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Abstract We consider a simple preferential attachment graph process, which begins with a finite graph
and in which a new (t + 1)st vertex is added at each subsequent time step t that is connected to each
previous vertex u ≤ t with probability du(t)/t, where du(t) is the degree of u at time t. We analyse
the graph obtained as the infinite limit of this process, and we show that, as long as the initial finite
graph is neither edgeless nor complete, with probability 1 the outcome will be a copy of the Rado graph
augmented with a finite number of either isolated or universal vertices.
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1. Introduction

Since its introduction by Barabási and Albert in [1], the mechanism of preferential
attachment (PA) has been highly influential among scientists seeking to model real-world
networks. In PA processes, a new vertex is introduced at each time step, which is then
connected to each pre-existing vertex with a probability depending on the current degree
of that vertex. The study of PA and related processes thus presents a new challenge in
the mathematics of random graphs, differing from the classical approach of the Erdős–
Rényi school who principally study structures arising from the following simpler process:
at each time step, introduce a new vertex and connect it to each previous vertex with
some fixed probability p.

Thus, an important question is whether the mathematics of PA processes can be devel-
oped to the same advanced level as the Erdős–Rényi theory. Recall that this theory has
two distinct facets. First, researchers have analysed in great detail the finite graphs which
emerge. Here, questions of interest include the emergence of a giant component and the
degree distribution of the vertices, and analyses are typically highly sensitive to the value
of p. See [2] for a comprehensive discussion of such matters.

The second angle of approach is to understand the infinite limit of the process. In this
case, a remarkable theorem of Erdős and Rényi guarantees that, irrespective of the value
of p ∈ (0, 1), the resulting graph will, with probability 1, be isomorphic to the following
important structure.
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Definition 1.1. The Rado graph is a graph on a countably infinite set of vertices
satisfying the following: given any disjoint finite sets of vertices U and V , there exists a
vertex v connected to each vertex in V and none in U .

This graph exhibits many interesting properties. To start with (and justifying our use
of the definite article), it is countably categorical, meaning that any two graphs obeying
the definition are automatically isomorphic. Beyond this, all finite and countably infinite
graphs isomorphically embed in it. For these and other reasons, this structure is an object
of central importance in several branches of mathematics. See [5] for a recent survey.

This division between the finite and infinite is equally applicable to the study of PA
processes. On the finite side, a good amount of progress has been made. Notably, in [7]
and [6], Dereich and Mörters analyse the following family of PA processes: at stage t,
we have a directed graph DG(t) into which a new vertex t + 1 is introduced. For each
previous vertex u, an edge from t + 1 to u is introduced independently with probability
f(Iu(t))/t, where f is a fixed sublinear function and Iu(t) is the indegree of u in DG(t).
The model considered in this paper (Definition 2.1 below) is essentially a linear version
of theirs, although we consider our structures as undirected graphs. Dereich and Mörters
successfully extract a great deal of valuable information about this process, including the
distributions of in- and outdegrees.

This follows earlier work from Bollobás et al. [3] and Bollobás and Riordan [4] on
analysing networks arising from a PA process in which a fixed number m of edges are
added at each stage and are connected to previous vertices with probability directly
proportional to their degrees.

The infinite limits of such processes have received less analysis, and this is our focus
here. Our entry point is the paper of Kleinberg and Kleinberg [10], in which a process is
studied whereby a single vertex and a constant number C of edges are added at each time
step, with each new edge starting at the new vertex and with endpoint independently cho-
sen among the pre-existing vertices with probability proportional to their degree. Thus,
these structures are analysed as directed multigraphs in that each edge has a direction,
and there may exist two or more edges sharing the same start and end-points. (Loops
from a vertex to itself are not permitted, however.)

Kleinberg and Kleinberg show that, in each of the cases C = 1 and C = 2, there is, up
to isomorphism, a unique infinite limiting structure, which the process approaches with
probability 1. (They also show that the analogous result fails for C ≥ 3.)

