and are defined as

ρ(φ)= ρlHε(φ)+ ρg(1−Hε(φ)), (3.3)
µ(φ)=µlHε(φ)+µg(1−Hε(φ)), (3.4)

where ρl, ρg, µl, µg are respectively the liquid (gas) density and viscosity. The term
Hε(φ) is a smoothed Heaviside function, defined as

Hε(φ)=


0 if φ <−ε,
1
2

[
1+

φ

ε
+

1
π

sin(πφ/ε)
]

if |φ|6 ε,

1 if φ > ε.

(3.5)

Thus, 2ε corresponds to the width of the smooth interface. The Dirac function
introduced above to feature the interface also directly depends on this Heaviside
function by δΓ n = ∇Hε . The normal vector is obtained as n = ∇φ/|∇φ| and the
interface curvature as C = −∇ · n. In order to accurately determine the interface
curvature and normal vector, and to keep the interface thickness nearly constant,
a reinitialisation stage is included. Motivated by the results of a comparative
study of various reinitialisation schemes (Solomenko et al. 2017), we use the
interface-preserving algorithm of Sussman & Fatemi (1999). Thus, after the solution
of (3.2) has been advanced over a time step to yield a level-set function φ = φ0, this
is corrected by solving

∂φ

∂τ
+ sgn(φ0)(|∇φ| − 1)= λδ(φ0)|∇φ0| (3.6)

over the pseudotime variable τ , subject to the initial condition φ= φ0; the coefficient
λ is chosen such as to preserve the volume of each fluid over any fixed volume of
the two-phase flow (see Sussman & Fatemi 1999, for details).

3.1.2. Numerical implementation
The transport equations of surfactants were implemented in an already existing and

validated level-set code (Ó Náraigh et al. 2014), with some further improvements.
This uses a standard projection method; the spatial discretisation is on a marker-and-
cell (MAC) grid, with velocity components defined at cell faces and scalar quantities
defined at cell centres. The momentum source term is discretised on the MAC grid.
The temporal discretisation of the momentum equation involves a Crank–Nicolson
scheme for diagonal viscous terms and a third-order Adams–Bashforth scheme for
convective terms and off-diagonal viscous terms; second-order central differences were
used for the spatial discretisation of these terms. For temporal discretisation of the
transport equation of the level-set function, a third-order Adams–Bashforth scheme
was used; a fifth-order weighted essentially non-oscillatory (WENO) scheme was used
for the spatial discretisation. At the reinitialisation stage (3.6), a second-order Runge–
Kutta scheme was used for the temporal discretisation, and fifth-order WENO for
the spatial discretisation. Results of basic tests of the computational method without
surfactants can be found elsewhere (Ó Náraigh et al. 2014; Solomenko et al. 2017).
The transport equations for the surfactants have been implemented following Teigen
et al. (2009), in the same manner as the viscous terms in the momentum equations.
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The validation of the numerical scheme for flows with surfactants has been achieved
by studying a droplet at rest and under shear, and by quantitative comparison with
numerical results obtained by Teigen et al. (2009) with a different (diffuse-interface)
method. We have also found in tests for static drops that surfactants did not amplify
spurious currents. These two points are elaborated in appendix A. Finally, the mesh
size 1z is typically H/200 to H/100, and the total interface width 2ε is chosen to
be 31z. Both were checked to have little effect on simulation results.

3.2. Potential pitfalls
3.2.1. Surfactant leakage

The amount of surfactants is fixed in our configuration, since the plates are
impermeable walls. From the no-flux condition (2.10a,b), we obtain the following for
our specific configuration.

(i) At the liquid-plate boundary, the vertical flux of surfactant is zero: ∇F · ez =

∂zF= 0.
(ii) At the contact line, the tangential flux is zero: ∇f · t= 0, which can be rewritten

as ∂zf = (∂zφ/∂xφ)∂xf .

However, it turned out that these simple conditions led to a loss in the total amount
of surfactants (∼1 % per bubble rearrangement). We thus constrained the boundary
conditions to impose ∂zf = (∂zφ/∂xφ)∂xf and ∂zF = (∂zφ/∂xφ)∂xF at the contact line,
and both ∂zF = 0 and ∂zf = 0 at the liquid-plate and gas-plate boundaries. We also
consider that at the triple line, bulk/interface exchange is inhibited by the presence
of the wall ( j = 0). While still satisfying the physical boundary conditions, these
conditions lead to a fivefold reduction of the surfactant leakage, which we consider
to be acceptable. Besides, relaxation of the last condition gives similar results, both
on surfactant leakage and on the macroscopic force (§ 4.1).

