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Abstract

A common strategy in comparative cognition is to require that one reject associative learn-
ing as an explanation for behavior before concluding that an organism is capable of causal
reasoning. In this paper, I argue that standard causal-reasoning tasks can be explained by a
powerful form of associative learning: unlimited associative learning (UAL). The lesson, how-
ever, is not that researchers should conduct more studies to reject UAL, but that they should
instead focus on 1) enriching the cognitive hypothesis space and 2) testing a broader range of
information processing patterns—errors, biases and limits, rather than successful problem
solving alone.

1. Introduction
Associative learning has long been considered an appropriate “null hypothesis”
against which to test claims about the cognitive capacities of human and nonhuman
animals. This is particularly the case when the cognitive capacity under investigation
is thought to be complex or human-like, such as in the case of causal reasoning, epi-
sodic memory, and theory of mind. As Starzak and Gray (2021, 2) note, “Over and over
again the familiar refrain is, ‘do animals have complex human-like cognitive abilities
or can their behavior be explained in terms of simpler processes such as associative
learning?’” The general idea behind this approach is that if an observed behavior can
be explained by appealing to a process like associative learning, then one should
accept this as the best explanation for the behavior, rather than attributing new
sophisticated capacities to an organism. The primary justification for treating asso-
ciative learning as a null hypothesis is that it is phylogenetically widespread; thus, it’s
reasonable to assume that the organism being tested is capable of associative learning
and will use it when possible to solve the problem at hand (Sober 2012).

Over the past decade, Simona Ginsburg, Eva Jablonka and others have argued that
human and nonhuman animals are capable of a particularly powerful form of asso-
ciative learning: unlimited associative learning (UAL). Organisms with UAL can dis-
criminate novel, compound stimuli and action patterns; learn associations between
objects and events separated over time; and engage in cumulative learning.
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Researchers studying UAL maintain that it is found in almost all vertebrates, as well
as some arthropods and cephalopod molluscs (Ginsburg and Jablonka 2021). If this is
correct, then UAL is arguably also an appropriate null hypothesis for research in com-
parative psychology, at least in the case of vertebrates.

In this paper, I argue that UAL poses a problem for research in comparative psychol-
ogy. Using causal reasoning as a case study, I show that claims regarding an organism’s
ability to engage in causal reasoning fail to reject UAL as a plausible alternative expla-
nation for the available results. My conclusion, however, is not that researchers should
conductmore studieswith the aimof rejectingUAL as a null hypothesis. Instead, I argue
that this adds to the growing consensus that the “null hypothesis” approach is prob-
lematic. Researchers should reject this approach as it oversimplifies the target of study.
Instead we should endorse more fine-grained comparative approaches, such as ones
that treat cognitive abilities as multi-dimensional (Starzak and Gray 2021) and focus
on “signatures” rather than “success” (Bastos and Taylor 2020).

I begin in section 2 by briefly illustrating the null-hypothesis approach as it’s used
in experiments on causal cognition. In section 3, I introduce UAL and show how it can
explain successful performance on causal-cognition tasks. I then argue in section 4
that UAL provides a compelling reason for rejecting the null-hypothesis approach
in comparative psychology and points us in the direction of a more fruitful approach.
Section 5 concludes.

2. Testing causal reasoning
Nonhuman animals (hereafter animals) are capable of solving a wide range of physical
problems, from a woodpecker finch using a cactus spine to prize an insect out of a
crevice to chimpanzees outperforming human children on some physical cognition
tasks (Herrmann et al. 2007). However, there are several competing explanations
in the literature regarding how animals succeed in solving physical tasks. One expla-
nation is that they engage in causal reasoning. Causal reasoning is understood in psy-
chology as the ability to intervene on and make inferences about the world based on
the world’s causal structure (Bender 2020). Causal structure includes phenomena like
heavy things falling to the ground, water being displaced by sinking (rather than
floating) objects, and some objects being used to displace or dislodge others.1

According to standard views in psychology, an agent capable of causal reasoning
should recognize the functional properties or physical affordances of a situation
and use these to solve problems (a heavy object, whether made of stone or metal,
will displace water). Such an agent should also be able to transfer knowledge acquired
in one situation to another functionally equivalent situation, even if the two situa-
tions differ in all their non-functional properties (Seed et al. 2011).

