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Abstract. A holomorphic endomorphism of CPn is post-critically algebraic if its crit-
ical hypersurfaces are periodic or preperiodic. This notion generalizes the notion of
post-critically finite rational maps in dimension one. We will study the eigenvalues of
the differential of such a map along a periodic cycle. When n = 1, a well-known fact
is that the eigenvalue along a periodic cycle of a post-critically finite rational map is
either superattracting or repelling. We prove that, when n = 2, the eigenvalues are still
either superattracting or repelling. This is an improvement of a result by Mattias Jonsson
[Some properties of 2-critically finite holomorphic maps of P2. Ergod. Th. & Dynam.
Sys. 18(1) (1998), 171–187]. When n ≥ 2 and the cycle is outside the post-critical set, we
prove that the eigenvalues are repelling. This result improves one obtained by Fornæss
and Sibony [Complex dynamics in higher dimension. II. Modern Methods in Complex
Analysis (Princeton, NJ, 1992) (Annals of Mathematics Studies, 137). Ed. T. Bloom, D. W.
Catlin, J. P. D’Angelo and Y.-T. Siu, Princeton University Press, 1995, pp. 135–182] under
a hyperbolicity assumption on the complement of the post-critical set.
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Periodic points of post-critically algebraic endomorphisms 2383

1. Introduction
In this article, we will work with holomorphic endomorphisms of CPn. Without any
further indication, every endomorphism considered in this article is holomorphic. Let
f : CPn → CPn be an endomorphism. The critical locus Cf is the set of points where the
differential Dzf : TzCPn → Tf (z)CP

n is not surjective. The endomorphism f is called
post-critically algebraic (PCA) if the post-critical set of f

PC(f ) =
⋃
j≥1

f ◦j (Cf )

is an algebraic set of codimension one. If n = 1, such an endomorphism is called
post-critically finite (PCF) since proper algebraic sets in CP1 are finite sets. A point
z ∈ CPn is called a periodic point of f of period m if f ◦m(z) = z and m is the smallest
positive integer satisfying such a property. We define an eigenvalue of f along the cycle
of z as an eigenvalue of Dzf ◦m. We will study eigenvalues along periodic cycles of PCA
endomorphisms of CPn of degree d ≥ 2.

When n = 1, we have the following fundamental result.

THEOREM 1.1. Let f : CP1 → CP1 be a PCF endomorphism of degree d ≥ 2 and let λ
be an eigenvalue of f along a periodic cycle. Then either λ = 0 or |λ| > 1.

This theorem relies on the following relation of critical orbits and periodic points
of endomorphisms of CP1. More precisely, without loss of generality, let λ be the
eigenvalue of an endomorphisms f of CP1 (not necessary PCF) at a fixed point z.
Then:
• if 0 < |λ| < 1 or if λ is a root of unity, then z is the limit of the infinite orbit of some

critical point;
• if |λ| = 1 and λ is not a root of unity, then either:

– z is accumulated by the infinite orbit of some critical point; or
– z is contained in a Siegel disc whose boundary is accumulated by the infinite orbit

of some critical point.
We refer the reader to [Mil11] for further reading on this topic. In this article, we study how
this result may be generalized to dynamics in dimension n ≥ 2. We study the following
question.

Question A. Let f be a PCA endomorphism of CPn, n ≥ 2, of degree d ≥ 2 and let λ be
an eigenvalue of f along a periodic cycle. Can we conclude that either λ = 0 or |λ| > 1?

In this article, we give an affirmative answer to this question when n = 2.

THEOREM 1.2. Let f be a PCA endomorphism of CP2 of degree d ≥ 2 and let λ be an
eigenvalue of f along a periodic cycle. Then either λ = 0 or |λ| > 1.

We note that this question has been studied by several authors and some partial
conclusions have been achieved. We refer the reader to [Ast20, FS92, FS94, GHK,
GV19, Ji20, Jon98, PI19, Ron08, Ued98] for the study of PCA endomorphisms in higher
dimensions. Concerning eigenvalues along periodic cycles, following Fornæss–Sibony
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2384 V. T. Le

[FS94, Theorem 6.1], one can deduce that, for a PCA endomorphism f of CPn, n ≥ 2,
such that CPn \ PC(f ) is Kobayashi hyperbolic and hyperbolically embedded, an eigen-
value λ of f along a periodic cycle outside PC(f ) has modulus at least or equal to
one. Following Ueda [Ued98], one can show that the differential of a PCA endomor-
phism f of CPn, n ≥ 2 along a periodic cycle which is not critical has modulus at
least one (see Corollary 2.5 in this article). When n = 2, Jonsson [Jon98] considered
PCA endomorphisms of CP2 whose critical locus does not have a periodic irreducible
component. He proved that, for such class of maps, every eigenvalue along a peri-
odic cycle outside the critical set has modulus strictly bigger than one. Recently, in
[Ast20], Astorg studied Question A under a mild transversality assumption on irreducible
components of PC(f ).

Our approach to proving Theorem 1.2 is subdivided into two main cases: the cycle is
either outside, or inside the post-critical set.

When the cycle is outside the post-critical set, we improve the method of [FS94] to
remove the Kobayashi hyperbolic assumption and exclude the possibility of eigenvalues of
modulus one. We obtain the following general result.

THEOREM 1.3. Let f be a PCA endomorphism of CPn of degree d ≥ 2 and let λ be an
eigenvalue of f along a periodic cycle outside the post-critical set. Then |λ| > 1.

When the cycle is inside the post-critical set, we restrict our study to dimension n = 2.
Let z ∈ PC(f ) be a periodic point of period m. Counting multiplicities, Dzf ◦m has two
eigenvalues λ1 and λ2. We consider two subcases: either z is a regular point of PC(f ) or
z is a singular point of PC(f ).

If the periodic point z is a regular point of PC(f ), the tangent space TzPC(f )
is invariant by Dzf

◦m. Then Dzf
◦m admits an eigenvalue λ1 with associated eigen-

vectors in TzPC(f ). The other eigenvalue λ2 arises as the eigenvalue of the linear
endomorphism Dzf ◦m : TzCP2/TzPC(f ) → TzCP

2/TzPC(f ) induced by Dzf ◦m. By
using the normalization of irreducible algebraic curves and Theorem 1.1, we prove
that the eigenvalue λ1 has modulus strictly bigger than one. Regarding the eigenvalue
λ2, following the idea used to prove Theorem 1.3, we also deduce that either λ2 = 0
or |λ2| > 1.

If the periodic point z is a singular point of PC(f ), in most cases, there exists a
relationship between λ1 and λ2. Then, by using Theorem 1.1, we deduce that, for i = 1, 2,
either λj = 0 or |λj | > 1. This has been already observed in [Jon98] but, for the sake of
completeness, we will recall the detailed statements and include the proof.

Structure of the article. In §2, we recall the results of Ueda and prove that when a fixed
point is not a critical point, then every eigenvalue has modulus at least one. In §3, we
present the strategy and the proof of Theorem 1.3. In §4, since the idea is the same as the
proof of Theorem 1.3, we prove that, for an eigenvalue λ of a PCA map along a periodic
cycle which is a regular point of the post-critical set and the associated eigenvectors which
are not tangential to the post-critical set, then λ is either zero or of modulus strictly bigger
than one. In §5, we study the dynamics of PCA endomorphisms of CP2 restricting on
invariant curves and then prove Theorem 1.2.
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Notation.
• D(0, r) = {x ∈ C|‖x‖ < r}: the ball of radius r in C (or simply D when r = 1).
• D(0, R)∗ or D∗: the punctured disc D(0, R) \ {0}.
• For two paths γ , η : [0, 1] → X in a topological space X such that γ (1) = η(0), the

concatenation path γ ∗ η : [0, 1] → X is defined as

γ ∗ η(t) =
{
γ (2t) if t ∈ [0, 1

2 ],
η(2t − 1) if t ∈ [ 1

2 , 1].

• Spec(L): the set of eigenvalues of a linear endomorphism L of a vector space V .
• For an algebraic set (analytic set) X in a complex manifold, we denote by Sing X the

set of singular points of X and by Reg X the set of regular points of X.

2. Periodic cycles outside the critical set
In this section, we prove that the eigenvalues of a PCA endomorphism of CPn at a fixed
point, which is not a critical point, have modulus at least or equal to one. The proof relies
on the existence of an open subset on which we can find a family of inverse branches and
the fact that the family of inverse branches of endomorphisms of CPn is normal. These
results are due to Ueda [Ued98].

We recall the definition of finite branched covering.

Definition 2.1. A proper, surjective continuous map f : Y → X of complex manifolds of
the same dimension is called a finite branched covering (or finite ramified covering) if there
exists an analytic set D of codimension one in X such that the map

f : Y \ f−1(D) → X \D
is a covering. We say that f is ramified over D or a D-branched covering. The set D is
called the ramification locus.

We refer the reader to [Gun90] for more information about the theory of finite branched
coverings.

Recall that endomorphisms f of CPn of degree d ≥ 2 are finite branched coverings
ramifying over f (Cf ). If f is PCA, then, for every j ≥ 1, f ◦j is ramified over PC(f ).

Let z /∈ Cf be a fixed point of f . Then f ◦j is locally invertible in a neighborhood
of z. The following result, which is due to Ueda, ensures that we can find a common
open neighborhood on which inverse branches of f ◦j fixing z are well defined for
every j ≥ 1.

LEMMA 2.2. [Ued98, Lemma 3.8] Let X be a complex manifold and let D be an analytic
subset of X of codimension one. For every point x ∈ X, if W is a simply connected open
neighborhood of x such that (W , W ∩D) is homeomorphic to a cone over (∂W , ∂W ∩D)
with vertex at x, then, for every branched covering η : Y → W ramifying overD ∩W , the
set η−1(x) consists of only one point.

Given a topological space T , the cone over a set K ⊂ T with vertex at a point x ∈
T is the quotient space Cone(K) = K × [0, 1]/K × {0}, where x is identified with the
equivalent class of K × {0}, which is a point in Cone(K).
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PROPOSITION 2.3. Let f be a PCA endomorphism of CPn of degree d ≥ 2 and let z /∈ Cf
be a fixed point of f . Let W be a simply connected open neighborhood of z such that
(W , W ∩ PC(f )) is homeomorphic to a cone over (∂W , ∂W ∩ PC(f )) with vertex at z.
Then there exists a family of holomorphic inverse branches hj : W → CPn of f ◦j fixing
z, that is,

hj (z) = z, f ◦j ◦ hj = Id|W .