3.2.2. Pinning the contact lines
Besides the no-slip condition for fluid at the wall, the contact lines were pinned to

the plates. Boundary conditions for the level-set function were implemented through
prescription at ghost cells: at any time, the positions of contact lines being known, the
level-set function was prescribed in a thin layer around the contact line accordingly.
Not accounting for this, and merely relying on the no-slip condition instead, resulted
in some deviations of the contact line position with respect to the plate displacement
(1.3 % per T1).

3.3. Parameter range
All dimensionless numbers are set to unity unless stated otherwise, implying that none
of the physical effects are neglected. The term χ is set to 0.3 to ensure that the
values of the surface tension with and without surfactants correspond to a reasonable
system. We explore capillary numbers in the 0.02–0.3 range, Péclet numbers in the
0.1–100 range and Biot numbers in the 0.1–10 range. The viscosity and density ratios
between the liquid and the gas are both set to 10. We also consider that the surface
and bulk Péclet numbers are equal (PeF=Pef =Pe). Thus, our parameter ranges do not
necessarily coincide with those expected in typical systems; for instance, the capillary
number in experiments is usually smaller. Although supercomputing resources were
used, our ability to explore parameter space was limited by the significant computing
time required. We note, however, that with Ca, Bi and Pe numbers covering one or
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FIGURE 3. The temporal evolution of the bubble configuration for Ca= 0.1, Bi= 0.1 and
Pe = 1 (case B in table 1). The lines correspond to the liquid–gas interface, i.e. φ = 0.
The first snapshot corresponds to t̃ = 1.82 and the time interval between two successive
snapshots is 1t̃= 0.19.

two decades, their influence can be clearly identified. Finally, it should be noted that
the present numerical method and configuration are also relevant for the description of
neighbour-switching dynamics in emulsions composed of oil droplets in water (Seth
et al. 2011). In this case, the ratio between the density of inner and outer fluids is
close to 1, while the viscosity ratio can be either smaller or larger than 1.

4. Numerical results and discussion
In this section, we present the results of numerical simulations and discuss their

physical interpretation. We conducted a parametric study that focused mainly on
the influence of the capillary number (i.e. the shear rate), the Péclet number (i.e.
the ability of surfactants to diffuse both in bulk and along the interface) and the
Biot number (i.e. the ability of bulk/surface exchange for surfactants). To reduce
computation time, most of the simulations were performed on half of the domain of
figure 2. All quantities shown below are for this two-bubble system.

4.1. Time variation of the system and forces
The temporal evolution of the interfaces is shown in figure 3 for parameters typical
of our simulations (Ca = 0.1, Bi = 0.1 and Pe = 1, or case B in table 1). One can
observe that T1 processes indeed occur, and that a stationary regime is reached after
two switches (t= 2/

√
3≈ 1.2 in reduced variables). To be more quantitative, we turn

to the forces exerted on the plates. The tangential force per unit width Ftot exerted
by the fluids on the bottom plate can be computed as the integral over the plate of
ex · (σ + Ts) · ez. Whether surfactants are present or not, the total force Ftot can be
separated into three contributions, defined as follows:

(i) the capillary force at the contact lines, Fcap =−
∑

contact lines γ nzsgn(nx), where n
is the normal to the interface;

(ii) the viscous drag force from the gas, Fvg =
∫

gas−plate µg(∂ux/∂z) dx;
(iii) the viscous drag force from the liquid, Fvl =

∫
liquid−plate µl(∂ux/∂z) dx.

The forces exerted by the fluids on the top plate are obtained by applying a minus
sign to the formulae above. All of these forces are represented in figure 4 as a
function of time in a dimensionless form, i.e. they are normalised by the equilibrium
surface tension γ0 in the surfactant-free case and γeq in the presence of surfactants.
As a reminder, γeq is linked to γ0 by the Langmuir equation of state (2.11), and,
with our parameter values, γ0/γeq is equal to 1.554. Similarly, capillary numbers are
defined with respect to the equilibrium surface tension.

Whether surfactants are present or not, the variations of the forces with time
exhibit common features. First, after one T1, the forces reach a stationary state and
periodically oscillate around a mean value. This oscillation coincides with the T1
process. In the following, we do not examine the transient regime and focus only on
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FIGURE 4. (Colour online) The forces applied by the fluids on the rigid plates for Ca=
0.2: solid lines, bottom plate; dotted lines, minus the forces on the top plate. From top
to bottom: the orange lines correspond to the capillary force, Fcap, the black lines to the
total force, Ftot = Fcap + Fvg + Fvl, the red lines to the viscous force in the liquid, Fvl,
and the blue lines to the viscous force in the gas Fvg. (a) Without surfactants; (b) with
surfactants at Bi= 10 and Pe= 1.