A second dominant explanation for an agent’s success in solving a physical prob-
lem is that the agent is relying on associative learning. In this case, the agent does not
grasp the causal structure underlying the situation, but instead relies on some learned
association between variables. This associative-learning explanation is referred to as

1 There is a rich exchange between philosophers and psychologists regarding how to understand
causal structure and causal reasoning (e.g., see Woodward 2011). The target of my analysis here is
how psychologists empirically investigate causal reasoning; thus, I will focus on accounts of causal rea-
soning as presented in this empirical literature.

Philosophy of Science 1187

https://doi.org/10.1017/psa.2022.66 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2022.66


a “null hypothesis” in the literature (Hanus 2016). Some researchers argue that only
humans solve physical problems through causal reasoning—that all other animals
rely on some form of associative learning for their success on causal tasks (Penn
and Povinelli 2007; Povinelli 2012). However, empirical studies appear to undermine
this view, suggesting that animals such as corvids and chimpanzees rely on causal
knowledge to solve novel problems (Seed et al. 2006; Mulcahy and Call 2006;
Girndt et al. 2008).

It’s helpful to illustrate the null-hypothesis strategy with an example. A bench-
mark test for causal reasoning is the trap-tube task. In this task, participants are pre-
sented with a transparent tube baited with a reward, such as food. The tube contains
various traps that must be avoided if the reward is to be successfully extracted.
Participants must use their body (e.g., finger or beak) or a tool (such as a stick or rake)
to extract (by pushing or pulling) the reward from the tube while avoiding the traps.
If the reward falls into a trap, it can no longer be retrieved.

The comparative psychologist Amanda Seed and colleagues have conducted
numerous studies investigating the causal reasoning of animals (Seed et al. 2011).
In one study, they examined whether rooks (Corvus frugilegus) used causal reasoning
to solve the trap-tube task (Seed et al. 2006). To do this, they first tested whether
rooks could solve two different versions of the trap-tube task (Tube A and Tube B
in figure 1). Both versions included one functional trap and one “decoy” or non-
functional trap that looked similar to a functional trap but did not interfere with
reward retrieval. In Tube A, the reward could pass over the top of the decoy trap,
while in Tube B, the reward would fall into the hole of the decoy trap, but this hole
was open at the bottom, so rather than trapping the reward, the reward fell through
and was obtainable by the participant. Four rooks were tested on Tube A and four on

Figure 1. Trap-tube experimental apparatus from Seed et al. (2006). In Experiment 1, four rooks were
tested using Tube A and four rooks were tested using Tube B. Experiment 2 tested whether those rooks
who solved Tube A could solve Tube B and vice versa. Experiment 3 tested whether participants could solve
Tube C and Tube D (with four birds receiving 20 trials of Tube C followed by 20 trials of Tube D and three
birds receiving the same number of trials on first Tube D and then Tube C).
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Tube B. After learning to successfully solve this problem, the rooks were then tested
to see if they could transfer their knowledge to a new situation. Those that solved
Tube A were tested on Tube B and vice versa. All of the birds that had successfully
learned the original task (seven out of eight participants), succeeded in transferring to
the new task, suggesting that they were not relying on a cue-based rule that was idi-
osyncratic to the original task, like “drop the reward into the hole with an opening at
the bottom.”

Although the rooks demonstrated that they were not relying on a cue that was idio-
syncratic to a single task, they could still have beenusing a cue-based rule thatwas com-
mon to both Tube A and Tube B like, “avoid the hole with the black disc at the bottom”
(Seed et al. 2006, 698). Thus, Seed and colleagues examined whether these birds could
additionally transfer to twomore novel tasks: Tube C and Tube D. Neither of these tubes
contained a trapwith a black disc at the bottom. Instead, the two decoy traps in Tubes A
andBwere converted into functional traps (see figure 1). Thebirds could alsonot rely on
one single cue-based procedural rule to perform successfully on both Tubes C and D, as
these tubes had no useful cues in common. For example, although a bird could use the
rule “move the reward away from the black circle” to solve Tube C, this rulewould fail if
applied to Tube D.

One out of seven rooks successfully transferred to Tube C and Tube D. This bird
(Guillem) successfully solved all four trap-tube tasks, which the authors tentatively
suggest means that this individual “understood the unobservable [causal] features of
the task” (Seed et al. 2006, 700).