Note that, for a fixed point z of a PCA endomorphism f of CPn, since PC(f ) is
an algebraic set, there always exists a simply connected neighborhood W of z such that
(W , W ∩ PC(f )) is homeomorphic to a cone over (∂W , ∂W ∩ PC(f )) with vertex at z.
Indeed, if z /∈ PC(f ), then we can take any simply connected neighborhood W of z
in CPn \ PC(f ). If z ∈ PC(f ), then it follows from [Sea19, Theorem 3.2] that such a
neighborhood always exists. We refer the reader to [Mil68] for an approach when z is an
isolated singularity of PC(f ) (see also [Sea06, Remark 2.3]).

Proof of Proposition 2.3. For every j ≥ 1, denote by Wj the connected component of
f−j (W) containing z. Since f ◦j are branched coverings ramifying over PC(f ), f ◦j
induces a branched covering

fj := f ◦j |Wj : Wj → W

ramifying over W ∩ PC(f ). By Lemma 2.2, we deduce that f−1
j (z) consists of only one

point, which is, in fact z. Since W is simply connected and hence connected, the order
of the branched covering fj coincides with the branching order of f ◦j at z. Note that z
is not a critical point of f ◦j and therefore the branching order of f ◦j at z is one. This
means that fj is a branched covering of order one of complex manifolds, and thus fj
is a homeomorphism and hence a biholomorphism (see [Gun90, Corollary 11Q]). The
holomorphic map hj : W → Wj , defined as the inverse of fj , is the map we are looking
for.

Once we obtain a family of inverse branches, the following theorem, which is due to
Ueda, implies that this family is normal.

THEOREM 2.4. [Ued98, Theorem 2.1] Let f be an endomorphism of CPn. Let X be a
complex manifold with a holomorphic map π : X → CPn. Let {hj : X → CPn}j be a
family of holomorphic lifts of f ◦j by π , that is, f ◦j ◦ hj = π . Then {hj }j is a normal
family.

Thus, for a fixed point z of a PCA endomorphism f , if z is not a critical point (or,
equivalently, if Dzf is invertible), then we can obtain an open neighborhood W of z in
CPn and a normal family of holomorphic maps {hj : W → CPn}j such that

f ◦j ◦ hj = IdW , hj (z) = z.

The normality of {hj }j implies that {Dzhj }j is a uniformly bounded sequence (with
respect to a fixed norm ‖ · ‖ on TzCPn). SinceDzhj = (Dzf )

−j , we can deduce that every
eigenvalue of Dzf has modulus at least one. Consequently, we can find a Dzf -invariant
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decomposition of TzCPn as the direct sum

TzCP
n =

( ⊕
λ∈Spec Dzf ,|λ|=1

Eλ

)
⊕

( ⊕
λ∈Spec Dzf ,|λ|>1

Eλ

)
= En ⊕ Er ,

where Eλ is the generalized eigenspace of the eigenvalue λ. We call En the neutral
eigenspace and Er the repelling eigenspace of Dzf (see also 3.2). If Eλ is not generated
by eigenvectors (or, equivalently, ifDzf |Eλ is not diagonalizable), we can find at least two
generalized eigenvectors e1, e2 of Dzf corresponding to λ such that

Dzf (e1) = λe1, Dzf (e2) = λe2 + e1.

Then Dzhj (e2) = λ−j e2 − jλ−(j+1)e1. If |λ| = 1, then ‖Dzhj (e2)‖ tends to infinity as j
tends to infinity. This contradicts the uniform boundedness of {Dzhj }j . Hence Dzf |Eλ is
diagonalizable. Thus, we have proved the following corollary.

COROLLARY 2.5. Let f be a PCA endomorphism of CPn of degree d ≥ 2 and let λ be an
eigenvalue of f at a fixed point z /∈ Cf . Then |λ| ≥ 1. Moreover, if |λ| = 1, then Dzf |Eλ

is diagonalizable.

3. Periodic cycles outside the post-critical set
In this section, we prove Theorem 1.3.

THEOREM 3.1. Let f be a PCA endomorphism of CPn of degree d ≥ 2 and let λ be an
eigenvalue of f along a periodic cycle outside the post-critical set. Then |λ| > 1.

Observe that a periodic point of f is simply a fixed point of some iterate of f . Moreover,
any iterate of a PCA maps is still PCA. Thus, it is enough to proof Theorem 1.3 when λ is
an eigenvalue of f at a fixed point z /∈ PC(f ). We will consider an equivalent statement
and then prove it.

3.1. Equivalent problem in the affine case. Recall that, for an endomorphism f :
CPn → CPn of degree d , there exists a polynomial endomorphism

F = (P1, . . . , Pn+1) : Cn+1 → Cn+1,

where Pi are homogeneous polynomials of the same degree d ≥ 1 and F−1(0) = {0} such
that

f ◦ π = π ◦ F ,

where π : Cn+1 \ {0} → CPn is the canonical projection. The integer d is called the
algebraic degree (or degree) of f . Such a map F is called a lift of f to Cn+1. Further
details about holomorphic endomorphisms of CPn and their dynamics can be found in
[FS94, FS95, Gun90, Sib99, DS10].

Lifts to Cn+1 of an endomorphism of CPn belong to a class of non-degenerate
homogeneous polynomial endomorphisms of Cn+1. More precisely, a non-degenerate
homogeneous polynomial endomorphism of Cn of algebraic degree d is a polynomial
map F : Cn → Cn such that F(λz) = λdz for every z ∈ Cn, λ ∈ C and F−1(0) = {0}.
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Conversely, such a map induces an endomorphism of CPn. This kind of map has been
studied extensively in [HP94]. If we consider Cn+1 as a dense open set of CPn+1 by
the inclusion (ζ0, ζ1, . . . , ζn) �→ [ζ0 : ζ1 : · · · : ζn : 1], then F can be extended to an
endomorphism of CPn+1. Moreover, this extension fixes the hypersurface at infinity
CPn+1 \ Cn+1 ∼= CPn and the restriction to this hypersurface is the endomorphism of CPn

induced by F .
Thus, if f is a PCA endomorphism of CPn, every lift F of f to Cn+1 is the

restriction of a PCA endomorphism of CPn+1 to Cn+1. PCA non-degenerate homogeneous
polynomial endomorphisms of Cn+1 have similar properties, which are proved in §2, as
PCA endomorphisms of CPn. More precisely, we can summarize this in the following
proposition.

PROPOSITION 3.2. Let F be a PCA non-degenerate homogeneous polynomial endomor-
phism of Cn+1 of degree d ≥ 2 and let z /∈ CF be a fixed point of F . Then we have the
following assertions.
(a) Let X be a complex manifold and let π : X → Cn+1 be a holomorphic map.

Then every family of holomorphic maps {hj : X → Cn+1}j , which satisfies that
F ◦j ◦ hj = π for every j ≥ 1, is normal.

(b) There exist a simply connected open neighborhood W of z in Cn+1 and a family
{hj : W → Cn+1}j of inverse branches of iterates of F , that is, F ◦j ◦ hj = IdW ,
fixing z.

(c) Every eigenvalue λ of Spec(DzF ) has modulus at least one. The tangent space
TzC

n+1 admits a DzF -invariant decomposition TzC
n+1 = En ⊕ Er , where the

neutral eigenspace En is the sum of generalized eigenspaces corresponding to eigen-
values of modulus one and the repelling Er is the sum of generalized eigenspaces
corresponding to eigenvalues of modulus strictly bigger than one.

(d) If |λ| = 1, then Dzf |Eλ is diagonalizable.

Remark 3.3. Studying eigenvalues at fixed points of PCA endomorphisms of CPn is
equivalent to studying eigenvalues at fixed points of a PCA non-degenerate homogeneous
polynomial self-map of Cn+1. More precisely, let f : CPn → CPn be an endomorphism
of degree d ≥ 2 and let F be a lift of f . Assume that z is a fixed point of f . Then, the
complex line L containing π−1(z) is invariant under F and the map induced by F on L
is conjugate to x �→ xd . In particular, there exists a fixed point w ∈ L \ {0} of F such
that π(w) = z and DwF preserves TwL ⊂ TwC

n+1 with an eigenvalue d . Then, DwF
descends to a linear endomorphism of the quotient space TwCn+1/Tw(Cw) which is
conjugate to Dzf : TzCPn → TzCP

n. Hence a value λ is an eigenvalue of DwF if and
only if either λ is an eigenvalue of Dzf or λ = d .

Conversely, if w is a fixed point of F , then either w = 0 ∈ Cn+1 (and the eigenvalues
ofD0F are all equal to zero) or w induces a fixed point π(w) of f . Since we consider only
PCA endomorphisms of degree d ≥ 2, Question A is equivalent to the following question.

Question B. Let f be a non-degenerate homogeneous polynomial PCA endomorphism of
Cn and let λ be an eigenvalue of f along a periodic cycle. Then either λ = 0 or |λ| > 1.
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The advantage of this observation is that we can make use of some nice properties of
the affine space Cn. More precisely, we will use the fact that the tangent bundle of Cn is
trivial.

3.2. Strategy of the proof of Theorem 1.3. Recall that an eigenvalues λ of Dzf :
TzC

n → TzC
n is called:

• superattracting if λ = 0;
• attracting if 0 < |λ| < 1;
• neutral if |λ| = 1:

– parabolic or rational if λ is a root of unity;
– elliptic or irrational if λ is not a root of unity;

• repelling if |λ| > 1.
By Remark 3.3, in order to prove Theorem 1.3, it is enough to prove the following result.

THEOREM 3.4. Let f be a PCA non-degenerate homogeneous polynomial endomorphism
of Cn of degree d ≥ 2 and let λ be an eigenvalue of f at a fixed point z /∈ PC(f ). Then λ

is repelling.

The strategy of the proof is as follows.
Step 1. Set X = Cn \ PC(f ) and let π : X̃ → X† be its universal covering. We

construct a holomorphic map g : X̃ → X̃ such that

f ◦ π ◦ g = π

and g fixes a point [z] such that π([z]) = z.
Step 2. We prove that the family {g◦m}m is normal. Then there exists a closed

complex submanifold M of X̃ passing through [z] such that g|M is an automorphism
and dim M is the number of eigenvalues of Dzf of modulus one, that is, neutral
eigenvalues, counted with multiplicities. Due to Corollary 2.5, it is enough to prove that
dim M = 0.

Step 3. In order to prove that dim M = 0, we proceed by contradiction. Assume
that dim M > 0. We then construct a holomorphic mapping � : M → T[z]M such that
�([z]) = 0, D[z]� = Id and

� ◦ g = D[z]g ◦�.

We deduce that Dzf has no parabolic eigenvalue.
Step 4. Assume that λ is a neutral irrational eigenvalue and that v is an asso-

ciated eigenvector. We prove that the irreducible component � of �−1(Cv) contain-
ing [z] is smooth and that �|� maps � biholomorphically onto a disc D(0, R) with
0 < R < +∞.