We proceed in a similar spirit, pinning down the limiting structure up to isomorphism.
However, in our model, the number of edges added at each stage is not prescribed, but
is itself a random variable. Specifically, our model connects the new vertex t + 1 to each
previous vertex u ≤ t with probability du(t)/t, where du(t) is the degree of u at time t.
(As mentioned above, in the current model, edges are directionless, and parallel edges
are not permitted.)

Thus, our graphs are denser than those of Kleinberg and Kleinberg: where the expected
number of edges in their graphs is linear in the number of vertices, in our case it is
quadratic (this is made explicit in Lemma 4.1 below).

In Theorem 2.3 below, we establish that, as long as the initial graph is neither complete
nor edgeless, our process will with probability 1 approach the Rado graph, or a modifi-
cation of it in which a finite number of universal or isolated vertices are incorporated.
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In § 5, we outline an adaptation of the foregoing machinery to a variation of the model
with probability of attachment given by λ · du(t)/t for some constant λ ∈ (0, 1]. We make
the case (omitting the delicate conditional probability considerations) that if λ < 1, with
probability 1 the limiting structure will be non-isomorphic to an augmented Rado graph.

In [8] (an as yet unpublished work developed simultaneously with the current paper),
the author analyses a family of PA processes in which parallel edges are permitted and in
which the number of edges added at each stage is prescribed. Specifically, it is shown that
if f(t) edges are added at time t, where f is asymptotically bounded above and below
by linear functions in t, then with probability 1 the process will approach the natural
multigraph analogue of the Rado graph. (We refer the reader to [8, Definition 2.1] for the
formal definition.)

2. The process

Definition 2.1. Let G′ be any finite graph containing at least two vertices. We take its
vertex set to be {0, 1, . . . , v′}, and we let G(t) := G′ for all t ≤ v′. For t ≥ v′, we create a
new graph G(t + 1) by introducing a new vertex t + 1 which is connected to each previous
vertex u ≤ t with probability pu(t + 1) = du(t)/t, where du(t) is the degree of vertex u
in G(t).

Notice that, in the current model, as in [7], but in contrast to [8] and [11], the number
of edges added at each stage is itself a random variable.

Remark 2.2. G(t) contains t + 1 vertices, and thus du(t) may take any value between
0 and t. Now if du(t′) = 0 for any t′, then automatically du(t) = 0 for all t ≥ u. Likewise,
if du(t′) = t′, then du(t) = t for all t ≥ u. Thus isolated vertices remain isolated, and
universal vertices (i.e., vertices connected to every other) remain universal. Of course, no
graph can contain both.

We shall call isolated and universal vertices non-standard and all others standard.

Our interest is the infinite limit of this process G(∞), and we shall prove the following
theorem.

Theorem 2.3.

1. If G′ is complete, then G(∞) is complete.

2. If G′ is edgeless, then so too is G(∞).

3. For any other G′, with probability 1, the infinite limit G(∞) is isomorphic to one
of the following:
• the Rado graph, augmented with a finite number of isolated vertices; or

• the Rado graph, augmented with a finite number of universal vertices.

The first two clauses of Theorem 2.3 are immediate from Remark 2.2 above, so we con-
centrate on the third, and we make the standing assumption that G′ is neither complete
nor edgeless (from which it immediately follows that no stage is complete or edgeless).
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Since, by Remark 2.2, non-standard vertices can be recognized as soon as they appear
and are of little interest, we might amend the process by immediately discarding each
non-standard vertex when it appears. Theorem 2.3 then guarantees that we will obtain
the Rado graph as the infinite limit of this modified process.