0.2

 1.0

2.0

10–110–2

Ca

FIGURE 5. (Colour online) The mean total force 〈Ftot〉 divided by the equilibrium surface
tension γeq as a function of the capillary number Ca. The different symbols correspond to
black triangles, no surfactants; red squares, Pe= 1, Bi= 10; blue circles, Pe= 1, Bi= 0.1;
orange diamonds, Pe = 100, Bi = 10. The solid line corresponds to 〈Ftot〉/γeq ∼ Ca, the
dashed line to 〈Ftot〉/γeq ∼Ca2/3 and the dotted line to 〈Ftot〉/γeq ∼Ca1/2.

the steady state. Second, the forces computed on the bottom and top plates coincide,
as expected from symmetry. Finally, the contribution of the capillary force is largely
dominant over the two viscous components.

4.2. Macroscopic rheology: force versus velocity
We now examine the dependence of the mean total force on the capillary number.
As can be seen from figure 5, 〈Ftot〉 increases with Ca and Pe, but decreases with Bi.
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Case Ca Surfactants Bi Pe Σ 〈D̃v〉 〈D̃s〉

A 0.1 no — — 0 8.9 —
B 0.1 yes 0.1 1 0.24 9.9 5.4
C 0.1 yes 10 1 0.14 9.0 3.5
D 0.1 yes 10 100 1.4 19.1 1.8

TABLE 1. Parameters for the illustrative cases considered in figures 6–9.

Large Péclet numbers imply that surfactants are significantly advected by the flow,
while small Biot numbers imply slow adsorption compared with the flow time
scale. In both cases, we expect a less homogeneous distribution of surfactants on the
interface, and hence the existence of Marangoni stresses and a larger force. The origin
of this force increase is discussed below. Now, for fixed Biot and Péclet numbers,
the force appears to vary as a power law of the capillary number, 〈Ftot〉/γeq ∼ Can,
with an exponent n between 0.5 and 1. Large Pe seems to yield a smaller exponent,
although the investigated range in Ca is too narrow to reach a clear-cut conclusion.
Sublinear scalings are common in phenomena coupling viscous flows and surface
tension, like the Landau–Levich problem (Landau & Levich 1942) or the sliding
of bubbles against a wall (Bretherton 1961; Aussillous & Quéré 2002; Hodges,
Jensen & Rallison 2004). However, as underlined by Cantat (2013), several sublinear
contributions can superimpose, making it difficult to identify the main dissipation
mechanisms in the problem.

4.3. Velocity field, viscous dissipation and surfactant distribution
To gain insight into the mechanisms involved during the T1 process, we now
characterise the local quantities. We do so for the four illustrative cases A–D given
in table 1; they all have Ca = 0.1 but they differ in their Biot and Péclet numbers.
The velocity fields, symbolised by arrows, are shown in figure 6. A derived quantity
is the local rate of viscous dissipation, defined as (see also appendix B)

Dv,loc =∇u : [µ(∇u+ (∇u)T)], (4.1)

which is shown in figure 7. Finally, the concentration of surfactants is plotted in the
bulk (figure 8) and along the interface (figure 9). The snapshots are taken at the
following instants: time of the third minimum (t1), average value (t2), maximum (t3)
and average value (t4) of the capillary force, as defined in figure 4. For convenience of
discussion, we identify three distinct types of film (see figure 2): stretched film, which
increases in thickness, squeezed film, which decreases in thickness, and the adjacent
film separating bubbles laterally.

Our main observations are as follows.

(i) In the absence of surfactants, the velocity field is of elongational nature (see the
encircled stretched film of case A at instant t3 in figure 6), the velocity vector
being almost normal to the interface. The viscous dissipation is significant in the
stretched film, but remains low in the squeezed film (see figure 7).

(ii) The interfacial profile of the surfactants, that is the surface concentration f (s)
along the curvilinear coordinate s, barely evolves with time during the bubble
rearrangement. This is shown in figure 9(a) for case B, but applies more
generally.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

88
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.887


234 A. Titta and others

0 0.5 1.0 0 0.5 1.0 0 0.5 1.0 0 0.5 1.0

0 0.5 1.0 0 0.5 1.0 0 0.5 1.0 0 0.5 1.0

0 0.5 1.0 0 0.5 1.0 0 0.5 1.0 0 0.5 1.0

0 0.5 1.0 0 0.5 1.0 0 0.5 1.0 0 0.5 1.0

1.0

0
0.2
0.4
0.6
0.8

1.0

0
0.2
0.4
0.6
0.8

1.0

0
0.2
0.4
0.6
0.8

1.0

0
0.2
0.4
0.6
0.8

A

B

C

D 1.0

0
0.2
0.4
0.6
0.8

1.0

0
0.2
0.4
0.6
0.8

1.0

0
0.2
0.4
0.6
0.8

1.0

0
0.2
0.4
0.6
0.8

1.0

0
0.2
0.4
0.6
0.8

1.0

0
0.2
0.4
0.6
0.8

1.0

0
0.2
0.4
0.6
0.8

1.0

0
0.2
0.4
0.6
0.8

1.0

0
0.2
0.4
0.6
0.8

1.0

0
0.2
0.4
0.6
0.8

1.0

0
0.2
0.4
0.6
0.8

1.0

0
0.2
0.4
0.6
0.8

x x x x

z

z

z

z

FIGURE 6. (Colour online) The velocity field at times t1, t2, t3 and t4 (from left to right)
defined in the text and in figure 4 for the cases A, B, C and D (from top to bottom)
described in table 1. Arrows represent velocity vectors. The green dotted circle indicates
the zone of extensional flow, while the red dashed circles show sheared films.