This case study illustrates how researchers investigate causal reasoning in animals
and the role associative learning plays in these investigations. Associative learning pre-
dicts that animals such as rooks can learn associative rules like “moving the object away
from the black disc will getme a reward.” To determine whether rooks engage in causal
reasoning, one must eliminate this alternative explanation and others like it. Doing so
requires implementing control conditions that help reveal when participants might be
relying on arbitrary cue-based rules, rather than relying on the underlying causal fea-
tures of the system to solve the task. As Seed and colleagueswrite in a review of this and
other causal-cognition studies: “These results suggest that the rook, chimpanzees, and
New Caledonian crows did not use simple perceptual cues to solve the trap task. We
propose that instead they extracted causally relevant functional information (such
as surface continuity, or the solidity of barriers)” (Seed et al. 2011, 13).

Although simple associative rules might not account for the results of trap-tube
tasks such as these, I argue in the next section that one can account for these results
by appealing to more sophisticated forms of associative learning like unlimited asso-
ciative learning (UAL). Under the current null-hypothesis approach, this finding sug-
gests that researchers should shift their focus from eliminating simple cue-based
rules to rejecting UAL as a plausible alternative explanation for successful perfor-
mance on causal-reasoning tasks. In the remainder of the paper, I resist this conclu-
sion, arguing instead that what needs rejecting is the null-hypothesis approach.

3. Unlimited associative learning as a null hypothesis
Associative learning is broadly the ability to learn associations between stimuli like a
bell and food (classical condition) or between actions and outcomes like receiving
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food upon pressing a lever (operant conditioning). UAL is a form of associative learn-
ing in that it involves learning associations between objects, events and actions.
However, an animal with UAL is capable of learning associations between a practically
limitless number of stimuli and actions. Agents with UAL can learn to associate novel,
compound stimuli and actions that are temporally separated, as well as engage in
second-order conditioning (Bronfman et al. 2016; Birch et al. 2020).

Given that UAL is effectively unlimited in the range of associations that can be
formed, an agent with UAL faces a problem: the world contains an endless number
of covarying factors, so how does such an agent learn to associate the relevant factors,
while ignoring those that are irrelevant? Ginsburg and Jablonka (2019, 349–50) refer
to this as the “loading the dice” problem following William James. Daniel Dennett has
also noted that Skinnerian creatures (i.e., those creatures that learn through associa-
tive learning) survive in virtue of making lucky first moves (Dennett 1996, 88). The
loading-the-dice problem asks, how do such creatures load the dice in a way that
allows them to gain useful information about the world, given the vast number of
potential associations available to them?

The model of UAL advanced by Ginsburg, Jablonka and colleagues provides an
answer. Inspired in part by the predictive processing literature, they argue that ani-
mals construct generative models of their environment. These models produce pre-
dictions of sensory input based on an organism’s evolutionary history and prior
learning. When there’s a deviation between these predictions and the incoming sen-
sory input (i.e., a prediction error), this creates an imperative to bring the predictions
and sensory input into alignment. This can be done by either updating the generative
model (reactive inference) or seeking out signals that agree with the model (active
inference). In this way, the imperative to minimize prediction error drives learning,
attention, and action. Crucially, only discrepancies between expected and actual data
are registered, allowing vast amounts of incoming information to be ignored.
Moreover, under the predictive processing account, some aspects of the world are
dismissed as “noise” in the sense that the associated prediction errors are not given
much weight in updating the generative model. This is known as “precision-weight-
ing” and, as Andy Clark writes, it “delivers the system’s best estimate of the trustwor-
thiness of the sensory information itself” (Clark 2016, 60). Prediction errors that are
estimated as reliable will have greater effects in terms of learning, attention, and
action than prediction errors that are estimated as unreliable.

UAL can account for the successful performance of animals on causal reasoning
tasks. First, it can explain how an organism learns the underlying causes or functional
properties of a task more readily than arbitrary cue associations. For example, corvids
(both those who routinely use tools, like New Caledonian Crows, and those who do
not, like common ravens), spend a large proportion of their time manipulating objects
throughout development (Kenward et al. 2011). Thus, they are exposed to numerous
causal invariances, such as the invariance that solid objects do not pass through other
solid objects, and that objects fall when they reach the edge of a surface and are no
longer supported from below. Such invariances can be contrasted with more variable
properties of the world. For example, barriers typically come in a wide range of
colors—this property is a noisy signal. We should expect a rook’s generative model
then to update in response to causal invariances, given the reliability of the predic-
tion errors that result. In contrast, such a model should fail to represent noisy signals
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like the colors of barriers. Although a rook is capable of learning to associate arbitrary
cues, this should be more challenging than learning causal regularities. We should
thus expect rooks to draw on these regularities when solving physical problems more
readily than associations between arbitrary cues.