It will be convenient to amend the model as follows: we colour each edge as described
in Definition 2.1 black, and we introduce the new rule that every pair of distinct vertices
in G(t) is connected by a white edge if and only if it is not connected by a black edge.
(Thus the white graph is the complement of the black graph. We imagine that, on white
paper, these edges will become invisible.) Now let dw

u (t) be the white degree of the vertex
u at time t, and let db

u(t) be its black degree. This introduces a useful symmetry to the
process.

Remark 2.4. At any stage (t), for any vertex u ≤ t, it holds that dw
u (t) + db

u(t) = t.
Thus, in G(t + 1), the probability that vertex u is connected to vertex t + 1 with a white
edge is precisely 1 − (db

u(t)/t) = dw
u (t)/t.

3. The standard vertices

Remark 3.1. For a fixed vertex u, we can consider the edges of each colour emanating
from u as black or white balls within a Pólya urn. Our process then is identical to selecting,
at each stage, a ball from the urn uniformly at random and then returning it along with a
second ball of the same colour. This observation would allow us to appeal to known facts
about the limiting proportions of black balls in the urn as given by a beta distribution
Beta(db

u(t0), dw
u (t0)). See, for instance, [9]. From this, we could easily derive the main

result of this section, Proposition 3.9.
Nevertheless, we opt to provide a self-contained elementary argument, since we shall

not need the details of the beta distribution, and since also the main technical ingredient
of our argument, Proposition 3.8, will, in any case, be required for separate purposes
in § 4.

Lemma 3.2. For any standard vertex u in any stage G(t0), the probability that u
never receives another black edge is 0. The same goes for white edges.

Proof. Suppose that, at time t0, u has black degree d(t0) = D > 0. The probability
that u never receives another black edge is therefore

∞∏
t=t0

(
1 − D

t

)
.

We shall show that this is 0. Taking logarithms, it is therefore enough to show that

∞∑
t=t0

ln
(

1 +
D

t − D

)

diverges to ∞. This follows from the divergence of the harmonic series since, for all small
enough x, we know that ln(1 + x) > 1

2x.
An identical argument applies after replacing ‘black’ with ‘white’. �
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Corollary 3.3. Given any state of the graph G(t0) containing any standard vertex u,
with probability 1 it will be true that db

u(t) → ∞ and dw
u (t) → ∞ as t → ∞.

Proof. This follows automatically from Lemma 3.2 by the countable additivity of the
probability measure. �

Definition 3.4. Given a vertex u and a colour c ∈ {b, w}, we define

U c
u(t + 1) := dc

u(t + 1) − dc
u(t),

Xc
u(t) :=

dc
u(t)
t

.

We shall suppress the subscript u and superscript c in the above when they are clear
from context.

Lemma 3.5. For any vertex u and colour c ∈ {b, w}, we have the following.

(i) For all t, Xc
u(t) ∈ [0, 1]. If u is standard, then Xc

u(t) ∈ (0, 1).

(ii) (Xc
u(t))t≥u is a martingale.

(iii) With probability 1, there exists xc
u ∈ [0, 1] such that dc

u(t)/t → xc
u.

(iv) Furthermore, xb
u + xw

u = 1.

Proof. The first part is immediate from the definitions. Writing X for Xc
u, we show

that X(t) is a martingale: i.e.,

E
(

X(t + 1)
∣∣∣
∣∣∣ X(t) =

d

t

)
=

1
t + 1

E(d(t + 1))||d(t) = d)

=
1

t + 1

(
d +

d

t

)
=

d

t
= X(t).

Part (iii) follows from parts (i) and (ii) by Doob’s convergence theorem. Part (iv) follows
too, since Xb(t) + Xw(t) = 1 by Remark 2.4. �

Remark 3.6. By Lemma 3.5(i), the martingale (Xc
u(t))t≥u is bounded in L2.

Our next goal is to show (in Proposition 3.9 below) that with probability 1 we have 0 <
xc

u < 1. Towards this, we recall some martingale machinery from [10], which we express
more generally for subsequent reuse. First, recall the Kolmogorov–Doob inequality.