(iii) At intermediate Péclet number (Pe = 1), the effect of the Biot number, which
characterises the time scale of bulk/interface surfactant exchange (adsorption/
desorption), is investigated by comparing case B (Bi= 0.1) and case C (Bi= 10).
The influence of the Biot number remains limited when comparing the velocity
profile and viscous dissipation distribution, which are quite similar in the two
situations. Looking now at the surfactant distribution along the interface, we see
from figure 9(b) that it is not homogeneous. This implies that Marangoni stresses
are generated at the interface, but they are not sufficient to induce a rigid-like
behaviour of the interfaces for the flow (see below). Besides, the inhomogeneities
in surfactant distribution are more pronounced at the interface (respectively in
the bulk) for small (respectively large) Bi. This can be understood as follows. At
small Bi, the bulk/interface exchanges are too slow to occur during the course
of a rearrangement, while at large Bi, the gradient in interfacial concentration
leads to surfactant desorption (respectively adsorption) in the zone enriched
(respectively depleted) in surfactants, which smooths interfacial gradients but
induces bulk inhomogeneities.

(iv) The effect of the Péclet number is investigated by comparing cases C (Pe=1) and
D (Pe= 100). In the latter case, new features appear in the flow. The direction
of the velocity seems to be more parallel to the interface; the viscous dissipation
is not only located in the stretched film but also in the squeezed one. The shear
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FIGURE 7. (Colour online) The local rate of viscous dissipation Dv,loc as defined by (4.1)
at times t1, t2, t3 and t4 defined in the text (from left to right) and in figure 4 for the
cases A, B, C and D (from top to bottom) described in table 1.

occurring in the latter (see the squeezed film of case D at times t1 and t4 in
figure 6) can only be supported by Marangoni stresses at the interface, where
we consistently observe large gradients in interfacial concentration (figure 9b).
These large interfacial gradients also lead to large bulk inhomogeneities in
surfactant distribution. It seems that in this case, shearing of the liquid is
the main mechanism of foam flow. This last point echoes recent experimental
observations in another geometry where switching from an elongational profile
to shearing has been observed on varying the surfactant properties (Petit et al.
2015) or deformation rate (Seiwert et al. 2013).

4.4. Surface or bulk dissipation
4.4.1. Bulk dissipation

Our qualitative observations indicate that tuning of the surfactant properties
(desorption rate, diffusivity) not only affects the elongation of the interfaces and
the surfactant distribution, but also the nature of flow, by changing the interfacial
boundary condition from a mobile to a rigid-like interface. To put this point on a
quantitative basis, we first calculate the total viscous dissipation Dv =

∫
V Dv,loc dV ,

with Dv,loc given by (4.1). The non-dimensional and temporally averaged viscous
dissipation rate 〈D̃v〉 is reported in figure 10 as a function of Pe for Ca = 0.1 and
Bi = 1. It exhibits an increase by 60 % in our range of Péclet number at fixed
capillary number (i.e. the shear rate). This is only possible if the nature of the flow
is fundamentally changing. For shear to exist in the films, the interfacial stress needs
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FIGURE 8. (Colour online) The bulk surfactant concentration F at times t1, t2, t3 and t4
(from left to right) defined in the text and in figure 4 for the cases B, C and D (from
top to bottom) described in table 1. It should be noted that, for clarity, the F scale has
been truncated to values below 1.7, while F actually takes larger values in case D.
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FIGURE 9. (Colour online) (a) The interfacial surfactant concentration f as a function of
the curvilinear coordinate s (defined in figure 2 and in the inset) for case B (see table 1)
at instants t1 (pink dash-dotted line), t2 (solid black line), t3 (red dashed line) and t4 (blue
dotted line) defined in the text and in figure 4. Inset: snapshot of the interfacial surfactant
distribution ( f is colour-coded) at instant t3. (b) The interfacial surfactant concentration f
as a function of s at instant t3 for cases B (red dashed line), C (solid black line) and D
(blue dotted line) (see table 1).

to be large enough to sustain the viscous stress at the interface. To verify that this is
actually the case, we introduce the ratio