UAL can also account for successful transfers to novel problems like that exhibited
by the rook Guillem in the trap-tube task. Insofar as the non-functional or decoy traps
do not violate causal laws, we should expect an agent capable of UAL to generate pre-
dictions that accord with previously learned causal invariances, such as “solid objects
will pass over solid surfaces, fall if unsupported, etc.” Indeed, under UAL, what is more
perplexing is why subjects fail problems such as the trap-tube task, given their exten-
sive experience with solid objects and containers. As Seed et al. note, such failures are
difficult to explain, but they may be related to a lack of ecological validity (Seed et al.
2006; for examples, see Girndt et al. 2008; Mulcahy and Call 2006). In either case, UAL
predicts that animals such as rooks and chimpanzees will be less likely to learn a rule
relating arbitrary cues than a rule that reflects causal principles, provided they have
been exposed to those causal principles in the past. This is true even if those causal
principles manifest in different ways—that is, if they’re realized in situations that
differ in their perceptual features. As Clark (2016, 170) writes, it is the “structured
probabilistic know-how distilled from prediction-driven learning that enables us to
see through the veil of surface statistics to the world of distal interacting causes itself”
(emphasis original). Generative models are hierarchical structures that represent
latent variables at different levels of abstraction. Such models can, for example, con-
struct a “best explanation” for a range of multimodal sensory inputs (Clark 2016, 174).
Indeed, even deep convolution neural networks (with their many layers of hierarchi-
cal processing) appear to be able to perform what Buckner (2018) calls “transforma-
tional abstraction” or the ability to move between specific instances (of chairs, for
example, with no perceptual features in common) to deeper representations or
abstractions.

One might object that it’s no surprise that UAL can explain behavior in causal-
reasoning tasks, given its reliance on predictive processing. Predictive processing
is well known for providing an account of how agents learn causal models of the world
(Hohwy 2020; Williams 2018). Comparing UAL with predictive-processing accounts of
causal reasoning is beyond the scope of this paper; however, it’s worth noting that, to
my knowledge, proponents of UAL have not considered UAL as a potential source of
causal knowledge. The closest account of this kind is Ginsburg and Jablonka (2021),
which suggests that organisms capable of UAL might serve as the basis for an evolu-
tionary transition to “Popperian creatures” or those capable of using imagination to
evaluate and select actions before trying them out in the world (Dennett 1996).
However, Ginsburg and Jablonka do not discuss whether or how UAL might serve
as the basis for “Pearlian creatures” or those capable of causal reasoning
(Godfrey-Smith 2018).

4. From null hypotheses to signature testing
As noted, associative learning is viewed as the appropriate “null hypothesis” when
investigating causal reasoning in human and nonhuman animals. As Daniel Hanus
(2016, 242) writes about the standard practice in comparative psychology, “an
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associative explanation should be the null hypothesis that must be rejected before
any cognitive explanation [like causal reasoning] should be assumed.” Researchers
thus design experiments to exclude associative learning as an explanation for task
performance. Given this, should they also treat unlimited associative learning as a
null hypothesis that must be rejected before one can conclude that an organism is
engaging in causal reasoning? In this section, I argue that they should not.
Although UAL is a plausible alternative explanation for performance on causal-
reasoning tasks, the null-hypothesis approach is a poor method for evaluating
hypotheses. We should reject the null-hypothesis approach and adopt instead a
signature-testing approach for investigating causal reasoning.

There has been much discussion in philosophy of science on the null-hypothesis
strategy. One recurring theme is that many hypotheses labelled “null” are in fact sub-
stantive hypotheses about the world. Given this, ceteris paribus, they should not be
epistemically privileged over alternative hypotheses (Fitzpatrick 2008; Bausman 2018;
Bausman and Halina 2018; Dacey 2021). Instead, like other substantive hypotheses,
one should weigh the epistemic values of the purported null against the epistemic
values of alternative hypotheses (e.g., internal consistency, empirical adequacy,
scope, explanatory power, unification, novel prediction, etc.; see Douglas 2013). If
a purported null hypothesis like associative learning is on a par with an alternative
hypothesis with respect to its epistemic values, then there is no reason to choose the
“null” over the alternative. In this way, the label “null” is misleading, as it suggests
one is justified in adopting a strategy similar to statistical null hypothesis testing
where one must reject the statistical null before accepting the alternative
(Bausman and Halina 2018). The claim that animals engage in associative learning
or UAL is a substantive claim about the world, however. Thus, unless epistemic values
weigh in UAL’s favor, we should not prefer this hypothesis over causal reasoning as an
explanation for success on causal reasoning tasks. We should also eschew the lan-
guage of “null hypotheses” altogether to avoid conflating associative learning and
UAL with statistical null hypotheses (Dacey 2021).