Theorem 3.7 (Kolmogorov–Doob inequality). Suppose that (Z̃(n))n∈N is a non-
negative submartingale and α > 0. Then, for any N ∈ N,

P
(

max
n≤N

Z̃(n) ≥ α

)
≤ 1

α
E(Z̃(N)).

Proposition 3.8. Suppose that (Z(t))t∈N is a martingale with limit z such that, with
probability 1, there exist α,A > 0 and t1 ≥ 3 (each of whose values may be given by
random variables) so that:
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(i) Z(t) ∈ (0, 1) for all t ≥ t1;

(ii) t · Z(t) > α for all t ≥ t1;

(iii) for all t > m ≥ t1,

E(Z(t + 1)2 − Z(t)2||Z(m)) <
A

t2
· Z(m);

(iv) β := 8A/α < 1.

Then P(z > 0) = 1.

Proof. The argument is essentially contained in [10], but we include it here for
completeness. Given any n > m ≥ t1, define

Z̃m(n) := (Z(n) − Z(m))2.

Thus, by our third hypothesis, for all n > m,

E(Z̃m(n)||Z(m)) =
n−1∑
t=m

E(Z(t + 1)2||Z(m)) − E(Z(t)2||Z(m))

< A · Z(m) ·
∞∑

t=m

1
t2

<
2A

m
· Z(m)

since m ≥ 3.
Notice too that, for fixed m, the sequence (Z̃m(n))n forms a submartingale.
Now, beginning at any time t0, we may define a sequence of times: n0 = t0. Let ni+1

be the least n ≥ ni (if any exists) such that Z(n) < 1
2Z(ni). Otherwise, ni+1 = ∞.

We next apply the Kolmogorov–Doob inequality (Theorem 3.7) to Z̃ni
(n).

P(ni+1 < ∞||ni < ∞) = P
(

min
n≥ni

Z(n) <
1
2
Z(ni)||Z(ni)

)

≤ P
(

max
n≥ni

Z̃ni
(n) >

1
4
Z(ni)2||Z(ni)

)

= lim
N→∞

P
(

max
n:N≥n≥ni

Z̃ni
(n) >

1
4
Z(ni)2||Z(ni)

)

≤ 4
Z(ni)2

· lim
N→∞

E(Z̃ni
(N)||Z(ni)).

The above holds if we start at any time t0. However, with probability 1, the time t1
exists as described. In the case t0 ≥ t1, we find that

P(ni+1 < ∞||ni < ∞) <
8A

Z(ni) · ni
< β.

Since β < 1, it follows that the event that every ni is finite has probability zero, giving
the result. �

https://doi.org/10.1017/S0013091519000336 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091519000336


A P.A. process approaching the Rado graph 449

Proposition 3.9. Given any standard vertex u, we have P(xc
u > 0) = P(xc

u < 1) = 1.

Proof. As usual, we write X for Xc
u and x for xc

u.
The result will follow by Proposition 3.8 applied to X(t), once we have verified its

hypotheses. The first follows by the assumption that u is standard. For the second, note
that, by Corollary 3.3 with probability 1, we will see dc

u(t0) ≥ 16 (say) for some t0. Thus
we may take α = 16.

For the third, recall that U(t + 1) := d(t + 1) − d(t). So U(t + 1) is a Bernoulli variable
with

E(U(t + 1)||d(t) = d) = E(U(t + 1)2||d(t) = d) =
d

t
.

Since d(t + 1)2 = d(t)2 + 2d(t)U(t + 1) + U(t + 1)2,

E(d(t + 1)2||d(t) = d) = d2 + 2d · d

t
+

d

t

<
d

t
+ d2

(
1 +

1
t

)2

= X + X2(t + 1)2.

Now

E(X(t + 1)2||d(t) = d) =
1

(t + 1)2
· E(d(t + 1)2 || d(t) = d)

<
1

(t + 1)2
X(t) + X(t)2.