Σ =
hmin|∇sγ |max

µU
. (4.2)

Here, hmin is the minimum thickness reached during the T1 by the squeezed or
stretched films. The ratio Σ thus compares the maximum value of the Marangoni
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FIGURE 10. (Colour online) The temporally averaged viscous dissipation 〈D̃v〉 (red circles)
and the injected power 〈P̃inj〉 (black squares) as a function of the Péclet number for Ca=
0.1 and Bi = 1. The dashed line corresponds to the injected power 〈P̃inj〉 for the case
without surfactants.
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FIGURE 11. (a) The ratio Σ of Marangoni to viscous shear stress, as defined by (4.2), as
a function of Pe for the simulations of figure 10. (b) The ratio 〈D̃s〉/〈D̃v〉 of the effective
surface dissipation over the viscous dissipation, as a function of the Péclet number, for
the same simulations.

stress |∇sγ |max along the interface with the typical viscous stress for sheared films
µU/hmin. The ratio Σ is zero for (mobile) stress-free interfaces, while it should be of
order 1 for rigid-like interfaces sustaining shear. Values of Σ are reported for cases
A–D in table 1, and are plotted as a function of the Péclet number in figure 11(a).
One can indeed observe that the surface stress becomes comparable to the viscous
stress as soon as the Péclet number reaches 2, in full agreement with our previous
observations.

We now turn to the influence of the capillary number on the viscous dissipation.
Figure 12(a) shows that the (time-averaged) dimensionless viscous dissipation 〈D̃v〉

decreases with the capillary number. This may seem counterintuitive as one expects
the dissipation to increase with the velocity, but it should be kept in mind that the
actual viscous dissipation corresponds to 〈Dv〉=ρlU3H〈D̃v〉=µlU2

〈D̃v〉 since we have
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FIGURE 12. (Colour online) (a) The average viscous dissipation 〈D̃v〉 as a function
of Ca for different Péclet and Biot numbers (same symbols as in figure 5). (b) The
ratio 〈D̃s〉/〈D̃v〉 of the effective surface dissipation over the bulk viscous dissipation as
a function of Ca (same symbols as in figure 5).

Re= 1. This quantity indeed increases with the capillary number but more slowly than
Ca2, as in the problem of a bubble sliding against a plane (Cantat 2013). This is a
consequence of the sublinear behaviour of the total force as a function of Ca.

Finally, based on our estimation of the viscous dissipation, we can compare the
relative contributions of inertia and viscosity in the flow. As explained in appendix C,
and although the Reynolds number is fixed to unity, we have found that the role of
inertia remains limited in our simulations, presumably because of the confinement of
the liquid films.

4.4.2. Work by surface tension
We have shown that the liquid flow is of a different nature when the surfactant

properties are modified, and that at high Péclet number, the distribution of interfacial
surfactants becomes increasingly inhomogeneous and the viscous dissipation increases.
Now, if we compute the injected power Pinj (as the plate velocity times the applied
force), it is apparent from figure 10 that 〈Pinj〉 may be larger than the average viscous
dissipation. The difference reveals the work done by surface tension, Ds =

∫
Γ
γ (∇s ·

u) dS, as discussed in appendix B. This term can be seen as the 2D analogue of the
work done by pressure forces in compressible fluids. Numerically, the evaluation of
this interfacial quantity is delicate. However, in steady state, the variation of kinetic
energy over a rearrangement period should be zero, so that the time-averaged work
by surface tension, 〈Ds〉, can be readily calculated as 〈Pinj〉 − 〈Dv〉. Looking at 〈Ds〉

as a function of Pe, we see from figure 10 that it tends to zero with vanishing Pe
(in this case, the interface is homogeneous and the surface tension is constant, as
in the absence of surfactants), but that otherwise this contribution is positive. This
suggests that the work by surface tension may be seen as an effective dissipation
on the surfactant-covered interface (hence our notation Ds). It should be noted that
the interfaces considered here have no intrinsic surface viscosities and thus lack the
corresponding additional term. However, even without this effect, it is of interest to
investigate which contribution, surface or viscous, dominates the dissipation.

Figure 11(b) shows the ratio 〈D̃s〉/〈D̃v〉 as a function of the Péclet number for
Bi = 1 and Ca = 0.1. One can observe a maximum (≈0.5) reached at intermediate
Péclet numbers (≈1). This result is reminiscent of the famous model of Lucassen
& van den Tempel (1972) for interfacial viscoelasticity: assuming instantaneous
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adsorption/desorption but diffusion in the bulk, it predicts that the interfacial loss
modulus – which characterises the viscous response of the interface – vanishes
at both high and small frequencies (analogous to large and small Péclet numbers
respectively), but goes through a maximum at intermediate frequencies. Figure 12(b)
shows the dependence of 〈D̃s〉/〈D̃v〉 as a function of the capillary number Ca for
different Bi and Pe parameters. The values of 〈D̃s〉 and 〈D̃v〉 for the illustrative cases
A–D are also reported in table 1. No clear tendency is visible as the capillary or
Biot numbers are changed, but the effect of the Péclet number evidenced above
is recovered. (It should be noted that points for the no-surfactant system are also
shown in figure 12(b); in this case, the effective surface dissipation should be zero,
as the surface tension is uniform. We attribute the comparatively small scatter of the
numerical points around the zero value to inaccuracy in the calculation of viscous
dissipation due to the non-negligible width of the interfaces in our simulations.)