Step 5. Denote by κ : D(0, R) → M the inverse of �|� . We prove that π ◦ κ has radial
limits almost everywhere on ∂D(0, R) and that these radial limits land on ∂X. This results
in a contradiction and Theorem 3.4 is proved.

† Since we are now only work on Cn, we will not use π as the canonical projection from Cn+1 to CPn.
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3.3. Lifting the backward dynamics via the universal covering. Denote by X = Cn \
PC(f ) the complement of PC(f ) in Cn. Since PC(f ) is an algebraic set, the set X is a
connected open subset of Cn and then the universal covering of X is well defined. Denote
by π : X̃ → X the universal covering of X defined by

X̃ = {
[γ ] | γ is a path in X starting at z0

}
and π

(
[γ ]

) = γ (1),

where [γ ] denotes the homotopy class of γ in X, fixing the endpoints γ (0) and γ (1).
Denote by [z] the element in X̃ representing the homotopy class of the constant path at z.
We endow X̃ with a complex structure such that π : X̃ → X is a holomorphic covering
map.

Set Y = f−1(X) ⊂ X and Ỹ = π−1(Y ) ⊂ X̃. Since f : Y → X is a covering map,
every path γ inX starting at z0 lifts to a path f ∗γ ⊂ Y starting at z0. In addition, if γ1 and
γ2 are homotopic in X, then f ∗γ1 and f ∗γ2 are homotopic in Y ⊂ X; in particular, in X.
Thus, this pull-back map f ∗ induces a map g : X̃ → X̃ such that the following diagram
commutes.

X̃

π

��

X̃
g��

π

��
X

f
�� X

Note that g([z]) = [z]. In addition, g is holomorphic since, in local charts given by π , it
coincides with inverse branches of f .

3.4. Normality of maps on the universal covering. We prove that the family {g◦j }j is a
normal family. For every integer j ≥ 1, define kj = π ◦ g◦j so that f ◦j ◦ kj = π .

LEMMA 3.5. The family {kj : X̃ → X}j is normal and any limit takes values in X.

Proof. By Proposition 3.2, the family {kj : X̃ → Cn}j is normal. Denote byQ : Cn → C

a polynomial such that PC(f ) is the zeros locus of Q. Consider the family

Qj = Q ◦ kj : X̃ → C.

Since kj (X̃) ⊂ X, the family {Qj } is a normal family of non-vanishing functions. Then
by Hurwitz’s theorem, every limit map is either a non-vanishing function or a constant
function. ButQj([z]) = Q(z) �= 0 and hence every limit map is a non-vanishing function,
that is, every limit map of {kj } is valued in X. Thus {kj : X̃ → X} is normal.

We can deduce the normality of {g◦j }j .

PROPOSITION 3.6. The family {g◦j }j is normal.

Proof. Let {g◦js }s be a sequence of iterates of g. Extracting subsequences, if necessary,
we can assume that kjs converges to a holomorphic map k : X̃ → X.

Since X̃ is simply connected and π : X̃ → X is a holomorphic covering map, there
exists a holomorphic map g0 : X̃ → X̃ such that π ◦ g0 = k and g0([z]) = [z]. Note that,
for every j ≥ 1, g◦j ([z]) = [z], and thus the sequence

{
g◦j ([z])

}
j

converges to g0([z]).
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According to [AC03, Theorem 4], the sequence
{
g◦js}

s
converges locally uniformly to g0.

This shows that
{
g◦j}

j
is normal.

Remark 3.7. The proof of Lemma 3.5 relies on the PCA hypothesis. Without the PCA
assumption, for a fixed point z which is not accumulated by the critical set, we can still
consider the connected component U of Cn \ PC(f ) containing z, and the construction
follows. Then we will need some control on the geometry of U to prove that the family
{g◦j } is normal. For example, if U is a pseudoconvex open subset of Cn or, in general, if
U is a taut manifold, then {g◦j }j is normal.

3.5. Consequences of normality. The normality of the family of iterates of g implies
much useful information. In particular, following Abate [Aba89, Corollaries 2.1.30 and
2.1.31], we derive the existence of a center manifold of g on X̃.

THEOREM 3.8. Let X be a connected complex manifold and let g be an endomorphism of
X. Assume that g has a fixed point z. If the family of iterates of g is normal, then:
(1) every eigenvalue of Dzg is contained in the closed unit disc;
(2) the tangent space TzX admits a Dzg-invariant decomposition TzX = Ẽn ⊕ Ẽa

such that Dzg|Ẽn has only neutral eigenvalues and Dzg|Ẽa has only attracting or
superattracting eigenvalues;

(3) the linear map Dzg|Ẽn is diagonalizable;
(4) there exists a limit map ρ of iterates of g such that ρ ◦ ρ = ρ;
(5) the set of fixed points of ρ, which is ρ(X), is a closed submanifold of X; set M =

ρ(X);
(6) the submanifold M is invariant by g; in fact, g|M is an automorphism; and
(7) the submanifold M contains z and TzM = Ẽn.

Applying this theorem to X̃ and g : X̃ → X̃ fixing [z], we deduce that D[z]g has only
eigenvalues of modulus at most one and T[z]X̃ admits a D[z]g-invariant decomposition as
T[z]X̃ = Ẽn ⊕ Ẽa . Differentiating both sides of f ◦ π ◦ g = π at [z],

Dzf ·D[z]π ·D[z]g = D[z]π .

Hence λ is a neutral eigenvalue of Dzf if and only if λ−1 is a neutral eigenvalue of D[z]g.
Consequently, D[z]π maps Ẽn to the neutral eigenspace En of Dzf , Ẽa onto the repelling
eigenspace Er of Dzf (see Proposition 3.2).

We also obtain a closed center manifoldM of g at [z], that is, if λ is a neutral eigenvalue
of D[z]g of eigenvector v, then v ∈ T[z]M . So, in order to prove Theorem 3.4, it is enough
to prove that dim M = 0. The first remarkable property of M is that π(M) is a bounded
set in Cn.

PROPOSITION 3.9. The image π(M) is bounded.

Proof. For every [γ ] ∈ X̃, note that {π(g◦j ([γ ]))}j is, in fact, a sequence of backward
iterations of γ (1) by f and that the ω-limit set of backward images of Cn by f is bounded.
More precisely, since f is a homogeneous polynomial endomorphism of Cn of degree

https://doi.org/10.1017/etds.2021.48 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.48


2392 V. T. Le

d ≥ 2, the origin 0 is superattracting and the basin of attraction B bounded with the
boundary is ∂B = H−1

f (0), where

Hf (w) = lim
j→∞

1
dj

log ‖f ◦j (w)‖

for w ∈ Cn \ {0}. The function Hf is called the potential function of f (see [HP94]). It
is straightforward by computation to show that Hf (π(m)) = 0 for every m ∈ M . Hence
π(M) ⊂ ∂B is bounded.

3.6. Semi-conjugacy on the center manifold. Assume that dim M > 0. Denote by
� the restriction of D[z]g on T[z]M . The following proposition ensures that we can
semi-conjugate g|M to �.

PROPOSITION 3.10. Let M be a complex manifold and let g be an endomorphism of M
such that the family of iterates of g is normal. Assume that g has a fixed point z such that
Dzg is diagonalizable with only neutral eigenvalues and that there exists a holomorphic
map ϕ : M → TzM such that ϕ(z) = 0, Dzϕ = Id. Then there exists a holomorphic map
� : M → TzM such that �(z) = 0, Dz� = Id and

Dzg ◦� = � ◦ g.

Proof. Consider the family {(Dzg)−n ◦ ϕ ◦ g◦n : M → T[z]M}n. We know that {g◦n}n
is normal, and thus {ϕ ◦ g◦j }j is locally uniformly bounded. The linear map Dzg is
diagonalizable with neutral eigenvalues, so {Dzg−n}n is uniformly bounded on any
bounded set. Then {(Dzg)−n ◦ ϕ ◦ g◦n}n is a normal family. Denote by �N the Cesaro
average of {(Dzg)−n ◦ ϕ ◦ g◦n}n, that is,

�N = 1
N

N−1∑
n=0

(Dzg)
−n ◦ ϕ ◦ g◦n.

The family {�N }N is also locally uniformly bounded and thus is normal. Observe that

�N ◦ g = 1
N

N−1∑
n=0

(Dzg)
−n ◦ ϕ ◦ g◦(n+1)

= Dzg�N +Dzg

(
− 1
N
ϕ + 1

N
((Dzg)

−(N+1) ◦ ϕ ◦ g◦(N+1))

)
.

For every subsequence {Nk}, the second term on the right-hand side converges locally
uniformly to zero. So, for every limit map � of {�N }N , � satisfies that

� ◦ g = Dzg ◦�.

Since g fixes z, we have that, for every N ≥ 1,

Dz�N = 1
N

N−1∑
n=0

(Dzg)
−n ◦Dzϕ ◦Dzg◦n = Id .

So Dz� = Id for every limit map � of {�N }N .

https://doi.org/10.1017/etds.2021.48 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2021.48


Periodic points of post-critically algebraic endomorphisms 2393

Now we consider the complex manifold M obtained in Step 3.5 and the restriction
of g on M which is an automorphism with a fixed point [z]. Since � has only neutral
eigenvalues, in order to apply Proposition 3.10, we need to construct a holomorphic map
ϕ : M → T[z]M such that D[z]ϕ = Id . The map ϕ is constructed as the composition

M
i−→ X̃

π−→ X
δ−→ TzX

(D[z]π)
−1

−−−−−→ T[z]X̃
πẼa−−→ T[z]M ,

where δ : X → TzX is a holomorphic map tangential to identity, πẼa : T[z]X̃ → T[z]M

is the projection parallel to Ẽa , i : M → X̃ is the canonical inclusion and its derivative
D[z]i : T[z]M → T[z]X̃ is again the canonical inclusion. Then D[z]ϕ : T[z]M → T[z]M is

D[z]ϕ = D[z](πẼa ◦ (D[z]π)
−1 ◦ δ ◦ π ◦ i)

= πẼa ◦ (D[z]π)
−1 ◦Dzδ ◦D[z]π ◦D[z]i = Id.

Remark 3.11. The existence of a holomorphic map δ : X → TzX tangential to identity is
one of the advantages we mentioned in Remark 3.3. It comes from the intrinsic nature of
the tangent space of affine spaces. In this case,X is an open subset of Cn which is an affine
space directed by Cn.

COROLLARY 3.12. Let z be a fixed point of a non-degenerate homogeneous polynomial
PCA endomorphism f of Cn. Assume that z /∈ PC(f ). If λ is a neutral eigenvalue ofDzf ,
then λ is an irrational eigenvalue.