Since E(X(t)||X(m)) = X(m), by the law of total expectation,

E(X(t + 1)2 − X(t)2||X(m)) <
1
t2

X(m). (3.1)

Taking A = 1 gives the result. �

We may now prove the first part of Theorem 2.3.

Proposition 3.10. The subgraph of G(∞) comprising the standard vertices is
isomorphic to the Rado graph.

Proof. Let U = {ui : i ≤ n} and V = {vj : j ≤ m} be disjoint finite sets of standard
vertices, and let t0 be any stage of the process. Our initial goal is to establish the existence
of a witness for (U, V ), i.e., a vertex adjacent to each ui and no vj , which emerges at
some time t1 > t0.

For each ui (respectively, vj), by Lemma 3.5 and Proposition 3.9 there exists xi (respec-
tively, yj) in (0, 1) representing the limiting proportion of neighbours of ui (vj) among
all vertices. Since a vertex w > max{ui, vj : i ≤ n, j ≤ m} is connected to each ui or vj

independently of whether it is connected to the others, it follows with probability 1 that
the limiting proportion of witnesses for (U, V ) is given by

∏n
i=1 xi ·

∏m
j=1(1 − yj) > 0.
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Thus with probability 1, there are infinitely many such witnesses, and thus at least one
arises after stage t0.

To complete the proof, we enumerate all possible pairs of disjoint finite sets (Ui, Vi)i∈N.
Then let t0 be the first stage at which (U0, V0) receives a witness and let ti+1 be the first
stage strictly after ti at which (Ui+1, Vi+1) receives a witness.

Then, by the argument above and the countable additivity of the probability measure,
with probability 1 every ti is finite, as required. �

4. The non-standard vertices

Recall our standing assumption that G′ (and thus every stage of the process) is neither
complete nor edgeless. Thus we remain under the hypotheses of part 3 of Theorem 2.3.
Our goal in this section is Proposition 4.6, where we show that the non-standard vertices
in G(∞) remain finite with probability 1. As in the previous section, we employ the
machinery of martingales.

Lemma 4.1. Write Ec(t) for the number of edges of colour c in G(t).
Define Y c(t) := Ec(t)/(t(t + 1)). Then:

(i) Y c(t) ∈ (0, 1);

(ii) (Y c(t))t is a Martingale; and

(iii) Y c(t) → yc for some yc ∈ [0, 1].

Proof. Omitting the superscript c, since G(t) is not edgeless (in either colour) we
know that Y (t) > 0. Also, E(t) < ( t

2 ), which implies that Y (t) < 1. Now,

E(dt+1(t + 1)||G(t)) =
t∑

u=0

du(t)
t

=
2E(t)

t
.

Also E(t + 1) = E(t) + dt+1(t + 1). It follows that

E(E(t + 1)||G(t)) =
(

t + 2
t

)
· E(t).

Therefore E(Y (t + 1))
∣∣∣∣Y (t)) = Y (t) and thus Y is a martingale. Part (iii) follows by

Doob’s convergence theorem. �

Remark 4.2. The Martingale Y (t) converges in L2.

Our next aim is to show that with probability 1, in fact, y > 0. This will again follow
from Proposition 3.8, once we have shown that its hypotheses hold. The first is part (i)
of Lemma 4.1. We turn our attention to the second hypothesis.
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Proposition 4.3. Given any state of the graph G(t0) and c ∈ {b, w}, with probability
1 there exist α > 0 and t1 ≥ t0 such that, for all t ≥ t1,

t · Y c(t) > α.

Proof. We suppress the superscript c, as usual. First, notice that, by definition, t ·
Y (t) = 1/(t + 1) · E(t).