To recapitulate, the key point is that for all systems considered here, the viscous
dissipation is always dominant. This conclusion holds even if the pattern of dissipation
is changing with the surfactant properties. At low Péclet number, the interfaces are not
able to sustain the viscous stress and the flow is mainly elongational. At intermediate
Péclet number, the ratio between surface and bulk dissipation reaches a maximum.
This is the threshold above which interfacial stress sustains viscous shear, and viscous
dissipation starts to increase with the Péclet number (figure 10). These results are
supported by recent experiments in a model system (Petit et al. 2015), where the flow
in the film was observed to be of elongational or shear type depending on the nature
of the surfactants. However, the resulting picture presented here is very different from
other scenarios previously put forward in the literature for dissipation. In particular,
Tcholakova et al. (2008) showed that surface viscoelasticity can dominate the rheology
and the total dissipation in macroscopic foams, while Durand & Stone (2006) and
Biance et al. (2009) also concluded that it played the major role in their experiments
on T1 dynamics. These point to the role of intrinsic surface viscosities, known to be
large in some experimental systems (Golemanov et al. 2008).

As a final remark, we recall that the liquid fraction in our system is high
(ψl = 30 %), contrary to experiments; we anticipate that the dominant source of
dissipation may change at low liquid content. To test this point, we performed
additional simulations at Pe = 1, Bi = 1 and Ca = 0.1 for various liquid fractions in
the range ψl = 17 %–40 %. These results are shown in figure 13. We found that the
injected power 〈P̃inj〉 decreases with increasing liquid fraction ψl, while the viscous
dissipation 〈D̃v〉 barely changes. This indicates that the effective surface dissipation
〈D̃s〉 indeed becomes larger for drier foams, as shown in figure 13(b). However, the
liquid fraction range remains limited, and additional numerical developments are
necessary to reach realistic liquid fractions, as explained in the conclusion.

4.5. Film thickness and film rupture
Finally, we examine how the liquid distribution is modified by the coupling between
flow and surface tension effects. Observation of the interfaces in the illustrative
cases A–D (see figure 6 for instance) indicates that the thickness of the liquid films
depends on the parameter set. To analyse this point quantitatively, we extract for each
simulation the minimum thickness of the sheared films hmin (which separate the top
bubbles from the bottom ones) as well as hmin,adj, the minimum thickness between
adjacent (top–top or bottom–bottom) bubbles (see figure 2). Figure 14 reports both
thicknesses as functions of Ca and Pe. We observe that hmin increases with Ca, as
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FIGURE 13. (Colour online) (a) The temporally averaged viscous dissipation 〈D̃v〉 (red
circles) and injected power 〈P̃inj〉 (black squares) as a function of the liquid fraction ψl.
Other parameters are Ca= 0.1, Bi= 1 and Pe= 1. (b) The ratio 〈D̃s〉/〈D̃v〉 of the effective
surface dissipation over the viscous dissipation as a function of the liquid fraction ψl for
the same simulations.
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FIGURE 14. (Colour online) (a) Liquid film thicknesses hmin and hmin,adj as a function of
Ca for Bi=0.1 and Pe=1; (b) hmin and hmin,adj as a function of Pe for Ca=0.1 and Bi=1.
The solid black (respectively dashed red) arrow indicates the value of hmin (respectively
hmin,adj) without surfactants.

in the problem of bubbles sliding along a rigid plane (Cantat 2013). Meanwhile, due
to volume conservation, hmin,adj is reduced. Besides, for larger Pe, hmin also increases,
as expected for more rigid-like interfaces. These observations have implications for
the (in)stability of foams against coalescence. It has been shown (Biance et al. 2011)
that foam collapse, i.e. the occurrence of coalescence avalanches, can be triggered
by bubble rearrangements. The suggested mechanism is that some liquid films might
become extremely thin in the course of the T1 event, leading to their breaking. Our
results may provide information on the probable location of film breaking, which
might prove valuable in further studies of foam collapse.