Proof. It is equivalent to consider a neutral eigenvalue λ of D[z]g and assume that
λ = e2πi(p/q). Hence (D[z]g)

q fixes pointwise the line Cv in T[z]M . This means that
locally near [z], g◦q fixes�−1(Cv) and hence f ◦q fixes π(�−1(Cv)) near z. Note that� is
locally invertible near [z] and hence�−1(Cv) is a complex manifold of dimension one near
[z]. Then π(�−1(Cv)) is a complex manifold near z because π is locally biholomorphic.
In particular, π(�−1(Cv)) contains uncountably many fixed points of f ◦q . This is a
contradiction because f ◦q has only finitely many fixed points (see [DS10, Proposition
1.3]). Hence λ is an irrational eigenvalue.

3.7. Linearization along the neutral direction. We obtain a holomorphic map� : M →
T[z]M , �([z]) = 0, D[z]� = Id and

� ◦ g|M = � ◦�, (3.1)

where � = D[z]g|T[z]M . Let λ = e2πiθ , θ ∈ R \ Q be an irrational eigenvalue of � and
let Cv be a complex line of direction v in T[z]M . The line Cv is invariant by �, that is,
�(Cv) = Cv, and hence � := �−1(Cv) is invariant by g. Denote by � the irreducible
component of �−1(Cv) containing [z].

LEMMA 3.13. Set �0 = � \ Sing �. Then g(�) = � and g(�0) = �0.

Proof. On the one hand, since g is an automorphism, it maps irreducible analytic sets to
irreducible analytic sets. On the other hand, since D[z]� = Id then, by inverse function
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theorem, �−1(Cv) is smooth near [z], and hence � is the only irreducible component of
�−1(Cv) near [z]. Then g(�) = �.

Concerning �0, we observe that Sing � = � ∩ C�, where C� = {x ∈ M| rank Dx
� < dim M} which is the set of critical points of �. By differentiating (3.1) at x ∈ M ,

Dg(x)� ◦Dxg|M = � ◦Dx�.

We deduce that g(C�) = C�. Moreover, g(�) = �. Thus g(Sing �) = Sing � and hence
g(�0) = �0.

Note that �0 ⊂ Reg � is smooth since Sing � ⊂ � ∩ Sing � and, in fact, �0 is a
Riemann surface. In particular, [z] ∈ �0.

We prove that �0 is biholomorphic to a disc and that �|�0 is conjugate to an irrational
rotation. Then we deduce from this � = �0 and �� conjugates g|� to an irrational
rotation. First, we recall an important theorem in the theory of dynamics in one complex
dimension.

THEOREM 3.14. (See [Mil11, Theorem 5.2]) Let S be a hyperbolic Riemann surface and
let g : S → S be a holomorphic map with a fixed point z. If z is an irrational fixed point
with multiplier λ, then S is biholomorphic to the unit disc and g is conjugate to the
irrational rotation ζ �→ λζ .

LEMMA 3.15. The Riemann surface �0 is hyperbolic, �(�0) = D(0, R) with R ∈
(0, +∞) and�|�0 : �0 → D(0, R) is a biholomorphism conjugating g|�0 to the irrational
rotation ζ �→ λζ , that is,

� ◦ g|�0 = λ ·�|�0 .

Proof. Recall that π(M) is bounded in Cn. Thus π induces a non-constant bounded
holomorphic function from �0 to Cn. Therefore �0 is a hyperbolic Riemann surface.
Note that [z] is a fixed point of the holomorphic map g|�0 with the irrational multiplier λ.
Then we can apply Theorem 3.14 to obtain a conjugacy ψ : �0 → D(0, 1) such that
ψ ◦ g|�0 = λ · ψ .

Denote � := � ◦ ψ−1 : D(0, 1) → S := �(�0) (see the diagram below). Then we
have �(λz) = λ�(z) for every z ∈ D.

D(0, 1) λ· ��

�

��

D(0, 1)

�

��

�0
g ��

ψ

��

�

��

�0

ψ

��

�

��
S := �(�0)

λ· �� S

It follows that�(z) = � ′(0)z for every z ∈ D. Therefore�|�0 = � ′(0) · ψ is a conjugacy
conjugating g|�0 to z �→ λz. In particular,�(�0) = D(0, R), R = |� ′(0)| ∈ (0, +∞) and
�|�0 is a biholomorphism.
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PROPOSITION 3.16. The analytic set � is smooth and and the map

�|� : � → �(�) = D(0, R)

is biholomorphic with R ∈ (0, +∞).

Proof. It is enough to prove that � = �0. From Lemma 3.15, we deduce that �0 is simply
connected. Note that �0 ⊂ Reg � is the complement of a discrete set � ∩ Sing � in �.
We denote by �̂ the normalization of �, a Riemann surface (see [Chi89]) and by �̃ the
universal covering of �̂. Since �0 ⊂ Reg �, the preimage �̂0 of �0 by the normalization,
which is isomorphic to �0, is simply connected. Hence the preimage of �̂0 by the universal
covering in �̃ is a simply connected open subset in �̃ with discrete complement. Then
either �̃ is biholomorphic to the unit disc (or C) and �0 = � or �̃ is biholomorphic to
CP1 and � \ �0 is only one point. Since π |� is a non-constant bounded holomorphic
function valued in Cn, the only case possible is that �̃ is biholomorphic to a disc
and �0 = �.

Thus, we obtain a biholomorphic map κ := (�|�)−1 : D(0, R) → � ↪→ M , κ(0) = [z]
with R ∈ (0, +∞).

3.8. End of the proof. Denote τ = π ◦ κ . Note that τ(0) = z. Since τ(D(0, R)) ⊂
π(M) is bounded, by Fatou–Riesz’s theorem (see [Mil11, Theorem A.3]) the radial limit

τθ = lim
r→R− π ◦ κ(reiθ )

exists for almost every θ ∈ [0, 2π).

Remark 3.17. This is another advantage that we mentioned in Remark 3.3.

PROPOSITION 3.18. If τθ exists, then τθ ∈ PC(f ).
Proof. Consider θ such that τθ exists and τθ /∈ PC(f ), that is, τθ ∈ X. Note that

γR : [0, 1] → X,

where γR(t) = τ(tReiθ ), γR(1) = τθ is a well-defined path in X starting at z and hence it
defines an element in X̃. Moreover, in X̃, the family of paths {[γr ]}0≤r≤R

γr : [0, 1] → X,

where γr(t) = τ(treiθ ), converges to [γR] as r → R−. A quick observation is that, in X̃,
we have [γr ] = κ(reiθ ) ⊂ M for every r ∈ [0, 1). Since M is a closed submanifold of X̃,
[γR] ∈ M or, in fact, [γR] ∈ �. Recall that � : � → D(0, R) is a biholomorphic mapping
and hence

reiθ = �([γr ])
r→R−−−−−→ �([γR]) ∈ D(0, R).

But reiθ
r→R−−−−−→ Reiθ /∈ D(0, R), which yields a contradiction. Thus τθ ∈ PC(f ).
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Now,we denote by Q a defining polynomial of PC(f ). Then

Q ◦ τ : D(0, R) → C

has vanishing radial limit limr→R− Q ◦ τ(reiθ ) for almost every θ ∈ [0, 2π). Then,Q ◦ τ
vanishes identically on D(0, R) (see [Mil11, Theorem A.3]). In particular, Q ◦ τ(0) =
Q(z) = 0 and hence z ∈ PC(F). It is a contradiction and our proof of Proposition 3.18
and Theorem 3.4 is complete.

4. Periodic cycles in the regular locus: the transversal eigenvalue
Now we consider a periodic point z of period m in the post-critical set of a PCA
endomorphism f of CPn. Note that f ◦m is also PCA and PC(f ◦m) is exactly PC(f ).
It is enough to assume that z is a fixed point.

If z is a regular point of PC(f ), then TzPC(f ) is well defined and it is aDzf -invariant
subspace of TzCPn. On the one hand, it is natural to expect that our method of the previous
case can be extended to prove that Dzf |TzPC(f ) has only repelling eigenvalues (it cannot
have superattracting eigenvalues; see Remark 4.5 below). Unfortunately, there are some
difficulties due to the existence of singularities of codimension higher than one that we
cannot overcome easily. On the other hand, we are able to adapt our method to prove
that the transversal eigenvalue with respect to TzPC(f ), that is, the eigenvalue of Dzf :
TzCP

n/TzPC(f ) → TzCP
n/TzPC(f ), is repelling. More precisely, we will prove the

following proposition.

PROPOSITION 4.1. Let f be a PCA endomorphism of CPn of degree d ≥ 2 and
let z ∈ Reg PC(f ) be a fixed point. Then the eigenvalue of the linear map Dzf :
TzCP

n/TzPC(f ) → TzCP
n/TzPC(f ) is either repelling or superattracting.

By Remark 3.3, it is equivalent to prove the following proposition.

PROPOSITION 4.2. Let f be a PCA non-degenerate homogeneous polynomial endomor-
phism of Cn of degree d ≥ 2 and let z ∈ Reg PC(f ) be a fixed point. Then the eigenvalue
of the linear map Dzf : TzCn/TzPC(f ) → TzC

n/TzPC(f ) is either repelling or super-
attracting.

Since PC(f ) has codimension one, Dzf has exactly one eigenvalue and we denote it
by λ. The value λ is also an eigenvalue of Dzf . The proof of Proposition 4.2 will occupy
the rest of this section.

4.1. Strategy of the proof. Denote by X = Cn \ PC(f ).
Step 1. We first prove that if λ �= 0, then |λ| ≥ 1 and z is not a critical point. Then we

prove that |λ| = 1 will lead to a contradiction. By assuming that |λ| = 1, following from
the discussion in §2, there exists an eigenvector v of Dzf corresponding to λ such that
v /∈ TzPC(f ).

Our goal is to build a holomorphic map τ : D(0, R)∗ → X such that τ can be extended
holomorphically to D(0, R) so that τ(0) = z, τ ′(0) = v. Then, we show that τ has radial
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limit almost everywhere and these radial limits land on PC(f ) whenever they exist. The
construction of τ occupies Steps 2–6 and the contradiction will be deduced in Step 7.

Step 2. We construct a connected complex manifold X̃ of dimension n with two
holomorphic maps π : X̃ → X, g : X̃ → X̃ such that

f ◦ π ◦ g = π .

Step 3. We prove that {g◦j }j is a normal family. Then we extract a subsequence {g◦jk }k
converging to a retraction ρ : X̃ → X̃, that is, ρ ◦ ρ = ρ.

Step 4. We will study M = ρ(X̃). More precisely, we will prove that π(M) can be
extended to a center manifold of f at z.