Although UAL should not be privileged independently of evidence and other epi-
stemic considerations, one might argue that it is the best explanation, given our cur-
rent background knowledge. One justification for selecting UAL as the best
explanation for an organism’s performance on causal reasoning tasks is that UAL
is found in that organism’s evolutionary relatives (Sober 2012, 2015; Currie 2021).
On the basis of cladistic parsimony, if two related species share a phenotype and
it’s known that the proximate mechanism causing this phenotype for one species
is M, then this is evidence that the proximate mechanism causing the phenotype
in the other species is also M (Sober 2012). Ginsburg and Jablonka argue on the basis
of current empirical evidence that UAL can be found in almost all vertebrates
(Ginsburg and Jablonka 2021). Thus, even if UAL has not been found specifically in
rooks, we have reason to believe it’s operating in this taxon, given its wide (and likely
deep) phylogenetic distribution, whereas we don’t have such evidence for causal
reasoning.

The above considerations may justify choosing UAL over causal reasoning as the
best explanation for vertebrate performance on causal reasoning tasks. However, this
evaluation presumes that we must choose between two mutually exclusive hypothe-
ses (causal reasoning and UAL), rejecting one and accepting the other (see Voudouris
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2020). The hypothesis space is more complicated than this, though. First, it’s unclear
that UAL and causal reasoning are mutually exclusive. As we’ve seen, UAL provides a
plausible account of how agents learn causal invariances. This diverges from accounts
of causal reasoning that take causal knowledge as “core knowledge” shaped largely by
evolution and changing little over ontogeny (Spelke 1994). UAL and such causal
accounts, however, overlap in positing that organisms employ causal models of
the world. Second, we could populate the hypothesis space with hybrid accounts
where some causal structure is present in an organism via unlearned priors and other
structure is associatively learned. Unlearned priors could also range from very gen-
eral (e.g., a preferential orientation towards biological motion) to more specific
(a principle of continuity). To choose between causal reasoning and UAL is to over-
simply the hypothesis space.

Where then to go from here? I suggest we move away from “success testing” and
towards what Bastos and Taylor (2020) call “signature testing.” Success testing
focuses on whether agents pass or fail tests, where passing a test is taken as evidence
for a (usually sophisticated) cognitive capacity unless an alternative hypothesis like
associative learning can explain the results. Such tests are weakly diagnostic—they
minimally constrain the hypothesis space. As we have seen, success on the trap-tube
task fails to distinguish between causal reasoning and UAL. In contrast, signature test-
ing provides additional constraints on the hypothesis space by examining a wide
range of information processing patterns, including errors, biases, and limitations
(Bastos and Taylor 2020). For example, UAL requires selective attention (Birch
et al. 2020). We should thus expect organisms with impaired selective attention
(e.g., due to impairments in the midbrain superior colliculus) to exhibit limitations
in their capacity to learn new causal information. An organism’s ability to learn
new causal invariances (e.g., in a virtual world with unusual physics) should also vary
depending on their capacity to employ UAL. We should thus expect the frequency of
errors on physical tasks in such a world to decrease over time insofar as an organism
is relying on UAL.2 The crucial point here is that we’re evaluating the hypothesis
space by looking at a range of information processing patterns, not just success in
causal-reasoning tasks designed to eliminate associative learning as the main compet-
ing hypothesis or “null.” Enriching the hypothesis space together with signature test-
ing provides a powerful alternative to the null-hypothesis approach.

5. Conclusion
Under standard methods in comparative cognition, unlimited associative learning is
best understood as a null hypothesis that must be eliminated before one can conclude
that an organism is capable of causal reasoning. Such an approach suggests that asso-
ciative learning and causal reasoning are the only plausible cognitive explanations for
performance on causal reasoning tasks. Instead, we should reject the null-hypothesis
approach and evaluate cognitive hypotheses according to their epistemic values. We

2 See Starzak and Gray (2021) for additional dimensions along which causal cognition might vary and
Seed et al. (2011) for a middle way (what they call “structural knowledge”) between associative learning
and adult human causal reasoning based on symbolic knowledge.
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should also focus on enriching the space of hypotheses while adopting methods that
can tightly constrain that space. This is best done using a signature-testing rather
than success-testing approach.
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