5. Conclusion
We have presented numerical simulations of T1 events in a 2D semiperiodic system

of sheared bubbles. The level-set method employed fully accounts for the coupling
between the flow dynamics – incompressible Navier–Stokes equations – and the
dynamics of surfactants – bulk and interfacial diffusion, as well as bulk/interface
exchanges.
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Our approach offers a detailed view of all local fields in the course of a bubble
rearrangement and enables us to investigate the relative importance of diffusion,
desorption/adsorption, viscous effects and surface tension through a parametric study
of the Péclet, Biot and capillary numbers. A key result of our simulations is that
surfactant inhomogeneities are able to build up Marangoni stresses at the liquid–gas
interfaces, with significant consequences on the nature of viscous dissipation, including
the appearance of shear flow in the liquid films between the bubbles. We also identify
regimes where the work by surface tension leads to an effective surface dissipation,
which is reminiscent of the effective surface viscosity developed in the classical
model of surface dilatational viscoelasticity by Lucassen & van den Tempel (1972).
Besides, we show that as the capillary number increases, the mechanical response of
the system is strongly affected by the surfactant dynamics, thus providing microscopic
insight to understand foam or emulsion rheology. Finally, our detailed view of liquid
distribution in films may provide hints on the possible location for film rupture and
subsequent foam collapse.

The perspectives of this work are many, but are all motivated by bringing our
simulated systems closer to real foams. So far, the limitations of our system are
the following: (i) the geometry is two-dimensional; (ii) the density and viscosity
ratios between the liquid and the gas have been set to 10, which implies that the
effect of the gas is not negligible as we would expect in real foams; (iii) we only
consider the case of bubbles pinned against a solid wall, which hinders the flow
and surfactant dynamics compared with bubbles in the bulk of a foam; (iv) we
consider a very wet system, with unrealistically thick films. Regarding the first
two points, extension to three-dimensional systems and more realistic density and
viscosity values is straightforward but will prove demanding in terms of computation
time. The third point can be addressed by imposing some pseudoperiodic boundary
conditions in the vertical direction – accounting for the opposite velocities between
the top and bottom edges. In contrast, new developments will be required to reach
the low liquid fractions characteristic of actual foams, including additional terms to
prevent bubble coalescence upon contact. In actual foams, coalescence is prevented
by non-hydrodynamical forces, such as the disjoining pressure (Israelachvili 2010)
(including van der Waals, electrostatic or steric interactions), which are short-ranged
and thus computationally expensive. These non-hydrodynamic forces are also expected
to be crucial in bubble coalescence, and deserve further studies to understand how
foam collapse can be triggered by bubble rearrangements. Finally, future work will
also account for intrinsic surface dilatational and shear viscosities. This would allow
one to assess the relative importance of these contributions in foam rheology, and
open the way to a microscopic understanding of the link between foam macroscopic
behaviour and interfacial properties.

Acknowledgements

The authors thank the région Rhône-Alpes through ARC Énergies for funding.
This work was granted access to the HPC resources of CINES under the allocation
A0032B06893 made by GENCI. The authors also thank the méso-centre FLMSN for
use of computational resources, and are grateful to Z. Solomenko for his help with
the numerical code.

Appendix A. Validation of the numerical method
Several validations have been conducted on the numerical method. First, as

regards numerical stability, we first investigated the generation of spurious currents
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FIGURE 15. (Colour online) Simulations of a sheared droplet. (a) Droplet shape (black)
and bulk surfactant concentration (colours) at t = 2H/U for Bi = 20, PeF = 8 and all
other parameters set to values similar to those of Teigen et al. (2011). (b) The interfacial
surfactant concentration f as a function of the normalised curvilinear coordinate s/smax
for three parameter sets corresponding to increasing inhomogeneities: (blue) Bi= 20 and
PeF = 8; (red) Bi = 2 and PeF = 80; (black) Bi = 0.2 and PeF = 8. The solid lines are
results from our level-set simulations, while the dashed lines were obtained by Teigen
et al. (2011) using a diffuse-interface approach. The coordinate s increases clockwise, and
its origin is shown by the white cross in (a).

(Solomenko et al. 2017), using as a test configuration a bubble at rest. Not only were
those currents found to be of negligible magnitude, with a relative velocity variation
below 10−3, but the presence of surfactants actually results in a damping of these
unwanted velocity fluctuations. Second, we observed with the initial implementation
a significant drift in the total amount of surfactants; the problem was overcome by
adjusting the boundary conditions on the plate, as described in § 3.2.1. Finally, a
quantitative comparison was made with the results of Teigen et al. (2011), obtained
with a diffuse-interface method. The configuration is close to ours, with a single
bubble sheared by the motion of bottom and top plates (figure 15a). Figure 15(b)
shows the surfactant concentration f as a function of the position s along the interface
for several values of the Biot and Péclet numbers. Our curves are in close agreement
with those of Teigen et al. (2011).