Step 5. We construct a holomorphic map � : M → En which semi-conjugates g to the
restriction of (Dzf )−1 to the neutral eigenspace En (see Proposition 3.2.c).

Step 6. We prove that there exists an irreducible component � of �−1(Cv) which is
smooth and biholomorphic to the punctured disc. More precisely, we prove that �(�) =
D(0, R)∗ withR ∈ (0, +∞) and the map τ := π ◦ (�|�)−1 extends to a holomorphic map
from D(0, R) to Cn so that τ(0) = z, τ ′(0) = v.

Step 7. We prove that the map τ has radial limit almost everywhere and that the limit
belongs to PC(f ) if it exists. This implies that π ◦ τ ⊂ PC(f ), which contradicts the fact
that v /∈ TzPC(f ). This means that the assumption |λ| = 1 is false and thus Proposition
4.2 is proved.

4.2. Existence of the transversal eigenvector. We recall the following result due to
Grauert.

PROPOSITION 4.3. [GR58, Satz 10] Let U , V be an open neighborhood of zero in Cn

and let f : U → V be a holomorphic branched covering of order k ramifying over Vf =
{ζn = 0} ∩ V . Then there exists a biholomorphism � : U → W such that the following
diagram commutes.

W

(ζ1,...,ζn) �→(ζ1,...,ζn−1,ζ kn )
��

U
f

��

�

����������
V

In particular, the branched locus Bf = �−1({ζn = 0} ∩W) is smooth and f |Bf : Bf →
Vf is a biholomorphism.

This is, in fact, a local statement and we can apply it to a PCA non-degenerate
homogeneous polynomial endomorphism of Cn to obtain the following proposition.

PROPOSITION 4.4. [Ued98, Lemma 3.5] Let f be a PCA non-degenerate homogeneous
polynomial endomorphism of Cn of degree d ≥ 2. Then

f−1(Reg PC(f )) ⊂ Reg PC(f )

and

f : f−1(Reg PC(f )) → Reg PC(f )
is locally a biholomorphism.
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Remark 4.5. In particular, Proposition 4.4 implies that if f has a fixed point z ∈
Reg PC(f ), then Dzf |TzPC(f ) is invertible. Hence Dzf |TzPC(f ) does not have any
superattracting eigenvalues.

If λ �= 0, then z is not a critical point. By Proposition 3.2, the modulus of λ is at least
one. Then we will prove Proposition 4.1 by contradiction by assuming that |λ| = 1. If
|λ| = 1, there exists an associated eigenvector v of Dzf such that v /∈ TzPC(f ). Indeed,
note that

Spec(Dzf ) = Spec(Dzf |TzPC(f )) ∪ Spec(Dzf ),
where Spec(Dzf ) has only one eigenvalue λ of modulus one. Then the repelling
eigenspace Er is included in TzPC(f ). The diagonalizability of Dzf |En implies that En
is generated by a basis of eigenvectors. The vector v is such an eigenvector which is not in
TzPC(f ).

4.3. (X, z)-homotopy and related constructions. Denote X = Cn \ PC(f ).

4.3.1. Construction of X̃. We construct a complex manifold X̃, a covering map π : X̃ →
X and a holomorphic map g : X̃ → X̃ such that

f ◦ π ◦ g = π .

Denote by

� = {γ : [0, 1] → Cn continuous map such that γ (0) = z, γ ((0, 1]) ⊂ X}
the space of paths starting at z and varying in X. Let γ0, γ1 ∈ �. We say that γ0 and γ1 are
(X, z)-homotopic if there exists a continuous map H : [0, 1] × [0, 1] → Cn such that

H(0, s) = z, H(1, s) = γ0(1) = γ1(1),

H(t , 0) = γ0(t), H(t , 1) = γ1(t),

H(t , s) ⊂ X for all t �= 0.
Denote γ0 ∼X γ1 if γ0 and γ1 are (X, z)-homotopic (see Figure 1). In other words, γ0

and γ1 are homotopic by a homotopy of paths {γt , t ∈ [0, 1]} such that γt ∈ � for every
t . It is easy to see that (X, z)-homotopy is an equivalence relation on �. Denote by X̃ the
quotient space of � by this relation and by [γ ] the equivalent class of γ ∈ �. Denote the
projection by

π : X̃ → X, π([γ ]) = γ (1).
We endow X̃ with a topology constructed in the same way as the topology of a universal
covering. More precisely, let B be the collection of simply connected open subsets of X.
Note that B is a basis for the usual topology of X. We consider the topology on X̃ which
is defined by a basis of open subsets {U[γ ]}U∈B,[γ ]∈X, where γ (1) ∈ U and

U[γ ] = {[γ ∗ α]|α is a path in U starting at γ (1)}.
We can transport the complex structure ofX to X̃ and this will make X̃ a complex manifold
of dimension n. Note that π is also a holomorphic covering map.
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FIGURE 1. Two paths γ0, γ1 which are (X, z)-homotopic.

FIGURE 2. Pulling back of an element in �.

4.3.2. Lifts of inverse branches of f . We will construct a holomorphic mapping

g : X̃ → X̃

which is induced by the pull-back action of f on paths in �.

LEMMA 4.6. Let γ be a path in �. Then there exists a unique path f ∗γ ∈ � such that
f ◦ f ∗γ = γ .

Proof. Since f is locally invertible at z and since f−1(X) ⊂ X, there exists t0 ∈ [0, 1]
such that γ |[0,t0] ∈ � and f−1 ◦ γ |[0,t0] is a well-defined element in �. Then the path
f ∗γ is the concatenation of f−1 ◦ γ |[0,t0] with the lifting f ∗γ |[t0,1] of the path γ |[t0,1] by
the covering f : f−1(X) → X (see Figure 2). This construction does not depend on the
choice of t0.

LEMMA 4.7. Let γ0, γ1 ∈ �. If [γ0] = [γ1], then [f ∗γ0] = [f ∗γ1].
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FIGURE 3. Pull-back preserves the (X, z)-homotopic paths.

Proof. Lemma 4.6 implies that the pull-back of a homotopy of paths in � between γ0 and
γ1 is a homotopy of paths in � between f ∗γ0 and f ∗γ1 (see also Figure 3).

The two previous lemmas allow us to define a map g : X̃ → X̃ as

g([γ ]) = [f ∗γ ].

Then f ◦ π ◦ g = π .

4.3.3. The connectedness of X̃. The connectedness of X̃ is not obvious from the
construction. We will introduce the notion of a regular neighborhood, which is not only
useful for proving that X̃ is connected but will also be very important later.

Definition 4.8. A bounded open subset W of Cn containing z is called a regular
neighborhood of z if:
(1) (W , W ∩ PC(f )) is homeomorphic to a cone over (∂W , ∂W ∩ PC(f ))with a vertex

at z; and
(2) for every path γ0, γ1 ∈ � such that γ0([0, 1]), γ1([0, 1]) ⊂ W and γ0(1) = γ1(1).

Then γ0 ∼X γ1.

Let W be an open subset of Cn containing z. Set

W̃ = {[γ ]|γ ∈ �, γ ((0, 1]) ⊂ W }.

LEMMA 4.9. If W is a regular neighborhood of z, then π : W̃ → W \ PC(f ) is a
biholomorphism.

Proof. We can observe that W̃ is open. Indeed, for an element [γ ] in W̃ , let U be an
open set in W \ PC(f ) containing γ (1). Then U[γ ] ⊂ W̃ . The projection π |W̃ : W̃ →
W \ PC(f ) is surjective since W \ PC(f ) is path-connected. So we need to prove
that π : W̃ → W \ PC(f ) is injective. Indeed, let z be a point in W \ PC(f ) and let
[γ0], [γ1] be two elements in W̃ such that π([γ0]) = π([γ1]) = z, that is, γ0(1) = γ1(1).
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Since W is regular, we have γ0 ∼X γ1 or [γ0] = [γ1]. So π |W̃ is injective and hence
biholomorphic.

In particular, W̃ is path-connected. If γ : [0, 1] → X is a path in �, then the path γs :
[0, 1] → Cn defined by γs(t) = γ (t (1 − s)) also belongs to � and γs([0, 1]) = γ ([0, 1 −
s]). It follows that every element in X̃ can be joined by paths to an element in W̃ and thus
X̃ is path-connected and hence connected.

Now we prove that we can indeed find a regular neighborhood when z is a regular point
of PC(f ). Let (ζ1, . . . , ζn) be local coordinates vanishing at z in which PC(f ) is given
by {ζ1 = 0}. Let U be the unit polydisc centered at z.

PROPOSITION 4.10. Any polydisc centered at z in U is a regular neighborhood.

Proof. Let γ0 and γ1 be two elements of � such that γ0([0, 1]), γ1([0, 1]) ∈ U and
γ0(1) = γ1(1). Consider the loop η = γ0 ∗ (−γ1) and the continuous map H : [0, 1] ×
[0, 1] → Cn defined by

H(t , s) = s · η(t).
The loop η bounds H([0, 1] × [0, 1] \ {(0, 0)}) ⊂ X, which implies that γ0 ∼X γ1.

Remark 4.11. The construction above also implies that z admits a basis of neighborhoods
consisting of regular neighborhoods.

4.3.4. Dynamics of g on regular neighborhoods. Let W be a regular neighborhood of z
and let

σ : W \ PC(f ) → W̃

be the inverse of π |W̃ . Note that if W is constructed as above, then, by Proposition 3.2(b),
there exists a family of holomorphic maps hj : W → Cn, j ≥ 1 such that

hj (z) = z, f ◦j ◦ hj = IdW .

We can deduce from the definition of g that, for every j ≥ 1, π ◦ g◦j ◦ σ = hj |W\PC(f ).
More precisely, let [γ ] ∈ W̃ , that is, γ ((0, 1]) ⊂ W \ PC(f ). Then, by definition, for
every j ≥ 1,

g◦j ([γ ]) = [hj ◦ γ ]. (4.1)

Recall that the family {hj : W → Cn}j is normal. The assumption |λ| = 1 allows us to
control the value taken by any limit maps of this family. Note that f−1(X) ⊂ X and hence
hj (W \ PC(f )) ⊂ X for every j ≥ 1.

LEMMA 4.12. Let h = lims→∞ hjs be a limit map of {hj : W → Cn}j . Then

h(W \ PC(f )) ⊂ X.

Proof. Recall that PC(f ) is the zero locus of a polynomial Q : Cn → C. Then

Q ◦ h = lims→+∞ Q ◦ hjs .
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Since hjs (W \ PC(f )) ⊂ X, the map Q ◦ h|W\PC(f ) is the limit of a sequence of
non-vanishing holomorphic functions. By Hurwitz’s theorem, Q ◦ h|W\PC(f ) is either a
non-vanishing function or identically zero, that is, either h(W \ PC(f )) ⊂ X or h(W \
PC(f )) ⊂ PC(f ).