Let ε > 0. We show that suitable α and t1 exist with probability > 1 − ε. Pick a
standard vertex u in G(t0) and pick i large enough that 2−i < ε. Then, by Proposi-
tion 3.9, with probability > 1 − ε we have xu ≥ 1/2i · 8/t0. Thus, for some large enough
t1 and all t ≥ t1, we have du(t) > (1/2i)(4/t0) · t and thus E(t) > (1/2i)(4/t0) · t and
(1/(t + 1))E(t) > α := (1/2i)(2/t0). �

Proposition 4.4.

E(Y (t + 1)2||Y (t)) − Y (t)2 <
2
t3

· Y (t).

Proof. Suppressing the superscript C and writing E for E(t) and d for dt+1(t + 1), we
have

E(Y (t + 1)2||Y (t)) − Y (t)2

=
1

(t + 1)2(t + 2)2
E((E + d)2||Y (t)) − 1

t2(t + 1)2
E2

=
1

t2(t + 1)2(t + 2)2
(t2(E2 + 2EE(d||Y (t))) + E(d2||Y (t)) − (t + 2)2E2).

Now, conditioning on E(t), the random variable d = dt+1(t + 1) has a Poisson-binomial
distribution with expectation 2E(t)/t and variance

t∑
u=0

(
1 − du(t)

t

)
du(t)

t
<

t∑
u=0

du(t)
t

=
2E(t)

t
,

meaning that

E(d2||Y (t)) = E(d||Y (t))2 + Var(d||Y (t))

<
4E2

t2
+

2E
t

.

Thus

E(Y (t + 1)2||Y (t)) − Y (t)2

<
1

t2(t + 1)2(t + 2)2

(
t2

(
E2 +

4E2

t
+

4E2

t2
+

2E
t

)
− (t + 2)2E2

)
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=
2tE

t2(t + 1)2(t + 2)2

=
2

(t + 1)(t + 2)2
· Y (t)

<
2
t3

· Y (t). �

Proposition 4.5. Given any state of the process G(t0) and c ∈ {b, w}, with probabil-
ity 1 we have yc > 0.

Proof. As discussed above, we proceed using Proposition 3.8. The first hypothesis
comes from Lemma 4.1 and the second comes from Proposition 4.3. The third follows
from Proposition 4.4 above: we may pick A as we like, say, A = α/16. By increasing t1
by some predictable amount, we obtain that, for t ≥ t1,

E(Y (t + 1)2 − Y (t)2||Y (t)) <
A

t2
· Y (t). (4.1)

The law of total expectation now gives the third hypothesis, and the fourth is immediate
from our choice of A, giving the result. �

The following result completes the proof of Theorem 2.3.

Proposition 4.6. Given any state G(t0), the number of non-standard vertices in G(∞)
will be finite with probability 1.

Proof. Let ε > 0 and let Δ be the event |{t : dt(t) = 0}| < ∞. Our goal is to show
that P(Δ) ≥ 1 − ε. (This and everything that follows is conditioned upon G(t0), which
we suppress.)

First, by Proposition 4.5, there exists γ > 0 such that

P(y < 2γ) < ε. (4.2)

(The 2 is included simply for our convenience.) Next, by Proposition 4.4 above and the
law of total expectation, for any t ≥ t1 ≥ t0,

E(Y (t + 1)2 − Y (t)2||Y (t1)) <
2
t3

.

Summing successive expressions, by the linearity of expectation, there is some C > 0 so
that, for all T ≥ t, we see that

E(Y (T + 1)2 − Y (t)2||Y (t1)) <
C

t2
.

Thus, by linearity and Remark 4.2,

E(y2 − Y (t)2||Y (t1)) <
C

t2
. (4.3)
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Furthermore, by Remark 4.2 again, E(y || Y (t)) = Y (t) and thus

E((y − Y (t))2 || Y (t)) = E(y2 − Y (t)2 || Y (t)).

So, by the law of total expectation and bound (4.3),

E((y − Y (t))2) <
C

t2
.