Appendix B. Viscous dissipation and work by surface forces

In the following, we detail the different contributions to dissipation in our system.
The total variation of kinetic energy K is given by

dK
dt
=

∫
V
ρu ·

Du
Dt

dV. (B 1)

By substituting the acceleration term from the generalised Navier–Stokes equation (2.4)
with the total stress tensor Ttot = σ + Ts, we obtain

dK
dt
=

∫
V

u · (∇ · Ttot)dV (B 2)

or
dK
dt
=

∫
V
∇ · (u · Ttot) dV −

∫
V
(∇u : Ttot) dV. (B 3)
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Using the Green–Ostrogradsky theorem, the first term can be rewritten as an integral
over the volume boundary S, here the top and bottom plates,∫

V
∇ · (u · Ttot) dV =

∫
S

u · Ttot · n dS=
∫

S,top
UText,top dS−

∫
S,bot

UText,bot dS, (B 4)

where Text is the stress exerted on the fluid at the plates and U is the plate velocity.
Since the total stress includes a bulk contribution (pressure and viscous stress) and
a surface one (interfacial stress tensor), this results for the top plate in a viscous
contribution, which reads per unit width

UFv =
∫

S,top
µU

∂ux

∂z
dx, (B 5)

and a capillary one
UFcap =

∑
contact lines

Uγ cos(θ), (B 6)

where θ is the angle between the normal to the interface and the z-axis. The above
two equations are used in §§ 4.1 and 4.2 to compute the forces at the wall. It should
be noted also that (B 4) corresponds to the instantaneous injected power Pinj.

We now focus on the second term on the right-hand side of (B 3), which represents
the dissipation rate in the system,

D=
∫

V
(∇u : Ttot) dV. (B 7)

Use of the expression for the total stress Ttot and the fact that the flow is
incompressible yields

D=Dv +Ds =

∫
V
∇u : [µ(∇u+ (∇u)T)] dV +

∫
V
∇u : Ts dV. (B 8)

Whereas the first term Dv corresponds to the usual viscous dissipation as computed
in § 4.4.1, the second term Ds is a contribution from the liquid–gas interfaces, which
can be rewritten as

Ds =

∫
Γ

∇u : (γ Is) dS=
∫
Γ

γ (∇s · u) dS. (B 9)

The term Ds can be interpreted as the rate of change of surface energy (Dangla 2012)
or as the instantaneous work done by surface tension, a 2D analogue of the work
done by pressure forces in compressible fluids. In general, this quantity can take
either positive values (e.g. if interfaces are being stretched) or negative values (e.g.
for homogeneous γ if interfaces are being compressed). It should be noted, however,
that if the surface dilatational viscosity µs were incorporated into the expression
of the interfacial stress tensor Ts (Erni 2011; Sagis 2011), this would contribute to
Ds as

∫
Γ
µs(∇s · u)2 dS, which is always positive, and indeed corresponds to a true

dissipation term.
As the shear-driven T1 events considered in our simulations quickly reach a steady

state, we also consider the energy balance (B 3) after time-averaging over one period.
Since the kinetic energy is constant on average (〈dK/dt〉 = 0), this reduces to

〈Pinj〉 = 〈Dv〉 + 〈Ds〉, (B 10)
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FIGURE 16. The dimensionless kinetic energy K̃ as a function of time t for case A
(see table 1).

which we use in the present study to estimate the average surface work 〈Ds〉. For
interfaces with constant surface tension γ0, 〈Ds〉 = γ0〈

∫
Γ
(∇s · u) dS〉 would vanish as

the variation in total length averages to zero. However, for surfactant-laden interfaces,
we found that 〈Ds〉 can be significant in magnitude (≈〈Dv〉/2), and is generally
positive, which we interpret as an effective surface dissipation.

Appendix C. Influence of inertia
Our simulations were conducted for Re = µlUH/ρl = 1. The Reynolds number

compares inertial and viscous effects, so that inertia is not negligible here a priori.
However, in our configuration, viscous flows are mostly confined to the liquid films
that separate bubbles, and viscosity may thus dominate inertia. To quantify this point
in the illustrative case A (no surfactants, Ca= 0.1; see table 1), we consider the total
kinetic energy of the system K =

∫
dVρ|u|2, which is reported in dimensionless form

as a function of time in figure 16. As expected, we find that, after a transient, the
kinetic energy oscillates as rearrangements proceed. The average kinetic energy is
〈K̃〉 ≈ 0.3, whereas the oscillation amplitude is of order 0.1 and its period is ≈ 0.6,
from which we obtain a rough estimate of dK̃/dt≈ 0.2. To assess the importance of
inertia compared with viscous forces, we finally compare this value with the average
viscous dissipation in the same simulation, which is 〈D̃v〉 = 8.9 (table 1); as a first
approximation, the effect of inertia can be neglected in the present simulations.
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