Let v be an eigenvector of Dzf associated to the eigenvalue λ. Then Dzhj (v) =
(1/λj )v. Hence

Dzh(v) = 1
λ′ v

for some limit value λ′ of {λj }j . Since we assumed that |λ| = 1, we have |λ′| = 1. The fact
that v /∈ TzPC(f ) implies that Dzh(v) /∈ TzPC(f ). Consequently,

h(W \ PC(f )) ∩X �= ∅
and thus h(W \ PC(f )) ⊂ X.

4.4. Normality of the family of maps lifted via the relative homotopy. We will prove that
{g◦j : X̃ → X̃}j is normal. Following 3.4, it is enough to prove the following two lemmas.

LEMMA 4.13. The family {kj = π ◦ g◦j : X̃ → X}j is normal and any limit map can be
lifted by π to a holomorphic endomorphism of X̃.

Proof. Note that {kj : X̃ → Cn}j is locally uniformly bounded and hence is normal (see
Proposition 3.9). Consider a limit map k of this family. By using Hurwitz’s theorem, we
deduce that either k(X̃) ⊂ X or k(X̃) ⊂ PC(f ).

Let W be a regular neighborhood of z. Then there exists a family {hj : W → Cn}j of
f ◦j fixing z (see 4.3.4). We have

kj |W̃ ◦ σ = hj |W∩X,

where σ : W \ PC(f ) → W̃ is the section of π |W̃ . Therefore k|W̃ ◦ σ is a limit map of
{hj |W\PC(f )}. Lemma 4.12 implies that k(W̃ ) ⊂ X, and hence, k(X̃) ⊂ X. Thus {kj :
X̃ → X}j is normal and any limit map takes values in X.

We now show that the map k : X̃ → X can be lifted to a map from X̃ to X̃. Set

h : = k|W̃ ◦ σ .

Then h is a limit map of {hj |W\PC(f )}. For each element [γ ] ∈ X̃, we denote by η the
image of γ under the analytic continuation of h along γ . Note that h fixes z. Thus, Lemma
4.12 implies that η ∈ �. This construction does not depends on the choice of γ in the
equivalence class [γ ]. Thus, the map

k̃ : X̃ → X̃

[γ ] �→ [η]

is well defined. The map π ◦ k̃ coincides with k on an open set W̃ in X̃ and hence coincides
with k on X̃. In other words, k̃ is a lifted map of k by π .

Hence we deduce the following proposition.
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PROPOSITION 4.14. The family {g◦j : X̃ → X̃}j is normal.

Proof. Let {g◦js }s be sequence of iterates of g. Extracting subsequences, if necessary, we
can assume that {kjs }s converges locally uniformly to a holomorphic map k : X̃ → X. By
Lemma 4.13, there exists a holomorphic map k̃ : X̃ → X̃ so that π ◦ k̃ = k. We prove that
{g◦js }s converges locally uniformly to k̃. Applying [AC03, Theorem 4], it is enough to
prove that there exists an element [γ ] ∈ X̃ such that g◦js ([γ ]) converges to k̃([γ ]).

We consider a regular neighborhood W of z and the family {hj : W → Cn}j of f ◦j
fixing z (see 4.3.4). Let [γ ] be an element in W̃ † and an associated path be γ̃ : [0, 1] →
X̃, γ̃ (t) = [γ |[0,t]] in X̃. Since [γ ] ∈ W̃ , γ̃ = σ ◦ γ . Then

k̃([γ ]) = [k ◦ γ̃ ] = lim
s→∞[kjs ◦ γ̃ ]

= lim
s→∞[hjs ◦ γ ] = lim

s→∞ g◦js ([γ ]).

Thus we conclude the proof of the proposition.

Following [Aba89, Corollary 2.1.29], the normality of {g◦j }j implies that:
• there exists a subsequence {g◦jk }k converging to a holomorphic retraction

ρ : X̃ → X̃

of X̃, that is, ρ ◦ ρ = ρ;
• by [Car86], the image M = ρ(X̃) is a closed submanifold of X̃; and
• by [Aba89, Corollary 2.1.31], M is invariant by g and g|M is an automorphism.

4.5. Existence of the center manifold. We will study the dynamics of g restricted onM .
The difference between the construction of the universal covering used in the first case
(the fixed point is outside PC(f )) and the construction of X̃ in this case is that X̃ does
not contain a point representing z. Hence it is not straightforward that we can relate the
dynamics of g on M with the dynamics of f near z.

We consider the objects introduced in §4.3.4. In particular, we consider a regular
neighborhood W of z in Cn and the family {hj : W → Cn}j of inverse branches fixing
z of f ◦j on W . Recall that

σ : W \ PC(f ) → W̃

is the inverse of the biholomorphism π : W̃ → W \ PC(f ) and that limk→∞ g◦jk = ρ is
a holomorphic retraction on X̃.

Define a holomorphic map H̃ : W \ PC(f ) → Cn as

H̃ = π ◦ ρ ◦ σ = lim
k→+∞ π ◦ g◦jk ◦ σ .

By (4.1), we have H̃ = limk→+∞ hjk |W\PC(f ). Since {hj : W → Cn}j is normal, by
passing to subsequences, we can extend H̃ to a holomorphic map H : W → Cn such that
H = limk→+∞ hjk : W → Cn.

† In §3.4, we choose an element representing z. Such an element does not exist in this case but it is enough to
consider an element representing a point near z.
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Note that hj (z) = z for every j ≥ 1. Then H(z) = z. By continuity of H , there exists
an open neighborhood U of z in W such that H(U) ⊂ W . Note that we choose U
to be a regular neighborhood of z (see Remark 4.11) and we can shrink U whenever
we need to. Recall that, for every [γ ] ∈ W̃ , we have g◦j ([γ ]) = [hj ◦ γ ]. Then for
[γ ] ∈ Ũ := σ(U \ PC(f )),

ρ([γ ]) = lim
k→∞ g◦jk ([γ ]) = lim

k→∞[hjk ◦ γ ] = [H ◦ γ ] ⊂ W̃ .

In other words, ρ(Ũ) ⊂ W̃ . Hence

H(U \ PC(f )) = π ◦ ρ ◦ σ(U \ PC(f )) ⊂ W \ PC(f ). (4.2)

Moreover, since σ ◦ π |W̃ = IdW̃ , the composition

H̃ ◦ H̃ = π ◦ ρ ◦ σ ◦ π ◦ ρ ◦ σ
is well defined on U \ PC(f ) and is equal to H̃ |U\PC(f ). Since H is the extension of H̃ ,
we deduce that

H ◦H(U) = H(U).

PROPOSITION 4.15. The set H(U) is a submanifold of W containing z whose dimension
is the number of neutral eigenvalues of Dzf counted with multiplicities. Moreover,
TzH(U) = En and Dzf |TzH(U) is diagonalizable.

Proof. The first assertion is due to [Car86] since H ◦H = H on U . The rest are
consequences of the fact that H is a limit map of the family {hj : W → Cn}j of inverse
branches fixing z of f (see Corollary 2.5).

LEMMA 4.16. dim M = dim H(U).

Proof. Since X̃ is connected, M is also a connected complex manifold. Thus dim M =
rank Dxρ for every x ∈ M̃ . In particular, if we choose x = σ(z) with w ∈ U \ PC(f ),
then

rank Dxρ = rankw H = dim H(U)

and thus dim M = dim H(U).

In other words,

MX := π(M) ∪H(U)
is a submanifold of Cn in a neighborhood of z. Moreover, following Proposition 3.9, we
can deduce that π(M) is a bounded set in Cn.

4.6. Semi-conjugacy on the center manifold. Denote � = (Dzf |En)−1. We will con-
struct a holomorphic � : M → En such that

� ◦ g|M = � ◦�.

The construction follows the idea in §3.6 and the connection established in Step 3 between
g and inverse branches of f at z.
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LEMMA 4.17. There exists a holomorphic map � : M → En such that � ◦ g = � ◦�.

Proof. We consider a holomorphic map ϕ : M → En constructed as the composition

M ↪→ X̃
π−→ Cn

δ−→ TzC
n πEr−−→ En,

where δ : Cn → TzC
n is a holomorphic map such that δ(z) = 0, Dzδ = Id, πEr : TzCn →

En is a projection on En parallel to Er . Note that, since π(M) is bounded, ϕ(M) is also a
bounded set in En.

We consider the family

�−j ◦ ϕ ◦ g◦j : M → En, j ≥ 0.

Since � is diagonalizable with only neutral eigenvalues, this family is uniformly bounded
and hence so is the family of its Cesàro averages {�N = (1/N)

∑N−1
j=0 �

−j ◦ ϕ ◦ g◦j }N .
Therefore, {�N }N is normal and every limit map � of {�N }N satisfies that

� ◦ g = � ◦ g.

Note that �(M) is also a bounded set in En.

Let us fix such a limit map � = limk→∞ �Nk . We prove that � restricted to Ũ ∩M is
a biholomorphism. In order to do so, we consider the holomorphic function

�1 := � ◦ σ |H(U) : H(U \ PC(f )) → Cn.

Since H(U \ PC(f )) ⊂ π(M) is a bounded set in Cn, the map �1 is bounded and hence
we can extend it to a holomorphic function on H(U). By an abuse of notation, we denote
the extension by �1. We prove that �1 is invertible in a neighborhood of z in H(U).

More precisely, on H(U) \ PC(f ),

�1 = lim
k→∞

1
Nk

Nk−1∑
j=0

�−j ◦ ϕ ◦ g◦j ◦ σ |h(U)\PC(f ).

Consider the map ϕ1 : π(M) ∪H(U) → En, ϕ1 = πEr ◦ δ|MX
. Then ϕ1(z) = 0,

Dzϕ1 = Id and ϕ = ϕ1|π(M) ◦ π . It follows that

�1 = lim
k→∞

1
Nk

Nk−1∑
j=0

�−j ◦ ϕ1|π(M) ◦ π ◦ g◦j ◦ σ |H(U)\PC(f )

= lim
k→∞

1
Nk

Nk−1∑
j=0

�−j ◦ ϕ1|π(M) ◦ hj |H(U)\PC(f ).

Note that Dzhj |H(U) = �j . Then we can deduce that �1(z) = 0 and Dz�1 = Id.
Therefore, there exists a regular neighborhood V of z in W such that �1 is biholomorphic
on V ∩H(U). Consequently, since σ is a biholomorphism, the neighborhood V induces
an open neighborhood Ṽ = σ(V \ PC(f )) in W̃ such that� is biholomorphic on Ṽ ∩ M.
By shrinking U , we can assume that V = U and hence �|Ũ∩M is a biholomorphism.
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FIGURE 4. Constructions on M .