Thus by Markov’s theorem, for any δ > 0,

P(|y − Y (t)| > δ) <
C

δ2t2
.

Since
∑∞

t=t0
C/δ2t2 < ∞, by the Borel–Cantelli lemma, the number of t for which it holds

that |y − Y (t)| > δ will be finite with probability 1.
Taking δ = γ and noticing that E(t) < γt2 ⇒ Y (t) < γ, we define Γ to be the event

|{t : E(t) < γt2}| < ∞. Then

P(Γ || y ≥ 2γ) = 1. (4.4)

Also, for any ξ > 0 (the case ξ = γ is of primary interest),

E(dt+1(t + 1)||E(t) ≥ ξt2) = E
( t∑

u=0

Uu(t)||E(t) ≥ ξt2
)

= E
( t∑

u=0

du(t)
t

||E(t) ≥ ξt2
)

=
2 · E(E(t)||E(t) ≥ ξt2)

t
≥ 2ξt.

Since each Uu(t) ∈ [0, 1], applying Hoeffding’s inequality gives

P(dt+1(t + 1) = 0 || E(t) ≥ ξt2)

≤ P(E(dt+1(t + 1)) − dt+1(t + 1) > ξt || E(t) ≥ ξt2)

≤ e−(2ξ2t2/(t+1)) < e−ξ2t.

Furthermore, clearly, E(y || E(t) ≥ γt2) ≥ E(y), and thus P(y ≥ 2γ || E(t) ≥ γt2) ≥
P(y ≥ 2γ). Hence by Bayes’ theorem,

P(E(t) ≥ γt2 || y ≥ 2γ) =
P(y ≥ 2γ || E(t) ≥ γt2)

P(y ≥ 2γ)
· P(E(t) ≥ γt2)

≥ P(E(t) ≥ γt2).

By (4.4),

P(E(t) ≥ γt2 || Γ&y ≥ 2γ) = P(E(t) ≥ γt2 || y ≥ 2γ),
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so

P(E(t) ≥ γt2 || Γ&y ≥ 2γ) ≥ P(E(t) ≥ γt2).

Likewise,

P(dt+1(t + 1) = 0 || E(t) ≥ γt2& Γ&y ≥ 2γ)

≤ P(dt+1(t + 1) = 0 || E(t) ≥ γt2)

< e−γ2t.

Now
∑∞

t=t0
e−γ2t converges to a finite limit, and thus, by the Borel–Cantelli lemma again,

we see that

P(Δ ||Γ&y ≥ 2γ) = 1. (4.5)

The result follows from (4.2), (4.4) and (4.5). �

5. Closing comments on generalizations

The current work considers only one model (modulo the initial graph), so it is natural
to ask whether the result generalizes to related models, such as one with attachment
probability λ · d

t for some λ ∈ (0, 1]. We offer an informal argument that it is only in the
case λ = 1 that the infinite limit will be the Rado graph.

Much of the preceding theory goes through. In particular, one can define a martingale

Xu(t) :=
d(t)

u · ∏t−1
j=u

(
1 + λ

j

) .

Considering the limit of this martingale and the characterization of the Γ-function as
Γ(λ) := limt→∞(tλ/

∏t
j=0(1 + λ/j)), one may find C ≥ 0 so that, for all large enough t,

we have d(t) ≤ C · tλ.
Now consider (as per the proof of Proposition 3.10) a witness request (U, V ), where

|U | = n. (For simplicity, we can take V = ∅.) For all large enough t, the probability of
a suitable witness appearing at time t is bounded above by c · t(λ−1)n for some c > 0.
Thus, omitting the intricacies of various conditional probability calculations, it is only
in the case λ = 1 that we expect to be able to guarantee the eventual appearance of
such a witness. In particular, among the infinitely many witness requests (U, V ), where
|U | > 1/(1 − λ), with probability 1 at least one will fail to be satisfied, making the limit
non-isomorphic to an augmented Rado graph.
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