4.7. Linearization along the neutral direction. The map �1 extends the image of � in
the sense that �(M) ∪�1(H(U)) contains a full neighborhood of zero in En. Let v ∈ En
be an eigenvector of Dzf associated to λ. We will study �−1(Cv) by studying �−1

1 (Cv).
Denote by �1 the irreducible component of �−1

1 (Cv) containing z. Since Dz�1 = Id,
�1 is a submanifold of dimension one of H(U) near z and Tz�1 = Cv. Note that v /∈
TzPC(f ). Then by shrinking U , if necessary, we can assume that �1 ∩ PC(f ) = {z}. In
other words, �1 \ {z} is a smooth component of �−1

1 (Cv) in H(U) \ PC(f ).
Since �1 = � ◦ σ |H(U)\PC(f ) and σ is a biholomorphism, there exists a unique irre-

ducible component � of �−1(Cv) such that � contains σ(�1 \ {z}). Moreover, �(�) is a
punctured neighborhood of zero in Cv. This means that 0 /∈ �(�) but�(�) ∪ {0} contains
an open neighborhood of zero in Cv. We will prove that � is, in fact, biholomorphic to a
punctured disc and that�|� is a biholomorphism conjugating g|� to the irrational rotation
ζ �→ λζ (see Figure 4).

Following §3.7, we consider �0 = � \ C�, where C� the set of critical points of �.
Then �0 is a hyperbolic Riemann surface which is invariant by g. The map g induces an
automorphism g|�0 on �0 such that g|◦jk�0

converges to ρ = IdM , which is identity on �0.
On the one hand, �0 contains σ(�1 \ PC(f )) and hence �(�0) is also a punctured

neighborhood of zero in Cv. On the other hand, g restricted on σ(�1 \ PC(f )) is
conjugate to h restricted on �1 \ PC(f ). Note that h fixes z = �1 ∩ PC(f ). Hence we can
consider an abstract Riemann surface ��0 = �0 ∪ {z} and two holomorphic maps ι : �0 →
��0, �� : ��0 → Cv ⊂ En so that ι is an injective holomorphic map, ��0 \ ι(�0) = {z},
��(z) = 0 and the following diagram commutes.

��0
��

����
��
��
��

En �0

ι

��

�
��
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Moreover, ��0 admits an automorphism g� fixing the point z with multiplier λ and extends
g|�0 in the sense that g� ◦ ι = ι ◦ g. Note that ��(��0) = �(�0) ∪ {0} is bounded in En.
Then, by arguing as in Lemma 3.15, we deduce the following Lemma 4.18.

LEMMA 4.18. The Riemann surface ��0 is biholomorphic to a disc D(0, R), R ∈ (0, +∞)

and�� : ��0 → ��(��0) = D(0, R), ��(z) = 0 is a biholomorphism conjugating g� to the
irrational rotation ζ → λζ .

Consequently, �0 is biholomorphic to D(0, R) and �|� is a biholomorphism.

PROPOSITION 4.19. The set � is smooth and the map

�|� : � → �(�) = D(0, R)∗

is a biholomorphism with R ∈ (0, +∞).

Proof. It is enough to prove that � = �0. The idea is similar to the proof of Proposition
3.16

Note that �0 is the complement of a discrete set � ∩ Sing �−1(Cv) in � and �0 is
biholomorphic to a punctured disc D(0, R)∗. Moreover,�(�0) ⊂ �(�) is also a punctured
neighborhood of zero and �0 ⊂ Reg � has discrete complement.

Then we can consider an abstract one-dimensional analytic space �� = � ∪ {z} such
that ��0 ⊂ �� and �� \ ��0 is a discrete set containing singular points of �� (which is exactly
� \ �0). Then, by an argument similar to that of Proposition 3.16, we can deduce that ��

is biholomorphic to D(0, R) and hence the proposition is proved.

4.8. End of the proof. Denote τ1 := π ◦ (�|�)−1 : D(0, R)∗ → Cn. The map τ1 has a
holomorphic extension to the map τ : D(0, R) → Cn such that τ(0) = z, τ ′(0) = v. The
map τ takes values in π(M), which is bounded, and hence the radial limit

τθ = lim
r→R− τ(re

iθ )

exists for almost every θ ∈ [0, 2π).

PROPOSITION 4.20. τθ ∈ PC(f ) if it exists.

Proof. Note that τ(D(0, R)) ∩ PC(f ) = (π(�) ∪ �1) ∩ PC(f ) = {z}. Hence
τ(D(0, R) \ {0}) ⊂ M . This implies that τ(D(0, R) \ {0}) ⊂ X. Then, by an argument
similar to that of Proposition 3.18, we deduce that the radial limit τθ ∈ PC(f ) if this
limit exists.

Recall that Q is the defining polynomial of PC(f ). Then Q ◦ τ has vanishing radial
limit for almost every θ ∈ [0, 2π). This means that Q ◦ τ is identically zero. Hence
τ(D(0, 1)) ⊂ PC(f ). This is a contradiction since τ ′(0) = v /∈ TzPC(f ). The proof of
Proposition 4.2 is complete.

5. Periodic cycles of PCA endomorphisms of CP2

This section is devoted to the proof of Theorem 1.2.
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THEOREM 5.1. Let f be a PCA endomorphism of CP2 of degree d ≥ 2 and let λ be an
eigenvalue of f along a periodic cycle. Then either λ = 0 or |λ| > 1.

If the periodic cycle is not in PC(f ), then λ �= 0 and the result follows from
Theorem 1.3. Therefore, without loss of generality, we may assume that z is a fixed point of
f in PC(f ). Note that if λ is an eigenvalue of f at a fixed point z, then λj is an eigenvalue
of f ◦j at the fixed point z. If we can prove that λj is either superattracting or repelling,
then so is λ. Thus, in order to prove Theorem 1.2, we can always consider f up to some
iterates, if necessary.

After passing to an iterate, we may assume that the fixed point belongs to an invariant
irreducible component � of PC(f ). The reason why we need to restrict to dimension n =
2 is that, in this case, � is an algebraic curve. There is a normalization n : �̂ → �, where
�̂ is a smooth compact Riemann surface and n is a biholomorphism outside a finite set
(see [RS13], [Gun90] or [Chi89]) and there is a holomorphic endomorphism f̂ : �̂ → �̂

such that n ◦ f̂ = f ◦ n.
In §5.1, we analyze the dynamics of f̂ : �̂ → �̂ and, in particular, we show that when

f is PCA, then f̂ is PCF. In §5.2, we complete the proof in the case where the fixed point
belongs to the regular part of PC(f ), and in §5.3, we complete the proof in the case where
the fixed point belongs to the singular part of PC(f ).

5.1. Dynamics on an invariant curve. Assume that f : CP2 → CP2 is an endomor-
phism of degree d ≥ 2 (not necessarily PCA) and that � ⊂ CP2 is an irreducible algebraic
curve such that f (�) = �. Let n : �̂ → � be a normalization of � and let f̂ : �̂ → �̂ be
an endomorphism such that n ◦ f̂ = f ◦ n.

According to [FS94, Theorem 7.4], the endomorphism f̂ : �̂ → �̂ has degree d ≥ 2.
It follows from the Riemann–Hurwitz formula that the compact Riemann surface �̂ has
genus zero or one. In addition, if the genus is one, then f̂ has no critical point and all fixed
points of f̂ are repelling with common repelling eigenvalue λ satisfying |λ| = √

d ′. If the
genus is zero, then the following lemma implies that the post-critical sets of f̂ and f are
closely related.

LEMMA 5.2. Denote by V
f̂

and Vf the set of critical values of f̂ and f , respectively. Then

V
f̂

⊂
{
n−1(Vf ) if � �⊂ Vf ,

n−1(Sing Vf ) if � ⊂ Vf .

Proof. The set of critical values of f̂ is characterized by the property that x /∈ V
f̂

if

and only if, for every y ∈ f̂−1(x), f̂ is injective near y. Note that n : �̂ → � induces
a parametrization of the germ (�, x) such that, for every x ∈ � and for every y ∈ n−1(x),
n is injective near y (see also [Wal04, §2.3]).
• If � �⊂ Vf , let x /∈ n−1(Vf ) and let y ∈ f̂−1(x). Then n(y) ∈ f−1(n(x)). Since

n(x) /∈ Vf , f is injective near n(y). Combining this with the fact that n is locally
injective, we deduce that f̂ is injective near y. Thus x /∈ V

f̂
.
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• If � ⊂ Vf , let x /∈ n−1(Sing Vf ) and let y ∈ f̂−1(x). Then n(y) ∈ f−1(n(x)) and
n(x) ∈ Reg Vf . By Proposition 4.4, we can deduce that n(y) ∈ f−1(Reg Vf ) and that
f |f−1(Reg Vf ) is locally injective. This implies that f̂ is also injective near y. Hence
x /∈ V

f̂
.

Thus we obtain the conclusion of the lemma.

PROPOSITION 5.3. If �̂ has genus zero and f is a PCA endomorphism, then f̂ is a PCF
endomorphism.

Proof. We have that

PC(f ) =
⋃
j≥1

Vf ◦j and PC(f̂ ) =
⋃
j≥1

V
f̂ ◦j .

Since n ◦ f̂ ◦j = f ◦j ◦ n for all j ≥ 1, applying the previous lemma to f ◦j and f̂ ◦j yields

PC(f̂ ) ⊂
{
n−1(PC(f )) if � �⊂ PC(f ),

n−1(Sing PC(f )
)

if � ⊂ PC(f ).

In both cases, PC(f̂ ) is contained in the preimage by n of a proper algebraic subset of �,
which therefore is finite. Since n is proper, PC(f̂ ) is finite and so f̂ is PCF.

Assume that f has a fixed point z which is a regular point of � (which is not necessarily
an irreducible component of PC(f )). Since n is a biholomorphism outside the preimage
of singular points of �, the point n−1(z) is a fixed point of f̂ and n will conjugateDzf |Tz�
and Dn−1(z)f̂ . Denote by λ the eigenvalue of Dzf |Tz� . Then λ is also the eigenvalue of
Dn−1(z)f̂ . The previous discussion allows us to conclude that either λ = 0 or |λ| > 1. Thus
we can deduce the following lemma.

LEMMA 5.4. Let f be a PCA endomorphism of CP2 of degree d ≥ 2, let � ⊂ CP2 be an
invariant irreducible algebraic curve, let z ∈ Reg� be a fixed point of f and let λ be the
eigenvalue of Dzf |Tz� . Then either λ = 0 or |λ| > 1.

5.2. Periodic cycles in the regular locus of the post-critical set.

Proof of Theorem 1.2—first part. Let f be a PCA endomorphism of CP2 with a fixed
point z that is a regular point of PC(f ). Denote by � the irreducible component of PC(f )
containing z. Then � is invariant by f . Denote by Dzf : TzCP2/Tz� → TzCP

2/Tz� the
linear endomorphism induced by Dzf . Note that

Spec(Dzf ) = Spec(Dzf |Tz�) ∪ Spec(Dzf ).

By Proposition 4.4, the eigenvalue of Dzf |Tz� is not zero and hence repelling by Lemma
5.4. By Proposition 4.1, the eigenvalue of Dzf is either superattracting or repelling. Thus
Theorem 1.2 is proved when the fixed point is a regular point of the post-critical set.

5.3. Periodic cycles in the singular locus of the post-critical set. When the fixed point
z is a singular point of PC(f ), by passing to some iterates of f , we can assume that f
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induces a holomorphic germ at z that fixes a singular germ of the curve at z which is
induced by some irreducible components of PC(f ). On the one hand, from the local point
of view, there exists (in most cases) a relationship between the two eigenvalues of Dzf
as a holomorphic germ fixing a singular germ of the curve. On the other hand, from the
global point of view, these eigenvalues can be identified with the eigenvalue of the germ
at a fixed point of the lifts of f via the normalization of PC(f ). Then, by Proposition 5.3,
we can conclude Theorem 1.2.

5.3.1. Holomorphic germ of (C2, 0) fixing a singular germ of the curve. Let (�, 0) be an
irreducible germ of the curve at 0 in (C2, 0) defined by a holomorphic germ g : (C2, 0) →
(C, 0). In local coordinates (x, y) of C2, if g(0, y) �≡ 0, that is, if g does not identically
vanish on {x = 0}, it is well known that there exists an injective holomorphic germ γ :
(C, 0) → (C2, 0) of the form

γ (t) = (tm, αtn +O(tn+1))

parameterizing �, that is, γ ((C, 0)) = (�, 0) (see [Wal04, Theorem 2.2.6]). If � is
singular, after a change of coordinates, α can be 1 and m and n satisfy that 1 < m < n,
m � |n. The germ γ is called a Puiseux parametrization. In fact, if � is a germ induced by
an algebraic curve � in CP2, then γ coincides with the germ induced by the normalization
morphism. When � is singular, the integers m and n are called the first two Puiseux
characteristics of � and they are invariants of the equisingularity class of �. In particular,
m and n do not depend on the choice of local coordinates. We refer the reader to [Wal04]
for further discussion about Puiseux characteristics. We also refer to [Z73] and references
therein for discussion about equisingular invariants.

Now consider a proper† holomorphic germ g : (C2, 0) → (C2, 0) and a singular germ
of the curve (�, 0). If� is invariant by g, that is, if g(�) = �, then g acts as a permutation
on irreducible branches of �. Then, by passing to some iterates of g, we assume that there
exists an invariant branch. The following propositions show that there exists a relationship
between the two eigenvalues of D0g.

When g has an invariant singular branch, the following result was observed by Jonsson
[Jon98].

PROPOSITION 5.5. Let � be an irreducible singular germ of a curve parametrized by
γ : (C, 0) → (C2, 0) of the form

γ (t) = (tm, tn +O(tn+1)), 1 < m < n, m � |n.

Let g : (C2, 0) → (C2, 0) and ĝ : (C, 0) → (C, 0), ĝ(t) = λt +O(t2) be holomorphic
germs such that

g ◦ γ = γ ◦ ĝ.

Then the eigenvalues of D0g are λm and λn.

† Proper germ means that g−1(0) = 0. In particular, an endomorphism of CP2 induces a proper germ at its fixed
points.
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Proof. The germ g has an expansion of the form

g(x, y) = (ax + by + h1(x, y), cx + dy + h2(x, y)),

where h1(x, y) = O(‖(x, y)‖2), h2(x, y) = O(‖(x, y)‖2). Replacing those expansions in
the equation γ ◦ ĝ = g ◦ γ gives(

λmtm +O(tm+1), λntn +O(tn+1)
) = (

atm + btn + h1(t
m, tn +O(tn+1)),

ctm + dtn + h2(t
m, tn +O(tn+1))

)
.

Comparing coefficients of the term tm in each coordinate, we deduce that a = λm and
c = 0. Comparing coefficients of the term tn in the second coordinate, since m � n, the
expansion of h2 cannot contribute any term of order tn, and hence d = λn. The linear part
of g has the form ( a b0 d ) and hence a, d are eigenvalues ofD0g. In other words, λm and λn

are eigenvalues of D0g.

When g has an invariant smooth branch which is the image of another branch, g is not
an injective germ and hence 0 is an eigenvalue of D0g. This case was not considered in
[Jon98] since Jonsson assumed that there is no periodic critical point.

PROPOSITION 5.6. Let g : (C2, 0) → (C2, 0) be a proper holomorphic germ and let
�1, �2 be irreducible germs of curves at zero such that �1 �= �2, g(�1) = �2, g(�2) =
�2. If �2 is smooth, then the eigenvalues of Dzg are zero and λ, where λ is the eigenvalue
of D0g|T0�2 .

Proof. Since �2 is smooth, we choose a local coordinates (x, y) of (C2, 0) such that
�2 = {x = 0}. Since �1 and �2 are distinct irreducible germs, the defining function of
�1 does not identically vanish on �2. Then we can find a Puiseux parametrization of �1

of the form

γ (t) = (tm, αtn +O(tn+1)), α ∈ C \ {0},
where m, n are positive integers (see [Wal04, Theorem 2.2.6]). The germ g has an
expansion of the form

g(x, y) = (ax + by + h1(x, y), cx + dy + h2(x, y)),

where h1(x, y) = O(‖(x, y)‖2), h2(x, y) = O(‖(x, y)‖2). The invariance of �2 implies
that b = 0 and that g has the form

g(x, y) = (x(a + h3(x, y)), cx + dy + h2(x, y)),

where h3(x, y) = O(‖(x, y)‖), h2(x, y) = O(‖(x, y)‖2). Replacing γ and f in the equa-
tion g(�1) = �2 gives

tm(a + h3(t
m, αtn +O(tn+1))) = 0

and hence a = 0. Then the linear part ofD0g is (0, cx + dy) and hence zero and d are the
eigenvalues of D0g,

Finally, if g has two invariant smooth branches which are tangential, then we have the
following proposition (see also [Jon98]).
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PROPOSITION 5.7. Let g : (C2, 0) → (C2, 0) be a proper holomorphic germ and let
�1, �2 be irreducible invariant germs of smooth curves at zero. If �1 and �2 intersect
tangentially, that is, if �1 �= �2 and T0�1 = T0�2, then there exists a positive integer m
such that the eigenvalues of D0g are λ and λm, where λ is the eigenvalue of D0g|T0�1 .

Proof. Since �1 is smooth, we can choose local coordinates (x, y) such that �1 = {y =
0}. The defining function of �2 cannot identically vanish on {x = 0} since, otherwise, �2

and �1 would not be tangential. Then �2 has a parametrization of the form

γ (t) = (t , tm +O(tm+1)).

Since �1 = {y = 0} is invariant, g has an expansion in the coordinates (x, y) of the form

g(x, y) = (
λx + by + h1(x, y), y(d + h2(x, y))

)
,

where λ, b, d ∈ C, h1(x, y) = O(‖(x, y)‖2), h2(x, y) = O(‖(x, y)‖). The linear part of
D0g is (λx + by, dy) and thus λ, d are eigenvalues of Dzf . Letting x = t , y = tm +
O(tm+1), we have

f (t , tm +O(tm+1)) = (λt +O(t2), dtm +O(tm+1)).

Since f (�2) = �2, we deduce that d = λm. Note that λ is the eigenvalue of
D0g|T0�1 .

Using these observations, we can conclude the proof of Theorem 1.2.

Proof of Theorem 1.2—final. Let f be a PCA endomorphism of CP2 and let z be a fixed
point such that z is a singular point of PC(f ). We look at the germ (PC(f ), z) induced
by PC(f ) at z and prove Theorem 1.2 depending on how f acts on irreducible branches of
(PC(f ), z). Passing to an iterate of f , if necessary, we assume that there exists a branch
� of (PC(f ), z) such that f (�) = �. Denote by � the irreducible component of PC(f )
inducing �. Then � is also invariant by f . Denote by n : �̂ → � the normalization of �
and by f̂ the lifting of f by the normalization n : �̂ → �.

If � is singular, then n−1(z) is a finite set and f̂ (n−1(z)) ⊂ n−1(z) since z is a fixed
point of f . Then, by passing up to some iterations, we can assume that f̂ fixes a pointw0 ∈
n−1(z). By Proposition 5.5, the eigenvalues of Dzf are λm, λn, where λ is the eigenvalue
of Dw0 f̂ and m and n are the first two Puiseux characteristics of �. By Proposition 5.3, λ
is either superattracting or repelling. Hence so are λm and λn.

If � is smooth, then the tangent space Tz� is well defined and invariant by Dzf .
Denote by λ the eigenvalue of Dzf |Tz� . Even if � can be singular (for example, z can
be a self-intersection point of �), there exists a point w ∈ �̂, n(w) = z such that w is a
fixed point of f̂ and n induces an invertible germ n : (�̂, w) → (�, z). By an argument
similar to that of Lemma 5.4, we can deduce that either λ = 0 or |λ| > 1. To deal with the
other eigenvalue, since (PC(f ), z) is singular, we have one of the following cases.
(1) There exists a branch �1 such that f (�1) = �. By Proposition 5.6, the eigenvalues

of Dzf are zero and λ, where λ is the eigenvalue of Dzf |Tz� . Hence the proof is
complete by the previous discussion.
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(2) There exists a smooth invariant branch �1 such that � and �1 intersect transversally.
Denote by �1 the irreducible component of PC(f ) containing �1 (which can be �).
Thus �1 are invariant by f . Since � and �1 are transversal, the eigenvalues of Dzf
are λ and λ1, where λ1 is the eigenvalue of Dzf |Tz�1 . Arguing similarly to the case
of λ, we deduce that λ1 is also either superattracting or repelling.

(3) There exists a smooth invariant branch �1 such that � and �1 intersect tangentially.
Denote by �1 the irreducible component of PC(f ) inducing �1 (which is possibly
equal to �). Thus �1 are invariant by f . By Proposition 5.7, the eigenvalues of
Dzf are λ and λm. Note that λ is either superattracting or repelling and hence
so is λm.
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